Выбери формат для чтения
Загружаем конспект в формате docx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
ГЕНЕТИЧЕСКАЯ И КЛЕТОЧНАЯ ИНЖЕНЕРИЯ
Быстрое внедрение новейших фундаментальных достижений в практику и существенное влияние последних на уровень теоретических исследований, свойственные биотехнологии, наиболее наглядно проявляются на примере развития генетической инженерии.
Важнейшим этапом для развития биотехнологии было выделение в середине текущего столетия молекулярной биологии в самостоятельную дисциплину. Возникновение молекулярной биологии стало возможным благодаря взаимодействию генетики, физики, химии, биологии, математики и др. Э. Чаргофф и З. Д. Хочкис, исследуя молекулярные соотношения нуклеотидных оснований в ДНК (аденин, гуанин, цитозин, тимин) показали, что у различных организмов они одинаковы. Это открытие сыграло ключевую роль в установлении структуры ДНК. Большую роль в расшифровке структуры ДНК сыграл прогресс в области генетики бактерий и бактериофагов. Было установлено (А. Херши, М. Чейз, Дж. Ледерберг, Н. Циндер), что трансдукция (перенос генетического материала) может осуществляться с помощью бактериофага, а фаговой ДНК может принадлежать роль носителя наследственности. Б. Хейсом были выяснены также закономерности полового процесса у бактерий (конъюгация), при котором из донорских клеток, имеющих F-фактор (фертильность) генетический материал переносится в реципиентные клетки. Дж. Уотсон и Ф. Крик предложили комплементарную модель строения ДНК и механизм ее репликации; было раскрыто уникальное свойство ДНК – способность самовоспроизведения (репликация).
На базе молекулярной биологии и генетики микроорганизмов к началу 60-х гг. сформировалась молекулярная генетика. Г. Гамов в 1954 г. выдвинул гипотезу о том, что каждый кодон (последовательность нуклеотидов, кодирующая одну аминокислоту) должен состоять из трех нуклеотидов. В 1961 г. было подтверждено экспериментально, что первичная структура белка закодирована в ДНК в виде последовательности нуклеотидных триплетов (кодонов), каждая из которых соответствует одной из 20 аминокислот. К 1966 г. удалось получить данные о строении генетического кода.
Следующим был вопрос о том, как переносится информация с ДНК, находящейся в ядре, в цитоплазму, где реализуется синтез белка на рибосомах. Было установлено, что последовательность триплетных кодонов, хранящаяся в ДНК, транскрибируется (переписывается) в недолговечные молекулы информационной РНК (иРНК). Данный этап ДНК → иРНК был назван транскрипцией, а этап иРНК → белок – трансляцией. Перенос аминокислоты и определение ее местонахождения в синтезирующейся белковой молекуле осуществляет транспортная РНК (тРНК). На ДНК, как на матрице, синтезируется РНК, а на РНК – белок. У некоторых вирусов отсутствует первое звено, и РНК служит для них материалом наследственности.
Механизм контроля генной активности долгое время оставался неизвестным. Большое значение имели работы Ф. Жакоба и Ж. Моно, показавшие, что у бактерий есть структурные гены, дающие информацию о синтезе определенных белков и регуляторные гены, которые осуществляют включение или выключение отдельных генов или их блоков. Далее выяснилось, что регуляция генов по этому принципу имеет место и у других организмов. Существуют также иные механизмы регуляции.
Следующим важным шагом было проведение работ по расшифровке нуклеотидных последовательностей (секвенирование), которое дает информацию о первичной структуре участка генома, выполняющего определенные функции. Структура и функции приобрели общее молекулярно-биологическое выражение, его суть заключается в том, что функциональные состояния выражают структурные изменения макромолекул и ассоциаций.
От изучения закономерностей функционирования генетического материала в клетке вскоре исследователи перешли к генетическим манипуляциям. Возникла новая экспериментальная технология, заключающаяся в введении в клетки чужеродных генов. Названия «генетическая (или генная) инженерия» или «работа с рекомбинантными ДНК» эквивалентны.
Суть этой технологии заключается в воссоединении фрагментов ДНК in vitro с последующим введением новых («рекомбинантных») генетических структур в живую клетку.
В 1972 г. Берг с сотрудниками создали первую рекомбинантную молекулу ДНК, состоящую из фрагмента ДНК вируса ОВ40 и бактериофага λ dvgal с галактозным опероном E. coli. Инструментом для генетического конструирования стали две группы ферментов – рестриктирующие эндонуклеазы (рестриктазы) и лигазы. Первые необходимы для получения однородных фрагментов ДНК, вторые – для их соединения. Рестриктазы и лигазы в совокупности с другими ферментами (нуклеазами, обратной транскриптазой, ДНК-полимеразой и др.) обеспечивают проведение всех генноинженерных манипуляций.
Методы и возможности генетической инженерии. Получение генов. Конструирование рекомбинантных днк. Перенос генов в клетки организма-реципиента. Скрининг и отбор рекомбинантных клеток.
Техника генетического конструирования in vitro включает несколько последовательных процедур (рис. 21):
1) получение нужного гена;
2) встраивание его в генетический элемент, способный к репликации (вектор);
3) введение гена, входящего в состав вектора, в организм-реципиент;
4) идентификацию (скрининг) и отбор клеток, которые приобрели желаемый ген или гены.
Рис. 21. Введение гена в плазмиду Е. coli и клонирование рекомбинантной ДНК в клетках.
Плазмида Е. coli расщепляется рестриктазой в обеих частях ДНК с образованием на концах неспаренных нуклеотидов (ТТАА или ААТТ). Ген выщеплен с помощью этой же рестриктазы с образованием на концах, комплементарных плазмиде, последовательностей (ААТТ и ТТАА). Обе ДНК (гена и плазмиды) сшивают с помощью лигазы. Гибридную плазмиду вводят в Е. coli, которая при размножении образует клон, все клетки которого содержат рекомбинантную плазмиду и чужеродный ген. Ген клонирован в бактериальной клетке и индуцирует в ней синтез белка.
Получение генов
Получение генов возможно несколькими путями: выделением из ДНК, химико-ферментным синтезом и ферментным синтезом.
Выделение генов из ДНК проводят с помощью рестриктаз, катализирующих расщепление ДНК на участках, имеющих определенные нуклеотидные последовательности (4–7 нуклеотидных пар). Расщепление можно проводить по середине узнаваемого участка нуклеотидных пар; при этом обе нити ДНК «разрезаются» на одном уровне. Образующиеся фрагменты ДНК имеют так называемые «тупые» концы. Возможно расщепление ДНК со сдвигом, при этом одна из нитей выступает на несколько нуклеотидов. Образуемые при этом «липкие» концы в силу своей комплементарности вступают во взаимодействие.
Нуклеотидную последовательность с липкими концами можно присоединить к вектору (предварительно обработанному той же рестриктазой), превратить в кольцевую в результате сшивания лигазами взаимно комплементарных концов. Метод имеет существенные недостатки, так как достаточно трудно подобрать действие ферментов для строгого вычленения нужного гена. Вместе с геном захватываются «лишние» нуклеотиды или, наоборот, ферменты отрезают часть гена, превращая его в функционально неполноценный.
Химико-ферментный синтез применяют в том случае, если известна первичная структура белка или пептида, синтез которого кодирует ген. Необходимо полное знание нуклеотидной последовательности гена. Этот метод позволяет точно воссоздать нужную последовательность нуклеотидов, а также вводить в гены участки узнавания рестриктаз, регуляторных последовательностей и пр. Метод состоит из химического синтеза одно цепочечных фрагментов ДНК (олигонуклеотидов) за счет поэтапного образования эфирных связей между нуклеотидами, обычно 8–16- звенных. В настоящее время существуют «генные машины», которые под контролем микропроцессора очень быстро синтезируют специфические короткие последовательности одноцепочечной ДНК. На рис. 22 показана схема такой машины, сконструированной канадской фирмой «Био лоджикэлс». Нужная последовательность оснований вводится на клавишный пульт управления. Микропроцессор открывает клапаны, через которые с помощью насоса в синтезирующую колонку последовательно поступают нуклеотиды, а также необходимые реагенты и растворители. Колонка наполнена бусинками кремния, на которых собираются молекулы ДНК. В данном устройстве возможен синтез цепей длиной до 40 нуклеотидов со скоростью 1 нуклеотид за 30 минут. Полученные олигонуклеотиды с помощью ДНК-лигазы сшиваются между собой с образованием двуцепочечного нуклеотида. С помощью данного метода были получены гены А- и В-цепей инсулина, проинсулина, соматостатина и др.
Рис. 22. Схема «генной машины» (по Д. Хопвуду, 1984).
Ферментный синтез гена на основе выделенной матричной РНК (мРНК) является в настоящее время наиболее распространенным методом. Сначала из клеток выделяют матричные РНК, среди которых присутствует мРНК, кодируемая геном, который требуется выделить. Затем в подобранных условиях на выделенной из клетки мРНК, как на матрице, с помощью обратной транскриптазы (ревертазы) синтезируется нить ДНК, комплиментарная мРНК (кДНК). Полученная комплиментарная ДНК (кДНК) служит матрицей для синтеза второй нити ДНК с использованием ДНК-полимеразы или ревертазы. Затравкой при этом служит олигонуклеотид, комплиментарный 3’-концу мРНК; новая цепь ДНК образуется из дезоксинуклеозидтрифосфатов в присутствии ионов магния. Метод с большим успехом применен для получения в 1979 г. гена гормона роста человека (соматотропина).
Полученный тем или иным способом ген содержит информацию о структуре белка, но сам не может ее реализовать. Поэтому нужны дополнительные механизмы для управления действием гена.
Перенос генетической информации в клетку реципиента осуществляется в составе вектора. Вектор – это, как правило, кольцевая молекула ДНК, способная к самостоятельной репликации. Ген вместе с вектором образует рекомбинантную ДНК.
