Выбери формат для чтения
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Lecture 5 Moral Hazard
Xuezhu Shi
Email: shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Nov, 2020
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
1/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Moral Hazard
Ex-ante
Safety belts are an insurance device
People who installed the ”safety belt insurance” felt less inclined to
drive safely
Examples:
Health insurance may induce people to be less careful when playing
dangerous sports
having a property insurance will make one think whether it is really
necessary to take care of your premises
with crop insurance, a farmer may work less hard to cultivate her fields
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
2/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Moral Hazard
The second meaning
Insurance literature
If people who hold health insurance consume more health services
than would be optimal
Ex-post moral hazard
The behaviour occurs after the loss has occurred
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
3/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Single Period Contracts Under Moral Hazard
The Basic Model: Ex-ante moral hazard
Two states of the world model: One state with no loss, the other where
the loss occurs.
The probability of the damage is not exogenous: depends on the effort (e)
The expected utility of an individual with Ex-ante moral hazard in the
insurance contact is:
E[U] = (1 − π(e))U(W − P) + π(e)U(W − L + I) − c(e)
I = C − P, I is the net compensation
′
π(e) s the probability that a loss occurs, which satisfies π (e) < 0,
more effort leads to a lower probability of an accident
′
Cost of effort c(e) and c (e) > 0
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
4/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Single Period Contracts Under Moral Hazard
The Basic Model: Ex-ante moral hazard
The agent has the choice between two effort levels: e1 (”lazy”) and
e2 > e1 (”hard working”)
The ”first best” solution: when the efforts is observable.
The premium would be P = π(e)L
Either effort level e1 or effort level e2 is optimal, depending on which of
the two expressions is larger
u(W − π1 L) − c(e1 ) >=< u(W − π2 L) − c(e2 )
where πi = π(ei ),
i = 1, 2
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
5/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Single Period Contracts Under Moral Hazard
The Basic Model: Ex-ante moral hazard
The ”second best” case: effort is not observable
Suppose that also under asymmetric information the higher effort should
be implemented. The contract must be designed such that the agent will
work hard
The optimisation problem:
max(1 − π2 )u(W − P) + π2 u(W − L + I) − c(e2 )
P,I
s.t
PC :(1 − π2 )P − π2 I ≥ Π
IC :(1 − π2 )u(W − P) + π2 u(W − L + I) − c(e2 ) ≥
(1 − π1 )u(W − P) + π1 u(W − L + I) − c(e1 )
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
6/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
The Basic Model: Ex-ante moral hazard
The ”second best” case
Participation constraint (PC): the insurance company must obtain at
least profit Π to agree to trade with the agent
If Π = 0: the competitive market situation
Because ex-ante, both parties have the same information. If Π is large
enough, the solution to the monopoly problem will be obtained.
IC is the incentive compatibility constraint
As effort is not observable by the insurer, the contract must be such
that it is in the interest of the insured to put in effort e2 rather than e1
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
7/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
The Basic Model: Ex-ante moral hazard
The ”second best” case
Both constraints have to be binding. The Lagrangian function is given by:
L = (1 − π2 )u(W − P) + π2 u(W − L + I) − c(e2 )
+ λ1 [(1 − π2 )P − π2 I − Π] + λ2 [(1 − π2 )u(W − P) + π2 u(W − L + I)
− c(e2 ) − (1 − π1 )u(W − P) − π1 u(W − L + I) + c(e1 )]
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
8/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
The Basic Model: Ex-ante moral hazard
The ”second best” case
The FOCs w.r.t P and I
dL
′
= −(1 − π2 )u (W − P) + λ1 (1 − π2 )
dP
′
′
− λ2 [(1 − π2 )u (W − P) − (1 − π1 )u (W − P)] = 0
dL
′
= π2 u (W − L + I) + λ1 π2
dI
′
′
+ λ2 [π2 u (W − L + I) − π1 u (W − L + I)] = 0
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
9/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
The Basic Model: Ex-ante moral hazard
The ”second best” case
′
′
′
′
Denote u (W − P) = u1 and u (W − L + I) = u2 , then the FOCs
1
1
λ2 (1 − π2 ) − (1 − π1 )
1
λ2
(1 − π1 )
]=
)
+ [
+ (1 −
′ =
λ
λ
(1
−
π
)
λ
λ
(1 − π2 )
u1
1
1
2
1
1
1
1
λ2 π2 − π1
1
λ2
π1
+ [
]=
+ (1 − )
′ =
λ1 λ1
π2
λ1 λ1
π2
u2
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
10/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
The Basic Model: Ex-ante moral hazard
The ”second best” case
Interpretation:
One over the marginal utility is equal to a constant plus another
constant times an expression
An expression depends positively on the change in probability for
different effort levels for that state and negatively on the probability
of that state
′
′
As π2 < π1 , then u1 < u2 , which implies P < L − I → there is less
than full insurance.
To implement higher effort levels, the agent must not obtain full
insurance
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
11/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
The Basic Model: Ex-ante moral hazard
The ”second best” case
The problem is not solved yet
Calculated how the contract would look if the higher effort level is
implemented
Not sure whether it is optimal
Need to choose effort level
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
12/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with many effort levels
Suppose the possible effort levels are e ∈ E, where E is some discrete or
continuous set. The problem, which has to be solved, is the following
max (1 − π(e))u(W − P) + π(e)u(W − L + I) − c(e)
e∈E,P,I
s.t.
PC : (1 − π(e))P − π(e)I ≥ Π
IC : e = arg max[(1 − π(ẽ))u(W − P) + πẽu(W − L + I) − c(ẽ)]
ẽ∈E
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
13/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with many effort levels
Deal with an argmax function: in the textbook, we go with the continuous
effort levels (Mirrlees, 1971)
With assumptions on the second derivative of the cost and probability
function are positive, then we will have an interior solution
′
′
IC : −π (e)[u(W − P) − u(W − L + I)] − c (e) = 0
′
′
As π (e) < 0 and c (e)0 −→ u(W − P) > u(W − L + I) −→ partial
insurance
Second order condition:
IC : −π ” (e)[u(W − P) − u(W − L + I)] − c” (e) < 0
This holds for any partial insurance contract if π ” (e) > 0 and c” (e) > 0,
larger effort becomes more and more costly, and less and less productive
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
14/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with many effort levels
The IC above already shows that to implement any effort level larger than
emin , partial insurance is necessary
More extensive insurance is desired as the agent is risk averse, while less
insurance gives the agent more incentives to avoid the accident
The optimal effort level is actually higher under asymmetric than under
symmetric information:
In a second best world, the agent may either work less hard or harder than
in the first best world.
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
15/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Two cases
Loss-prevention: the agent can influence the probability of a
loss
Loss-reduction: by exercising effort, the insured influences the size of
the loss
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
16/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Loss-prevention
Suppose losses are random with a distribution function F(L) and density
f(L), defined on L ∈ [L, L̄]
Denote by I(L) the (net) indemnity as a function of the size of the loss,
then the optimisation problem becomes:
max(1 − π(e))u(W − P) + π(e)
e,P,I
∫ L̄
L
u(W − L + I(L))f(L)dL − c(e)
s.t.
PC : (1 − π(e))P − π(e)
∫ L̄
L
IC : e = arg max(1 − π(e))u(W − P) + π(e)
e
I(L)f(L)dL ≥ Π
∫ L̄
L.
.
Xuezhu Shi
.
u(W − L + I(L))f(L)dL − c(e)
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
17/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Loss-prevention
′
FOIC : π (e)[−u(W − P) +
∫ L̄
L
′
u(W − L + I(L))f(L)dL] − c (e) = 0
and
SOIC : π (e)[−u(W − P) +
”
′
∫ L̄
L
u(W − L + I(L))f(L)dL] − c” (e) < 0
′
if π (e) < 0 and c (e) < 0. We also assume C(L) ≥ 0 or I(L) ≥ P.
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
18/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Loss-prevention
At the optimum:
′
′
′
π(e)u (W − L + I(L))f(L) − λ1 π(e)f(L) + λ2 π (e)u (W − L + I(L))f(L) ≤ 0
I(L) = P if this inequation is strictly lower than zero.
When I(L) > P,
′
1
1
λ2 π (e)
=
+
′
u (W − L + I(L))
λ1 λ1 π(e)
One over the marginal utility is equal to some constant plus a term which
depends on the change in probability divided by the probability
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
19/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Loss-prevention
′
u (W − L + I(L)) is independent of L and I(L) + P = C(L) cannot be
negative
If the agent can only influence the probability of an accident, then the
optimal insurance contract has a deductible: C(L) = max[L − D, 0].
To make an insurer work hard, she needs to be punished in case a loss
occurs, but rewarded for no loss
This is achieved by giving the insured an income of W − P in the no-loss
state, but W − P − D in the loss state, if loss exceeds D.
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
20/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Loss-reduction
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
21/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE
Model with continuous loss
Loss-reduction
In case of loss-reduction, the optimal contract depends on the exact
characteristics of the environment. Under some assumptions on the
distribution function and on the feasibility of contracts, the optimal
contract is closer to a coinsurance contract than to an insurance policy
with a deductible.
.
Xuezhu Shi
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
22/22
Lecture 5 Moral
Email:Hazard
shixuezhu@outlook.com
School of Insurance and Economics, UIBE