Выбери формат для чтения
Загружаем конспект в формате docx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Лекция. Построение моделей временных рядов и оценка их качества
1. Построение моделей временных рядов
Аналитические методы выделения (оценки) неслучайной составляющей временного ряда.
Формирование уровней ряда определяется закономерностями трех основных типов: инерцией тенденции, инерцией взаимосвязи между последовательными уровнями ряда и инерцией взаимосвязи между исследуемым показателем и показателями-факторами, оказывающими на него причинное воздействие. Соответственно различают задачи анализа и моделирования тенденций, взаимосвязи между последовательными уровнями ряда; причинных взаимодействий между исследуемым показателем и показателями - факторами. Первая из них решается с помощью моделей кривых роста, вторая - с помощью адаптивных методов и моделей, а третья с помощью регрессионных моделей (см. 3.2.3).
Модели кривых роста
Плавную кривую (гладкую функцию), аппроксимирующую временной ряд принято называть кривой роста.
Аналитические методы выделения (оценки) неслучайной составляющей временного ряда с помощью кривых роста реализуются в рамках моделей регрессии, в которых в роли зависимой переменной выступает переменная yt, а в роли единственной объясняющей переменной - время t.
Наиболее часто в практической работе используются кривые роста, которые позволяют описывать процессы трех основных типов: без предела роста; с пределом роста без точки перегиба; с пределом роста и точкой перегиба.
Для описания процессов без предела роста служат функции: прямая (полином первой степени) - , парабола (полином второй степени) - , экспонента - и другие.
Процессы развития такого типа характерны в основном для абсолютных объемных показателей.
Для описания процессов с пределом роста служат функции: кривая Джонсона, модифицированная экспонента и др.
Процессы с пределом роста характерны для многих относительных показателей (душевое потребление продуктов питания, внесение удобрений на единицу площади, затраты на один рубль произведенной продукции и т.п.).
Для описания процессов третьего типа - с пределом роста и точкой перегиба используются кинетическая кривая (кривая Перла - Рида) и кривая Гомперца.
Такой тип развития характерен для спроса на некоторые новые товары.
Математические методы позволяют представить прогнозирующую модель в виде полинома любого порядка. Однако без необходимости использование полиномов высокого порядка представляется излишним.
Параметры моделей могут быть содержательно интерпретированы. Так, параметр а0 во всех моделях без предела роста задает начальные условия развития, а в моделях с пределом роста - асимптоту функций, параметр а1 определяет скорость или интенсивность развития, параметр а2 - изменение скорости или интенсивности развития.
Параметры большинства "кривых роста", как правило, оцениваются по методу наименьших квадратов, т.е. подбираются таким образом, чтобы график функции "кривой роста" располагался на минимальном удалении от точек исходных данных. Согласно методу наименьших квадратов при оценке параметров модели всем наблюдениям присваиваются равные веса, т.е. их информационная ценность признается равной, а тенденция развития на всем участке наблюдений – неизменной.
Предпочтение, как правило, отдается простым моделям, допускающим содержательную интерпретацию. К числу таких моделей относится линейная модель роста
, (3.4.14)
где – параметры модели, а t = 1, 2,…, n.
Математически критерий оценки параметров модели записывается в виде:
(3.4.15)
Для нахождения минимума функции двух переменных следует взять частные производные по и , а затем приравнять их нулю. В результате получим так называемую систему нормальных уравнений
(3.4.16)
Решая систему двух линейных уравнений с двумя неизвестными, получим
(3.4.17)
где и – средние значения моментов наблюдения и уровней ряда, соответственно.
2. Оценка качества построенных моделей.
Модель считается хорошей со статистической точки зрения, если она адекватна и достаточно точна.
Проверка адекватности модели реальному явлению является важным этапом прогнозирования социально - экономических процессов. Для этого исследуют ряд остатков , т.е. отклонения расчетных значений от фактических данных.
Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений. Наиболее важными свойствами остаточной компоненты являются независимость уровней ряда остатков, их случайность и соответствие нормальному закону распределения.
Проверка равенства математического ожидания уровней ряда остатков нулю осуществляется в ходе проверки соответствующей нулевой гипотезы . С этой целью строится t-статистика:
, (3.4.22)
где - среднее арифметическое значение уровней ряда остатков ; а - среднеквадратическое отклонение для этой последовательности, рассчитанное по формуле для малой выборки.
На уровне значимости гипотеза отклоняется, если , где – критерий распределения Стьюдента с доверительной вероятностью (1 –) и степенями свободы .
Проверка условия случайности возникновения отдельных отклонений от тренда.
Для проверки случайности уровней ряда могут быть использованы критерий серий и критерий поворотных точек.
Критерий “восходящих” и “нисходящих” серий был описан ранее (см. Предварительный анализ данных)
Критерий «пиков», или критерий поворотных точек. Значение случайной переменной считается поворотной точкой, если оно одновременно больше (меньше) соседних с ним элементов. Если остатки случайны, то поворотная точка приходится примерно на каждые 1,5 наблюдения. Если их больше, то возмущения быстро колеблются и это не может быть объяснено только случайностью. Если же их меньше, то последовательные значения случайного компонента положительно коррелированны.
