Основные принципы классической структуры вычислительных устройств. Структура ВС современных ЭВМ и тенденции ее развития
Выбери формат для чтения
Загружаем конспект в формате docx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Лекция №4
Основные принципы классической структуры вычислительных устройств. Структура ВС современных ЭВМ и тенденции ее развития
В предыдущей лекции была описана классическая структура ЭВМ, соответствующая вычислительным машинам первого и второго поколений. Естественно, что в результате бурного развития технологии производства средств вычислительной техники такая структура не могла не претерпеть определенных прогрессивных изменений.
Как отмечалось выше, появление третьего поколения ЭВМ было обусловлено переходом от транзисторов к интегральным микросхемам. Значительные успехи в миниатюризации электронных схем не просто способствовали уменьшению размеров базовых функциональных узлов ЭВМ, но и создали предпосылки для существенного роста быстродействия процессора. Возникло существенное противоречие между высокой скоростью обработки информации внутри машины и медленной работой устройств ввода-вывода, в большинстве своем содержащих механически движущиеся части. Процессор, руководивший работой внешних устройств, значительную часть времени был бы вынужден простаивать в ожидании информации «из внешнего мира», что существенно снижало бы эффективность работы всей ЭВМ в целом. Для решения этой проблемы возникла тенденция к освобождению центрального процессора от функций обмена и к передаче их специальным электронным схемам управления работой внешних устройств. Такие схемы имели различные названия: каналы обмена, процессоры ввода-вывода, периферийные процессоры. Последнее время все чаще используется термин «контроллер внешнего устройства» (или просто контроллер).
Наличие интеллектуальных контроллеров внешних устройств стало важной отличительной чертой машин третьего и четвертого поколений.
Контроллер можно рассматривать как специализированный процессор, управляющий работой «вверенного ему» внешнего устройства по специальным встроенным программам обмена. Такой процессор имеет собственную систему команд. Например, контроллер накопителя на гибких магнитных дисках (дисковода) умеет позиционировать головку на нужную дорожку диска, читать или записывать сектор, форматировать дорожку и т.п. Результаты выполнения каждой операции заносятся во внутренние регистры памяти контроллера и могут быть в дальнейшем прочитаны центральным процессором.
Таким образом, наличие интеллектуальных внешних устройств может существенно изменять идеологию обмена. Центральный процессор при необходимости произвести обмен выдает задание на его осуществление контроллеру. Дальнейший обмен информацией может протекать под руководством контроллера без участия центрального процессора. Последний получает возможность «заниматься своим делом», т.е. выполнять программу дальше (если по данной задаче до завершения обмена ничего сделать нельзя, то можно в это время решать другую).
Перейдем теперь к обсуждению вопроса о внутренней структуре ЭВМ, содержащей интеллектуальные контроллеры, изображенной на рис. 1.
Из рисунка видно, что для связи между отдельными функциональными узлами ЭВМ используется общая шина (часто ее называют магистралью). Шина состоит из трех частей:
• шина данных, по которой передается информация;
• шина адреса, определяющая, куда передаются данные;
• шина управления, регулирующая процесс обмена информацией.
Существуют модели компьютеров, у которых шины данных и адреса для экономии объединены. У таких машин сначала на шину выставляется адрес, а затем через некоторое время данные; для какой именно цели используется шина в данный момент, определяется сигналами на шине управления.
Описанную схему легко пополнять новыми устройствами - это свойство называют открытостью архитектуры. Для пользователя открытая архитектура означает возможность свободно выбирать состав внешних устройств для своего компьютера, т.е. конфигурировать его в зависимости от круга решаемых задач.