Конструирование рекомбинантных ДНК
При обычном введении в бактериальную клетку ДНК подвергается ферментативной атаке, в результате которой разрушается. Чтобы этого не происходило, используют векторные молекулы ДНК, способные при введении в клетку существовать автономно, а при делениях клетки – реплицироваться. Вектор также несет в своем составе генетический признак, необходимый для последующего распознавания и отбора трансгенных организмов. Обычно в качестве маркерных генов используют гены устойчивости к антибиотикам.
Конструирование рекомбинантных ДНК осуществляется in vitro с изолированными ДНК при помощи эндонуклеаз рестрикции, которые расщепляют вектор в одном участке, превращая его из кольцевой формы в линейную с образованием липких концов, комплементарных концам вводимой ДНК. Комплементарные концы вектора и вводимого гена сшиваются лигазой. Полученную рекомбинантную ДНК с помощью той же ДНК-лигазы замыкают с образованием кольцевой молекулы.
В качестве векторов используют плазмиды и вирусы. Вирусы быстро транспортируются из клетки в клетку, за короткое время способны быстро заразить весь организм. Важной проблемой при их использовании является аттеньюация – ослабление патогенности для хозяина; таким образом, не очевидно, что зараженные вирусом клетки выживут и смогут передавать потомству измененную генетическую программу. Наиболее распространенными векторами являются многокопийные плазмиды с молекулярной массой 3–10 кб. Первые плазмиды были выделены из бактерий, впоследствии их стали конструировать методами генной инженерии.
Использование векторов общего назначения методически – несложная задача, не требующая специального оборудования. Наиболее используемыми плазмидными векторами для клонирования являются плазмиды
E. coli (pBR322, pBR325, pACYC117, pACYC 184), а также сконструированные на основе плазмиды CoIEI. Современные плазмидные векторы в присутствии хлорамфеникола способны к репликации, независимо от деления хромосомы, количество копий плазмид при этом может возрастать до 1– 2.103 копий на клетку.
При получении библиотеки генов растений и высших животных, у которых общая длина генома составляет до 3⋅109 и более, емкость вектора часто играет решающую роль. В данном случае в качестве вектора используют ДНК фага λ. При помощи специальных методов рекомбинантные ДНК вводят прямо в фаговые головки. Еще большей емкостью обладают плазмиды – космиды (до 40 кб), у которых cos-фрагмент генома фага λ, участвует в упаковке ДНК в фаговую частицу на конечной стадии развития. Для упаковки ДНК необходимо, чтобы ДНК содержала COS-участок и ее размер был примерно равным размеру генома ага l. Достигнутые методы упаковки ДНК в фаговую головку при помощи космид позволяют получать библиотеки генов практически любых организмов.
Перенос генов в клетки организма-реципиента
Перенос рекомбинантных ДНК осуществляется путем трансформации или конъюгации. Трансформация – это процесс изменения генетических свойств клетки в результате проникновения в нее чужеродной ДНК. Впервые она была обнаружена у пневмококков Ф. Гиффитом, который показал, что некоторые клетки невирулентных штаммов бактерий при заражении ими мышей совместно с вирулентными штаммами приобретают патогенные свойства. В дальнейшем трансформация была продемонстрирована и изучена у различных видов бактерий.
Установлено, что к трансформации способны лишь некоторые, так называемые «компетентные», клетки (способные включать чужеродную ДНК и синтезирующие особый трансформирующий белок). Компетентность клетки определяется также факторами внешней среды. Этому может способствовать обработка клеток полиэтиленгликолем или хлоридом кальция. После проникновения в клетку одна из нитей рекомбинантной ДНК деградирует, а другая за счет рекомбинации с гомологичным участком реципиентной ДНК может включиться в хромосому или внехромосомную единицу. Трансформация является наиболее универсальным способом передачи генетической информации и имеет наибольшее значение для генетических технологий.
Конъюгация – один из способов обмена генетического материала, при котором происходит однонаправленный перенос генетической информации от донора к реципиенту. Этот перенос находится под контролем особых конъюгативных плазмид (фактор фертильности). Перенос информации от донорской клетки в реципиентную осуществляется через специальные половые ворсинки (пили). Возможна передача информации и с помощью неконъюгативных плазмид при участии плазмид-помощниц.
Передача всего набора генов вируса или фага, приводящая к развитию в клетке фаговых частиц, называется трансфекцией. Методика применительно к бактериальным клеткам включает получение сферопластов, очистку инкубационной среды от нуклеаз и добавление очищенной фаговой ДНК (присутствие протаминсульфата повышает эффективность трансфекции). Методика применима к животным и растительным клеткам с участием специальных челночных вирусных векторов.
Скрининг и отбор рекомбинантных клеток
После переноса сконструированных ДНК, как правило, лишь небольшая часть реципиентных клеток приобретает необходимый ген. Поэтому очень важным этапом является идентификация клеток, несущих ген-мишень.
На первой стадии идентифицируют и отбирают клетки, несущие вектор, на основе которого осуществлен перенос ДНК. Отбор проводят по генетическим маркерам, которыми помечен вектор. Главным образом маркерами являются гены устойчивости к антибиотикам. Поэтому отбор проводят высевом клеток на среды, содержащие конкретный антибиотик. После высева на этих средах вырастают только клетки, в составе которых находится вектор с генами антибиотиковой устойчивости.
На второй стадии отбирают клетки, несущие вектор и ген-мишень. Для этого используют две группы методов: 1) основанные на непосредственном анализе ДНК клеток-реципиентов и 2) основанные на идентификации признака, кодируемого геном-мишенью. При использовании первой группы методов из клеток, предположительно содержащих нужный ген, выделяют векторную ДНК, и в ней проводится поиск участков, несущих данный ген. Далее проводят секвенирование части нуклеотидной последовательности гена. Возможен другой метод – гибридизация выделенной из клеток ДНК с зондом (искомый ген или соответствующая ему мРНК); выделенную ДНК переводят в одноцепочечное состояние и вводят ее во взаимодействие с зондом. Далее определяют наличие двуцепочечных гибридных молекул ДНК. Во втором варианте возможен непосредственный отбор клеток, синтезирующих белок – продукт транскрипции и трансляции гена-мишени. Применяются также селективные среды, поддерживающие рост только клеток, приобретших ген-мишень.
С помощью методов генетической инженерии возможно конструирование новых форм микроорганизмов по заданному плану, способных синтезировать разнообразные продукты, в том числе эукариотических организмов. Рекомбинантные микробные клетки быстро размножаются в контролируемых условиях и способны утилизировать при этом разнообразные, в том числе, недорогие субстраты.
Основные проблемы, возникающие при генетических манипуляциях, заключаются в следующем: 1) гены при трансформации, попадая в чужеродную среду, подвергаются воздействию протеаз, поэтому их надо защищать; 2) как правило, продукт трансплантированного гена аккумулируется в клетках и не выделяется в среду; 3) большинство желаемых признаков кодируется не одним, а группой генов. Все это существенно затрудняет перенос и требует разработки технологии последовательной трансплантации каждого гена.
К настоящему времени генетическая инженерия освоила все царства живого. Фенотипическое выражение «чужих » генов (экспрессия) получены у бактерий, дрожжей, грибов, растений и животных. Блестящие успехи достигнуты на клетках наиболее и всесторонне изученных микроорганизмов. Эра рекомбинантных ДНК применительно к растениям и высшим животным только начинается. В области генетической инженерии животных клонированы гены β -глобина мышей, фага λ. Помимо почечных клеток зеленой африканской мартышки , испытываются все новые виды культуры животных клеток, в том числе клетки человека. Например, в клетках непарного шелкопряда с применением вирусного вектора удалось добиться экспрессии гена β-интерферона человека. Этот ген также клонирован в клетках млекопитающих. В генетической инженерии человека, как и в генетическом конструировании растений, пока не достигнуто тканеспецифического выражения генов. Решения данной проблемы ищут на путях введения определенных промоторов регуляторных участков в конструируемые векторы. Пока остается достаточно отдаленной задачей возможность улучшения сельскохозяйственных пород животных. К настоящему времени практически нет сведений по генетике таких признаков, как плодовитость, выход и жирность молока, повышение устойчивости к болезням и др. Это препятствует попыткам генетических манипуляций в данной области.
Генетическая инженерия дает в руки биотехнологов не только новые продуценты ценных соединений, но и улучшает и повышает эффективность ценных свойств уже традиционно используемых организмов. Распространенным методом повышения выхода полезного продукта является амплификация – увеличение числа копий генов. Образование многих целевых продуктов (аминокислот, витаминов, антибиотиков и др.) характеризуется длинным биохимическим путем синтеза, который управляется не одним, а десятками генов. Выделение этих генов и клонирование с помощью амплификации представляет довольно трудную, но в ряде случаев возможную задачу. Повышение выхода полезного продукта достигается также с помощью локализованного (сайт-специфического) мутагенеза in vitro: с использованием химического мутагенеза обрабатывается не весь геном клетки, а его фрагмент, полученный с помощью рестрикции.
Генная инженерия промышленно важных продуцентов. Получение рекомбинантного инсулина, соматотропина, интерферонов
Развитие техники рекомбинантных ДНК позволяет проводить выделение генов эукариот и экспрессировать их в гетерологических системах. В настоящее время методы генетической инженерии позволяют конструировать генетические системы, способные функционировать в клетках прокариот и эукариот. Эти возможности позволяют создавать организмы, обладающие новыми ценными свойствами, например, бактериальные штаммы, способные синтезировать эукариотические белки.
Среди белковых продуктов, представляющих большой интерес, выделяются такие биологически активные вещества, как гормоны. Важное место среди них занимают белковые и пептидные гормоны. Эти гормоны, многие из которых остро необходимы в медицине, до недавнего времени получали экстракцией из тканей животных при условии, что гормон не обладает выраженной видовой специфичностью. Сравнительно короткие пептидные гормоны пытались получать химическим синтезом. Но такой путь получения оказался нерентабельным уже для молекул, состоящих из нескольких десятков звеньев. Единственным источником гормонов с крайне выраженной видовой специфичностью (гормон роста соматотропин) были органы умерших людей.
Успехи генетической инженерии вселили надежды на возможность клонирования генов синтеза ряда гормонов в микробных клетках. Эти надежды в значительной мере оправдались, в первую очередь, на примере микробиологического синтеза пептидных гормонов.
