Справочник от Автор24
Поделись лекцией за скидку на Автор24

Задачи, системы и типовая программа технической диагностики

  • 👀 580 просмотров
  • 📌 523 загрузки
Выбери формат для чтения
Статья: Задачи, системы и типовая программа технической диагностики
Найди решение своей задачи среди 1 000 000 ответов
Загружаем конспект в формате docx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Задачи, системы и типовая программа технической диагностики» docx
1. ЗАДАЧИ, СИСТЕМЫ И ТИПОВАЯ ПРОГРАММА ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ 1.1. Цель и задачи технической диагностики Техническая диагностика — молодая наука, возникшая в последние десятилетия в связи с потребностями современной техники. Все возрастающее значение сложных и дорогостоящих технических систем, применяемых при добыче, транспортировке и переработке нефти и газа, требования их безопасности, безотказности и долговечности делают весьма важной оценку состояния системы, ее надежности. Уровень безопасности связан со свойствами перерабатываемых веществ, режимами и условиями эксплуатации оборудования, его техническим состоянием. Техническая диагностика является одним из основных элементов системы управления промышленной безопасностью в России. Общие требования по безопасности промышленных объектов установлены Федеральным законом Российской Федерации «О промышленной безопасности опасных производственных объектов» № 116-ФЗ от 20 июля 1997 г. Этот закон обязывает организации, эксплуатирующие опасные производственные объекты (к ним относятся все объекты нефтегазовой промышленности), проводить диагностику и испытания технических устройств, оборудова­ния и сооружений в установленные сроки и в установленном порядке. Диагностика, в том числе с использованием методов неразрушающего контроля, может проводиться как самой эксплуатирующей организацией, так и с привлечением специализированной организа­ции (имеющей соответствующую лицензию) в составе экспертизы промышленной безопасности. Надзор за безопасностью потенциаль­но опасных производственных объектов осуществляется государст­венными надзорными органами: Федеральной службой по экологическому, технологическому и атомному надзору, МЧС, Минэнерго, ГУПО МВД, каждым по своей части. Техническая диагностика — наука о распознавании состояния технической системы, включающая широкий круг проблем, связанных с получением и оценкой диагностической информации. Тер­мин «диагностика» происходит от греческого слова «» что означает распознавание, определение. В процессе диагностики уста­навливается диагноз, т. е. определяется состояние больного (медицинская диагностика) или состояние технической системы (техническая диагностика). Согласно ГОСТ 20911-89, техническая диагностика — область знаний, охватывающих теорию, методы и средства определения технического состояния объектов. Здесь и далее интересующими нас объектами являются буровое и газонефтепромысловое оборудование, газонефтепроводы и нефтехранилища. Целью технической диагностики являются определение возможности и условий дальнейшей эксплуатации диагностируемого оборудования и в конечном итоге повышение промышленной и экологической безопасности. Задачами технической диагностики, которые необходимо решить для достижения поставленной цели, являются: • обнаружение дефектов и несоответствий, установление причин их появления и на этой основе определение технического состояния оборудования; • прогнозирование технического состояния и остаточного ресурса (определение с заданной вероятностью интервала времени, в течение которого сохранится работоспособное состояние оборудования). Таким образом, техническая диагностика решает обширный круг задач, многие из которых являются смежными с задачами других научных дисциплин. Основной проблемой технической диагностики является распознавание состояния технической системы в условиях ограниченной информации. Решение перечисленных задач, особенно для сложных технических систем и оборудования, позволяет получить большой экономический эффект и повысить промышленную безопасность соответствующих опасных производственных объектов. Техническая диагностика благодаря раннему обнаружению дефектов позволяет предотвратить внезапные отказы оборудования, что повышает надежность, эффективность и безопасность промышленных производств, а также дает возможность эксплуатации сложных технических систем по фактическому техническому состоянию. Эксплуатация по техническому состоянию может принести выгоду, эквивалентную стоимости 30 % общего парка машин. 1.2. Виды дефектов, качество и надежность машин Техническое состояние оборудования определяется числом дефектов и степенью их опасности. Дефектом называют каждое отдельное несоответствие детали или технической системы требованиям, установленным технической документацией. По расположению дефекты подразделяют на наружные и внутренние (скрытые). Наружные дефекты чаще всего обнаруживают визуально, скрытые — посредством различных методов неразрушающего контроля. По форме дефекты бывают объемные и плоскостные. Объемные проявляются в виде изменения (искажения) начальной формы или размеров объекта, плоскостные — в виде трещин или полос скольжения. По происхождению дефекты подразделяют на производственные и эксплуатационные. Производственные дефекты могут быть металлургическими, возникающими в процессе металлургического передела, и технологическими, возникающими при изготовлении детали. Такие дефекты обычно проявляются в начальный период работы оборудования — период приработки. Эксплуатационные дефекты возникают после некоторой наработки в результате износа, накопления усталостных и иных повреждений, а также из-за неправильного технического обслуживания и ремонта. Практика показывает, что можно выделить следующие основные причины накопления дефектов и повреждений, приводящих к отказам оборудования по мере его эксплуатации: • сквозные трещины, разрушения и деформации элементов оборудования, возникающие при превышении допускаемых напряжений; • механический износ, обусловленный трением сопрягаемых поверхностей; • эрозионно-кавитационные повреждения, вызванные воздействием потока жидкости или газа; • деградация свойств материалов с течением времени и под воздействием эксплуатационных факторов; • коррозия металлов и сплавов, коррозионно-механические повреждения, возникающие под влиянием коррозии, напряжений, трения и т.