Критерий случайности отклонений от тренда при уровне вероятности 0,95 можно представить как
(3.4.23)
где р – фактическое количество поворотных точек в случайном ряду; 1,96 – квантиль нормального распределения для 5%-го уровня значимости. Квадратные скобки здесь так же означают, что от результата вычисления следует взять целую часть.
Если неравенство не соблюдается, то ряд остатков нельзя считать случайным (т.е. он содержит регулярную компоненту) и, стало быть, модель не является адекватной.
Наличие (отсутствие) автокорреляции в отклонениях от модели роста проверяют с помощью критерия Дарбина – Уотсона (3.3.9).
Соответствие ряда остатков нормальному закону распределения важно с точки зрения правомерности построения доверительных интервалов прогноза. Наиболее существенными свойствами ряда отклонений являются их симметричность относительно модели и преобладание малых по абсолютной величине ошибок над большими ошибками. В этой связи определяется близость к соответствующим параметрам нормального закона распределения коэффициентов асимметрии - A (мера скошенности) и эксцесса Э (мера “скученности”) наблюдений около модели:
,
— среднеквадратическая ошибка выборочной характеристики асимметрии, — среднеквадратическая ошибка выборочной характеристики эксцесса..
Если одновременно выполняются неравенства
то гипотеза о нормальном характере распределения случайного компонента не отвергается.
Если выполняется хотя бы одно из неравенств:
то гипотеза о нормальном характере распределения отвергается
В случае попадания коэффициентов асимметрии и эксцесса в зону неопределенности (между полутора и двумя СКО) используются другие критерии, частности RS- критерий:
(3.4.24)
где и соответственно максимальный и минимальный уровни ряда остатков; - среднеквадратическое отклонение ряда остатков
Если расчетное значение RS попадает между табулированными границами с заданным уровнем вероятности, то гипотеза о нормальном распределении ряда остатков принимается. ( Для n = 10 и 5%-ного уровня значимости этот интервал равен 2,7 - 3,7). В этом случае допустимо строить доверительный интервал прогноза.
Если все пункты проверки дают положительный результат, то выбранная трендовая модель является адекватной реальному ряду экономической динамики, и, следовательно, ее можно использовать для построения прогнозных оценок. В противном случае – модель надо улучшать.
Оценка точности модели
В статистическом анализе известно большое число характеристик точности. Наиболее часто в практической работе, кроме среднеквадратического отклонения, используются:
максимальная по абсолютной величине ошибка
Emax = max| |;
относительная максимальная ошибка
Еотн = Еmax / Yср *100%
средняя по модулю ошибка
|Еср| = (e(1) + ... + e(n))/n
средняя относительная по модулю ошибка
|Еср|отн= |Еср| / Yср 100% (3.4.25)
Эти показатели дают представление об абсолютной величине ошибки модели и о доле ошибки в процентном отношении к среднему значению результативного признака.
При использовании ретропрогноза - подхода, когда несколько последних уровней ряда оставляются в качестве проверочной последовательности - точность прогнозных оценок определяется на основе этих же показателей.
Лучшей по точности считается та модель, у которой все перечисленные характеристики имеют меньшую величину. Однако эти показатели по-разному отражают степень точности модели и потому нередко дают противоречивые выводы. Для однозначного выбора лучшей модели исследователь должен воспользоваться либо одним основным показателем, либо обобщенным критерием.
3. Построение точечных и интервальных прогнозов
Идея социально-экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится и в прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективной, а в прошлое – ретроспективной.
Прогнозирование методом экстраполяции базируется на следующих предположениях:
а) развитие исследуемого явления в целом описывается плавной кривой;
б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;
в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.
Поэтому надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предположения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.
На основе построенной модели рассчитываются точечные и интервальные прогнозы. Точечный прогноз на основе временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t=n+1, n+2,..., n+k.
Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами.
1. Выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.
2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.
3. Тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.
Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.
При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид:
, (3.4.26)
где
, (3.4.27)
- стандартная ошибка (среднеквадратическое отклонение от модели), m – количество факторов в модели, для линейной модели m = 1.
Коэффициент 1 является табличным значением t-статистики Стьюдента при заданном уровне значимости и числе наблюдений. Если исследователь задает уровень вероятности попадания прогнозируемой величины внутрь доверительного интервала, равной 70%, то при n =9 = 1,12. При вероятности, равной 95%, = 2,36.
Для других моделей величина U(k) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.10), величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности степени углубления в будущее на k шагов вперед, т.е. на момент t = n+k, и обратно пропорциональна объему наблюдений. Доверительный интервал прогноза будет иметь следующие границы:
– верхняя граница прогноза = Yпрогноз(n+k) + U(k);
– нижняя граница прогноза = Yпрогноз(n+k) – U(k).
Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.
После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.