Первые успешные результаты по экспрессии химически синтезированной последовательности нуклеотидов ДНК, кодирующей 14- звенный пептидный гормон соматостатин (антагонист соматотропина), получены в 1977 г. в США компанией «Генетек». Для предотвращения процесса разрушения гормона в бактериальных клетках под воздействием пептидазы авторы применили подход, который потом был успешно использован для получения других пептидных гормонов. Был сконструирован гибридный ген, часть которого была взята из гена фермента β-галактозидазы кишечной палочки, а остаток представлял собой фрагмент, кодирующий собственно соматостатин (фрагмент синтезировали химически ). Введенный в бактериальные клетки гибридный ген направлял синтез белка-химеры, состоящего более чем на 90 % из аминокислотной последовательности β-галактозидазы . Остальная часть представляла собой соматостатин. На стыке участка двух исходных генов находился кодон аминокислоты метионина. Последнее позволило обработать гибридный белок бромцианом, разрывающим пептидную связь, образованную метионином; среди продуктов расщепления был обнаружен соматостатин. Данный подход был использован для получения многих пептидных гормонов (А- и В-цепей инсулина, нейропептида лейэнкефалина, брадикинина, ангиотензина и др.).
Генноинженерными методами за короткий срок были созданы микроорганизмы-суперпродуценты, позволяющие получать с высокими выходами ряд белков вирусов и животных. Созданы штаммы, у которых до 20 % клеточного белка составляют генноинженерные продукты, напри-мер, коровий антиген вируса гепатита В, главный капсидный антиген вируса ящура, реннин теленка, поверхностный антиген вируса гепатита В и др.
Получение рекомбинантного инсулина
Гормон инсулин построен из двух полипептидных цепей, А и Б, длиной 20 и 30 аминокислот соответственно. Последовательность цепей была установлена в 1955 г. Сэнгером. Синтез обеих цепей, включающий 170 химических реакций, в 1963 г. был реализован в США, ФРГ и Китае. Но перенести такой сложный процесс в промышленность оказалось невозможным. Получали инсулин до 1980 г. за счет выделения его из поджелудочной железы (поджелудочная железа коровы весит 200–250 г., а для получения 100 г кристаллического инсулина требуется до 1 кг исходного сырья). Поэтому потребности в нем удовлетворяли не полностью. Так, в 1979 г. из 6 млн. зарегистрированных больных сахарным диабетом инсулин получали только 4 млн. человек. В 1980 г. датская компания «Ново индастри» разработала метод превращения инсулина свиньи в инсулин человека ферментативным замещением остатка аланина, который является 30-й аминокислотой в цепи В, на остаток треонина. В результате был получен однокомпонентный инсулин человека 99 % чистоты. В организме животного две полипептидные цепи исходно являются частями одной белковой молекулы длиной 109 аминокислот – это препроинсулин. При синтезе в клетках поджелудочной железы первые 23 аминокислоты служат сигналом для транспорта молекулы сквозь мембрану клетки. Эти аминокислоты отщепляются, и образуется проинсулин длиной 86 аминокислот.
В 1980 г. Гилберт с коллегами выделили мРНК инсулина из опухоли β-клеток поджелудочной железы крысы (в то время не разрешали манипулировать генами человека) (рис. 22). Полученную ДНК-копию мРНК встроили в плазмиду pBR 322, в среднюю часть гена пенициллиназы (фермент в норме выделяется из клетки), которую транспортировали в бактерию. Сконструированная плазмида, как оказалось, содержала информацию о структуре проинсулина, а не препроинсулина. При трансляции мРНК в клетках E. coli синтезировался гибридный белок, содержащий последовательности пенициллиназы и проинсулина. Гормон из этого белка выщепляли трипсином. Было доказано, что полученный таким образом белок влияет на сахарный обмен аналогично гормону поджелудочной железы. В 1979 г. в США в течение трех месяцев синтезировали гены, кодирующие А- и В-цепи инсулина; гены были собраны из 18 и 11 олигонуклеотидов соответственно. Далее гены были встроены, как и при получении соматостатина, в плазмиду в конце гена β-галактозидазы кишечной палочки.
В клетках E. coli также осуществлен синтез проинсулина, а не только его отдельных цепей. На выделенной матричной мРНК синтезировали ДНК-копию. Синтез проинсулина имеет определенные преимущества, так как процедуры экстракции и очистки гормона минимальны.
Совершенствование техники получения генноинженерных штаммов-продуцентов с помощью различных приемов (амплификацией плазмид, инкапсулированием вводимых рекомбинантных ДНК, подавлением протеолитической активности реципиентных клеток) позволило получить высокие выходы гормона, до 200 мг/л культуры. Медико-биологические и клинические испытания генноинженерного белка показали пригодность препарата, и в 1982 г. он был допущен к производству во многих странах.
Рис. 22. Биосинтез инсулина крысы в сконструированных клетках E. coli (по Gilbert e.a., 1980).
а) карта плазмиды pBR322 c двумя генами – пенициллиназы и устойчивости к тетрациклину; б) карта, полученная при определении последовательности кДНК рекомбинантной плазмиды в продуцирующем инсулин клоне E. coli; в) гибридный белок; г) биологически активный инсулин после удаления пенициллиназы и сегмента проинсулина.
Биосинтез соматотропина
Соматотропин (гипофизарный гормон роста) впервые был выделен в 1963 г. из трупного материала. Выход гормона из одного гипофиза составлял около 4–6 мг в пересчете на готовый фармацевтический препарат. Для лечения карликовости необходимая доза составляет 6 мг в неделю в течение года. Кроме недостатка по массе, получаемый экстракцией препарат был гетерогенным, против него вырабатывались антитела, которые сводили на нет действие гормона. Более того, существовала опасность,
Рис. 23. Схема конструирования гена соматотропина комбинацией химического синтеза и выделения природной мРНК (по P. Newmark, 1979).
что при получении препарата могло произойти заражение организма медленно развивающими вирусами. Поэтому дети, получавшие данный препарат, нуждались в многолетнем медицинском наблюдении.
Генноинженерный препарат имеет несомненные преимущества: доступен в больших количествах, гомогенен, не содержит вирусов. Синтез соматотропина, состоящего из 191 аминокислотного остатка, был осуществлен в США Гедделем с сотрудниками в 1979 г. (компания «Генентек») (рис. 23).
При химико-ферментном синтезе ДНК получается ген, кодирующий предшественник соматотропина, поэтому был выбран специальный путь клонирования. На первом этапе клонировали двунитевую ДНК-копию мРНК и расщеплением рестиктазами получали последовательность, кодирующую всю аминокислотную последовательность гормона, кроме первых 23 аминокислот. Далее клонировали синтетический полинуклеотид, соответствующий этим 23 аминокислотам со стартовым ANG кодоном в начале. Два полученных фрагмента соединяли и подстраивали к паре lac-промоторов и участку связывания рибосом. Сконструированный ген трансплантировали в E. coli. Синтезированный в бактериях гормон обладал требуемой молекулярной массой, не был связан с каким-либо белком; его выход составлял около 100 000 молекул на клетку. Гормон, однако, содержал на N-конце полипептидной цепи дополнительный остаток метионина; при удалении последнего выход гормона был низким.
В 1980 г. были получены доказательства того, что генноинженерный соматотропин обладает биологической активностью нативного гормона. Клинические испытания препарата также прошли успешно. В 1982 г. гормон был получен также на основе сконструированной кишечной палочки в Институте Пастера в Париже. Стоимость гормона к 1990 г. снизилась до 5 долларов/ед. В настоящее время его начинают применять в животноводстве для стимулирования роста домашнего скота, удоев и др.
Получение интерферонов
Интерфероны – группа белков, способных продуцироваться в ядерных клетках позвоночных. Это мощные индуцибельные белки, являющиеся фактором неспецифической резистентности, поддерживающего гомеостаз организма. Система интерферонов обладает регуляторной функцией в организме, так как способна модифицировать различные биохимические процессы. Интерфероны позвоночных, в том числе человека, разделяют на три группы: α, β, γ, соответственно, лейкоцитарные, фибробластные и иммунные.
В конце 70-х гг. стала очевидной потенциальная значимость интерферонов для медицины, в том числе профилактики онкологических заболеваний. Клинические испытания сдерживались отсутствием достаточных количеств интерферонов и высокой стоимостью препаратов, полученных традиционным способом (выделение из крови). Так, в 1978 г. для получения 0.1 г чистого интерферона в Центральной лаборатории здравоохранения Хельсинки (лаборатория – мировой лидер по производству интерферона из лейкоцитов здоровых людей) получали при переработке 50 000 л крови. Полученное количество препарата оценочно могло обеспечить лечение против вирусной инфекции 10 000 случаев. Перспективы получения интерферонов связывали с генной инженерией.
В 1980 г. Гилберту и Вейссману в США удалось получить интерферон в генетически сконструированной E. coli. Исходная трудность, с которой они столкнулись, – низкий уровень мРНК в лейкоцитах, даже стимулированных заражением вирусом. При переработке 17 л крови удалось выделить мРНК и получить ДНК-копию. Последнюю встроили в плазмиду и клонировали в E. coli. Было испытано свыше 20 000 клонов. Отдельные клоны были способны к синтезу интерферона, но с низким выходом, 1–2 молекулы на клетку. Аналогичные исследования проводили в Японии, Англии, Франции, России.