п. По степени опасности дефекты разделяют на критические, значительные и малозначительные. Критическими являются дефекты, при наличии которых использование агрегата невозможно или недопустимо по условиям безопасности. К значительным относят дефекты, существенно влияющие на использование агрегата по назначению или на его долговечность. Малозначительные соответственно не оказывают существенного влияния ни на использование агрегата по назначению, ни на его долговечность. При определении степени опасности дефекта учитывают напряженное состояние контролируемого изделия, вид дефекта, его размеры и ориентацию относительно действующих напряжений. Основными факторами, определяющими степень опасности дефекта, являются величина утонения герметичных перегородок и коэффициент концентрации механических напряжений (в трещинах — коэффици­ент интенсивности напряжений), показывающий, во сколько раз максимальные местные напряжения в зоне дефекта выше, чем в бездефектной зоне. Виды допустимых дефектов и их величины приводятся в нормативной документации на контроль соответствующего изделия. Наиболее опасными являются плоскостные трещиноподобные дефекты, располагающиеся перпендикулярно действующим на­пряжениям. Основным параметром, характеризующим уровень концентрации напряжений в вершинах трещин, является критический коэффициент интенсивности напряжений (см. 12.4). Совокупность свойств, определяющих степень пригодности машины для использования по назначению, называется качеством. Эти свойства характеризуются эксплуатационными показателями (мощность, расход топлива, скорость, производительность и т.д.), экономической эффективностью, технологичностью, показателями эстетики и эргономики, надежностью. Надежность эксплуатируемой машины определяется в первую очередь ее техническим состоянием. По ГОСТ 27.002—83 надежность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения. Надежность оценивается безотказностью, долговечностью, ремонтопригодностью, ресурсом, а также сочетанием или совокупностью этих свойств. Безотказность — свойство оборудования сохранять работоспособность в течение некоторого времени или некоторой наработки. Долговечность — свойство оборудования сохранять работоспособность в заданных условиях эксплуатации вплоть до наступления предельного состояния. Ремонтопригодность - способность оборудования к предупреждению, обнаружению и устранению отказов и повреждений при проведении технических обслуживании и ремонтов. Ресурс — наработка оборудования от начала эксплуатации или ее возобновления после капитального ремонта до наступления предельного состояния. Из-за большого числа конструктивных, технологических и эксплуатационных факторов, влияющих на надежность, точно ее рассчитать или предсказать нельзя. Надежность можно оценить только приближенно путем расчета с использованием теории вероятностей и математической статистики или специально организованных испытаний, а также сбора эксплуатационных данных об отказах. Для оценки фактического технического состояния и контроля надежности оборудования (его основных узлов) производится анализ данных по временным показателям надежности оборудования — ресурсу, сроку службы, наработке (суммарной — с начала эксплуатации, с момента проведения последнего капитального ремонта). Показатели надежности, определяемые по годам за период не менее двух лет эксплуатации в соответствии с ГОСТ 27.002—83, рассчитывают по формулам, приведенным в табл. 1.1. На основе анализа количественных показателей надежности принимается решение о необходимости проведения диагностики оборудования, его ремонта или замены. Уровень количественных оценок различается в зависимости от типа оборудования. Так, для магистральных насосно-перекачивающих станций при снижении величины средней наработки на отказ на 10 %, вероятности безотказной работы на 3 % оборудование, независимо от выработки назначенного ресурса, подлежит техническому освидетельствованию. Снижение коэффициента технического использования оборудования на 3...5 % свидетельствует о необходимости проведения экономической оценки целесообразности его дальнейшей эксплуатации. Таблица 1.1 Наименование и условное обозначение показателя по ГОСТ 27.002 Формула для расчета статической оценки показателя надежности Средняя наработка на отказ (наработка на отказ) Средний ресурс (средний срок службы) Среднее время внепланового восстановления (ремонта) Среднее время планового восстановления (ремонта) Вероятность безотказной работы P(t) Коэффициент технического использования Примечания: r — число отказов, произошедших за период наблюдений t; ti — наработка между двумя последовательными отказами; n — число объектов, работоспособных в начальный момент времени (эксплуата­ционных наблюдений) t= 0; tpecj- наработка каждого из объектов от начала эксплуатации; tвi- продолжительность внепланового восстановления после 1-го отказа оборудования; tППРi- продолжительность i-го планового восстановления оборудования; NППР- число плановых ремонтов оборудования за период наблюдений t; п(t) — число объектов (оборудования), отказавших на отрезке времени 0...t. Приведенные определения показывают, что надежность оборудования зависит не только от качества его изготовления, но и от своевременности технического диагностирования и обнаружения дефектов, полноты и качества производимых ремонтов. Требование повышения надежности оборудования вступает в противоречие с требованием достижения максимального экономического эффекта. Любое повышение надежности достигается за счет увеличения расходов на изготовление машин, оснащения современ­ными системами мониторинга и диагностики их технического со­стояния. Одновременно с повышением затрат на изготовление Qи с целью повышения ее надежности Р уменьшаются затраты на содержание и ремонт QР в течение всего срока службы машины (рис. 1.1). Суммарные эксплуатационные затраты QС = Qи + QР имеют некоторое минимальное значение, соответствующее оптимальной надежности. Снижение эксплуатационных затрат и потерь от аварий Рис. 1. Затраты на изготовление, ремонт и эксплуатацию оборудования и