На рис. 1 представлен новый вид памяти – видео - ОЗУ (видеопамять). Его появление связано с разработкой особого устройства вывода - дисплея. Основной частью дисплея служит электронно-лучевая трубка, которая отображает информацию примерно так же, как это происходит в телевизоре (раньше к некоторым дешевым домашним моделям компьютеров просто подключали обычный телевизор). Очевидно, что дисплей, не имея механически движущихся частей, является «очень быстрым» устройством отображения информации. Поэтому для ЭВМ третьего и четвертого поколений он является неотъемлемой частью (хотя впервые дисплей был реализован на некоторых ЭВМ второго поколения, например, на «МИР-2» - очень интересной во многих отношениях отечественной разработке).
Рис. 1 - Шинная архитектура ЭВМ
Для получения на экране монитора стабильной картинки ее надо где-то хранить. Для этого и существует видеопамять. Сначала содержимое видеопамяти формируется компьютером, а затем контроллер дисплея выводит изображение на экран. Объем видеопамяти существенно зависит от характера информации (текстовая или графическая) и от числа цветов изображения. Конструктивно она может быть выполнена как обычное ОЗУ или содержаться непосредственно в контроллере дисплея.
Остановимся еще на одной важной особенности структуры современных ЭВМ. Поскольку процессор теперь перестал быть центром конструкции, стало возможным реализовывать прямые связи между устройствами ЭВМ. На практике чаще всего используют передачу данных из внешних устройств в ОЗУ и наоборот.
Режим, при котором внешнее устройство обменивается непосредственно с ОЗУ без участия центрального процессора, называется прямым доступом к памяти (ПДП).
Для его реализации необходим специальный контроллер. Подчеркнем, что режим ПДП в машинах первого и второго поколений не существовал. Поэтому встречающаяся иногда схема ЭВМ, на которой данные из устройств ввода напрямую поступают в ОЗУ, не соответствует действительности: данные при отсутствии контроллера ПДП всегда, сначала принимаются во внутренние регистры процессора и лишь затем в память.
При описании магистральной структуры мы упрощенно предполагали, что все устройства взаимодействуют через общую шину. С точки зрения архитектуры этого вполне достаточно. Упомянем все же, что на практике такая структура применяется только для ЭВМ с небольшим числом внешних устройств. При увеличении потоков информации между устройствами ЭВМ единственная магистраль перегружается, что существенно тормозит работу компьютера. Поэтому в состав ЭВМ могут вводиться одна или несколько дополнительных шин. Например, одна шина может использоваться для обмена с памятью, вторая - для связи с «быстрыми», а третья - с «медленными» внешними устройствами. Отметим, что высокоскоростная шина данных ОЗУ обязательно требуется при наличии режима ПДП.
Завершая обсуждение особенностей внутренней структуры современных ЭВМ, укажем несколько характерных тенденций в ее развитии.
Во-первых, постоянно расширяется и совершенствуется набор внешних устройств, что приводит, как описывалось выше, к усложнению системы связей между узлами ЭВМ.
Во-вторых, вычислительные машины перестают быть однопроцессорными. Помимо центрального, в компьютере могут быть специализированные процессоры для вычисления с плавающей запятой (так называемые математические сопроцессоры), видеопроцессоры для ускорения вывода информации на экран дисплея и т.п. Развитие методов параллельных вычислений также вызывает к жизни вычислительные системы достаточно сложной структуры, в которых одна операция выполняется сразу несколькими процессорами.
В-третьих, наметившееся стремление иметь быстродействующие машины не только для вычислений, но и для логического анализа информации, также может привести в ближайшие годы к серьезному пересмотру традиционной фон-неймановской архитектуры.
Еще одной особенностью развития современных ЭВМ является все ускоряющееся возрастание роли межкомпьютерных коммуникаций. Все большее количество компьютеров объединяются в сети и обрабатывают имеющуюся информацию совместно.
Таким образом, внутренняя структура вычислительной техники постоянно совершенствовалась и будет совершенствоваться.
Вместе с тем, на данный момент подавляющее большинство существующих ЭВМ, несмотря на имеющиеся различия, по-прежнему состоит из одинаковых узлов и основано на общих принципах фон-неймановской архитектуры.