В 1980 г. были установлены нуклеотидные последовательности α- и β-интерферонов: мРНК фибробластного интерферона состоит из 836 нуклеотидов; из них 72 и 203 нуклеотида приходятся на 5’- и 3’-нетранслируемые области, 63 кодируют пептид, ответственный за секрецию интерферона из клеток и 498 нуклеотидов кодируют 166 аминокислотных остатков собственно интерферона. После этого химическим синтезом были получены гены α- и β-интерферонов, которые клонировали в E. coli. В 1981 г. была расшифрована нуклеотидная последовательность иммунного интерферона, существенно отличающегося от первых двух, но сравнимого по величине молекулы. Существенным моментом был полный синтез гена лейкоцитарного интерферона человека, осуществленный в Великобритании сотрудниками фирмы «Империал кемикал индастри» и Школы биологических наук Лестерского университета. В течение полутора лет была синтезирована полная последовательность ДНК-копии интерферона, способная кодировать α1- интерферон. Синтез олигонуклеотидов был осуществлен новым методом, существенно ускорившим синтез гена. Вначале к полиакриламидной смоле был присоединен нуклеотид; далее проводили присоединение пар нуклеотидов, используя конденсирующий агент в безводном пиридине. Каждый цикл длился полтора часа, поэтому в течение года можно было синтезировать последовательность длиной в 5000 нуклеотидов. Было синтезировано 67 олигонуклеотидов, которые с помощью лигазы соединили в двунитевую ДНК, состоящую из 514 пар нуклеотидов. Полученный ген встраивали в клетки двух бактерий: E. coli, Methylophilus methylotrophus, и была получена экспрессия.
Усилия, направленные на получение генноинженерных интерферонов, по сравнению с методом культуры клеток позволили снизить затраты более чем в 100 раз. Были получены различные типы интерферонов на основе генноинженерных клеток бактерий и дрожжей. Это позволило развернуть медико-биологические и клинические испытания препаратов. Получаемые в течение 1980–1981 гг. препараты интерферонов были очищены на 80 % и обладали удельной активностью более 107 международных единиц на 1 мг белка. Расширение клинических испытаний интерферонов, начатых в этот период, зависит от повышения степени его очистки. Прогресс в этом направлении был достигнут применением моноклональных антител, которые можно использовать для аффинной хроматографии (при этом нужные белки задерживаются на колонке с антителами).
Клеточная инженерия. Селекция. Мутагенез.
Гибридомная технология
Традиционно для получения более активных биологических агентов применяли селекцию и мутагенез. Селекция – это направленный отбор мутантов – организмов, наследственность которых приобрела скачкообразное изменение в результате структурной модификации в нуклеотидной последовательности ДНК. Генеральный путь селекции – это путь от слепого отбора нужных продуцентов к сознательному конструированию их генома. Традиционные методы отбора в свое время сыграли важную роль в развитии различных технологий с использованием микроорганизмов. Были отобраны штаммы пивных, винных, пекарских, уксуснокислых и др. микроорганизмов. Ограничения метода селекции связано с низкой частотой спонтанных мутаций, приводящих к изменению в геноме. Ген должен удвоиться в среднем 106–108, чтобы возникала мутация.
К существенному ускорению процесса селекции ведет индуцированный мутагенез (резкое увеличение частоты мутаций биологического объекта при искусственном повреждении генома). Мутагенным действием обладают ультрафиолетовое и рентгеновское излучение, ряд химических соединений (азотистая кислота, бромурацил, антибиотики и пр.). После обработки популяции мутагеном проводят тотальный скрининг (проверку) полученных клонов и отбирают наиболее продуктивные. Проводят повторную обработку отобранных клонов, и вновь отбирают продуктивные клоны, то есть проводят ступенчатый отбор по интересующему признаку.
Работа эта требует больших трудозатрат и времени. Недостатки ступенчатого отбора могут быть в значительной степени преодолены при сочетании его с методами генетического обмена.
Генетическое конструирование in vivo (клеточная инженерия) включает получение и выделение мутантов и использование различных способов обмена наследственной информацией живых клеток.
Основой клеточной инженерии является слияние неполовых клеток (гибридизация соматических клеток) с образованием единого целого. Слияние клеток может быть полным, или клетка-реципиент может приобрести отдельные части донорской клетки (митохондрии, цитоплазму, ядерный геном, хлоропласты и др.). К рекомбинации ведут различные процессы обмена генетической информацией живых клеток (половой и парасексуальный процесс эукариотических клеток; конъюгация, транс формация и трансдукция у прокариот, а также универсальный метод – слияние протопластов).
При гибридизации берут генетически маркированные штаммы микроорганизмов (чаще ауксотрофные мутанты или мутанты, устойчивые к ингибиторам роста). В результате слияния клеток (копуляции) происходит образование гибридов у дрожжей, грибов, водорослей. Если исходные клетки были гаплоидными, в результате слияния ядер появляется диплоидная клетка (зигота), несущая в ядре двойной набор хромосом. У отдельных представителей ядро сразу подвергается мейозу, в ходе которого каждая из хромосом расщепляется. Гомологичные хромосомы образуют пары и обмениваются частями своих хроматид в результате кроссинговера. Далее формируются гаплоидные половые споры, каждая из которых содержит набор генов, которыми различались родительские клетки, в результате рекомбинации генов одной и той же хромосомы, а также разных хромосом при распределении хромосомных пар. Если после слияния ядра не сливаются, образуются формы со смешенной цитоплазмой и ядрами разного происхождения (гетерокарионы). Такие формы свойственны грибам, особенно продуцентам пенициллинов. При размножении полученных гетерозиготных диплоидов или гетерокарионов происходит расщепление – проявление в потомстве, обнаруживающих не только доминантные, но и рецессивные признаки родителей. Половой и парасексуальный процесс широко используют в генетической практике промышленно важных микроорганизмов-продуцентов.
У бактерий обмен генетической информацией происходит в результате взаимодействия конъюгативных плазмид (конъюгации). Впервые конъюгацию наблюдали у E. coli K-12. Для конъюгационного скрещивания культуру донора и реципиента смешивают и совместно инкубируют в питательном бульоне или на поверхности агаризованных сред. Клетки при помощи образующегося конъюгационного мостика соединяются между собой; через мостик осуществляется передача определенного сайта плазмидной хромосомы к реципиенту. Так, при 37°С для переноса всей хромо-сомы требуется около 90 минут. Конъюгация открыла и открывает широкие перспективы для генетического анализа и конструирования штаммов.
Трансдукция – процесс переноса генетической информации от клетки реципиента к клетке-донору с помощью фага. Впервые этот процесс был описан в 1952 г. Циндером и Лидербергом. Трансдукция основана на том, что в процессе размножения фагов в бактериях возможно образование частиц, которые содержат фаговую ДНК и фрагменты бактериальной ДНК. Для осуществления трансдукции нужно размножить фаг в клетках штамма-донора, а затем заразить им клетки-реципиента. Отбор рекомбинантных форм проводят на селективных средах, не поддерживающих роста исходных форм.
В последние годы очень широко применяют метод слияния протопластов. Этот метод, видимо, является универсальным способом введения генетической информации в клетки различного происхождения. Простота метода делает его доступным для селекции промышленно важных продуцентов. Метод открывает новые возможности для получения межвидовых и межродовых гибридов и скрещивания филогенетически отдаленных форм живого. Получены положительные результаты слияния бактериальных, дрожжевых и растительных клеток. Получены межвидовые и межродовые гибриды дрожжей. Имеются данные о слиянии клеток различных видов бактерий и грибов. Удалось получить гибридные клетки в результате слияния клеток организмов, относящихся к различным царствам: животного и растительного. Ядерные клетки лягушки были слиты с протопластами моркови; гибридная растительно-животная клетка росла на средах для растительных клеток, однако, достаточно быстро утрачивала ядро и покрывалась клеточной стенкой.
Достаточно успешно в последние годы проводятся работы по созданию ассоциаций клеток различных организмов, то есть получают смешанные культуры клеток двух или более организмов с целью создания искусственных симбиозов. Успешно проведены опыты по введению азотфиксирующего организма Anabaena variabilis в растения табака. Попытки введения A. variabilis непосредственно в черенки зрелых растений табака не дали положительных результатов. Но при совместном культивировании мезофильной ткани табака и цианобактерий удалось получить растения-регенеранты, содержащие цианобактерии. Получены ассоциации клеток женьшеня и паслена с цианобактерией Chlorogleae fritschii.
Перспективно клональное размножение животных клеток для генетических манипуляций. Большие перспективы имеет техника клеточных культур животных клеток для получения биологически активных соединений, хотя делает пока только первые шаги. Культуры опухолевых клеток или нормальные клетки, трансформированные in vitro, сохраняют в ряде случаев способность синтезировать специфические продукты. Несмотря на много, пока не преодоленных трудностей, показана возможность получения ряда веществ в культуре животных клеток:
Продукт
Клетки или их источник
Гормон роста
Опухоль гипофиза
Коллаген
Фибропласты
Кортикостероиды
Опухоль надпочечника
Гистамин
Опухоль из тучных клеток
Меланин
Меланома радужной оболочки глаз
Мукополисахариды
Фибропласты
Фактор роста нервной ткани
Нейробластома
Важное направление клеточной инженерии связано с ранними эмбриональными стадиями. Так, оплодотворение яйцеклеток в пробирке позволяет преодолеть бесплодие. С помощью инъекции гормонов можно получить от одного животного десятки яйцеклеток, искусственно их оплодотворить in vitro и имплантировать в матку других животных. Эта технология применяется в животноводстве для получения монозиготных близнецов. Разработан новый метод, основанный на способности индивидуальных клеток раннего эмбриона развиваться в нормальный плод. Клетки эмбриона разделяют на несколько равных частей и трансплантируют реципиентам. Это позволяет размножать различных животных ускоренным путем. Манипуляции на эмбрионах используют для создания эмбрионов различных животных. Подход позволяет преодолеть межвидовой барьер и создавать химерных животных. Таким образом, получены, например, овце-козлиные химеры.
Наиболее перспективным направлением клеточной инженерии является гибридомная технология. Гибридные клетки (гибридомы) образуются в результате слияния клеток с различными генетическими программами, например, нормальных дифференцированных и трансформированных клеток. Блестящим примером достижения данной технологии являются гибридомы, полученные в результате слияния нормальных лимфоцитов и миеломных клеток. Эти гибридные клетки обладают способностью к синтезу специфических антител, а также к неограниченному росту в процессе культивирования.
В отличие от традиционной техники получения антител, гибридомная техника впервые позволила получить моноклональные антитела (антитела, продуцируемые потомками одной-единственной клетки). Моноклональные антитела высокоспецифичны, они направлены против одной антигенной детерминанты. Возможно получение нескольких моноклональных антител на разные антигенные детерминанты, в том числе сложные макромолекулы.
Моноклональные антитела в промышленных масштабах получены сравнительно недавно. Как известно, нормальная иммунная система способна в ответ на чужеродные агенты (антигены) вырабатывать до миллиона различных видов антител, а злокачественная клетка синтезирует только антитела одного типа. Миеломные клетки быстро размножаются. Поэтому культуру, полученную от единственной миеломной клетки, можно поддерживать очень долго. Однако невозможно заставить миеломные клетки вырабатывать антитела к определенному антигену. Эту проблему удалось решить в 1975 г. Цезарю Мильштейну. У сотрудников Медицинской научно-исследовательской лаборатории молекулярной биологии в Кембридже возникла идея слияния клеток мышиной миеломы с В-лимфоцитами из селезенки мыши, иммунизированной каким- либо специфическим антигеном. Образующиеся в результате слияния гибридные клетки приобретают свойства обеих родительских клеток: бессмертие и способность секретировать огромное количество какого-либо одного антитела определенного типа (рис. 24). Эти работы имели огромное значение и открыли новую эру в экспериментальной иммунологии.
В 1980 г. Карло М. Кроче с сотрудниками (США) удалось создать стабильную, продуцирующую антигены, внутривидовую человеческую гибридому путем слияния В-лимфоцитов миеломного больного с периферическими лимфоцитами от больного с подострым панэнцефалитом.
Основные этапы получения гибридомной техники следующие. Мышей иммунизируют антигеном, после этого из селезенки выделяют спленоциты, которые в присутствии полиэтиленгликоля сливают с дефектными опухолевыми клетками (обычно дефектными по ферментам запасного пути биосинтеза нуклеотидов - гипоксантина или тиамина). Далее на селективной среде, позволяющей размножаться только гибридным клеткам, проводят их отбор. Питательную среду с растущими гибридомами тестируют на присутствие антител. Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли, продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител.
Рис. 24. Схема продукции моноклональных антител гибридомой,
образованной лимфоцитами и миеломными клетками (по Г. Фаффу, 1984).
А - антиген с 4 антигенными детерминантами на поверхности; после инъекции антигена лимфоциты мыши продуцируют 4 типа антител; антисыворотка из крови мыши содержит смесь антител;
Б – лимфоциты сливаются с миеломными клетками; гибридные клетки (источник чистых антител) клонируют.
Возможные области и способы применения антител
Область медицины
Способ применения
Анализ
Структурные зонды для идентификации поверхностных особенностей клеток
Диагностика
Наборы реактивов для диагностики беременности
Выявление эстрогенных рецепторов для диагностики рака молочной железы
Иммунодиагностика
Точное определение количества специфических антигенов
Иммуноочистка
Очистка антигенов (например, интерферона)
Терапия
Направленный перенос токсинов в раковые клетки, инактивация ядов, пассивная иммунизация, лечение аутоиммунных болезней
Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли, продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител.
Гибридомы можно хранить в замороженном состоянии, и в любое время вводить дозу такого клона в животное той линии, от которой получены клетки для слияния. В настоящее время созданы банки моноклональных антител. Антитела применяют в разнообразных диагностических и терапевтических целях, включая противораковое лечение.
Эффективным способом применения моноклональных антител в терапии является связывание их с цитоксическими ядами. Антитела, конъюгированные с ядами, отслеживают и уничтожают в макроорганизме раковые клетки определенной специфичности.
Таким образом, клеточная инженерия является эффективным способом модификации биологических объектов и позволяет получать новые ценные продуценты на органном и также клеточном и тканевом уровнях.
Культура растительных клеток и тканей
В свете современных представлений биотехнология растений – это соединение методов культуры клеток и тканей растений с методами молекулярной биологии и техникой рекомбинантных ДНК. Созданная система – клетки и ткани высших растений, выращиваемые вне организма на искусственных питательных средах в строго контролируемых условиях – позволяет изучать рост, клеточную дифференцировку и развитие растительного организма, разрабатывать новые клеточные технологии для промышленности и сельского хозяйства. Вся сфера научной деятельности по реорганизации геномов обычно называется биотехнологией, хотя этот термин включает в себя более широкий круг понятий, чем культура изолированных тканей, генная и хромосомная инженерия. Роль биотехнологии и, в частности, культуры изолированных тканей, состоит в решении таких глобальных проблем, как обеспечение населения продовольствием, более эффективная медицина, оптимальная экология. Несомненно, что в настоящее время наиболее перспективными обсуждаемыми и иногда осуждаемыми направлениями биотехнологии являются генная и хромосомная инженерии, но вытекали они из культивирования изолированных органов, тканей и клеток и немыслимы без него.
Методы культивирования изолированных фрагментов растений основаны на использовании важного свойства растительной клетки — тотипотентности. Тотипотентность (лат. Totus – весь, potentia – сила) – это свойство клетки реализовать генетическую информацию, обеспечивающую ее дифференцировку и развитие до целого организма. Тотипотентностью обладают оплодотворенные яйцеклетка растений и яйцо животных организмов. Что касается дифференцированных клеток, то у животных тотипотентность присуща только некоторым клеткам кишечнополостных. Так, соматические клетки гидры дают начало новому организму. У растений в природных условиях (in vivo) тотипотентность могут проявлять и специализированные клетки. Пример тому – вегетативное размножение, в том числе наблюдаемое в результате развития растений из клеток листьев бегонии, узумбарской фиалки или каланхое. Тотипотентность у растений реализуется и при заживлении ран. В этом случае на раневой поверхности растений в результате неорганизованной пролиферации клеток происходит развитие каллуса (лат. callus – толстая кожа, мозоль). Образование каллуса можно наблюдать при прививках в местах срастания привоя и подвоя. Каллус способствует заживлению ран и первоначально состоит из недифференцированных клеток, начало которым на раневой поверхности дают клетки тканей, способные к дедифференциации (камбий, флоэма, молодые клетки ксилемы). Впоследствии в каллусе может иметь место вторичная дифференциация с образованием специализированных тканей и органов. Однако в природных условиях растения ряда систематических групп тотипотентность не проявляют. Ввиду высокой специализации клеток многие однодольные растения утратили способность к раневой реакции и вегетативному размножению. Возможность реализации супрессированной in vivo и активной тотипотентности предоставляется в условиях in vitro при выращивании фрагментов тканей, органов или клеток на искусственных питательных средах. Этот переход специализированных клеток к эмбриональным синтезам, последующему делению с образованием недифференцированных клеток, а затем и к повторной дифференциации осуществляется под действием экзогенных фитогормонов.
Состав питательных сред и роль их отдельных компонентов
Питательные среды для культивирования изолированных клеток и тканей должны включать все необходимые растениям неорганические элементы: макроэлементы в миллимолярных концентрациях (азот, фосфор, калий, кальций, магний, сера), микроэлементы – в микромолярных (железо, бор, марганец, цинк, медь, молибден и др.), а также органические элементы: витамины, углеводы, аминокислоты и другие (например, гидролизат казеина, мезоинозит и др.). В зависимости от консистенции существует деление на жидкие и твердые питательные среды. Для приготовления твердых питательные сред используют агар-агар (0,7–1 %), который представляет собой полисахарид, получаемый из морских водорослей. Обычная его концентрация – 8–10 г на литр среды. Агар обеспечивает диффузию питательных элементов из среды в культивируемые ткани. Вместо агара можно использовать биогели. Необходимо учитывать, что клетки растений и отдельные компоненты среды (витамины, фитогормоны, агар) чувствительны к определенным концентрациям водородных ионов. Например, агар в кислой среде теряет способность образовывать гель. В зависимости от объектов культивирования рН среды может варьировать от 5,2 до 6,6. Неорганические элементы. Для роста растений в первую очередь необходимы углерод, кислород и водород. Если кислород и водород присутствуют в воздухе, то источником углерода для культуры изолированных тканей являются органические соединения. Но кроме этого для обеспечения полноценного метаболизма и его регуляции в изолированной культуре необходим ряд макро- и микроэлементов неорганического происхождения. Макроэлементы присутствуют в среде в концентрациях порядка 10–3 М. Наиболее значимы из них азот, фосфор, натрий, калий, магний, кальций и сера. Микроэлементы составляют в среде концентрации 10–6 М. Присутствие их обязательно при культивировании ткани в жидкой среде. По некоторым данным, отсутствие микроэлементов уменьшает интенсивность роста на 40 % в первом пассаже и приводит культуру к гибели в течение двух следующих пересадок. На агаризованой среде растения не так остро реагируют на отсутствие микроэлементов, так как в агаре содержатся многие микро- и некоторые макроэлементы. Наиболее важными микроэлементами являются железо и медь, потому что они участвуют в регуляторных процессах и окислительно-восстановительных превращениях, входят в состав важных коферментов. Далее следуют марганец, цинк, молибден, кобальт и бор. Согласно многочисленным данным, хорошим источником азота является мочевина, особенно для тканей подсолнечника, табака, топинамбура и др.
В качестве дополнительного источника азота в состав сред добавляют аминокислоты (а-аланин, глутаминовую кислоту, глицин, аргинин, аспарагиновую кислоту) или гидролизат казеина – источник аминокислот. В культуре изолированных тканей растений действие аминокислот значительно варьирует для разных тканей и разных физиологических состояний вводимых в культуру эксплантов. Полностью заменить нитраты как источник азота способны аланин, аргинин, глутаминовая и аспарагиновая кислоты, гликокол, аспарагин, пролин. Формы аминокислот также по-разному влияют на рост: D-формы – токсичны, L-формы – пригодны. Аминокислоты, внесенные в питательную среду в дополнение к нитратам, могут оказывать стимулирующее, угнетающее и формативное действие на рост культуры тканей. Это зависит как от самой аминокислоты, так и от ее содержания в среде. Очень часто исследователи заменяют смесь аминокислот гидрлизатом казеина. Последний способен увеличивать содержание никотина в культурах табака и подавлять биосинтез липидов во многих каллусных и суспензионных культурах. Углеводы являются необходимым компонентом питательных сред для культивирования изолированных клеток и тканей растений, так как в большинстве случаев последние неспособны к автотрофному питанию. Культуры тканей, даже зеленеющие на свету, не автотрофны в отношении углеводного питания. При изолировании и помещении на питательную среду кусочков хлорофиллоносных тканей они, как правило, теряют хлорофилл. При выращивании на свету одни ткани остаются лишенными хлорофилла (галловая опухоль партеноциссуса, ткани сердцевинной паренхимы табака и др.). Другие ткани зеленеют на свету, но не способны обеспечивать себя полностью углеводами за счет фотосинтеза, и их необходимо выращивать на питательной средах, содержащих сахар. При помещении кусочка ткани, изолированного из растения, на питательную среду без сахара его содержание в ткани начинает уменьшаться. Трата сахаров зависит от сезонных изменений в самой ткани (ткани, взятые весной, теряют сахаров больше) и от содержания ауксинов в среде. При образовании каллуса старая ткань быстро теряет сахара, а в новообразующейся их количество возрастает. При помещении ткани на питательную среду, снабженную сахаром, ткани поглощают и трансформируют сахара. Количество поглощенного сахара и в особенности его превращения в другие формы зависят как от источника сахаров в среде, так и от типа ткани. Наилучшим источником углеродного питания для большинства тканей является сахароза, обычно применяемая концентрация ее в питательной среде составляет 2–5 %. Чаще всего в качестве углеводов используют сахарозу в концентрации 3 %. Помимо сахарозы в качестве источника углеродного питания можно использовать глюкозу, фруктозу, галактозу и др. После сахарозы наиболее употребляемым источником углеродного питания для культивирования тканей растений является глюкоза. Из 33 исследованных культур (травянистых и древесных) 85 % имели отличный и хороший рост на среде с глюкозой. На третьем месте по эффективности использования культурами тканей растений стоит фруктоза. Ее успешно используют для своего роста 2/3 культур фруктозу. Галактоза заметно отличается от глюкозы и фруктозы по действию на рост изолированных тканей растений. Более половины изученных культур почти не используют галактозу для роста. Однако есть данные, отмечающие положительную роль галактозы для культивирования тканей и органов растений. В отличие от изолированных корней, которые могут расти только на среде с сахарозой, другие ткани, обладающие активными гидролитическими ферментами, могут использовать для питания самые разнообразные сахара и полисахариды. Способность ткани усваивать те или иные сахара зависит от ее происхождения. Перенос ткани с более бедной сахаром среды на более богатую обычно не вызывает нежелательных явлений, обратный перенос приводит к некрозам тканей. Основное действие сахарозы состоит в увеличении уровня образования метаболитов, использование исходно повышенных концентраций сахарозы обычно приводит к росту выхода вторичных метаболитов в культурах. Влияние изначально высоких концентраций сахарозы, вероятно, состоит в увеличении осмотического потенциала среды. Необходимо отметить влияние условий стерилизации на действие сахаров. При автоклавировании сахароза дает следы глюкозы и фруктозы, а в среде с сахарозой, которая не подверглась специальной очистке, наблюдается образование веществ, стимулирующих рост тканей. Выращивание хлорофиллоносных и лишенных хлорофилла тканей на свету или в темноте изменяет как содержание растворимых сахаров в ткани, так и соотношение разных их групп. Различия в спектральном составе света также сказываются на углеводном метаболизме тканей. Витамины принадлежат к активным веществам, играющим существенную роль в культуре тканей. Известно, что в процессе роста растения синтезируют необходимое им количество витаминов. Несмотря на это, исследования показывают, что при внесении витаминов в питательную среду рост ткани улучшается. Большая часть витаминов входит в состав ферментов, катализирующих многие метаболически важные реакции. Витамины делятся на водорастворимые и жирорастворимые. В состав сред чаще всего включают водорастворимые витамины: тиамин, рибофлавин, биотин, пантотеновую кислоту, пиридоксин, аскорбиновую кислоту. При внесении полной смеси витаминов стимулирующее действие может определяться синергизмом между отдельными витаминами. По наблюдениям Хендерсона, смесь витаминов наиболее активна после слабого роста ткани в предыдущем пассаже. Действие витаминов на рост культуры тканей зависит от способности ткани синтезировать их в оптимальном или субоптимальном количестве и от состава других компонентов питательной смеси, с которыми витамины могут взаимодействовать синергически или антагонистически. Интересно, что клеточная суспензия, полученная путем помещения ткани в жидкую среду, при пассировании значительно более чувствительна к недостатку витаминов, чем сама ткань. Исключение из среды холина и аскорбиновой кислоты приводит к увеличению одиночных суспендированных клеток. Следует отметить, что в каждом конкретном случае место отдельного витамина в сложной цепи метаболизма различно. Клетки растений и животных более чувствительны, чем микроорганизмы, к присутствию посторонних ингредиентов, поэтому требуют химически чистых компонентов среды. Вместе с тем некоторые питательные среды содержат натуральные биологические добавки: жидкий эндосперм кокосового ореха (кокосовое молоко), каштана, картофельный отвар и др. Они являются поставщиками более сбалансированных питательных компонентов по сравнению с искусственными средами. В целях предотвращения возможного бактериального и грибного загрязнения в среды добавляют иногда такие антибиотики, как полиены (амфотерицин В, нистатин), карбенициллин, цефалоспорин и его производные, левомицитин, аминогликозиды (гентамицин сульфат, канамицин моносульфат), рифамгащин и др. Большинство антибиотиков неустойчиво при нагревании, поэтому их растворы стерилизуют фильтрацией через мембраны. Наличие макро- и микроэлементов в составе культуральных сред определяется потребностями объектов культивирования. Широко применяемые в настоящее время среды Гамборга В5 и Мурасиге и Скуга (МС) содержат по сравнению со средами Уайта значительно большие количества калия, фосфора и микроэлементов. Наиболее часто используемая среда Мурасиге и Скуга, впервые была составлена и предложена в 1962 г.
Помимо источников углерода, азота и других минеральных компонентов, среда для культивирования тканей многоклеточных организмов, таких как растения, должна содержать специфические стимуляторы и регуляторы роста: фитогормоны или их синтетические аналоги. Известно около 5 тыс. соединений, обладающих регуляторной активностью, однако на практике применяется лишь несколько десятков. Известны три класса фитогормонов, действующих преимущественно как стимуляторы (ауксины, гибберелины, цитокинины), и два класса фитогормонов, оказывающих главным образом ингибирующее действие (абсцизовая кислота, этилен). Ауксины – производные аминокислот: ИУК – триптофана, ФУК – фенилаланина. Природный ауксин в растениях встречается в основном в виде β-индолил-3-уксусной кислоты (гетероауксином) – ИУК, второй представитель этого класса фитогормонов — фенилуксусная кислота, однако его роль в фиторегуляции значительно меньше ИУК.
Ауксин играет важную роль в процессах регенерации при размножении каллусных клеток; в процессе образования придаточных и боковых корней, луковиц, при заложении вегетативных почек. Механизм действия ауксина на рост клетки связывают с активацией Н+ – выкачивающего насоса в плазмолемме. Происходит подкисление клеточной стенки, что приводит к разрыву целлюлозных и пектиновых полимеров. Это облегчает растяжение растущей клетки под действием тургорного давления. Избыток ауксина разрушается ИУК-оксидазой. Синтетические ауксины. Для практических целей в сельском хозяйстве часто применяют не ИУК, а синтетические ауксины, так как они в растениях не разрушаются ИУК-оксидазой. Молекулы синтетических ауксинов имеют разную структуру, но содержат ароматическое или гетероциклическое кольцо, боковая часть которого представлена остатком алифатической кислоты. По действию синтетические ауксины относят: к сильным – индолил-3-масляная кислота (ИМК), а-нафтил-1-уксусная кислота (НУК), 2,4-дихлорфеноксиуксусная кислота (2,4-Д); слабым – фенилуксусная кислота (ФУК), фенилмасляная (ФМК). Гиббереллины обнаружены в 20-е гг. японскими исследователями в виде продуктов обмена веществ Fusarium moniliforme – конидиальной (споровой) стадии сумчатого гриба (аскомицета) Gibberellafujikuroi. Гиббереллины – это дитерпеноиды с тетрациклическим гиббереллановым скелетом из 19-20 С-атомов. В тканях растений одновременно встречаются несколько гиббереллинов, а в процессе онтогенеза их набор и соотношение изменяются. Подобно ауксинам, гиббереллины оказывают множественные действия: стимулируют рост в фазе растяжения и деления клеток (например, камбия), вызывают рост плодов. Рост в фазе растяжения стимулируется одновременно действием гиббереллинов и ауксина. В других случаях гиббереллины могут выступать как антагонисты ауксина, например задерживать рост придаточных корней. Для практических целей наиболее часто используют гибберелловую кислоту (А3). Цитокинины были открыты как фактор, регулирующий деление клеток в культуре изолированных тканей и названный кинетином (от слова «кинез» – деление). Другой природный цитокинин назван зеатином, так как был выделен из семян кукурузы в стадии молочной спелости. Сейчас известно еще 12 цитокининов, их химическое строение близко к строению зеатина. Показана высокая кининовая активность и у дифенилмочевины и ряда ее производных. В процессе эволюции этот класс фитогормонов, так же как и ауксины, начал формироваться очень рано. Цитокинины широко распространены в растительном мире: от водорослей до цветковых растений. Соединения с цитокининовой активностью обнаруживаются уже у бактерий. Цитокинины представляют собой N-замещенные производные аденина и синтезируются в растении из двух главных предшественников — мевало новой кислоты и 5'-АМФ. Возможен синтез цитокининов из продуктов распада некоторых тРНК, содержащих модифицированный аденозин. Действие цитокининов проявляется прежде всего в ускорении клеточных делений, что опосредуется усилением синтеза ДНК, РНК, белков. Благодаря этому замедляется старение клеток и повышается их устойчивость к неблагоприятным факторам среды. Во многих случаях для проявления действия цитокининов необходимо присутствие ауксина или одновременно и ауксина, и гиббереллинов. Под действием кинетина происходит рост активности многих ферментов. Применение фиторегуляторов в культуре изолированных тканей. Фитогормоны в культуре изолированных тканей необходимы для дедифференцировки клеток и индукции клеточных делений. Поэтому чтобы получить каллусные ткани, в состав питательных сред обязательно должны входить ауксины, вызывающие клеточную дедифференцировку, и цитокинины, индуцирующие деление клеток. В случае индукции стеблевого морфогенеза содержание ауксинов в среде может быть снижено или они могут быть полностью исключены из питательной среды.
На безгормональной среде растут опухолевые и «привыкшие» ткани, Автономность этих клеток по отношению к обоим гормонам или к одному из них связана со способностью их продуцировать. Чаще всего в качестве источника ауксинов в питательных средах используется 2,4-Д (2,4-дихлорфенокисиуксусная кислота), ИУК (индолилуксусная кислота), НУК (ά -нафтилуксусная кислота). Для получения рыхлого, хорошо растущего каллуса чаще применяют 2,4-Д. ИУК почти в 30 раз менее активна, чем 2,4-Д. В качестве источников цитокининов в искусственных питательных средах используется кинетин, 6-БАП (6-бензиламинопурин), зеатин. 6-БАП и зеатин проявляют более высокую активность в поддержании роста изолированных тканей и индукции органогенеза по сравнению с кинетином. Смешанными функциями обладают абсцизовая, коричная и гибберел ловая кислоты, флороглюцинол, 2,2-диметилгидразид янтарной кислоты. Из гиббереллинов в составе культуральных сред используют гибберелловую кислоту как наиболее доступную для индукции побегообразования у цитрусовых и для поддержания роста суспензионных культур. Цитокинины в состав сред включают для стимуляции клеточного деления в каллусных и суспензионных культурах, в культурах протопластов, при регенерации проростков из соматических эмбриоидов или стеблевых почек. Абсцизовую кислоту применяют при культивировании протопластов.
Методы культивирования изолированных клеток, органов и тканей находят широкое применение в экспериментальной биологии и используются во многих биотехнологических процессах, в которые включены высшие растения. Если биологической основой культуры изолированных тканей является тотипотентность растительных клеток, то обеспечение этого процесса складывается путем подбора питательных сред определенного состава, регуляторов роста и технических (физических) условий введения в культуру и собственно процесса культивирования (выбор экспланта, стерилизация, освещенность, температура и др.).
Культура клеток и тканей растений может использоваться в двух основных направлениях:
1) размножение или поддержание жизни у неизмененных по сравнению с донорами клеток, тканей, растений;
2) целенаправленное воздействие на изменение генетического статуса клеток и отбор в селективных условиях нужных вариантов.
Возможности культуры изолированных клеток и тканей растений весьма обширны: 1) получение вторичных метаболитов, продуцируемых отдельными клетками и тканями некоторых полезных растений (алкалоидов, глюкозидов, стероидов и т.д.), используемых для производства лекарств;
2) клеточная и тканевая селекция форм с полезными хозяйственными свойствами; 3) генетическое улучшение сельскохозяйственных растений;
4) ускоренное (микроразмножение) ценных и уникальных генотипов и поддержание жизнеспособности ослабленных клеток и тканей;
5) освобождение (оздоровление) посадочного материала от вирусной инфекции
6) сохранение генофонда в условиях криоконсервации.
С использованием методов культивирования также решается большое число теоретических проблем, в том числе:
– особенности старения растительной клетки;
– процессы цитодифференцировки и морфогенеза;
– роль фитогормонов, углеводов, витаминов, минеральных веществ при каллусогенезе, органогенезе, морфогенезе;
– взаимоотношения клеток высших растений с клубеньковыми бактериями и микоризными грибами;
– механизмы устойчивости растений к неблагоприятным факторам среды: абиотическим (засолению, кислой среде, низким температурам и т.д.), биотическим (патогенам разного происхождения, вызывающим болезни растений);
– регуляция вторичного обмена;
– механизмы опухолеобразования;
механизмы сомаклональной изменчивости;
– популяционные взаимоотношения в клеточной культуре.
Микроклональное размножение растений
В природе существует два способа размножения растений: половой (семенной) и вегетативный. Эти способы имеют свои преимущества и недостатки. К недостаткам семенного размножения следует отнести генетическую пестроту получаемого посадочного материала и длительность ювенильного периода. При вегетативном размножении сохраняется генотип материнского растения и сокращается продолжительность ювенильного периода. Однако для большинства видов (в первую очередь для древесных пород) проблема вегетативного размножения остается до конца не решенной. Это обусловлено следующими причинами: 1) не все породы, даже на ювенильной стадии, могут размножаться вегетативным способом с требуемой эффективностью (дуб, сосна, ель, орехоплодные и др.); 2) практически невозможно с помощью черенкования размножать многие виды древесных пород в возрасте старше 10–15 лет; 3) не всегда удается получать стандартный посадочный материал (существует возможность накопления и передачи инфекции); 4) операции при размножении взрослых (древесных) растений с помощью прививок отличаются трудоемкостью и сложностью; 5) разработанные технологии не эффективны для получения достаточного количества генетически однородного материала в течение года. Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения – клонального микроразмножения (получение в условиях in vitro (в пробирке) неполовым путем растений, генетически идентичных исходному экземпляру). В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность, т.е. под влиянием экзогенных воздействий давать начало целому растительному организму. Для обозначения растений, полученных бесполым размножением, в 1903 г. Уэббер из Министерства сельского хозяйства США ввел термин клон от греч. clon – черенок (побег), пригодный для размножения. Клон – популяция клеток, возникших из одной клетки посредством митоза, или группа растений, развившихся вегетативным или бесполым путем, все члены которой произошли из одной повторно культивируемой клетки. Клональное микроразмножение – получение in vitro неполовым путем растений, генетически идентичных исходному.
Процесс клонального микроразмножения можно разделить на четыре этапа:
1 – выбор растения-донора (донор – растение, часть которого вводится в культуру), изолирование эксплантов (эксплант – ткань, взятая из своего оригинального места и перенесенная в искусственную среду для роста и поддержания жизнедеятельности) и получение хорошо растущей стерильной культуры;
2 – собственно микроразмножение, когда достигается получение максимального количества мериклонов (микропобегов);
3 – укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (2–10 оС);
4 – выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле (рис. 24).
Рис. 24. Схема микроклонального размножения растений:
1 путь – активация развития существующих меристем;
2 путь – индукция возникновения адвентивных почек.
Существует много методов клонального микроразмножения. Различные авторы, проводя индивидуальные исследования по влиянию условий культивирования эксплантов на процессы морфогенеза, наблюдали разные ответные морфогенетические реакции на изменение условий выращивания, что, в свою очередь, способствовало созданию новых классификаций методов клонального микроразмножения. В литературе предложены следующие методы микроразмножения растений: активация развития уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля); индукция возникновения адвентивных почек непосредственно тканями экспланта; индукция соматического эмбриогенеза; дифференциация адвентивных почек в первичной и пересадочной каллусной ткани. Первый метод, используемый при клональном микроразмножении растений, – это активация развития уже существующих в растении меристем, основывающийся на снятии апикального доминирования. Это может быть достигнуто двумя путями: 1. Удаление верхушечной меристемы стебля (снятие апикального доминирования) и последующее микрочеренкование побега in vitro на безгормональной среде. Апикальное доминирование – подавление роста боковых почек растительного побега или наличие терминальной почки. 2. Добавление в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин), а также 2-изопентениладенин (2-iр) и зеатин. Полученные таким образом побеги отделяют от первичного материнского экспланта (инокулюм (трансплант) – часть суспензионной или каллусной культуры, переносимой в свежую питательную среду) и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков.
В настоящее время этот метод широко используется в производстве безвирусного посадочного материала сельскохозяйственных культур, таких как технические (сахарная свекла, хмель, табак, топинамбур, стахис) и овощные (томаты, картофель, огурец, перец, тыква, спаржа и др.), а также для размножения культур промышленного цветоводства (гвоздика, хризантема, роза, гербера), тропических и субтропических растений (рододендрон, азалия, камелия, чай и др.), плодовых и ягодных культур (яблоня, слива, вишня, груша, виноград, малина, смородина, крыжовник и др.) и древесных растений (тополь, ива, ольха, береза, рябина, секвойя, туя, можжевельник и др.). Для некоторых сельскохозяйственных культур, таких как картофель, технология клонального микроразмножения поставлена на промышленную основу (рис. 24). Применение метода активации развития существующих в растении меристем позволяет получать из одной меристемы картофеля более 105 растений в год, причем технология предусматривает получение в пробирках микроклубней – ценного безвирусного семенного материала. Формирование растения капусты из пазушной почки показано на рис 25.
Рис. 24. Этапы размножения пробирочных растений картофеля черенкованием:
а – микропобег – объект черенкования, б – микрочеренок на питательной среде,
в – развитие растения картофеля из черенка.
Рис. 25. Формирование растения капусты из пазушной почки на агаризованной среде.
Второй метод – это индукция возникновения адвентивных почек непосредственно на тканях экспланта. (Адвентивный – добавочный побег. Развитие растений из необычных точек происхождения, например, почеч- ные или корневые ткани, возникающие из каллуса, или зародыши, развивающиеся из других источников, а не из зигот. Этот термин также может быть использован для описания агентов, загрязняющих клеточные культуры). Он основан на способности изолированных частей растения при благоприятных условиях питательной среды восстанавливать недостающие органы и таким образом регенерировать целые растения. Образования адвентивных почек можно добиться почти из любых органов и тканей растения (изолированного зародыша, листа, стебля, семядолей, чешуек и донца луковицы, сегментов корней и зачатков соцветий), если их удается получить свободными от инфекции. Этот процесс, как правило, происходит на питательных средах, содержащих один цитокинин или в сочетании с ауксином, находящихся в соотношении 10:1 или 100:1. В качестве ауксина в этом случае наиболее часто используют β-индолил-3-уксусную кислоту (ИУК) или α-нафтилуксусную кислоту (НУК). Это наиболее распространенный метод микроразмножения высших растений, которым были размножены многие луковичные цветочные растения (нарциссы, лилии, гиацинты, гладиолусы, тюльпаны) из луковичных чешуи, сегментов базальной части донца луковиц, эксплантов листьев; представители рода Бразика (капуста цветная, кочанная, брюссельская, листовая, брокколи) – из сегментов гипокотиля, котиледона, листьев; лук, чеснок – из верхушечной меристемы, ткани донца луковиц; томаты – из апикальных или пазушных меристем; салат цикорный – из сегментов листовых пластинок; петуния – из сегментов корней; глоксиния, сенполия, стрептокарпус, эшинапсус – из сегментов листовых пластинок, а также некоторые представители древесных растений – из изолированных зрелых и незрелых зародышей. Несомненный интерес вызывает вопрос, связанный с происхождением адвентивных почек, в частности, какие клеточные слои участвуют в дифференциации меристем. Единого мнения по этому вопросу пока нет. Так, Тран Тан Ван в своих работах с тканями табака установила, что именно эпидермис является наиболее активной тканью, способной образовывать почки, каллус или корни в зависимости от гормонального баланса питательной среды. Цитологические исследования, проведенные на сегментах базальной части донца луковиц тюльпанов и нарциссов, показали, что адвентивные побеги формируются из поверхностных слоев меристематических клеток, прилегающих к донцу, а для растений глоксинии, сенполии и стрептокарпуса процесс формирования адвентивных почек, как правило, происходит в субэпидермальных клеточных слоях листовых пластинок. Единого мнения по этому вопросу также нет и среди исследователей, работающих с древесными растениями. Так, Арнольд и Эрихсон, Джонсон и Борнмап считают, что образование почек на изолированной хвое ели обыкновенной под действием БАП и 2ip происходит в эпидермальном слое культивируемого экспланта, по мнению Чин и Ченга, для псевдотсуги – в субэпи дермальных слоях; а Вилалобос и другие утверждают, что при культивировании семядолей сосны замечательной на среде, содержащей один цитокинин, этот процесс происходит одновременно в эпидермальном и субэпидермальном слоях. Для сосны обыкновенной также было отмечено образование адвентивных почек в эпидермальном и субэпидермальном слоях семядолей зародыша. Этот процесс для сосны не зависит от применяемых цитокининов. Третий метод, практикуемый при клональном микроразмножении, основывается на дифференциации из соматических клеток зародышеподобных структур, которые по своему внешнему виду напоминают зиготические зародыши. Этот метод получил название соматический эмбриогенез. Основное отличие образования зародышей in vitro и in vivo (в естественных условиях) заключается в том, что соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят три стадии развития: глобулярную, сердцевидную, торпедовидную и в конечном счете имеют тенденцию к развитию в проросток.
Четвертый метод клонального микроразмножения – дифференциация адвентивных почек в первичной и пересадочной каллусной ткани. Каллус – неорганизованная, пролиферирующая масса дифференцированных растительных клеток. Дедифференциация – переход специализированных, неделящихся клеток к пролиферации. Практически он мало используется в целях получения посадочного материала in vitro. Это связано с тем, что при периодическом пересаживании каллусной ткани на свежую питательную среду часто наблюдаются явления, нежелательные при микроразмножении: изменение плоидности культивируемых клеток, структурные перестройки хромосом и накопление генных мутаций, потеря морфогенетического потенциала культивируемыми клетками. Наряду с генетическими изменениями наблюдаются изменения растений и по морфологии: низкорослость, неправильное жилкование листьев и их расположение по стеблю, образование укороченных, утолщенных междоузлий, уродливость, пониженная устойчивость к болезням и вредителям. Причем длительное культивирование каллусных клеток усугубляет эти изменения, поэтому период неорганизованного роста при микроразмножении должен быть сведен к минимуму. Однако несмотря на некоторые недостатки, данный метод имеет свои положительные стороны и преимущества. Во-первых, он является эффективным и экономически выгодным, так как в процессе размножения из каждой индивидуальной каллусной клетки при определенных благоприятных условиях культивирования может сформироваться адвентивная почка, дающая начало новому растению. Во-вторых, в ряде случаев он является единственно возможным способом размножения растений в культуре тканей. В-третьих, представляет большой интерес для селекционеров, так как растения, полученные данным методом, отличаются генетически и морфологически друг от друга. Это дает возможность селекционерам проводить отбор растений по хозяйственно важным признакам и оценивать их поведение в полевых условиях. Этот метод целесообразно применять лишь к тем растениям, для которых показана генетическая стабильность каллусной ткани, а вариабельность между растениями-регенерантами не превышает уровня естественной изменчивости. К таким растениям можно отнести амариллис, эписции, драцены, томаты, спаржу, некоторые древесные породы и другие культуры. Через каллусную культуру были размножены: сахарная свекла, некоторые представители рода Бразика, кукуруза, рис, пшеница и другие злаковые, подсолнечник, лен. Разработаны условия, способствующие регенерации растений из каллуса огурца, картофеля, томатов.
В целом методы клонального микроразмножения, несомненно, имеют ряд преимуществ перед существующими традиционными способами размножения:
– получение генетически однородного посадочного материала;
– освобождение растений от вирусов за счет использования меристемной культуры; – высокий коэффициент размножения (105–106 – для травянистых, цветочных растений, 104–105 – для кустарниковых и древесных, 104 – для хвойных);
– сокращение продолжительности селекционного процесса;
– ускорение перехода растений от ювенильной к репродуктивной фазе развития;
- размножение растений, трудно размножаемых традиционными способами;
– возможность проведения работ в течение круглого года и экономия площадей, необходимых для выращивания посадочного материала;
– возможность автоматизации процесса выращивания.
Культура каллусных тканей
Каллусная культура – это неорганизованно пролиферирующая ткань, возникающая из дедифференцированных клеток. «Каллус–мозоль» может образовываться на растении при поранении. Это естественный процесс, который можно наблюдать в природе. На месте ранения часть ткани утрачивает прежние связи с организмом, для их восстановления необходимо нарастание клеточной массы. То же происходит и на изолированных кусочках ткани (эксплантах) в культуре in vitro. При помещении фрагмента ткани или органа растения на питательную среду соответствующего состава может происходить дедифференциация соматических клеток с образованием каллусной ткани (рис. 26, рис. 27).
Рис. 26. Получение каллусной ткани из различных эксплантов: фрагментов стебля, корня, листа, лепестков, тычинок.
Рис. 27. Каллус, образованный в культуре незрелых зародышей ячменя (а, б) и
пшеницы (в)
Первый этап дедифференциации клетки связан с ее вхождением в клеточный цикл, что происходит под действием фитогормонов – ауксинов и цитокининов. Три фазы роста клеток: 1 – деление, 2 – растяжение, 3 – дифференцировка (утолщение вторичной клеточной оболочки и потеря способности к делению). Для того чтобы дифференцированные клетки вновь приобрели способность к делению, необходимо, чтобы произошла их дедифференцировка, т.е. клетки должны как бы возвратиться в меристематическое состояние. Размножение дедифференцированных клеток приводит к анархическому, неорганизованному росту, в результате чего образуется каллусная ткань. Таким образом, превращение специализированной клетки в каллусную связано с индукцией клеточного деления, способность к которому она потеряла в процессе дифференцировки. Если дедифференцировка специализированной клетки обуславливается индукцией деления под влиянием цитогормонов, то дедифференцировка делящейся меристематической клетки связана с остановкой делений, деспециализацией клетки и только после этого – с индукцией делений, приводящей к каллусообразованию. Одни цитокинины в среде (сердцевинной паренхимы табака) блокируют клеточный цикл, клетки только старятся, как и без гормонов, но не растут; а у семядолей подсолнечника в таких же условиях каллус образуется. Как правило, для индукции каллусной ткани необходимо присутствие двух гормонов: ауксинов (дедифференцировка и подготовка к делению) и цитокининов (пролиферация – деление). Но, например, зрелые и незрелые зародыши пшеницы и ячменя дают каллусообразование только с ауксинами (2,4-Д). Вероятно, это связано с наличием у последних достаточного количества эндогенных цитокининов, о чем свидетельствует их прорастание на среде МС без гормонов, т.е. идет увеличение массы стебля и корня – процесс, активируемый цитокининами. Есть достаточно экспериментальных данных о влиянии эндогенных фитогормонов, т.е. гормонального статуса донорного растения, на процесс индукции каллусов в культуре изолированных тканей растений. Имеются данные, что не только ауксины и цитокинины вызывают деление клеток, приводящее к образованию каллуса, но и так называемые элиситоры (от англ. Elect – выбирать) – метаболические вещества, индуцирующие защитные системы растений. Элиситоры – это БАВ, дерепрессирующие гены и, как следствие, активирующие клеточные деления, сравнительно быструю дедифференцировку специализированных клеток, сопровождающуюся активацией белкового синтеза. Отмечено, что при повреждении растительных тканей продукты деградации клеточных стенок действуют как гормоны, которые распространяются по растению, связываются со специфическими рецепторами на клеточных мембранах и инициируют каскад защитных механизмов – такие молекулы называются эндогенными элиситорами. Эффект, вызываемый действием одних и тех же гормонов, может быть различным в зависимости от физиологической характеристики ткани-мишени.
Компетентность ее в рассмотренных примерах определяется степенью дифференцировки клеток. Переход клетки in vitro из дифференцированного состояние к дедифференцировке и активным клеточным делениям обусловлен изменением активности генов (эпигенной изменчивостью). Активирование одних генов и репрессирование других приводит к изменению в белковом составе клеток. В каллусных клетках появляются специфические белки и одновременно исчезают или уменьшаются в количестве белки, характерные для фотосинтезирующих клеток листа. У двудольных растений процесс репрессии и депрессии генов, лежащий в основе дифференцировки, происходит легче, чем у однодольных. Для того чтобы не произошло старения, утраты способности к делению и отмиранию каллусных клеток, первичный каллус через 4–6 недель переносят на свежую питательную среду (пассирование). При регулярном пассировании способность к делению может поддерживаться в течение десятков лет. Культура каллусной ткани моркови, полученная Готре более 50 лет назад, до сих пор растет в коллекции.