простоев оборудования является одним из основных источников повышения рентабельности производственных предприятий. Наиболее важным показателем надежности является безотказность. Отказ — событие, заключающееся в нарушении работоспособности технической системы или ее элементов. Критериями отказов оборудования являются: прекращение функционирования, снижение эксплуатационных параметров за предельно допустимый уровень. Наиболее опасными являются отказы, приводящие к катастрофическим ситуациям, возникновение которых создает угрозу для жизни и здоровья людей, приводит к тяжелым экономическим потерям или причинению большого вреда окружающей среде. Если последствием отказа является катастрофическая ситуация, то уровень надежности должен задаваться максимально высоким. Экономические вопросы в таком случае не являются первостепенными. Отказы можно разделить на два вида: внезапные и постепенные. Внезапные отказы происходят в любой момент времени из-за различных непредвиденных обстоятельств: внезапного повышения нагрузки, механического повреждения, стихийных бедствий и др. Появлению постепенных отказов предшествует накопление дефектов и повреждений. Общая закономерность распределения интенсивности отказов по времени приведена на рис. 1.2. Рис. 1.2. Распределение интенсивности отказов: Т1 — период приработки; Т2 — период нормальной эксплуатации; Т3 — период ускоренного накоп­ления повреждений Начальный и завершающий периоды эксплуатации характеризуются повышенным количеством неисправностей и отказов по сравнению с этапом нормальной эксплуатации. Статистически закономерность увеличения количества отказов на начальном периоде эксплуатации объясняется приработкой деталей и проявлением конструктивных и производственных дефектов. Период нормальной эксплуатации является наиболее продолжительным и характеризуется практически постоянным значением интенсивности отказов. В третьем, завершающем, периоде проявляются так называемые деградационные отказы, интенсивность которых возрастает по мере увеличения износа, накопления микроповреждений и ухудшения (деградации) свойств материалов. При этом с увеличением зазоров в сопряжениях нарушается кинематика механизмов, ухудшаются условия смазки и возникают дополнительные динамические нагрузки. Обеспечить требуемую безотказность оборудования, особенно при монотонном накоплении дефектов и повреждений, исключить аварийные ситуации и минимизировать эксплуатационные затраты воз­можно только путем проведения своевременной диагностики. 1.3. Восстановление работоспособности оборудования Из-за износа и накопления повреждений при эксплуатации оборудование подвергается ремонту. Технологическое оборудование в нефтяной и газовой промышленности в обязательном порядке снабжается паспортами. Данные о выполненных ремонтах, техническом обслуживании, испытаниях, а также проведенном диагностировании заносятся в паспорт в течение всего срока эксплуатации оборудова­ния. Такие записи позволяют осуществить систематизацию и ретро­спективный анализ накопления дефектов и повреждений, оценить эффективность проведенных ремонтов. Они также обязательно учитываются при проведении очередного технического диагностирования. По мере эксплуатации и ремонта для каждого оборудования наступает такой момент, когда в результате физического и морального износа его эксплуатация и ремонт становятся невозможными или экономически невыгодными. В этом случае оборудование подвергается замене на новое. Моральным износом называется уменьшение стоимости действующей техники под влиянием технического прогресса. Различают две формы морального износа: • утрата действующей стоимости по мере того, как машины такой же конструкции начинают воспроизводиться дешевле; • обесценивание действующей техники вследствие появления более совершенных конструкций машин. Согласно РД 22-36-13, оптимальный ресурс машины или ее составной части можно определить из соотношения Где - стоимость объекта; - затраты на поддержание надежности объекта по интервалам выработки; t – наработка. Затраты на поддержание надежности объекта, как правило, можно аппроксимировать функцией вида Где w – коэффициент; n – показатель уровня надежности машины. Средние затраты на поддержание надежности объекта за наработку t могут быть определены из следующего выражения: Оптимальный ресурс определяется из уравнений Решив последнее уравнение относительно t, получим соотношение для определения оптимального ресурса объекта. В общем виде изложенная выше методика позволяет определить предельное состояние любой машины через оптимальное значение затрат на приобретение и эксплуатацию машины. Для восстановления работоспособности оборудования применяют следующие виды ремонта: реактивный ремонт, планово-предупредительный ремонт (ППР) и ремонт по фактическому техническому состоянию. Реактивная система имеет ограниченное применение и предполагает выполнение ремонта оборудования только в том случае, если оно выходит из строя или полностью вырабатывает свой ресурс. Данную систему применяют при использовании легкозаменяемого недорогого оборудования при наличии дублирования наиболее важных участков технологического процесса. При невозможности или нецелесообразности дублирования применяют систему ППР, которая представляет собой совокупность организационно-технических мероприятий по техническому обслуживанию и ремонту, проводимых в плановом порядке. Сущность системы ППР заключается в том, что после отработанного заданного числа часов проводится определенный вид планового ремонта — регламентное техническое обслуживание, текущий, средний и капитальный ремонты. Техническое обслуживание (ТО) подразделяют на периодическое и сезонное. Сезонное ТО включает сезонную замену сортов масел (зимних или летних), установку или снятие утеплении, предпускового подогрева и т.д. Периодическое ТО регламентируется руководствами по эксплуатации соответствующего оборудования и включает периодическую промывку фильтров, замену шинно-пневматических муфт, регулировку тормозов, осмотр и чистку отдельных узлов, регулировку натяжения и т.д. Текущий ремонт не бывает продолжительным и часто выполняется одновременно с ТО. В его состав входит устранение небольших неисправностей, замена мелких, быстро изнашивающихся деталей и узлов (например, замена вкладышей подшипников, сальниковых уплотнений, устранение повышенных зазоров, крепеж элементов оборудования и т.д.). Средний ремонт в отличие от текущего предусматривает замену основных узлов и деталей (например, силовых и трансмиссионных валов, зубчатых колес, крыльчаток центробежных насосов и т.д.) и вы­полняется, как правило, с полной или частичной разборкой агрегата. Капитальный ремонт всегда сопряжен с полной разборкой машины и ставит своей задачей замену или восстановление до первоначального состояния всех изношенных узлов и деталей. По окончании ремонта проводятся приемо-сдаточные испытания, в том числе испытания под нагрузкой. Нередко капитальный ремонт совмещают с модернизацией, что позволяет не только полностью восстановить ресурс машины, но и превзойти первоначальные показатели. Помимо перечисленных возможны также внеплановые ремонты, вызванные аварийными отказами оборудования из-за преждевременного износа или форс-мажорных обстоятельств (например, наводнения или оползни, закупорка трубопроводов льдом или гидратами и т.д.). Период между капитальными ремонтами называют ремонтным циклом. Число и последовательность входящих в него ремонтов и осмотров определяют структуру ремонтного цикла, а время между ремонтами — межремонтный период. Для некоторых видов оборудования структура ремонтного цикла может включать в себя не все виды плановых ремонтов. Так, для бурового оборудования средний ремонт не производится, а структура ремонтного цикла, например для буровой лебедки, имеет вид К-9Т-К, для буровых роторов К-7Т-К, где соответственно К — капитальный ремонт, Т — текущий ремонт, 9 и 7 — число текущих ремонтов в цикле. В практике ресурс однотипного оборудования назначают по наиболее «слабым» экземплярам, показавшим наихудший результат при эксплуатации, поэтому длительность ремонтного цикла и его структуру в системе ППР назначают заведомо такими, чтобы максимально исключить аварии оборудования, особенно связанные с возможностью травмирования людей или большим экономическим или эколо­гическим ущербом. При этом в ремонт, как правило, выводится значительная часть оборудования в достаточно хорошем техническом состоянии с большим остаточным ресурсом, которое могло бы еще долго работать. Более того, отремонтированное таким образом обо­рудование часто имеет более низкую надежность, что обусловлено появлением ранее отсутствовавших дефектов послеремонтной сборки и повторной приработкой трущихся поверхностей. Таким образом, основным недостатком системы ППР является проведение преждевременных ремонтов технологического оборудования, что приводит к большим экономическим потерям. Кроме того, ППР не гарантирует полное исключение внезапных отказов оборудования и связанных с этим последствий. Исключить перечисленные недостатки позволяет переход на систему ремонта по фактическому техническому состоянию на основе проведения своевременной диагностики или мониторинга технического состояния оборудования. В настоящее время системами диагностики и мониторинга в нефтяной и газовой промышленности оснащены большинство агрегатов большой единичной мощности, а также другие виды оборудования, аварии которого чреваты тяжелыми последствиями. Это по­зволяет планировать и производить ремонт или замену каждого эк­земпляра оборудования в зависимости от его реального технического состояния. 1.4. Виды состояния оборудования, системы технической диагностики ГОСТ 20911—89 предусматривает использование двух терминов: «техническое диагностирование» и «контроль технического состояния». Термин «техническое диагностирование» применяют, когда решаемые задачи технического диагностирования, перечисленные в 1.1, равнозначны или основной задачей являются поиск места и определение причин отказа. Термин «контроль технического состояния» применяют, когда основной задачей технического диагностирования является определение вида технического состояния. Различают следующие виды технического состояния, характеризуемые значением параметров объекта в заданный момент времени: • исправное — объект соответствует всем требованиям нормативно-технической и (или) конструкторской документации; • неисправное — объект не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской документации; • работоспособное — значения всех параметров, характеризующих способность объекта выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской документации; • неработоспособное — значение хотя бы одного параметра, ха­рактеризующего способность объекта выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской документации; • предельное — дальнейшая эксплуатация объекта технически невозможна или нецелесообразна из-за несоответствия требованиям безопасности или неустранимого снижения эффективности работы. Понятие «исправное состояние» шире, чем понятие «работоспособное состояние». Если объект исправен, он обязательно работоспособен, но работоспособный объект может быть неисправным, так как некоторые неисправности могут быть несущественными, не нарушающими нормальное функционирование объекта. Для сложных объектов, в частности для магистральных трубопроводов, допускается более глубокая классификация работоспособных состоянии с выделением частично работоспособного (частично неработоспособного) состояния, при котором объект способен частично выполнять заданные функции. Примером частично работоспособного состояния служит такое состояние линейной части маги­стральных трубопроводов, при котором участок способен выполнять требуемые функции по перекачке технологической среды с пониженными показателями, в частности с пониженной производитель­ностью при снижении допускаемого давления (РД 51-4.2-003-97). Системой технического диагностирования (контроля технического состояния) называют совокупность средств, объекта и исполнителей, необходимую для проведения диагностирования (контроля) по правилам, установленным в технической документации. Объектами технической диагностики являются технологическое оборудование или конкретные производственные процессы. Средство контроля — техническое устройство, вещество или материал для проведения контроля. Если средство контроля обеспечивает возможность измерения контролируемой величины, то контроль называют измерительным. Средства контроля бывают встроенными, являющимися составной частью объекта, и внешними, выполненными конструктивно отдельно от объекта. Различают также аппаратные и программные средства контроля. К аппаратным относят различные устройства: приборы, пульты, стенды и т.п. Программные средства представляют собой прикладные программы для ЭВМ. Исполнители — это специалисты службы контроля или технической диагностики, обученные и аттестованные в установленном порядке и имеющие право выполнять контроль и выдавать заключения по его результатам. Методика контроля — совокупность правил применения определенных принципов и средств контроля. Методика содержит порядок измерения параметров, обработки, анализа и интерпретации результатов. Для каждого объекта можно указать множество параметров, характеризующих его техническое состояние (ПТС). Их выбирают в зависимости от применяемого метода диагностирования (контроля). Изменения значений ПТС в процессе эксплуатации связаны либо с внешними воздействиями на объект, либо с повреждающими (деградационными) процессами (процессами, приводящими к деградационным отказам из-за старения металла, коррозии и эрозии, усталости и т.д.). Параметры объекта, используемые при его диагностировании (контроле), называются диагностическими (контролируемыми) параметрами. Следует различать прямые и косвенные диагностические параметры. Прямой структурный параметр (например, износ трущихся элементов, зазор в сопряжении и др.) непосредственно характеризует техническое состояние объекта. Косвенный параметр (например, давление масла, температура, содержание СО2 в отработанных газах и др.) косвенно характеризует техническое состояние. Об изменении технического состояния объекта судят по значениям диагностических параметров, позволяющих определить техниче­ское состояние объекта без его разборки. Набор диагностических параметров устанавливается в нормативной документации по техническому диагностированию объекта или определяется экспериментально. Количественные и качественные характеристики диагностических параметров являются признаками того или иного дефекта. У каждого дефекта может быть несколько признаков, в том числе некоторые из них могут быть общими для группы разных по природе дефектов. Теоретическим фундаментом технической диагностики считают общую теорию распознавания образов, являющуюся разделом технической кибернетики. К решению задачи распознавания существует два подхода: вероятностный и детерминистский. Вероятностный использует статистические связи между состоянием объекта и диаг­ностическими параметрами и требует накопления статистики соответствия диагностических параметров видам технического состояния. Оценка состояния при этом осуществляется с определенной достоверностью. Детерминистский подход, применяемый чаще всего, использует установленные закономерности изменения диагностических параметров, определяющих состояние объекта. Помимо теории распознавания, в технической диагностике используют также теорию контролеспособности. Контролеспособность определяется конструкцией объекта, задается при его проектировании и является свойством объекта обеспечивать возможность достоверной оценки диагностических параметров. Недостаточная досто­верность оценки технического состояния является фундаментальной причиной низкой достоверности распознавания состояния оборудования и оценки его остаточного ресурса. Таким образом, в результате предшествующих исследований устанавливают связи между характеристиками диагностических параметров и состоянием объекта и разрабатывают диагностические алгоритмы (алгоритмы распознавания), представляющие собой последовательность определенных действий, необходимых для постановки диагноза. Диагностические алгоритмы включают также систему ди­агностических параметров, их эталонные уровни и правила принятия решения о принадлежности объекта к тому или иному виду технического состояния. Определение вида технического состояния оборудования может производиться как в собранном состоянии, так и после его полной разборки. В период нормальной эксплуатации используют методы безразборной диагностики, как наиболее экономичные. Методы технической диагностики, требующие разборки, обычно применяют при капитальном ремонте оборудования — при дефектации его эле­ментов. Основной проблемой безразборной технической диагностики является оценка состояния оборудования в условиях ограниченности информации. По способу получения диагностической информации техническую диагностику разделяют на тестовую и функциональную. В тестовой диагностике информацию о техническом состоянии получают в результате воздействия на объект соответствующего теста. Тестовая диагностика основана на использовании различных методов неразрушающего контроля. Контроль при этом осуществляется, как правило, на неработающем оборудовании. Тестовая диагностика может производиться как в собранном, так и в разобранном состоянии. Функциональную диагностику проводят только на работающем обоудовании в собранном состоянии. Функциональную диагностику в свою очередь подразделяют на вибрационную и параметрическую диагностики. При использовании функциональной параметрической диагностики оценка технического состояния осуществляется по величине функциональных параметров оборудования при его работе, при этом подача целенаправленных тестовых воздействий не требуется. Отклонение этих параметров от их номинального значения (температура, давление, мощность, количество перекачиваемого продукта, КПД и т.д.) свидетельствует об изменении технического состояния элементов объекта, формирующих данный параметр. Контроль функциональных параметров обычно осуществляется в постоянном режиме оперативным обслуживающим персоналом с помощью штатных приборно-измерительных комплексов технологического оборудования. В связи с этим функциональную параметрическую диагностику часто на­зывают оперативной. Способы функциональной параметрической диагностики обычно излагаются в инструкциях и руководствах по эксплуатации соответствующего вида оборудования и в данном по­собии специально не рассматриваются. Вибрационная диагностика бывает двух видов: тестовая и функциональная (см. 2.1). Сущность функциональной вибрационной диагностики заключается в использовании параметров вибрации оборудования при функционировании в рабочих условиях для оценки его технического состояния без разборки. Особенностью функциональной вибрационной диагностики является использование в качестве диагностических не статических параметров типа температуры или давления, а динамических — виброперемещения, виб­роскорости и виброускорения. Помимо отмеченных выше видов диагностики, для оценки состояния оборудования применяют методы разрушающего контроля, предусматривающие частичное разрушение объекта (например, при вырезке проб для установления свойств материалов путем их механических испытаний), а также инструментальный измерительный контроль элементов оборудования при его разборке во время обсле­дования или ремонта. Классификация видов технической диагностики приведена на рис. 1.3. Системы диагностики различаются уровнем получаемой информации об объекте. В зависимости от решаемой задачи выделяют следующие виды диагностических систем: для разбраковки объектов на исправные и неисправные или для аттестации объектов по классам; поиска и измерения дефектов и повреждений; мониторинга состояния объекта и прогнозирования его остаточного ресурса. Последняя из перечисленных систем является наиболее сложной и применяется для ответственных и дорогостоящих опасных производственных объектов и технологического оборудования. Такие системы, предусматривающие проведение постоянного мониторинга с применением комплекса методов контроля технического состояния, позволяют проводить оперативную корректировку прогнозных оценок определяющих параметров и уточнение остаточного ресурса. В качестве основных методов контроля развития дефектности в комплексных системах мониторинга в настоящее время используют: для емкостного оборудования — акустико-эмиссионный контроль, для машинного — контроль вибрационных параметров. Современное технологическое оборудование представляет собой сложные технические системы. Обеспечение требуемой надежности таких систем, оцениваемой вероятностью безотказной работы Р(1) (см. табл. 1.1), является более проблематичным по сравнению с про­стыми. Надежность любой технической системы определяется надежностью составляющих ее элементов. В большинстве случаев для сложных систем контроль одного или нескольких элементов мало­эффективен, так как остается неизвестным состояние остальных. Составляющие элементы сложных технических систем могут соединяться между собой последовательным, параллельным или комбинированным способами. При последовательном соединении эле­ментов с вероятностью безотказной работы Р1 Р2, ..., Рn вероятность безотказной работы системы определяется из выражения , Где Pi – вероятность безотказности i-го элемента. При параллельном соединении При комбинированном способе вначале определяют вероятность безотказной работы элементов с параллельным соединением, а затем — с последовательным. Способ параллельного соединения дублирующих элементов называется резервированием. Резервирование позволяет резко повысить надежность сложных технических систем. Например, если в системе перекачки сырой нефти предусмотрены два независи­мых параллельных насоса с вероятностью безотказной работы Р1 = Р2 = 0,95, то вероятность безотказной работы всей системы Р(t) = 1 - (1 – Р1)(1 – P2) = 1 - (1 - 0,95)(1 - 0,95) = 0,998. Суммарная надежность системы определяется надежностью ее составляющих. Чем больше количество составляющих, из которых состоит система, тем выше должна быть надежность каждой из них. Например, если техническая система состоит из 100 последовательно соединенных элементов с одинаково высокой вероятностью безот­казной работы 0,99, то общая ее надежность будет равна 0,99100, что составит около 0,37, т. е. вероятность безотказной работы системы в течение заданного времени t составляет только 37 %. В связи с этим при диагностировании сложных систем, прежде всего включающих большое число составляющих без резервирования, для получения достоверной оценки их надежности необходимо осуществлять сплошной контроль всех составляющих. Состояние технической системы может описываться множеством параметров. При диагностировании сложных систем, работоспособность которых характеризуется большим числом параметров, возникает ряд дополнительных проблем, а именно: • необходимо установить номенклатуру основных диагностиче­ских параметров, характеризующих работоспособность системы, и задать технические средства их контроля; • по совокупности этих параметров необходимо разработать алгоритм оценки технического состояния системы и соответствующие программные продукты для ЭВМ. При проведении диагностики применяют сплошной и выборочный контроль. Крайне важным фактором является то, что применение современных неразрушающих методов позволяет перейти к сплошному контролю. Для сложного технологического оборудования, состоящего из большого числа зависимых элементов, введение сплошного неразрушающего контроля является необходимым усло­вием достоверной оценки его технического состояния. Диагностика требует определенных затрат, которые растут по мере повышения требований к надежности и безопасности. Для сравнения: в атомной промышленности США затраты на дефектоскопию составляют до 25% всех эксплуатационных затрат, в России — около 4%. По данным ВНИКТИ нефтехимоборудования, затраты на диагностику нефтехимического оборудования в США со­ставляют около 6% эксплуатационных затрат, в России — менее 1%. Вместе с тем эта статья расходов оправдана, так как использование систем технического диагностирования позволяет эксплуатировать каждый экземпляр технологического оборудования до предельного состояния и за счет этого получить значимый экономический эффект. 1.5. Типовая программа технического диагностирования Типовая программа (типовой алгоритм) технического диагностирования состоит из наиболее общих этапов работ, присущих различным типам диагностируемых объектов. Перечень и последовательость выполнения таких этапов приведены на рис. 1.4. Рис. 1.4. Алгоритм технического диагностирования Первый этап технического диагностирования включает анализ эксплуатационно-технической документации и данных оперативной диагностики. Этот этап является предварительным и позволяет получить ретроспективную информацию об объекте диагностирования, определить соответствие проекту использованных материалов и фактического конструктивного исполнения, фактических условий эксплуатации (нагрузок, температур, рабочих сред и др.) проектным, выбрать определяющие параметры технического состояния, предварительно установить ожидаемые деградационные процессы, составить перечень элементов и участков объекта диагностирования, которые в наибольшей степени предрасположены к появлению повреждений и дефектов. Анализу подлежат нормативно-техническая, проектная, монтажная и ремонтно-эксплуатационная документация, заключения экспертиз промышленной безопасности, проведенных ранее, а также научно-техническая информация по отказам и повреждениям аналогичных объектов. Натурное обследование объекта осуществляют в несколько последовательных этапов. В первую очередь проводят визуально-измерительный контроль, измерение геометрических параметров объекта и размеров выявленных дефектов. На объектах, имеющих большие габаритные размеры, выполняют геодезическую съемку. Результатом этого этапа является выявление изменения геометрии объекта, наличия поверхностных видимых дефектов и уточнение объема неразрушающего контроля. Далее неразрушающими методами выполняют толщинометрию и дефектоскопию элементов и участков объекта, выявленных на предварительном этапе диагностирования и уточненных при визуальном контроле. При необходимости производят исследование структуры, определение химического состава и механических свойств материалов. В большинстве случаев натурное обследование завершают испытанием объекта под нагрузкой на прочность, устойчивость и герметичность. Испытаниям предшествуют соответствующие проверочные расчеты с учетом выявленных дефектов. Проверочные расчеты в соответствии с нормативной документацией (ГОСТ 14249-89, 25859-83, 26202-84, 24755-89, РД 03-421-01, ПБ 03-605-03 и др.) выполняют по допускаемым напряжениям с учетом коэффициентов запаса. Величина запаса определяется физико-механическими харак­теристиками материала конструкции и условиями ее нагружения. Расчет фактических напряжений при проверке их соответствия до­пускаемым значениям и определении коэффициентов запаса можно заменить определением этих напряжений с помощью номограмм по величине коэрцитивной силы (см. 7.7 и 12.5). Оборудование считают работоспособным, если его несущие элементы имеют запасы прочности выше следующих нормативных значений: nт= 1,5 — запас прочности до образования пластического шарнира (по пределу текучести); nв = 2,4 — запас прочности по пределу прочности; nк = 2,0 — запас прочности по критическому коэффициенту интенсивности напряжений. Если расчетный коэффициент запаса ниже установленных значений, то принимают решение о снижении рабочих параметров диагностируемого оборудования (давления, температуры, расхода) или выводе его из эксплуатации. На завершающем этапе диагностирования выполняют анализ выявленных дефектов и повреждений, их соответствие нормам и критериям, установленным в нормативно-технической документа­ции, дают оценку технического состояния объекта. Выясняют необ­ходимость проведения дополнительных исследований с целью уточ­нения определяющих параметров на основе уточнения напряженно-деформированного состояния, деградационных процессов и фактических характеристик материалов. При признании объекта работоспособным, а также при наличии возможности восстановления его работоспособности выполняют прогнозный расчет остаточного ресурса по определяющим параметрам технического состояния с учетом скорости роста соответствующих дефектов и повреждений. По результатам технического диагностирования принимают решение о возможности и условиях дальнейшей эксплуатации объекта: продолжении эксплуатации на рабочих или сниженных параметрах, необходимости ремонта объекта или демонтажа из-за невозможности или нецелесообразности его дальнейшего использования. В зависимости от конструктивного исполнения в типовую программу диагностирования вносят изменения и дополнения, учитывающие особенности конкретного объекта и предусматривающие проведение дополнительных исследований и применение различных методов неразрушающего контроля: например, контроль состояния магистральных трубопроводов с помощью специальных снарядов-дефектоскопов, инструментальное обследование состояния оснований и опор, тепловизионное обследование в режиме эксплуатации объектов с термоизоляционным покрытием (например, изотермических резервуаров для хранения сжиженного газа), дополнительное обследование фундамента ГПА и конструкций зданий насосных и ком­прессорных станций и др. 1.6. Виды неразрушающего контроля, его стандартизация и метрологическое обеспечение Типовая программа диагностики предусматривает использование различных методов контроля, прежде всего методов неразрушающего контроля. Неразрушающий контроль требует примене­ния специальных и дорогостоящих приборов и оборудования и привлечения высококвалифицированных аттестованных специалистов. Он может осуществляться как дискретно, так и путем постоянного мониторинга на сложных и дорогостоящих опасных производственных объектах. Для получения информации в неразрушающем контроле {далее НК) используют все виды физических полей и излучений, химических взаимодействий и процессов. Зарождение НК обычно относят ко времени открытия в ноябре 1895 г. рентгеновских лучей, которые позволили обнаружить металлический предмет в закрытой деревянной коробке. За прошедший после этого период разработано боль­шое число различных видов и методов НК. Классификация видов НК в соответствии с ГОСТ 18353-79 основана на физических процессах взаимодействия поля или вещества с объектом контроля. В основе решения диагностических задач лежит прежде всего оптимальный выбор физического процесса, дающего наиболее объективную информацию об объекте диагностирования. В зависимости от общности физических принципов, на которых они основаны, различают девять видов НК: акустический, магнитный, тепловой, электрический, оптический, вихретоковый, радиационный, проникающими веществами и радиоволновой. Каждый из видов НК подразделяют на методы, отличающиеся следующими признаками: • характером взаимодействия поля или вещества с объектом, опеделяющим соответствующие изменения поля или состояния вещества; • параметром поля или вещества (первичным информативным параметром), измеряемым в процессе контроля; •способом измерения параметра поля или вещества. Классификация методов НК по ГОСТ 18353-79 приведена в табл. 1.2 и 1.3. Ни один из методов НК не является универсальным. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов в заданных условиях. Напри­мер, многие из методов применимы для контроля некоторых типов материалов: радиоволновые — для радиопрозрачных диэлектрических материалов; электроемкостный — для неметаллических, плохо проводящих ток материалов; вихретоковый, электропотенциальный — для хороших электропроводников; магнитный — для ферромагнетиков; акустический — для материалов, обладающих небольшим затуханием звука соответствующей частоты, и т.д. Таблица 1.2 Вид контроля Классификация методов неразрушающего контроля По характеру взаимодействия физических полей с контролируемым объектом По первичному информативному параметру По способу получения первичной информации Магнитный Магнитный Коэрцитивной силы Намагниченности Остаточной индук­ции Магнитной прони­цаемости Напряженности Эффекта Баркгаузена Магнитопорошковый Индукционный Феррозондовый Эффект Холла Магнитографиче­ский Пондеромоторный Магниторезисторный Электрический Электрический Трибоэлектрический Термоэлектрический Электро потенциальный Электроемкостный Электростатический порошковый Электропараметри­ческий Электроискровой Рекомбинационного излучения Экзоэлектронной эмиссии Шумовой Контактной разно­сти потенциалов Вихретоковый Прошедшего излуче­ния Отраженного излуче­ния Амплитудный Фазовый Частотный Спектральный Многочастотный Трансформаторный Параметрический классификация методов контроля проникающими веществами (капиллярными и течеисканием) По характеру взаимодействия веществ с контролируемым объектом По первичному информативному параметру По способу получения первичной информации Молекулярный Жидкостный Газовый Яркостный (ахроматический) Цветной (хроматический) Люминесцентный Люминесцентно – цветной Фильтрующих частиц Масс-спектрометрический Пузырьковый Манометрический Галогенный Радиоактивный Катарометрический Химический Остальных устойчивых деформаций Акустический Чувствительность соответствующего метода НК оценивается наименьшими размерами выявляемых дефектов: для поверхностных — шириной раскрытия на поверхности детали, а также протяженностью и глубиной развития; для скрытых — размерами дефекта и глубиной его залегания. Сопоставление различных методов кон­троля можно проводить только в тех условиях, когда возможно применение нескольких методов. Перечень рекомендуемых методов НК приводится в нормативно-технических документах по технической диагностике конкретных объектов. Для обеспечения единообразия проведения контроля в различ­ных условиях, единства и требуемой точности получаемых результатов разработана система нормативно-технических документов. Она включает ГОСТы, ОСТы, правила и методики контроля. В них регламентируются классификация методов НК, терминология, основные параметры средств контроля, методы и периодичность их метрологической поверки, методика проведения НК, требования к квали­фикации персонала и др. Средства неразрушающего контроля разделяют на индикаторные и измерительные. Индикаторными называют средства контроля, не имеющие измерительных узлов и предназначенные лишь для индикации дефектов. Средства контроля, оснащенные измерительными узлами, подлежат периодической метрологической поверке. Периодичность поверки указывается в паспортах средств измерений и обычно составляет один год. Поверке подлежат также контрольные и стандартные образцы, используемые для настройки и проверки средств измерений. Квалификация специалистов НК устанавливается и подтверждается по результатам соответствующей аттестации. Согласно ПБ 03-440—02 «Правила аттестации персонала в области неразрушающего контроля», аттестация проводится по следующим видам НК: ультразвуковой (УК); акустико-эмиссионный (АЭ); радиаци­онный (РК); магнитный (МК); вихретоковый (ВК); проникающи­ми веществами: капиллярными (ПВК); течеискания (ПВТ); визуальный и измерительный (ВИК); вибродиагностический (ВД); электрический (ЭК); тепловой (ТК); оптический (ОК). Аттестация специалистов НК в зависимости от их квалификации производится в соответствии с ПБ 03-440—02 по трем уровням. Специалист I уровня квалификации выполняет работы по НК конкретного объекта по утвержденной инструкции под контролем специалиста II или III уровня и не имеет права оценивать полученные результаты. Специалист II уровня, помимо знаний I уровня, разрабатывает технологические инструкции и карты контроля в соответствии с дей­ствующими нормативами и методическими документами в области своей аттестации, производит выбор технологии и средств контроля, выдает заключение по результатам контроля, выполненного им са­мим или под его наблюдением специалистом I уровня. Специалист III уровня обладает квалификацией, достаточной для руководства любыми операциями по тому методу НК, по которому он аттестован, в том числе: руководит работой персонала I и II уровней, а также выполняет работы, отнесенные к компетенции послед­них; проверяет и согласовывает технологические документы, разработанные специалистами II уровня квалификации; разрабатывает технологические документы и технологические регламенты по НК; проводит инспекционный контроль работ, выполненных персона­лом I и II уровней квалификации. Специалисты по НК должны проходить периодическую переаттестацию: I и II уровней — через три года, III уровня — через пять лет. В удостоверении каждого специалиста помимо вида НК записы­вается вид оборудования, к контролю которого он допущен. Для правильного выбора методов НК необходимо знание их осо­бенностей, областей применения и технологии контроля. Далее рас­смотрены основные методы неразрушающего контроля, наиболее часто применяемые в процессе технической диагностики нефтегазового оборудования.
«Задачи, системы и типовая программа технической диагностики» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач

Тебе могут подойти лекции

Автор(ы) Степанова-Быкова А. С.
Смотреть все 39 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot