Экскаваторы непрерывного действия
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
ЭКСКАВАТОРЫ НЕПРЕРЫВНОГО ДЕЙСТВИЯ
Экскаваторами непрерывного действия называют землеройные машины, непрерывно разрабатывающие грунт с одновременной погрузкой его в транспортное средство или укладкой в отвал. Рабочий орган экскаватора непрерывного действия оборудован несколькими ковшами, скребками или резцами, поочередно отделяющими грунт от массива. Их закрепляют на едином рабочем органе — роторе или замкнутой цепи, располагая с определенным постоянным шагом.
Грунт разрабатывают в процессе двух независимых движений:
относительного — многократного непрерывного перемещения ковшей или заменяющих их рабочих органов по замкнутой траектории относительно несущей рамы и переносного — перемещением рамы вместе с рабочими органами, называемого подачей. Для отсыпки грунта используют специальное транспортирующее устройство, чаще — ленточный конвейер, на который грунт поступает из ковшей или заменяющих их рабочих органов.
Однотипность рабочих движений предопределяет автоматизацию процесса и, как следствие, облегчение управления, которое сводится к начальной настройке экскаватора на определенный режим в соответствии с технологическими требованиями и характеристикой разрабатываемого грунта, наблюдению за его работой и оперативному ручному управлению в экстремальных ситуациях, например, для остановки рабочего органа при встрече с непреодолимым препятствием, для изменения режимов рабочих движений и т.п. По этому показателю экскаваторы непрерывного действия имеют преимущество перед одноковшовыми экскаваторами, управление рабочим процессом которых требует постоянного участия машиниста в течение каждого экскавационного цикла. Вторым важным преимуществом этих экскаваторов перед одноковшовыми является более полное использование во времени установленной мощности энергосиловой установки и, как следствие, при прочих равных условиях, более высокая техническая производительность.
Классифицируют экскаваторы непрерывного действия (рис.138) по следующим признакам.
По назначению или виду выполняемых работ: траншейные - для рытья и засыпки траншей;
карьерные - для добычи строительных материалов в карьерах;
строительно-карьерные - для массовых земляных работ в строительстве.
По типу рабочего органа: роторные и цепные.
По способу копания: продольного, когда относительное и переносное движение совершается в одной плоскости, и поперечного копания — в противном случае.
Остальные классификационные признаки являются общими для строительных машин (по типу привода, ходового устройства и др.).
Траншейными экскаваторами называют землеройные машины непрерывного действия с рабочим органом продольного копания, применяемые для рытья траншей - выемок большой протяженности по сравнению с размерами их поперечных сечений.
В зависимости от типа рабочего органа различают роторные и цепные траншейные экскаваторы. У роторного экскаватора ковши располагают с равным шагом по периферии рабочего органа — ротора, а у цепных — на замкнутой ковшовой цепи. Роторные экскаваторы применяют для разработки траншей ограниченной глубины (до 3 м) в связи с тем, что дальнейшее увеличение этого параметра требует увеличения диаметра ротора и связанной с этим габаритной высоты, предельные значения которой регламентированы условиями безопасного передвижения экскаватора при его перебазировании на новый строительный объект под мостами, эстакадами, линиями электропередач и т. п. Цепные рабочие органы при их переводе в транспортное положение располагаются почти горизонтально без увеличения габаритной высоты. Поэтому цепные экскаваторы могут разрабатывать траншеи любой практической глубины. Отечественная промышленность выпускает цепные экскаваторы для разработки траншей глубиной до 6 м.
Траншейные экскаваторы эффективно применять для разработки однородных грунтов до IV категории включительно. Крупные каменистые включения снижают ресурс этих машин, приводят к частым отказам, простоям и дополнительным затратам на ремонтно-восстановительные работы. Специальные роторные траншейные экскаваторы способны разрабатывать также мерзлые грунты.
Являясь машиной непрерывного действия траншейный экскаватор наиболее полно реализует свои технологические возможности при разработке траншей большой протяженности с возможно меньшим числом пионерных выемок для ввода рабочего органа в траншею, которые обычно дорабатывают до полного профиля одноковшовыми экскаваторами.
Главным параметром траншейного экскаватора является глубина отрываемой траншеи, входящая в его индекс. Например, ЭТР-254 обозначает экскаватор траншейный роторный четвертой модели для разработки траншей глубиной до 2,5 м; ЭТЦ-165 - экскаватор траншейный цепной пятой модели, глубина траншей до 1,6 м. Основными параметрами служат масса экскаватора и мощность двигателя.
Траншейный экскаватор состоит из тягача и рабочего оборудования, соединенных между собой по полуприцепной (большинство роторных экскаваторов) или навесной (малые модели роторных экскаваторов и их облегченные модификации, цепные экскаваторы) схемам.
В качестве базовых тягачей для малых моделей траншейных экскаваторов используют обычно гусеничные или колесные тракторы с необходимым переустройством. Тягачи средних и тяжелых моделей экскаваторов изготавливают преимущественно из тракторных узлов и деталей, сохраняя при этом принципиальную схему тракторного движителя, но по сравнению с базовыми тракторами уширяя колею и удлиняя базу. Вместе с широкими башмаками этим достигается уменьшение давления на грунт (50...80 кПа), что позволяет этим машинам работать в грунтах с пониженной несущей способностью.
Рабочее оборудование траншейного экскаватора обеспечивает отрыв от массива грунта в траншее проектной глубины и ширины с откосами или без них, полный вынос его из траншеи и отсыпку в бруствер (кавальер) рядом с траншеей. Последнюю операцию обычно выполняет ленточный отвальный конвейер, установленный перпендикулярно продольной оси траншеи либо в полости ротора (на роторных экскаваторах), либо на тягаче (на цепных экскаваторах). Для разработки узких траншей (щелей) применяют также безконвейерные скребковые и фрезерные траншейные экскаваторы.
Роторные траншейные экскаваторы
Рабочее оборудование роторного траншейного экскаватора (рис.139) состоит из рабочего колеса - ротора 6, установленного на поддерживающих 5 и направляющих 11 роликах рабочей рамы 14, закрепленной на раме обечайки 13, ножевых откосников 12, зачистного щита 10, задней опоры 9 и отвального конвейера 4 (рис.139,а). Несущими элементами ротора служат два кольца 20 (рис.139,б), расположенные в параллельных плоскостях, с закрепленными по периферии ковшами. На широких роторах ковши устанавливают в два ряда со смещением одного ряда относительно другого на половину шага ковшей, обеспечивая этим более равномерную нагрузку на ротор при копании грунта. Ковш состоит из арки 19 с установленными в ее передней части зубьями или без них и днища 18 из переплетенных в двух направлениях цепей. Ковши открыты в лобовой части для поступления в них грунта и с внутренней стороны для разгрузки.
Все операции рабочего процесса ротора выполняются при его непрерывном вращении в сочетании с поступательным движением тягача. При движении ковшей по забою снизу вверх они разрабатывают грунт и заполняются им. От просыпания грунта внутрь ротора предохраняет неподвижно установленная на рабочей раме обечайка 13 (рис.139,в) с верхним краем в начале зоны разгрузки. По достижении ковшами этой зоны грунт разгружается в открывшуюся внутреннюю полость ротора на отвальный конвейер 4, а далее последним - в бруствер с одной стороны траншеи (рис.139,г). Цепные днища ковшей, благодаря подвижности цепных звеньев от собственного веса, способствуют более полному опорожнению ковшей.
Для эффективной разработки грунта, зубья на ковшах устанавливают по схеме (рис.139,д), реализующей метод «крупного скола», заключающийся в том, что в пределах каждой из двух или трех одинаковых групп последовательно расположенных на роторе ковшей каждый зуб 21 перемещается по своей полосе, следуя за зубом предшествующей группы в той же полосе. Так, при двух групповой расстановке, реализуемой в конструкциях отечественных траншейных роторных экскаваторов, и при 14-ковшовом роторе по следу зубьев 1-го ковша перемещаются лишь зубья 8-го ковша, по следу 2-го — зубья 9-го ковша и т.д. По ширине передней кромки зубья расставлены примерно с одинаковым шагом. Для повышения износостойкости зубьев их передние грани упрочнены износостойкими наплавками или напайками из вольфрамокобальтовых пластин состава ВК15, по твердости соизмеримых с оксидом кремния, входящего в состав большинства грунтов.
Ножевые откосники 12 (рис.139,а) устанавливают с двух сторон ротора наклонно в продольном и поперечном направлениях, закрепляя их неподвижно на кронштейнах рамы. При движении экскаватора они отделяют грунт в зоне откосов от массива (рис.139,г), где он обрушивается вниз, захватывается ковшами и выносится на разгрузку вместе с грунтом, отделяемым от массива в лобовой части забоя.
Отвальные ленточные конвейеры имеют два конструктивных варианта: с цилиндрической поверхностью рабочей ветви конвейерной ленты - криволинейные, устанавливаемые на малых моделях экскаваторов, и двухсекционные (рис.139,г), составленные из двух прямых секций, из которых одна — горизонтальная — является приемной, а вторая - наклонная - отвальной. Последняя устанавливается под требуемым углом к приемной секции с помощью гидроцилиндра. Двухсекционные конвейеры устанавливают на средних и тяжелых экскаваторах. При переводе экскаватора в транспортное положение криволинейный конвейер устанавливают симметрично продольной оси экскаватора, а отвальную секцию двухсекционного конвейера откидывают вниз, уменьшая этим габаритную ширину рабочего оборудования. Скорость движения конвейерной ленты не превышает 5 м/с.
Установленный в задней части рабочей рамы зачистной щит 10 (рис.139,а) служит для профилирования дна траншеи путем срезания гребней, образованных смежными зубьями, и зачистки траншеи от осыпавшегося грунта из не полностью разгруженных возвращающихся в забой ковшей. Обычно его соединяют с задней опорой в виде сдвоенного колеса или лыжи. Для частичной разгрузки задней опоры при разработке тяжелых, включая мерзлые, грунтов тяжелые модели роторных траншейных экскаваторов дополнительно оборудуют лыжами 8, управляемыми гидроцилиндрами 7, или колесными опорами с каждой стороны рабочей рамы с опиранием их на бровки траншеи.
Для соединения рабочего оборудования с тягачом используют сцепное устройство в виде ползунов, перемещающихся по направляющим, установленным на тягаче, либо в виде плоского коленчато-рычажного механизма 15 с опорно-поворотным устройством 16 или без него. Для установки рабочего оборудования на требуемую глубину траншеи, а также для его перевода из рабочего I положения в транспортное II и наоборот используют гидравлические цилиндры 1 и 3. Опорно-поворотное устройство позволяет экскаватору работать на закруглениях без заклинивания ротора в траншее, а также при поворотных движениях экскаватора с полуприцепным рабочим оборудованием в транспортном положении.
Роторные траншейные экскаваторы оборудуют автономной дизельной силовой установкой 17. Для передачи движения исполнительным механизмам (ходовому устройству, ротору, отвальному конвейеру и вспомогательным устройствам для подъема рабочего оборудования и отвальной секции двухсекционного конвейера, установки дополнительных опор) применяют механические, гидромеханические и электрические трансмиссии. Для передвижения на транспортных скоростях обычно используют многоскоростную реверсивную коробку передач базового трактора, а для передвижения на рабочих скоростях к ней подключают ходоуменьшитель, работающий как понижающий редуктор. В гидромеханическом варианте ходовое устройство в рабочем режиме приводится в движение гидромотором, питаемым рабочей жидкостью от регулируемого насоса. Эта схема обеспечивает бесступенчатое регулирование скоростей в нескольких диапазонах при совместной работе коробки передач и ходоуменьшителя и позволяет выбирать рациональные скоростные режимы в зависимости от категории разрабатываемых грунтов.
Ротор приводится в движение через механическую трансмиссию на тягаче, две двухступенчатые цепные передачи 2 и две открытые зубчатые пары шестерня-зубчатый венец ротора с каждой стороны последнего. Движение отвальному конвейеру передается от приводного вала ротора через систему цепных передач. Применяется также индивидуальный привод ротора и отвального конвейера от электродвигателей, питаемых электроэнергией от приводимого дизелем генератора переменного тока. Для привода вспомогательных механизмов используют обычно объемный гидропривод с нерегулируемыми насосами.
Цепные траншейные экскаваторы
У цепных экскаваторов (рис.140,а) отвальный конвейер 4 расположен на тягаче 1, а рабочее оборудование 7 соединено с тягачом по навесной схеме с помощью тяг 3 и 5 и может быть установлено в транспортное или рабочее положение на требуемую глубину траншеи гидроцилиндром 2 Рабочее оборудование состоит из рамы, двух ведущих звездочек или приводного граненого барабана, устанавливаемых в верхней части рамы, двух натяжных колес в ее нижней части и огибающей их и опирающейся на ролики замкнутой длиннозвенной цепи, на которой с определенным постоянным шагом закреплены ковши или заменяющие их рабочие органы.
В последнее время в качестве рабочих органов используют комбинированные рабочие элементы (рис.140,б), состоящие из скребков 10 и установленных на арках 8 зубьев 9. Скребок выносит из траншеи отделенный от массива впереди идущими зубьями грунт, а зубья разрабатывают очередную стружку для ее выноса следующим за ними скребком. В пределах траншеи выносимый из нее грунт блокирован от просыпания лобовой и боковыми стенками, а по выходе из траншеи он перемещается в лотке 6 (рис.140,а), из которого отсыпается на отвальный конвейер. Комбинированные рабочие органы более эффективны по сравнению с применявшимися прежде ковшами, склонными к залипанию.
Для разработки узких траншей применяют скребковые экскаваторы (рис.141,а) на базе пневмоколесных тракторов, рабочее оборудование которых 2 включает приводную 6 (рис.141,б) и натяжную 10 звездочки, огибающую их цепь 9 с закрепленными на ней резцами 8 и скребками 7 и приводимый скребковой цепью через звездочку 4 винтовой конвейер 5 с двумя шнеками противоположной направленности. Резцы установлены попарно — первым следует узкий резец, оставляющий после себя узкую прорезь, за ним — расширяющий резец. Отделенный резцами от массива грунт выносится из
Рис.140. Цепной траншейный экскаватор
траншеи скребком, где он отодвигается от бровок траншеи на обе ее стороны шнеком (рис.141,в). Дно траншеи защищается щитом 7 (рис.141,а). Устанавливают рабочее оборудование в рабочее или в транспортное положения гидроци-линдром 3. Рабочее оборудование обычно располагается по центру относительно колеи тягача. Известны экскаваторы с боковым расположением оборудования, а также с перемещаемым рабочим оборудованием по ширине машины, позволяющим уширять траншеи, в частности, в местах муфтовых соединений укладываемых в траншею труб для проведения монтажных работ.
Роторные экскаваторы поперечного копания
Роторные экскаваторы поперечного копания (роторные стреловые экскаваторы) применяют для разработки однородных грунтов до IV категории включительно. Их используют на вскрышных работах и карьерной добыче строительных материалов, разработке больших котлованов и других выемок в промышленном и мелиоративном строительстве, возведении насыпей, дамб, плотин, на погрузочно-разгрузочных работах на складах насыпных материалов. Мощные модели этих машин применяют также для разработки более тяжелых грунтов, открытой добычи угля и других полезных ископаемых.
Строительные дизель-электрические роторные экскаваторы (рис.142,а), изготовленные на базе одноковшовых экскаваторов 4-й и 6-й размерной группы, разрабатывают грунты выше уровня стоянки до 7,5 м и ниже этого уровня до 3,5м. Радиус копания до 11,5 м, а техническая производительность в грунтах 1-й категории достигает 550 м3/ч. По удельной энергоемкости эти машины находятся на уровне лучших экскаваторов непрерывного действия (0,22...0,24 кВт-ч/м3).
В конструкциях роторных стреловых экскаваторов, в отличие от базовых одноковшовых, сохранены ходовое 8 и опорно-поворотное устройства, частично или полностью поворотная платформа 11, на которой расположена силовая дизель-генераторная установка 12 (обычно в хвостовой части с целью ее уравновешивания), насосная станция 6, механизм поворота 10, кабина 5 с органами управления и две стойки-пилоны 7. В верхней части пилонов шарнирно закреплена стрела 2 с ротором 1 на конце и приемным ленточным конвейером 3, расположенным вдоль стрелы. Для работы на ярусах различных уровней стрела может поворачиваться в вертикальной плоскости гидроцилиндром 4. Ротор с ковшами по его периферии и тарельчатый питатель 19 (рис.142,б) для перегрузки грунта на приемный конвейер приводятся во вращение электродвигателем 17 (рис.142,а) через систему карданных валов и зубчатых
Рис.142. Роторный экскаватор поперечного копания
Рис.143. Схемы разработки забоя роторным экскаватором
передач, а приемный конвейер - мотор-барабаном 16 со встроенными в него электродвигателем и редуктором. Отвальный конвейер 13 опирается на центрально установленный подпятник 9 и может поворачиваться относительно него в плане посредством индивидуального электропривода. Вертикальное положение отвального конвейера регулируют гидроцилиндром 15. Приводится отвальный конвейер мотор-барабаном 14 на его дальнем конце.
При разработке грунта верхним копанием (выше уровня стоянки) существует несколько технологических схем, по одной из которых машину располагают перед забоем на расстоянии вылета стрелы. Отвальный конвейер устанавливают по высоте и в плане в положение разгрузки (в отвал или в транспортное средство). Вертикальным перемещением стрелы при вращающемся роторе или перемещением всего экскаватора на забой при фиксированной стреле ротор заглубляют в грунт на высоту яруса 1 (рис.143). Фиксируя в этом положении стрелу одновременным поворотом платформы и вращением ротора при движении ковшей снизу вверх разрабатывают грунт, отделяя его от массива и вынося ковшами вверх, разгружают грунт на тарельчатый питатель 19 (рис.142,б) в виде наклонного вращающегося диска. С помощью скребка 20 грунт ссыпается с питателя на приемный конвейер, транспортируется к центральной части платформы и перегружается на отвальный конвейер, которым выносится и разгружается в транспортное средство или в отвал.
В конце поворотного перемещения платформы, ограниченного шириной захватки забоя, ротор со стрелой опускают до уровня следующего яруса 2 (рис.143) и реверсивным движением поворотной платформы при прежнем вращении ротора повторяют экскавацию грунта. После разработки последнего яруса 4, чаще всего соответствующего уровню стоянки экскаватора, машину перемещают в направлении к забою на новую стоянку и повторяют землеройный процесс (5—8).
Для работы нижним копанием ковши на роторе переставляют, поворачивая их на 180° для возможности разработки грунта вращением ротора в обратном направлении. Опустив стрелу, грунт разрабатывают по описанной выше схеме для верхнего копания. Для надежного транспортирования грунта круто наклоненным приемным конвейером используют прижимной конвейер 18 (рис.142,а), который устанавливают над приемным конвейером. Грунт перемещается между лентами двух конвейеров, рабочие ветви которых движутся в одном направлении.
МАШИНЫ И ОБОРУДОВАНИЕ ДЛЯ УПЛОТНЕНИЯ ГРУНТОВ
Для обеспечения устойчивости зданий и сооружений в течение всего срока их эксплуатации грунты, на которых их возводят, должны обладать достаточной плотностью, регламентированной СНиП и другими нормативными документами. Просадочные и насыпные грунты перед возведением на них зданий и сооружений подлежат искусственному уплотнению.
Уплотнение грунта - это процесс его необратимого деформирования путем внешнего силового воздействия, в том числе за счет гравитационных сил, в результате которого определенная масса грунта уменьшается в объеме путем удаления из его пор свободной воды и воздуха, а его плотность повышается. При этом вода и воздух частично выходят на поверхность и частично перемещаются в грунте из более напряженных зон в менее напряженные, в связи с чем требуемая плотность достигается многократным повторным нагружением. При этом наибольшая степень уплотнения достигается на первых циклах нагружения, которая уменьшается к концу этого процесса.
Разрыхление грунта перед его уплотнением способствует выходу воздуха и свободной воды на поверхность без миграции этих компонентов в грунтовом массиве, благодаря чему требуемая плотность грунта может быть достигнута меньшим числом повторных нагружений. По этой причине большинство способов уплотнения грунта являются двухэтапными, включающими разрыхление уплотняемого слоя и собственно его уплотнение.
Степень уплотнения грунтов оценивают коэффициентом уплотнения, равным отношению фактической (или требуемой) плотности к ее максимальному стандартному значению, определяемому на специальном приборе. В зависимости от ответственности земляного сооружения коэффициент уплотнения назначают из пределов от 0,9 до 1.
Все процессы уплотнения грунтов в строительстве полностью механизированы. Их выполняют с помощью машин и оборудования, классифицируемых по характеру силового воздействия на грунт и по способу перемещения рабочего органа относительно уплотняемой зоны грунта.
По первому признаку различают машины статического (укаткой), динамического (трамбованием и вибротрамбованием) и комбинированного действия. При трамбовании грунт уплотняется падающей массой. Виброуплотнение заключается в сообщении грунту колебательного движения, которое приводит к относительному смещению его частиц и более плотной их упаковке. При виброуплотнении рабочий орган вибратора, находящийся на поверхности грунта, колеблется вместе с грунтом. Если возмущения превзойдут определенный предел, то виброуплотнение преобразуется в вибротрамбование с отрывом рабочего органа вибратора от грунта и частыми ударами по нему. Разновидностью виброуплотнения является его комбинация с укаткой, для чего перекатываемому по грунту катку сообщают направленные вертикальные колебания.
По способу перемещения рабочего органа относительно уплотняемой зоны грунта различают самоходные машины, прицепные и полуприцепные орудия, перемещаемые за тягачом (все виды катков), машины с навесными рабочими органами (трамбовочные и вибротрамбовочные) и оборудование, перемещаемое за счет импульсных реактивных сил в результате наклонного силового воздействия на грунт (виброплиты).
Поскольку после каждой очередной проходки грунтоуплотняющей машины предел прочности грунта на его поверхности возрастает, то для повышения эффективности процесса целесообразно контактные давления увеличивать от прохода к проходу (для катков) или от удара к удару (для трамбующих машин). Для этого рекомендуется двухстадийное уплотнение: предварительное - легкой машиной, окончательное - тяжелой. При этом общее число проходов или ударов по одному месту может быть уменьшено в среднем на 25% с сокращением стоимости работ до 30%, в том числе и за счет частичной замены тяжелых машин легкими.
Прицепные катки статического действия
Для уплотнения грунтов укаткой применяют прицепные, полуприцепные и самоходные катки с гладкими, кулачковыми и решетчатыми вальцами, а также пневмокатки. Их используют также в дорожном, аэродромном строительстве и подобных отраслях строительства для уплотнения подстилающего слоя и укатки дорожного покрытия из асфальтобетона и других материалов.
Прицепной каток с металлическими вальцами (рис.144) состоит из пустотелого вальца 5 цилиндрической формы и охватывающей его рамы 3 с дышлом 2 и сцепным устройством 1 на его конце. Валец соединен с рамой через подшипники 4 на торцовых шипах. Для увеличения массы катка и, следовательно, повышения давления на укатываемую поверхность валец загружают (балластируют) песком через люк 7. Вальцы бывают гладкими (рис.144,а) или с установленными на их рабочей поверхности в шахматном порядке кулачками 9 (рис.144,б) (кулачковые вальцы), которые приваривают непосредственно к обечайке вальца или к полубандажам 8. От налипшего на рабочую поверхность грунта гладкие вальцы очищают скребком 6, закрепленным на раме, а междурядья кулачков штырями, собранными на общей балке, прикрепленной к раме вместо скребка.
Прицепные катки с металлическими вальцами перемещают по уплотняемой поверхности за тягачом, обычно трактором, с разворотами на концах захваток для возвратного движения или челночным способом, для чего тягач перецепляют на противоположную сторону катка. Для укатки грунтов на обширных площадях используют сцепы из 2...5 катков и более, объединенных траверсами (рис.144,в).
Гладкие катки уплотняют грунт слоями 0,15...0,2 м без разрыхления его поверхности или с незначительным разрыхлением на глубину 1...3 см (в несвязных грунтах). Их применяют преимущественно для прикатки в 1...2 прохода поверхностей, уплотненных другими катками. Скорости передвижения катков не влияют на изменение плотности грунтов, но при повышенных скоростях из-за больших сдвигающих усилий на контактной поверхности формируется менее прочная структура грунта. Рациональные скорости перемещения гладких катков составляют 1,5...2,5 км/ч на первом и двух последних проходах и 8... 10 км/ч на промежуточных проходах. По сравнению с работой в односкоростном режиме производительность катков при этом увеличивается примерно в 2 раза.
Кулачковые катки уплотняют грунт внедряемыми в него кулачками, а на первых проходах также поверхностью вальца. По мере уплотнения грунта кулачками на глубине при каждом новом проходе их погружение в грунт уменьшается, вследствие чего валец теряет контакт с уплотняемой поверхностью. Из-за высоких контактных давлений в конце уплотнения кулачки будут немного погружены в грунт, вследствие чего на его поверхности останется разрыхленный слой, который при необходимости прикатывают гладкими вальцами.
В отличие от работы гладких катков, когда от прохода к проходу уплотненный слой наращивается от поверхности вглубь, кулачки начинают уплотнение на глубине, наращивая его в направлении к поверхности. Кулачковые катки применяют только для уплотнения рыхлых связных грунтов. При уплотнении ими несвязных и малосвязных грунтов происходит выброс грунта кулачками вверх и в стороны, вследствие чего практически невозможно достигнуть требуемой плотности.
Решетчатые катки (рис.145) с обечайками, изготовленными из прутков в виде решетки с квадратными ячейками, работают подобно кулачковым каткам. Внедряясь в грунт прутками, решетчатые катки уплотняют его, начиная с глубинных слоев; Их применяют для уплотнения комковатых и переувлажненных связных грунтов, включая разрыхленные мерзлые и скальные крупнообломочные грунты.
Прицепной пневмоколесный каток (рис.146,а и б) состоит из рамы 3 с дышлом 2 и сцепным устройством 1 для соединения с тягачом (трактором или автомобилем), четырех-пяти пневматических колес 5, соединенных с рамой одной осью (рис.146,а) или через балансиры (рис.146,б) и одного 4 или нескольких 7 (по числу колес) балластных ящиков. В последнем случае балластные ящики соединены между собой передней 6 и задней 8 поперечными балками, а ось каждого колеса крепится к днищу соответствующего балластного ящика так, что в зависимости от неровностей укатываемой поверхности с грунтом контактируют все колеса катка (рис.146,в). Пневмоколесные катки применяют для уплотнения как
грунтов, так и гравийных и щебеночных оснований, а также черных смесей асфальтобетона. Преимуществом этих катков перед катками с металлическими вальцами является то, что при укатке каменных материалов они не измельчают их. Требуемая степень уплотнения достигается за 5...10 проходов при рабочих скоростях передвижения 11...15 км/ч. Для уплотнения грунтов более эффективны шины большого диаметра с большей допустимой нагрузкой на каждую шину. Катки с автомобильными шинами используют, в основном, для уплотнения малосвязных и среднесвязных грунтов, а с авиационными шинами повышенного давления - для уплотнения тяжелых суглинков и глин высокой связности.
Полуприцепные, самоходные и комбинированные катки
Полуприцепные (седельные) катки (рис.147) агрегатируют с колесными тракторами и одноосными тягачами. Рабочее оборудование этих катков полностью унифицировано с прицепными катками соответствующего типоразмера и отличается от последнего опирающейся на седельное устройство тягача хребтовой балкой вместо дышла. Отечественная промышленность производит полуприцепные катки трех типоразмеров: легкие, средние и тяжелые массой соответственно 15±3, 30±6 и 45±9т. Они отличаются хорошей маневренностью и транспортабельностью, высокими качеством уплотнения и высокой производительностью.
Самоходные пневмоколесные катки применяют для уплотнения грунтов и покрытий дорог. Их разделяют по массе на легкие (10...15т), средние (20...30 т) и тяжелые (40...50т). На этих катках устанавливают четыре задних и три передних колеса, располагая их в плане в шахматном порядке для перекрытия смежных уплотняемых полос. На катках, работающих на укатке черных асфальтобетонных покрытий, устанавливают шины с гладким протектором и пневматические распылители воды для смачивания и охлаждения шин.
Рис.147. Полуприцепной пневмокаток
Рис.148. Комбинированный самоходный каток с кулачковым вальцом
Основным направлением в развитии прогрессивных универсальных самоходных катков явилось создание гаммы комбинированных катков на базе унифицированных модулей: силовой установки с дизелем и насосной станцией, кабины с органами управления и двух шарнирно сочлененных рам. Ходовые устройства состоят из ведущего моста с пневмоколесами и уплотняющего катка - с гладкими вальцами, кулачкового или решетчатого. На рис.148 показан комбинированный каток с кулачковым вальцом.
Грунтоуплотняющие машины и оборудование динамического действия
К этой группе грунтоуплотняющих технических средств относятся трамбовочные и вибротрамбовочные машины, виброплиты и виброкатки.
Трамбующие рабочие органы в виде чугунных или железобетонных плит круглой или квадратной формы навешивают на экскаваторы или специально приспособленные для этого машины. В первом случае в качестве базовой машины используют одноковшовый экскаватор со стрелой драглайна, к подъемному канату которого подвешивают плиту массой 0,8...1,5т с площадью опорной поверхности около 1м2. Вспомогательным канатом с легким оттяжным грузом предупреждают закручивание основного каната. Плиту поднимают на высоту 1,2...2м, с которой ее сбрасывают отключением от трансмиссии барабана подъемной лебедки. Тремя - шестью ударами плиты о грунт достигают его уплотнения на глубину 0,8...1,5м. Продолжительность рабочего цикла с учетом поворотных движений экскаватора в плане составляет примерно 12...20 с, что определяет невысокую производительность этого способа. Описанный способ уплотнения грунтов отличается своей простотой. Однако, использование экскаваторов для уплотнения грунтов экономически невыгодно вследствие высокой стоимости этих машин, а также из-за повышенного износа подъемного и передающих механизмов в описанном режиме нагружения. Поэтому описанный способ уплотнения грунтов имеет ограниченное применение: в местах, труднодоступных для других грунтоуплотняющих машин.
Самоходные трамбующие машины на базе гусеничного трактора (рис.149) используют для уплотнения грунтов на объектах с широким фронтом работ. На машине установлены две перемещающиеся по направляющим чугунные плиты массой 1,3т каждая, которые поочередно поднимаются и падают на уплотняемую поверхность при непрерывном передвижении базового трактора. В зависимости от содержания в грунте глинистых частиц уплотнение грунта на глубину до 1,2м достигается за 3...6 ударов плиты по одному месту при скорости передвижения трактора 160...320 м/ч.
Виброплиты применяют для уплотнения несвязных и слабосвязных грунтов на ограниченных поверхностях. Грунт уплотняют плитой-поддоном 7 (рис.150, а и б), которому сообщаются колебания от двухдебалансного вибратора 2, принцип действия которого показан на рис.151.
При вращении дебаланса массой m с угловой скоростью ω и смещении центра масс от оси вращения (эксцентриситете) r центробежная сила составит P= m ω2r. Равнодействующая Q =2Pcosωr центробежных сил двух противоположно вращающихся дебалансов с одинаковыми другими параметрами будет направлена перпендикулярно оси, соединяющей центры вращения дебалансов. Из этого следует, что вынуждающая сила изменяется во времени гармонически с наибольшими модульными значениями (амплитудой) Q= 2Р. Вибратор обычно устанавливают на поддоне, а приводящий его двигатель 3 (см. рис. 150, б) или на том же поддоне, или на специальном подрамнике 4, опирающемся на поддон через пружины 5 или резиновые амортизаторы. Первую схему называют одномассной, а вторую - двухмассной. Благодаря мягкой подвеске верхняя часть двухмассной виброплиты не участвует в колебаниях, но воздействует на грунт своей силой тяжести. В результате создаются благоприятные условия для работы двигателя.
Рис.150. Одномассная (а) и двухмассная (б) виброллиты и схема перемещения виброплиты (в)
Рис.151. Принцип действия вибратора направленных колебаний
При одномассной виброплите вибратор устанавливают на поддоне шарнирно (рис.150,в) с возможностью его отклонения вручную. При наклоне вибратора на угол α от вертикали (в случае работы на горизонтальной поверхности) возникает горизонтальная составляющая вынуждающей силы Qx. Если эта составляющая превзойдет сопротивление сил передвижению, то плита начнет перемещаться в направлении отклонения вибратора от вертикали (когда вектор силы Q, будет направлен вверх — при его нижнем направлении увеличиваются сопротивления передвижению). Управляет виброплитой оператор с помощью рычагов, установленных на дышле, которое соединено с виброплитой также через амортизаторы. Направление самопередвижения виброплиты изменяют поворотом дышла. Современные виброплиты производительностью 300...900 м3/ч массой 150...1400 кг уплотняют грунт на глубину 0,3...1 м.
Навесное вибротрамбовочное оборудование (рис.152) устанавливают на самоходной машине на базе гусеничного трактора. Здесь реализуется ударно-вибрационный способ уплотнения грунтов.
Рабочее оборудование состоит из двух виброударных рабочих органов, смонтированных на раме 11, способной перемещаться в поперечном направлении на 0,5...0,7 м от следа базового трактора для уплотнения грунтов вне полосы его движения, например, в бровочной части дорожной насыпи. Вертикальные перемещения трамбующей плиты 10 генерируются вибромолотом 5, приводимым гидромотором-редуктором 3 через двухступенчатую клиноременную передачу 4. Вибромолот устроен подобно вибратору направленных колебаний и отличается от него тем, что его корпус перемещается по вертикальным направляющим 6 с пружинами 7. В процессе этих перемещений, вызванных вынужденной силой вращающихся дебалансов, вибромолот ударяет бойком 9 в нижней части своего корпуса по наковальне 8, жестко соединенной с трамбующей плитой 10.
Таким образом, трамбующая плита воспринимает ударные нагрузки через наковальню, а вибрационные - через пружины 7 и направляющие 6, сочетая в воздействии на грунт эффект трамбования и виброуплотнения.
Рабочее оборудование устанавливают на раме 1, которую через амортизаторы 12 шарнирно крепят на лонжеронах гусеничных тележек базового трактора. Посредством гидроцилиндра 2 рабочее оборудование может быть установлено в рабочее положение или поднято для передвижения машины в транспортном режиме. Ударно-вибрационную машину комплектуют бульдозерным отвалом 14 и планирующей плитой 13 для разравнивания грунта в полосе перемещаемого следом рабочего органа.
Для уплотнения малосвязных грунтов эффективно применять вибрационные катки с гладкими, кулачковыми или решетчатыми вальцами, внутри которых вмонтирован вибратор направленных колебаний, приводимый в движение от автономного двигателя, установленного на раме катка. Эффективность уплотнения достигается совместным действием на грунт гравитационных и вынуждающих сил, генерируемых вибратором, что позволяет получить требуемую плотность грунта при сравнительно меньшей массе катка. Так, при уплотнении песков путем вибрационного воздействия масса катка может быть снижена примерно в 5 раз, при супесях — в 2 раза, а при уплотнении средних и тяжелых суглинков лишь на 10...30 %. Эффективность вибрационнного воздействия снижается с увеличением содержания в грунте глинистых частиц. Поэтому для уплотнения связных и высокосвязных грунтов требуется применять весьма тяжелые катки.
МАШИНЫ И ОБОРУДОВАНИЕ ДЛЯ ПОГРУЖЕНИЯ СВАЙ
Способы устройства свайных фундаментов
Для устройства свайных фундаментов применяют забивные, винтовые и набивные сваи. Два первых типа свай изготавливают на заводах, а третий изготавливают на месте из монолитного железобетона или в сочетании со сборными элементами заводского изготовления.
В настоящее время на стройках России массовое применение (более 90 % от общего объема свай) получили забивные сваи квадратного сечения от 0,2х0,2м до 0,4х0,4м длиной до 20м. Используются также винтовые металлические сваи, в частности, для заанкеривания трубопроводов, укладываемых в болотистый грунт; в качестве инвентарных анкерных устройств для стендовых испытаний конструкций на статические нагрузки и т.п. За рубежом свайные фундаменты изготавливают преимущественно буронабивным способом, который и в нашей стране начинает находить все более широкое применение. Забивные сваи погружают в грунт, и в зависимости от их ориентации, прикладывают к ним внешнюю вертикальную или наклонную нагрузку. Винтовые сваи погружают в грунт, используя для этого сочетание вертикальной нагрузки с крутящим моментом относительно оси сваи.
Забивные сваи погружают в грунт посредством свайных молотов (ударной нагрузкой), с помощью вибропогружателей (вибрированием) и сочетанием этих способов - вибромолотами. Реже в наиболее податливые глинистые и супесчаные грунты текучей и текучепластической консистенции забивные сваи погружают вдавливанием с пригрузкой вдавливающего оборудования тяжелыми тракторами, которые наезжают на специальные откидные рамы, связанные с направляющей мачтой. По сравнению с ударным способом вибропогружением можно повысить производительность труда в 2,5-3 раза при одновременном снижении стоимости работ в 1,2-2 раза.
Существует два способа погружения свай: копровый и бескопровый. Способ бескопрового погружения свай применяют при погружении пирамидальных, суживающихся книзу свай. Для этого ямобуром 1 (рис.153,а) отрывают лидерную скважину глубиной, примерно равной 1/4 длины погружаемой сваи. Далее специальный наголовник 4 (рис.153,б), подвешенный к крюку крана, закрепляют на погружателе 3, вместе с
Рис.153. Последовательность операций бескопрового погружения пирамидальных свай
ним подводят к голове сваи и закрепляют на ней конический хвостовик наголовника 5. Краном поднимают сваю с погружателем и устанавливают ее в лидерную скважину (рис.153,в). Поддерживая в таком положении погружатель, опускают сваю на заданную глубину (рис.153,г), после чего наголовник отсоединяют от сваи и перемещают кран на новое место.
Способом бескопрового погружения (без устройства лидерной скважины) погружают призматические сваи с использованием сваеустановщика 1 (рис.154) с захватным устройством, и крана 2. После заглубления сваи 5 на 1/4 длины ее освобождают от сваеустановщика, который перемещается к другой свае. До конца погружения сваи погружатель 3 поддерживают краном через наголовник 4.
Для завинчивания свай применяют специальные устройства, называемые кабестанами, с дополнительной осевой пригрузкой, особенно на начальном этапе, когда лопасти сваи еще недостаточно защемлены грунтом.
Винтовые сваи можно погружать в щебенисто-галечные, гравийно-песчаные, глинистые, а также мерзлые (песчаные и глинистые) грунты.
Перед устройством ростверков - строительных конструкций, объединяющих сваи и служащих для передачи нагрузки от надземной части здания на сваи и грунтовое основание - головы погруженных в грунт свай выравнивают на проектной отметке, срубая их пневматическими молотками и газовой резкой или срезая специальными устройствами - сваерезами.
Набивные сваи изготавливают на месте путем заполнения предварительно пробуренной скважины бетонной смесью с уплотнением или без него. Скважины образуют бурением, пробивкой штампами, иногда с раскаткой или при их устройстве используют сочетание этих способов. В плотных грунтах скважины разрабатывают без крепления их стенок, а в обрушающихся грунтах — с использованием обсадных труб, которые оставляют в скважине или извлекают из нее по мере ее заполнения бетонной смесью. Уширения в скважинах под пяты свай образуют режущими уширителями рабочих органов бурильных машин или с помощью камуфлетного взрыва, не вызывающего деформаций грунта за пределами означенной зоны.
Для механизации работ по устройству набивных свай используют общестроительные машины и оборудование (бурильные, бетоносмесительные, машины для транспортирования, укладки и уплотнения бетонной смеси и др.), а также специальные машины.
Копры и копровое оборудование
Универсальным базовым оборудованием для перемещения свай с мест их раскладки к местам погружения, их установки, поддержания и направления, а также для крепления погружателя являются копры, обеспечивающие также передвижение сваебойного оборудования вдоль фронта работ. Копрами, кроме того, погружают сваи-оболочки кольцевого сечения диаметром от 0,5 до 2,5м длиной до 30м, состоящие из звеньев длиной 3...8м, а также металлический шпунт специального корытного или Z‑образного профиля длиной до 25м. Различают копры рельсовые (КР) и навесные (КН) на тракторах, одноковшовых экскаваторах и автомобилях. Применяют также навесное копровое оборудование (КО) на гусеничных тракторах, экскаваторах и кранах, реже - на автомобильных (пневмоколесных) кранах. Для забивки свай и шпунта в воде используют плавучие копры. Навесные копры и копровое оборудование используют преимущественно в жилищном и промышленном строительстве, а рельсовые копры - в гидротехническом и энергетическом строительстве. Главным параметром отечественных копров, входящих в их индекс, является максимальная длина погружаемых свай (до 8, 12, 16, 20 и 25м). Так, например, индекс КН-12 расшифровывают как копер навесной для свай длиной до 12 м; КР-16 - копер рельсовый для свай длиной до 16 м и т.д.
По степени подвижности рабочего оборудования различают копры универсальные, полууниверсальные и простые. Универсальные копры обеспечивают полный поворот платформы с установленным на ней оборудованием, изменение вылета и наклон копровой стрелы для погружения наклонных свай. Полууниверсальные копры обеспечивают либо только поворот платформы для погружения вертикальных свай, либо наклон стрелы при работе с наклонными сваями. Простые копры, к которым относится обычно копровое оборудование, не имеют механизмов для поворотных (в плане) движений и наклона стрелы.
Рабочий процесс копра состоит из его перемещения к месту установки сваи, ее строповки, подтягивания, установки на точку погружения по предварительно выполненной разметке, выверки правильности ее положения, закрепления на свае наголовника, предохраняющего ее от разрушения при ударном погружении, установку на сваю погружателя, расстроповку сваи, ее погружение с последующей выверкой направления, подъем погружателя и снятие с погруженной сваи наголовника.
Навесные копры являются наиболее распространенным типом машин для производства свайных работ. Они могут быть универсальными и полууниверсальными. В качестве базовых машин используют тракторы, одноковшовые экскаваторы и автомобили. Каждую модель навесного копра комплектуют свайными молотами соответствующих типоразмеров. Для начала работы на новой строительной площадке навесной копер подготавливают к функционированию в соответствии с инструкцией по эксплуатации, затем с помощью автомобильного крана навешивают на стрелу в ее нижней части свайный молот и закрепляют на нем канат копрового агрегата.
Копры на тракторной базе применяют для работы со сваями длиной от 8 до 12 м при их линейном или кустовом расположении. Копровую стрелу 2 обычно навешивают на базовый трактор 3 в его задней части (рис.155,а). Ее наклон в продольной вертикальной плоскости на угол от 10 до 33° и в поперечной
Рис.155. Копер на базе гусеничного трактора с задней навеской копрового оборудования: а ‑ рабочее положение; б — транспортное положение
Рис.156. Копер на базе гусеничного трактора с боковой навеской копрового оборудования
плоскости на угол до 7° обеспечивается гидравлическими цилиндрами. Для подвески сваепогружателя (свайного молота) 1 с наголовником, подтаскивания и установки сваи в исходное для погружения положение используют канатно-блочные системы с гидравлическим приводом. Управляют копровым оборудованием с рабочей площадки с правой стороны по ходу трактора. Для подготовки к перебазированию копра с него снимают свайный молот, а верхнюю секцию стрелы соединенную с нижней секцией шарнирно, укладывают на подставку (рис.155,б). На небольшие расстояния копер перемещают собственным ходом, а на дальние перевозят на трейлере.
Копры на тракторной базе изготавливают также с боковой навеской копрового оборудования (рис.156) - обычно с левой стороны по ходу трактора. С правой же стороны располагают гидравлические цилиндры с полиспастами для подъема молота, сваи и противовеса. Управляют копровым оборудованием как из кабины машиниста, так и с выносного пульта. Последовательность забивки свай определяют так, чтобы суммарное время переездов копра от сваи к свае было минимальным Наибольший эффект по этому условию достигается при линейной забивке свай, когда машина движется по оси свайного ряда. Для повышения продольной устойчивости копра при его передвижении свайный молот опускают на стреле в его нижнее положение, а стрелу (при ее заднем расположении) несколько наклоняют по ходу трактора вперед. В случае работы в котловане перед въездом и выездом из него копер переводят в транспортное положение. Выезжают из котлована задним ходом.
Копры на базе канатных экскаваторов (рис.157) применяют преимущественно для забивки свай длиной до 16м в котлованах и траншеях, располагая их на бровках выемок. Копровую стрелу 2 соединяют с головой экскаваторной стрелы 1 универсальным шарниром, позволяющим стреле наклоняться в любом направлении (до 20...35° продольно и до 1,5...5° в поперечном направлении) и поворачиваться относительно вертикальной оси. В нижней части копровую стрелу соединяют с поворотной платформой экскаватора двумя гидроцилиндрами 4. В системе наведения используют гидравлический привод с раздельным управлением каждым из двух нижних гидроцилиндров и гидроцилиндра 3 привода механизма поворота стрелы относительно собственной продольной оси. В рабочем положении копровая стрела опирается на грунтовое основание через гидравлический домкрат или выдвижную телескопическую пяту 5. Управляют копровым оборудованием из кабины машиниста.
За счет поворота платформы базового экскаватора рассматриваемые копры имеют обширную рабочую зону, благодаря чему они могут погружать несколько свай с одной рабочей позиции. По сравнению с тракторными копрами, перемещающимися на новую позицию после погружения каждой сваи, экскаваторные копры затрачивают меньше времени на выполнение операций рабочего цикла и поэтому обеспечивают более высокую производительность при прочих равных условиях. Наиболее эффективно использование экскаваторных копров при кустовом расположении свай. Копры на экскаваторной базе при работе в однородных грунтах средней плотности и проходимости могут погружать за смену до 25...30 свай длиной 8м, до 15...20 свай длиной 12м и до 8...12 свай длиной 16м.
Копры на автомобильной базе применяют преимущественно на рассредоточенных свайных работах малых объемов в радиусе до 200км, в частности, в строительстве технологических трасс, в трубопроводном и сельскохозяйственном строительстве при длине свай до 8м. Автомобильными копрами погружают также пробные сваи при инженерно-геологических изысканиях, контрольных исследованиях, привязке и корректировке проектов свайных фундаментов. Конструктивно копровое оборудование сходно с таковым для навески на гусеничные тракторы.
В случае меж объектных переездов копровое оборудование укладывают в транспортное положение в течение 10...15 минут без разборки, снятия молота и применения грузоподъемных средств. Средняя эксплуатационная производительность автомобильных копров при работе со сваями длиной 6...8м в грунтах средней плотности и проходимости составляет 18...22 сваи в смену.
Рельсоколесный копер (рис.158) состоит из нижней рамы 1 с ходовыми тележками 2, поворотной платформы 6, опирающейся на нижнюю раму через опорно-поворотное устройство, с расположенными на ней силовой установкой (обычно электрической), механизмами (в том числе одной или двумя лебедками для подъема и установки в рабочее положение сваи и погружателя), органами управления, кабиной и противовесом, мачты З и механизмов 4 и 5 для изменения ориентации мачты относительно платформы.
В зависимости от принятой технологии работ копер комплектуют свайным молотом, вибропогружателем или вибромолотом.
Если размеры и конфигурация свайного поля таковы, что с одной установки рельсового пути нельзя погрузить в грунт все сваи, то для работы используют несколько копров, работающих каждый на своем рельсовом пути, или перекладывают рельсовый путь после выполнения работ с прежней его установки.
После перемещения копра его надежно стопорят стояночными тормозами или другими устройствами. Для районов массового жилищного и промышленного строительства, а также при возведении зданий и сооружений на слабых и водонасыщенных грунтах или при наличии в строящемся здании значительного технического подполья наиболее рационально применять копры мостового типа — КМ (рис.159,а), называемые также мостовыми копровыми установками, состоящими из самоходного моста 4, передвигающегося по рельсам 5, уложенным вдоль свайного поля (обычно на бровках котлована), и тележки 3 с копровым оборудованием 2 или рельсового копра, перемещающихся по мосту поперек свайного поля. Все механизмы копровой установки приводятся в движение электродвигателями с гидравлическими автоматизированными (координатно-шаговыми) или неавтоматизированными системами наведения. В случае автоматического наведения сваи на точку погружения установки обеспечены программным или полуавтоматическим управлением с использованием следящих устройств, устанавливаемых на механизмах передвижения моста и копрового оборудования. Управляют координатно-шаговым устройством из кабины 1 с кнопочного пульта или системы кнопочного набора кодовых знаков телефонного типа. Известны также мостовые копровые установки на рельсовом или гусеничном ходу, не имеющие систем наведения свай. Перевозят мостовые копры седельным автомобилем-тягачом с использованием прицепа-роспуска (рис.159,б), который подводят под мост после его вывешивания. Копровую стрелу переводят в транспортное положение с помощью гидравлического механизма складывания. Продолжительность операций по переводу мостового копра в транспортное положение и обратно составляет 3...4ч без применения дополнительных грузоподъемных средств.
Рис.158. Универсальный копер на рельсовом ходу
Рис.159. Копер мостового типа (а) и его перевозка в транспортном положении (б)
Для работы со сваями длиной 3...12м отечественная промышленность выпускает также копровое оборудование, навешиваемое на базовые машины (тракторы, автомобильные краны, одноковшовые экскаваторы).
Копровое оборудование автономно по энергоснабжению, маневренно на строительной площадке, надежно в эксплуатации. Его недостатком являются повышенные затраты времени на маневровые движения для установки сваи в заданную точку свайного поля. Навесное копровое оборудование на базе автомобильных кранов применяют при малых рассредоточенных объемах свайных работ и необходимости быстрого перебазирования (пробные сваи при инженерно-геологических исследованиях, строительство линий электропередачи, трубопроводов большой протяженности и т.п.).
Свайные молоты
Свайный молот включает в себя ударник — падающую или ударную часть, наковальню или шабот - неподвижную часть, жестко соединенную с головой сваи. Кроме того, в состав свайного молота входят устройства для подъема ударной части и ее направления. Различают механические, паровоздушные, дизельные и гидравлические свайные молоты.
Механический молот является простейшим механизмом в виде металлической отливки массой до 5т, поднимаемой вдоль мачты копра канатом подъемной лебедки и сбрасываемой на погружаемую сваю путем отсоединения каната специальным расцепляющим устройством или отключением барабана лебедки от трансмиссии. Из-за низкой производительности (4...12 ударов в мин) механические молоты применяют в основном при незначительных объемах свайных работ.
Паровоздушный молот представляет собой пару «цилиндр—поршень». В молотах одиночного действия (рис.160,а) поршень З через шток 2 соединен с наголовником 1 сваи, а ударной частью является цилиндр 4. Под действием сжатого воздуха или пара, подаваемого в поршневую полость цилиндра откомпрессора или паросиловой установки, цилиндр поднимается вверх, а после перекрытия впускного трубопровода и соединения поршневой полости с атмосферой (рис.160,б) цилиндр падает, ударяя по наголовнику сваи. Впуском и выпуском сжатого воздуха (пара) управляют вручную, полуавтоматически или автоматически. Молоты с автоматическим управлением работают с частотой ударов 40...50 мин-1.
В молотах двойного действия (рис.160,в) ударной частью является соединенный с поршнем 3 боек 5, движущийся внутри цилиндра 4. Сжатый воздух (пар) подают поочередно в нижнюю штоковую и верхнюю поршневую (рис.160,г) полости цилиндра, обеспечивая этим подъем поршня с бойком и его принудительное падение на ударную плиту - наковальню 6 (рис.160,в) с частотой 3 с-1. По сравнению с
молотами одиночного действия описанные молоты производительнее при меньшем отношении массы ударной части к общей массе молота, не превышающем 1/4, в то время как у молотов одиночного действия это отношение равно в среднем 2/3. Паровоздушные молоты используют для забивки вертикальных и наклонных свай на суше, а также под водой. Основным их недостатком является зависимость от компрессорных или паросиловых установок.
Гидравлический молот работает по схеме паровоздушного молота двойного действия с тем отличием, что вместо воздуха или пара в рабочий цилиндр подают жидкость, для чего сваебойный агрегат оборудуют насосной установкой. Для придания ударной части ускорения в момент удара к насосу подсоединяют гидравлический аккумулятор, который подзаряжается во время обратного хода поршня. Гидравлические молоты с массой ударной части 210...7500 кг развивают энергию удара от 3,5 до 120 кДж при частоте ударов 50... 170 мин-1.
Дизельные молоты (рис.161), работающие независимо от внешних источников энергии в режиме двухтактного дизеля получили наибольшее распространение в строительстве. Различают дизель-молоты с направляющими штангами (штанговые) и с направляющим цилиндром (трубчатые).
У штанговых дизель-молотов (рис.161,а) две направляющие штанги 4 объединены в нижней части основанием 2, отлитым заодно с поршнем 12. Основание поршневого блока опирается на сферическую пяту 1 и наголовник 15. По штангам перемещается цилиндр 10, являющийся ударной частью молота. В верхней части штанги объединены траверсой захвата («кошки»), свободно перемещающейся по ним и подвешенной к канату 8 лебедки копра. Для запуска молота «кошку» опускают до зацепления подпружиненным крюком 6 пальца 5 ударной части, после чего ударную часть 10 поднимают и рывком нажатием на рычаг 9 через присоединенный к нему канат расцепляют «кошку» с ударной частью. Последняя падает вниз, нанося удар по основанию 2 и сжимая воздух в закрытой поршнем 12 полости цилиндра. Одновременно выступающий на ударной части штырь 11 нажимает на рычаг топливного насоса 14, которым по центральному каналу 13 в поршне топливо подается в цилиндр с некоторым опережением конца хода, распыляется форсункой 3 и смешивается с нагретым вследствие сжатия воздухом. В последней фазе движения ударной части вниз вследствие дополнительного сжатия топливно-воздушной смеси происходит ее воспламенение. Расширяющиеся вследствие сгорания топлива газы отбрасывают ударную часть вверх, откуда она снова падает, повторяя процесс. Молот выключают прекращением подачи топлива.
Штанговые дизель-молоты не имеют принудительного охлаждения, в связи с чем в летнее время при температуре окружающего воздуха 25 °С они работают с получасовыми перерывами после каждого часа работы. Эти молоты обладают малой энергией удара - 3,2 и 65 кДж при частоте 50...55 мин-1 и массе ударной части 240 и 2500 кг соответственно. Их применяют для забивки легких железобетонных и деревянных свай в слабые и средние грунты, а также для погружения шпунта при ограждении траншей, котлованов и т. п.
В трубчатом, дизель-молоте (рис.161,б) ударной частью служит поршень 22, перемещающийся в
направляющем цилиндре 21. Удары поршня воспринимаются шаботом 17, герметично посаженным в нижнюю часть рабочей секции цилиндра. Молот центрируют на свае штырем 16. Для пуска молота его поршень поднимают «кошкой» 20, подвешенной к канату 8, и сбрасывают. При движении вниз поршень отжимает рычаг 23, которым включается насос 14, впрыскивающий в цилиндр порцию топлива из полости 19. Смешиваясь с воздухом, топливо стекает в сферическую выемку в шаботе. При дальнейшем падении поршень перекрывает канал 18, сообщающий цилиндр с атмосферой, и сжимает воздух в замкнутом уменьшающемся объеме. От удара поршня о шабот топливно-воздушная смесь разбрызгивается и воспламеняется. Расширяющиеся при сгорании смеси газы подбрасывают поршень вверх, откуда он снова падает, сжимая воздух, удаляя отработавшие газы через канал 18 в атмосферу и повторяя процесс. После прекращения подачи топлива молот останавливается.
Трубчатые дизель-молоты охлаждаются внешним воздухом или принудительно - водой. Они работают без перегрева при температуре окружающего воздуха до 30 °С в первом и до 40 °С - во втором случаях. Отечественная промышленность выпускает трубчатые дизель-молоты массой ударной части 500...5000 кг с энергией удара 15...150 кДж при частоте ударов 43...45 мин-1, в том числе для работы в условиях низких температур (до -60 °С). Эти молоты применяют для забивки железобетонных свай в любые нескальные грунты.
Вибропогружатели и вибромолоты
Вибропогружатель (рис.162) представляет собой возбудитель направленных вдоль оси сваи колебаний. Будучи соединенным со сваей посредством наголовника 4, он сообщает ей возмущающее периодическое усилие, которым, вместе с силой тяжести сваи и вибропогружателя, преодолеваются сопротивления погружению сваи в грунт. Эффект погружения достигается благодаря тому, что за счет вибрации сваи относительно защемляющего ее грунта коэффициент трения на контактной поверхности этих тел резко уменьшается. Для увеличения амплитуды возмущающей силы вибропогружатели изготовляют многодебалансными, состоящими из нескольких пар дебалансов 3 (рис.162,а). Обычно дебалансы выполняют заодно с зубчатыми колесами 2, передающими движение от электродвигателя 1. Дебалансы вращаются синхронно навстречу друг другу. Корпус двигателя соединяют с вибровозбудителем жестко (низкочастотые вибропогружатели с частотой колебаний до 10Гц) или через пружинные амортизаторы 5 (рис.162,б) (высокочастотные вибропогружатели с частотой 16,6 Гц и более), снижая этим вредные воздействия вибрации на электродвигатель. Управляют вибропогружателями дистанционно.
Рис.162. Низкочастотный (а) и высокочастотный (б) вибропогружатели
Рис.163. Принципиальная схема устройства вибромолота
В пределах своего назначения - погружения свай в песчаные и супесчаные водонасыщенные грунты - вибропогружатели в 2,5-3 раза производительнее свайных молотов. Они удобны в управлении, не разрушают погружаемых ими строительных элементов. К их недостаткам относится ограниченная область применения и сравнительно небольшой срок службы электродвигателей из-за вредного влияния вибрации.
Вибромолоты (рис.163) отличаются от вибропогружателей способом соединения корпуса вибровозбудителя с наголовником 6: через пружинные амортизаторы 5, которые позволяют корпусу вибровозбудителя совершать колебания с большими размахами, отрываясь от наголовника и ударяя бойком 3 по наковальне 4 при обратном движении. Обычно вибромолоты изготавливают бестрансмиссионными, сажая дебалансы 2 непосредственно на валы двух синхронно работающих электродвигателей, статоры которых установлены в едином корпусе 1.
Важной особенностью работы вибромолотов является их способность к самонастройке - повышению энергии удара с увеличением сопротивления погружению сваи, приводящей к увеличению жесткости системы свая-грунт. Выпускаемые отечественной промышленностью вибромолоты характеризуются энергией удара до 3,9 кДж при массе до 2850 кг.
Вибромолоты применяют также для выдергивания свай и шпунтов, для чего используют специальные наголовники, у которых наковальню располагают над ударной частью, а вибромолот переворачивают на 180°.
МАШИНЫ И ОБОРУДОВАНИЕ ДЛЯ ПРИГОТОВЛЕНИЯ БЕТОННЫХ СМЕСЕЙ И СТРОИТЕЛЬНЫХ РАСТВОРОВ
Дозаторы
Бетон представляет собой искусственный каменный материал, получаемый из смеси вяжущих веществ, воды и заполнителей после ее формования и затвердевания. Строительные растворы не имеют в своем составе крупных заполнителей. До формования эти тщательно смешанные компоненты называют соответственно бетонной смесью и строительным раствором.
Приготовление бетонных смесей и строительных растворов состоит из дозирования компонентов и их перемешивания. Для дозирования применяют дозаторы, а для перемешивания - смесительные машины или смесители.
Дозаторы бывают объемными и весовыми. Первыми дозаторами материалы дозируют по объему, а вторыми — по массе. Объемные дозаторы более просты, но менее точны из-за непостоянства плотности и влажности дозируемых сыпучих материалов и условий заполнения мерных емкостей. Их применяют обычно для дозирования воды. Для дозирования сыпучих материалов их используют только в условиях строительных площадок для смесителей с объемом готового замеса до 250 л.
По режиму работы различают дозаторы цикличные (порционные) и непрерывного действия. В порционных дозаторах материал дозируется в мерном или весовом бункере, а в дозаторах непрерывного действия материал подают в смесители непрерывным потоком с заданной производительностью. Управляют дозаторами автоматически или полуавтоматически с пульта управления.
Весовой дозатор цикличного действия (рис.164) применяют для порционного автоматического взвешивания цемента, заполнителей, химических добавок и воды, а также выдачи отвешенных порций в смесители. Компоненты дозируют поочередно, загружая весовой бункер 8 сначала материалом с более
крупными размерами кусков, а затем - более мелкий, поверх первого. Сигнал на начало дозирования одного компонента поступает с пульта управления 1 к электропневматическому клапану 2, после срабатывания которого сжатый воздух от компрессорной установки поступает в пневмоцилиндр 3. Последний открывает впускной затвор 9 одного из бункеров 10 с дозируемым компонентом, который через воронку загружается в весовой бункер 8. Последний системой тяг и рычагов связан с весоизмерительным устройством 6 с циферблатным указателем. По достижении в весовом бункере требуемой дозы сигнал об окончании загрузки, сформированный задатчиком массы циферблатного указателя, поступает к пульту управления, который отключает клапан 2, а управляемый этим клапаном пневмоцилиндр 3 закрывает затвор, прекращая этим подачу материала в весовой бункер.
После перенастройки задатчика массы циферблатного указателя так же дозируют второй компонент. Сигнал на разгрузку весового бункера поступает с пульта управления на электропневматический клапан 4, который открывает доступ сжатого воздуха в пневмоцилиндр 5. Последний открывает разгрузочный затвор 7, и отмеренные компоненты разгружаются в смеситель 6.
Дозаторы рассмотренного типа различаются пределом взвешивания, зависящим от вместимости весового бункера и других связанных с ним параметров. В качестве питателей при дозировании песка, щебня и т.п. применяют ленточные питатели и затворы различных конструкций. При дозировании цемента используют аэрожелоба, шнековые и барабанные питатели. При дозировании жидкостей применяют затворы, обеспечивающие необходимую герметичность.
Дозаторы непрерывного действия для сыпучих материалов представляют собой какой-либо питатель или сочетание питателей, в которых автоматически с требуемой точностью поддерживается заданная производительность. Независимо от конструктивных особенностей дозаторы непрерывного действия включают в себя питатель, измерительное устройство производительности и САР.
На рис.165 приведена схема дозатора цемента. Дозируемый материал подается на ленту ленточного питателя 2 из загрузочного бункера с помощью лопастных питателей 7, в приводе которых установлен вариатор 16. Также вариатором 14 приводится в движение ленточный питатель. Производительность дозатора регулируют путем поддержания постоянного значения массы материала на ленте питателя 2 и изменения скорости движения ленты. Для стабилизации массы дозируемого материала ленточный питатель подвешен к раме дозатора шарнирно на оси приводного барабана и с помощью тяги — к коромыслу 3, уравновешенному грузом 6. При отклонении массы материала на ленте питателя от значения, соответствующего заданной производительности дозатора, коромысло отклоняется от своего равновесного положения, воздействуя на индуктивный преобразователь 5, с сердечником которого оно связано, в
результате чего на вход бесконтактного электронного регулятора 8 подается напряжение, отличное от нуля. Этот сигнал, пройдя тиристорный усилитель 9, включает двигатель 17 исполнительного механизма вариатора 16, передаточное отношение которого и, следовательно, частота вращения лопастных питателей будут изменяться до тех пор, пока масса материала на ленте питателя не достигнет заданного значения. Для устранения колебаний коромысла служит демпфер 4.
Для изменения скорости движения ленты служит автоматическая цепь из синхронного генератора 10, задатчика 11, регулятора 12, тиристорного усилителя 13 и исполнительного двигателя 15. Генератор вырабатывает сигнал переменного тока с частотой, пропорциональной частоте выходного вала вариатора. Выпрямленное напряжение сравнивается с напряжением задатчика, соответствующим установленной производительности. Разность этих напряжений подается на вход регулятора, который через тиристорный усилитель включает исполнительный двигатель, изменяющий передаточное отношение вариатора до достижения нулевого сигнала на входе регулятора. Общее количество подаваемого в смеситель материала регистрируется счетчиком 7, кинематически связанным с головным барабаном ленточного питателя.
Универсальные дозаторы (рис.166) применяют для дозирования заполнителей. Дозируемый материал
поступает на ленточный питатель 5 из бункера 3 через затвор 4. Нагрузка от шарнирно подвешенного питателя воспринимается грузоприемным устройством 6 и фиксируется встроенным в него силоизмерительным датчиком, сигнал от которого поступает в умножитель 7. Второй, скоростной сигнал поступает на умножитель от тахогенератора 2 через преобразователь 8. Результат преобразования сигналов в умножителе поступает в блок задания и сравнения 13, в котором формируется сигнал, воздействующий на регулятор 14, управляющий приводом 15 вариатора 7 в кинематической цепи привода ленточного питателя. При работе в цикличном режиме сигнал с умножителя поступает в интегрирующий блок 12 и далее в блок задатчика дозы 11. По достижении заданного значения поданной массы материала регулятор 10 отключает двигатель 9 привода питателя.
Для дозирования жидкостей в установках небольшой производительности применяют компактные дозаторы турбинного типа на базе расходомеров воды, которые могут работать как в цикличном, так и в непрерывном режимах.
Смесители
В зависимости от вида приготовляемой смеси смесители подразделяют на растворосмесители - для приготовления штукатурных, кладочных, отделочных и других растворов и бетоносмесители - для приготовления бетонных смесей: обычных, сухих, ке-рамзитобетонных, ячеистых, особо тяжелых и др.
Смесители могут быть стационарными для работы в составе бетоносмесительных установок, заводов сборных железобетонных изделий (ЖБИ) и комбинатов крупнопанельного домостроения, перебазируемыми для объектов с небольшими объемами работ и мобильными (авторастворосмесители, автобетоносмесители). По режиму работы смесители могут быть цикличными и непрерывного действия.
В цикличных смесителях исходные компоненты смешиваются отдельными порциями. Их главным параметром является вместимость смесительного барабана (по объему исходных компонентов). Отечественная промышленность выпускает бетоносмесители вместимостью 100...4500л и растворосмесители вместимостью 40...1500 л.
В смесителях непрерывного действия исходные компоненты поступают непрерывно, также непрерывно выдается готовая смесь. Для приготовления смесей с различной рецептурой и частой сменой рецептов более приспособлены цикличные смесители. Их применяют на растворобетонных установках, заводах ЖБИ и в домостроительных комбинатах. Смесители непрерывного действия применяют в дорожном и энергетическом строительстве с ограниченным числом рецептов смеси (не более трех).
По принципу смешивания компонентов смесители подразделяют на гравитационные, принудительные и гравитационно-принудительные. Первые два типа могут быть как цикличного, так и непрерывного действия.
Наибольшее распространение в строительстве получили как гравитационные бетоносмесители цикличного действия, так и принудительные. В гравитационных смесителях рабочим органом является смесительный барабан с наклонной или горизонтальной осью вращения.
Гравитационный бетоносмеситель с наклонной осью вращения (рис.167,а) состоит из установленного на опорных стойках 4 смесительного барабана 7 с лопастями на его внутренней поверхности, приводимого во вращение электродвигателем 2 через систему зубчатых передач с конечной кинематической парой шестерня 5 — зубчатый венец 6 (рис.167,б), охватывающий барабан. Для загрузки барабан устанавливают пневмоцилиндром 3 в слегка наклонное положение горловиной вверх. В таком же положении он находится во время смешивания компонентов. Для разгрузки барабана его опрокидывают тем же пневмоцилиндром.
Исходные компоненты, загружаемые в смесительный барабан скиповым подъемником, смешиваются в барабане при его вращении лопастями, которые поднимают смесь на некоторую высоту, откуда она падает вниз, подхватывается другими лопастями и т.д. После перемешивания в течение 60...90 с готовую смесь выгружают из барабана, для чего его опрокидывают без остановки вращения. Продолжительность полного рабочего цикла, включающего загрузку исходных компонентов, их перемешивание и выгрузку готовой смеси, составляет 90...150 с. Гравитационные смесители отличаются простотой устройства и обслуживания, способностью приготавливать смесь с крупными (до 120...150 мм) заполнителями.
Смесители принудительного действия с вращающимися лопастными валами применяют для приготовления бетонных смесей и растворов практически любой подвижности и жесткости с крупностью заполнителя не более 70 мм. Различают смесители с вертикальными и горизонтальными лопастными валами. В настоящее время широкое распространение получили роторные смесители с вертикальными валами, работающие с повышенными скоростями движения рабочих органов.
Рис.167. Гравитационный бетоносмеситель цикличного действия (а) и кинематическая схема его привода (б)
Эти машины особенно рекомендуется применять для приготовления жестких смесей.
В роторный смеситель (рис.168) сухие компоненты подают через загрузочный патрубок 3, а воду - по кольцевой перфорированной трубе 4. Смесь перемешивается лопастями 12, установленными на державках 13 кронштейнов 2, в кольцевом пространстве, ограниченном внешней обечайкой 7 смесительной чаши и внутренним стаканом 10, футерованными сменными износостойкими плитами 11. Несколько таких кронштейнов закреплены на траверсе 9, вращение которой передается от электродвигателя 6 через редуктор 5. Разгружают готовую смесь через секторный затвор 8, управляемый пневмоцилиндром 7. Цикличные смесители с горизонтальным лопастным валом и турбулентные смесители применяют для приготовления строительных растворов.
В смесителях первого типа (рис.169) смесь перемешивается двумя винтовыми лопастями 3, установленными на валу 4, приводимом в движение от электродвигателя 2 через ременную передачу 1 и редуктор 5. Разгружают готовую смесь через затвор 6, управляемый пневмоцилиндром 7.
В турбулентный растворосмеситель (рис.170) компоненты загружают через горловину в верхней части корпуса 1. При вращении лопастного ротора, приводимого в движение электродвигателем 2, перемешиваемые материалы совершают многократные перемещения в конической периферии корпуса, поднимаясь вверх по ней и оседая в центральной части. Разгружают готовый раствор через люк 3 при открытом затворе 4. Производительность смесителей цикличного действия П = VzkВkИ,
где П - производительность смесителей цикличного действия, м3/ч; V — вместимость смесителя по загрузке, м3; z — число замесов в час; kВ — коэффициент выхода смеси (kВ= 0,75 ...0,85); kИ ‑ коэффициент использования смесителя во времени.
Рис.169. Растворосмеситель с винтовыми лопастями
Рис.170. Турбулентный растворосмеситель
Смесителями непрерывного действия комплектуют бетоно- и растворосмесительные установки производительностью до 30 м3/ч.
В горизонтальном двухвальном смесителе (рис.171) компоненты смеси непрерывным потоком подают в корыто 8, в котором вращаются навстречу друг другу валы 6 с закрепленными на них лопастями 7, установленными под углом 40...45° к оси вала для перемещения смеси в процессе ее перемешивания к разгрузочному затвору 5. Валы приводятся во вращение электродвигателем 1 через ременную передачу 2, редуктор 3 и зубчатую пару 4. Техническая производительность смесителей непрерывного действия определяется объемом смеси, перемещаемым в единицу времени в осевом направлении, и зависит от размера лопастей, угла их установки и частоты их вращения.
Рис.171. Горизонтальный двухвальный смеситель непрерывного действия (а) и кинематическая схема его привода (б)
Бетоно- и растворосмесительные заводы и установки
Процесс производства бетонов и растворов представляет собой ряд последовательных механизированных и в значительной мере автоматизированных операций, включающих погрузочно-разгрузочные работы при приеме и хранении сырьевых материалов на складах, их рыхление, подогрев в зимнее время, транспортирование компонентов смесей в расходные бункера смесительного узла, дозирование, перемешивание и выгрузку готовой смеси, обеспыливание линий движения материалов и вентиляцию производственных помещений.
Перечисленные работы составляют технологическое содержание работы бетоно- и растворосмесительных заводов и установок с законченным, расчлененным и комбинированным технологическими циклами. Продукцией предприятий с законченным циклом является готовая смесь, с расчлененным циклом — сухая смесь, на основе которой приготавливают бетонную смесь или строительный раствор в автобетоносмесителях в пути их следования на строительную площадку или в смесительных установках, расположенных в местах использования смесей; с комбинированным циклом — готовая и сухая смеси. Расчлененная технология производства целесообразна при большой удаленности строительного объекта от смесительного предприятия, так как при транспортировании готовой смеси в этом случае может ухудшиться ее качество.
В зависимости от назначения, мощностей и особенностей объектов-потребителей смесей различают стационарные постоянно действующие заводы, выпускающие товарные смеси, приобъектные установки, создаваемые на срок строительства объекта, и передвижные смесительные установки. Их классифицируют по режиму процесса приготовления смесей (периодического и непрерывного действия) и по технологической схеме компоновки оборудования (высотные и двухступенчатые). При высотной схеме исходные компоненты поднимают на полную высоту установки, после чего они по технологической цепочке движутся вниз только под действием силы тяжести. При двухступенчатой схеме сырьевые материалы поднимают сначала в расходные бункера, а затем, после дозирования, — в смеситель. Высотные схемы более компактны и лучше приспособлены для автоматизации производства, но они несколько дороже по капитальным затратам.
Заводы и установки, приготовляющие бетонную смесь с заполнителем крупнее 70 мм при водоцементном отношении В/Ц = 0,45...0,6 комплектуют гравитационными бетоносмесителями. Для приготовления жестких бетонных смесей используют роторные смесители. На приобъектных установках применяют небольшие смесители с барабанами вместимостью до 250 л.
МАШИНЫ И ОБОРУДОВАНИЕ ДЛЯ ТРАНСПОРТИРОВАНИЯ БЕТОННЫХ И РАСТВОРНЫХ СМЕСЕЙ
Для транспортирования товарных бетонных и растворных смесей на расстояния более 1 км от смесительных установок и заводов на строительные объекты применяют специализированные автотранспортные средства на базе шасси грузовых автомобилей — авторастворовозы, автобетоновозы и автобетоносмесители, оснащенные технологическим оборудованием для предотвращения потерь и сохранения качества смесей в пути следования. В некоторых случаях жесткие смеси перевозят в специально оборудованных автосамосвалах. На крупных стройках смеси перевозят в бункерах, бадьях, контейнерах, установленных в кузовах автомобилей или на железнодорожных платформах. Транспортирование смесей к месту укладки на небольшие расстояния во внутрипостроечных условиях' осуществляется наиболее эффективно средствами трубного транспорта — бетоно- и растворонасосами, бетоно- и растворонагнетателями. При транспортировании по трубам обеспечивается непрерывность перемещения смеси в горизонтальном и вертикальном направлениях, сохраняется качество смеси и сводятся к минимуму ее потери. Трубный транспорт позволяет доставлять смеси в труднодоступные места и вести работы по их укладке в стесненных условиях.
На качество смесей, перевозимых специализированным автотранспортом, влияют продолжительность перевозки, температура смеси и окружающей среды, состояние дорожного покрытия.
Авторастворовозы применяют для транспортирования со скоростью до 65 км/ч качественных строительных растворов различной подвижности (5...13 см) с механическим побуждением в пути следования и порционной выдачи смеси на строительных объектах в приемные емкости растворонасосов, штукатурных агрегатов и станций, промежуточные расходные бункера и бадьи. Перемешивание раствора в пути следования обеспечивается шнековыми или лопастными побудителями, порционная выдача раствора — шиберными отеекателями (заслонками). Побудители и отсекатели имеют гид-, равлический привод. Авторастворовозы оборудуются бортовым устройством промыва цистерны водой, подогреваемой выхлопными газами, что облегчает уход за цистерной и препятствует нарастанию скелетного остатка на ее стенках. Они. работают при температуре окружающей среды от -20 до +40° С. Главным параметром авторастворовозов является полезная вместимость цистерны (объем перевозимой смеси) в м3.
Авторастворовоз (рис.172,а) состоит из комплекта технологического оборудования, установленного на шасси автомобиля ЗИЛ. В комплект оборудования входит горизонтально установленная цистерна 1 полезной вместимостью 2,5 м3 с развернутой верхней образующей, внутри которой имеется одновальный лопастной побудитель 3 со спиралевидной лопастью 14 (рис.172,б) для перемешивания раствора во избежании его расслаивания при транспортировке. Цистерна установлена на платформе 4.
Раствор в цистерну загружается сверху при открытых откидных двустворчатых крышках 2. Разгружается раствор через разгрузочное устройство 5, снабженное пневмоуправляемой шиберной заслонкой 7 и разгрузочными лотками. К разгрузочному устройству шарнирно прикреплен дополнительный
поворотный лоток. Лопастной вал 12 побудителя приводится во вращение с частотой 5...15 мин-' от гидромотора 9 через закрытую зубчатую передачу. Привод насоса гидросистемы осуществляется от двигателя базовой машины // через коробку отбора мощности 10. При вращении вала побудителя по часовой стрелке осуществляется побуждение растворной смеси, предупреждающее ее расслаивание. При вращении в обратную сторону побудитель обеспечивает подачу растворной смеси к разгрузочному устройству. Лопасть 14 крепится к стойкам 13 лопастного вала 12, вращающемуся в подшипниках 15.
Управляют работой побудителя с помощью гидрораспределителей 8 как с панели управления 6, так и из кабины водителя.
Механическая система разгрузки цистерны с управляемой шиберной заслонкой позволяет выдавать раствор порциями и за один рейс машины обслуживать несколько строительных объектов.
Полезная вместимость цистерны авторастворовозов 2,5...4,6 м3.
Автобетоновозы применяют для перевозки товарных бетонных смесей на расстояния до 5...10 км. Рабочим органом автобетоновозов является опрокидной кузов каплеобразной формы с высокими бортами, наклоняемый назад гидроподъемником при разгрузке на угол до 90°. Автобетоновозы оборудуются устройствами для промывки кузова, обогрева кузова выхлопными газами, встряхивания кузова при разгрузке. Главным параметром автобетоновозов является полезная вместимость кузова (объем перевозимой бетонной смеси) в м3. Современные автобетоновозы конструктивно подобны* и максимально унифицированы.
Автобетоновоз (рис.173) смонтирован на базе шасси 1 автомобиля и оборудован кузовом 3 полезной вместимостью 4 м3. Кузов наклоняется назад при разгрузке относительно опорной рамы 5 на угол до 90°
двумя телескопическими гидроцилиндрами. Для обеспечения устойчивости автобетоновоза при подъеме кузова и разгрузки заднего моста шасси машины оборудована двумя гидродомкратами 4. Гидроцилиндры и гидродомкраты работают от гидросистемы базового шасси. Кузов сужен к разгрузочному отверстию, расположенному выше уровня транспортируемой смеси, что практически исключает потери смеси в пути. Для полной выгрузки смеси без применения ручного труда кузов снабжен встроенным вибратором с гидравлическим приводом, встряхивающим кузов в любых положениях в процессе подъема и опускания. Для предохранения перевозимой смеси от воздействия атмосферных осадков, ветра и высоких температур кузов сверху закрывается крышкой 2, а для предохранения смеси от воздействия низких отрицательных температур кузов имеет двойные стенки, между которыми циркулируют выхлопные газы автомобиля. Рабочий цикл по доставке смеси автобетоновозом включает в себя следующие технологические операции: загрузку готовой смеси на заводе, закрывание кузова крышкой, собственно транспортирование, выгрузку смеси путем опрокидывания кузова, очистку внутренней поверхности кузова, воз,врат его в исходное положение и поездку за новой порцией смеси. Доставляемая автобетоновозами смесь разгружается непосредственно на месте укладки или в промежуточные емкости - бункера, бадьи и др.
Грузоподъемность автобетоновозов 4,0... 10 т, объем перевозимой бетонной смеси 2,5...4,0 м3, продолжительность выгрузки бетонной смеси 1,5...2 мин.
Автобетоносмесители применяют для приготовления бетонной смеси в пути следования от питающих отдозированными сухими компонентами специализированных установок к месту укладки, приготовления бетонной смеси непосредственно на строительном объекте, а также транспортирования готовой качественной смеси с побуждением ее при перевозке. Они представляют собой гравитационные реверсивные бетоносмесители с индивидуальным приводом, установленные на шасси грузовых автомобилей.
Главным параметром автобетоносмесителей является объем готового замеса (в м3). Технологическое оборудование отечественных автобетоносмесителей имеет одинаковую конструкцию и максимально унифицировано. Автобетоносмеситали работают при температуре окружающего воздуха от -30 до +40 °С.
Автобетоносмеситель (рис.174) с объемом готового замеса 4 м3 смонтирован на шасси 1 грузового автомобиля КамАЗ. Рабочее оборудование автобетоносмесителя включает раму 9, смесительный барабан 4 с загрузочно-разгрузочным устройством, механизм 3 вращения барабана, дозировочно-промывочный бак 2, водяной центробежный насос, систему управления оборудованием с рычагами 10, 12 и контрольно-измерительные приборы 11. Смесительный барабан имеет три опорные точки и наклонен к горизонту под
углом 15°. Загрузочно-разгрузочное устройство состоит из загрузочной 5 и разгрузочной б воронок, складного лотка 7 переменной длины и поворотного устройства 8. Лоток может поворачиваться при разгрузке в горизонтальной плоскости на угол до 180° и в вертикальной плоскости на угол до 60°. На внутренней поверхности барабана укреплены две спиральные лопасти 11 (рис.175), угол наклона которых подобран таким образом, что при вращении в одном направлении компоненты смеси направляются в нижнюю часть барабана, где происходит их гравитационное перемешивание, а при вращении в обратную сторону лопасти подают готовую смесь к приемному лотку, соединенному с поворотным разгрузочным желобом. Вращение барабану 9 сообщается
от индивидуального дизельного двигателя 3 через реверсивный зубчатый редуктор 5 и цепную передачу 6, ведомая звездочка 8 которой жестко прикреплена к сферическому днищу барабана. Барабан опирается спереди на раму шасси центральной цапфой 7, а сзади — гладким бандажом 10 на опорные ролики 12, установленные на шарикоподшипниках. Привод обеспечивает две частоты вращения барабана в обе стороны при загрузке, перемешивании и разгрузке. Частоту вращения при загрузке выбирают в зависимости от производительности питающей установки. Приготовление смеси в пути следования производят при дальности транспортировки не более 10...15 км, при этом отдозированные компоненты в смесительный барабан загружают одновременно. При перевозках на большие расстояния в барабан загружают сначала сухие компоненты (цемент и заполнители), а подачу воды и приготовление смеси производят непосредственно на объекте. Заданная порция воды подается в смесительный барабан из дозировочно-промывочного бака центробежным насосом 1 через сопло в загрузочной воронке. Через то же сопло производится промывка барабана водой после разгрузки. Привод насоса осуществляется от двигателя 3 через карданный вал 4 и клиноременную передачу 2. При транспортировке готовой бетонной смеси во избежание ее расслаивания барабан вращается с пониженной частотой, непрерывно перемешивая смесь.
Автобетоносмеситель с гидравлическим приводом и с объемом готового замеса барабана 5 м3 отличается от автобетоносмесителя с механическим приводом системой привода барабана и отбора мощности, а также возможностью бесступенчатого регулирования частоты вращения смесительного барабана в диапазоне 0...20 мин-1. Вращение смесительному барабану сообщается от реверсивного гидромотора с рабочим давлением 25 МПа через планетарный редуктор. Питание гидромотора осуществляется от регулируемого реверсивного гидронасоса, получающего вращение от коробки отбора мощности через карданный вал.
Техническая часовая производительность автобетоносмесителя (м3/ч)
ПТ=60VКобКвых/Тц,
где V - вместимость барабана, м3; Коб - коэффициент использования геометрического объема, представляющего отношение объема сухих составляющих, загружаемых в барабан, к геометрическому его объему; Квых — коэффициент, характеризующий выход смеси и определяемый отношением ее объема к объему сухих составляющих (при перевозке готовой бетонной смеси принимают равным единице); Тц - продолжительность цикла автобетоносмесителя, мин;
Тц = 6ОL(Vгр + Vпор)/(VгрVпор) + tз + tр + tп,
где L - дальность перевозки смеси, км; Vгр и Vпор - скорость движения автобетоносмесителя в груженом и порожнем состояниях, км/ч; tз - продолжительность загрузки барабана сухими составляющими», мин; tр и tп ‑ продолжительность разгрузочных и промывочных операций, мин.
ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ СИСТЕМ УПРАВЛЕНИЯ
КЛАССИФИКАЦИЯ СРЕДСТВ АВТОМАТИЗАЦИИ
Внедрение в нашей стране Государственной системы приборов (ГСП) позволило наладить выпуск датчиков, преобразователей, исполнительных механизмов и других устройств и средств автоматизации с унифицированными входными и выходными параметрами.
Все изделия ГСП составляют четыре основные группы.
К первой группе относятся средства получения информации о состоянии объектов управления, регулирования и контроля. Эти средства включают в себя измерительные элементы (датчики) и состоят из первичных измерительных (для перевода любого контролируемого параметра в физическую величину - усилие, напряжение, силу тока и т. п.) и нормирующих (для перевода выходного сигнала в унифицированный) преобразователей.
Вторая группа представлена средствами приема, переработки и дальнейшей передачи информации, полученной от измерительных элементов, а также для преобразования и передачи, управляющих команд. Эта группа представляет собой усилители сигналов, каналы связи, преобразователи и сравнивающие устройства (преобразующие) и состоит из устройств телемеханики, телеуправления, телесигнализации, шифраторов, дешифраторов, согласования и др.
В третью группу входят средства получения информации о задачах автоматического управления, регулирования и контроля. Они включают в себя запоминающие и программные устройства, выполненные на базе микропроцессоров и микро-ЭВМ (задающие устройства).
Четвертая группа включает в себя средства регулирования параметров контролируемых процессов (исполнительные устройства), состоящие из усилителей входных сигналов и исполнительных механизмов, преобразующих указанные сигналы в энергию механических перемещений.
Следует отметить, что не все вышеуказанные элементы используются во всех, автоматических системах, хотя в то же время отдельные элементы способны выполнять сразу несколько функций. Так центробежный регулятор частоты вращения вала двигателя в системе прямого воздействия является одновременно и измерительным и исполнительным элементом.
ДАТЧИКИ КОНТРОЛЯ И РЕГУЛИРОВАНИЯ
Датчики (измерительные преобразователи) являются основным средством измерения, преобразующим измеряемую или контролируемую физическую величину (давление, усилие, температуру и т.д.) в выходной, обычно электрический сигнал, предназначенный для дальнейшей регистрации, обработки и передачи к исполнительному механизму. Первичный преобразователь, непосредственно воспринимающий параметр состояния, т.е. естественную входную величину, называется чувствительным элементом датчика. Если требуется получить сигнал о параметре в другой, более удобной для использования форме, то в системе датчика может устанавливаться второй нормирующий преобразователь, приводящий выходной сигнал в унифицированный.
Классификация датчиков
По назначению - силовые,, скоростные, температурные и др. (табл.2):
По принципу действия - механические, электрические, тепловые, акустические, оптические, радиоактивные.
По способу преобразования неэлектрических величин в электрические - активные (генераторные) и пассивные (параметрические). В генераторных датчиках энергия входного сигнала преобразуется (без участия вспомогательных источников энергии) в электрическую энергию выходного сигнала (ток, напряжение, электрический заряд). В параметрических датчиках под действием входного сигнала изменяется какой-либо собственный параметр датчика (емкость, сопротивление, индуктивность). При этом схема включения таких датчиков всегда имеет внешний источник питания.
По конструкции и принципу действия чувствительного элемента датчики подразделяют на контактные и бесконтактные. При этом в контактных датчиках чувствительный элемент взаимодействует непосредственно с контролируемым объектом, а в бесконтактных это взаимодействие отсутствует. К последним относятся фотоэлектрические, ультразвуковые, радиоактивные и специальной конструкции щуповые датчики.
Работа датчиков определяется их статическими, динамическими и частотными характеристиками и оценивается величиной входных и выходных сигналов, чувствительностью, инерционностью и погрешностью. Так как измерение одной и той же физической величины может выполняться с помощью различных датчиков, то их выбор должен обеспечить технические требования, предъявляемые к разрабатываемой системе автоматики технологическим процессом, конструкцией и спецификой эксплуатации машины. Рассмотрим основные разновидности датчиков, используемых в строительных и дорожных машинах и оборудовании.
Таблица 2
Основной тип датчиков систем управления и контроля
Измеряемые параметры
Тип датчика
Механическая деформация
Измеритель смещения, датчик давления, датчик массы
Частота
Доплеровский измеритель скорости
Температура
Термометр, пирометры излучения, датчик уровня жидкости
Давление
Измеритель нагрузки, расходомер
Влажность, состав газов
Гигрометр, газовый сигнализатор
Звук (в том числе ультразвук)
Эхолот, устройства неразрушающего контроля
Свет (в том числе инфракрасное излучение)
Фотодатчик, датчик цвета
Радиация, рентгеновское излучение
Датчик уровня, рентгеновский томограф
Волновое излучение
Радар, измеритель скорости
К простейшим устройствам относятся конечные выключатели, ограничивающие линейные или угловые перемещения механизма. В первом случае, например, (рис.176,а) при достижении машиной (башенным, козловым, мостовым кранами) во время перемещения по подкрановым путям крайнего положения, линейка ограничителя 2 нажимает рычаг 1 конечного выключателя и, перемещая его, отключает контактную группу 3, прерывая подачу электроэнергии к механизму передвижения.Во втором случае (рис.176,б) перемещение и укладка каната на барабане грузоподъемной машины производится с помощью шпиндельного выключателя. Он состоит из ходового винта 1, установленного в опорах и соединенного с приводом барабана зубчатой или цепной передачей 3. При вращении винта гайка 2 с удерживаемым канатом перемещается вдоль него в одну иди другую сторону, до момента наезда на переключатели 4, в результате чего происходит отключение управляющей цепи и последующее включение с направлением движения в обратную сторону.
В автоматических системах широко используются и микропереключатели (рис.177). Они состоят из корпуса. 3, в котором закреплены пластины неподвижных замыкающего 1 и размыкающего 2 контактов, а также подвижного контакта 5 и работающая совместно с ним фигурная пружина 4. Толкатель 7 оснащен возвратной пружиной б и приводится в движение рабочим органом, положение которого контролируется, при достижении им конечного положения. При этом второй контакт обычно используется для включения механизма реверса. Из генераторных преобразователей наибольшее распространение имеют резистивные преобразователи неэлектрических величин, действие которых основано на изменении омического сопротивления от воздействия изменяемой величины. К таким преобразователям относятся различные конструкции потенциометрических датчиков, преобразующих линейные и угловые перемещения в электрический сигнал. Они выполняются в виде переменного сопротивления, т.е. представляют различные конструкции реостатов, подвижный контакт которых связан с преобразуемым элементом.
Эти преобразователи состоят из каркаса прямоугольного, круглого или кольцевого сечения (рис.178,а, б), изготовленного из керамики, пластмасс или алюминия, покрытого токонепроводящим лаком.
На каркас может наматываться эмалированная или оксидированная и покрытая лаком проволока из константана, нихрома, манганина, а также нанесен слой полупроводника или металлической пленки.
Подвижная токосъемная щетка скользит по зачищенной контактной дорожке (непосредственно по проволоке или по соединенным с ней контактам).
Наряду с рассмотренными преобразователями при измерении углов наклона конструкций и рабочих органов строительных машин используются также и преобразователи, в которых высокоомное сопротивление шунтируется ртутью или проводящей жидкостью (рис.178,в). При необходимости получения нелинейной характеристики в системах автоматики применяются линейные преобразователи с шунтирующими сопротивлениями (рис.178,г), а также функциональные преобразователи с профилированным или ступенчатым каркасом, позволяющим получать переменные резисторы с квадратичной, логарифмической или другой функциональной зависимостью.
Рис.178. Реостатные преобразователи
При значительных изменениях давлений, а также для измерений деформаций в элементах конструкций и узлов машин используются тензометрические и пьезоэлектрические преобразователи. Их работа основана на явлении тензометрического эффекта, т.е. на изменении электрического сопротивления чувствительного элемента от его деформации. В качестве чувствительных элементов, называемых тензолитами, в датчиках используются стержни из порошка сажи, графита или угля, наклеенные на полоске бумаги 2 (рис.179,а). Однако наибольшее распространение получили датчики с проволочными элементами из константана, нихрома или фольги. Проволока диаметром, 0,02...0,05мм или фольга 1 с медными выводами 3 наклеивается в виде прямоугольных или кольцевых петель на бумагу или пленку из изоляционного материала 2 (рис.179,б, в, г).
Тензопреобразователи приклеиваются на поверхность детали 4, деформация которой измеряется, и с помощью соединительных проводов подключается к измерительному электрическому мосту. Схема подключения зависит от количества тензодатчиков и вида измеряемой деформации (растяжение, сжатие, изгиб, кручение). При этом, если деталь или конструкция сжимается или Растягивается, то вместе с ней деформируются и наклеенные датчики, изменяющие величину своего сопротивления. Тензодатчики обычно включаются по мостовой схеме. В последнее время широкое применение получили тензодатчики
полупроводниковые из германия и кремния, чувствительность которых в 50...100 раз выше проволочных, а значительный уровень выходного сигнала позволяет обходиться без усилительной аппаратуры. Однако они имеют и существенные недостатки, одним из которых является значительно пониженные температурные характеристики. С помощью пьезоэлектрических преобразователей механическая энергия преобразуется в электрическую в связи с возникновением электрических зарядов на поверхностях кристаллов некоторых диэлектриков (например, титаната бария)
при механическом воздействии на них. Пьезоэлектрический датчик усилий (рис.180) представляет собой корпус 1, в котором расположены пьезоэлектрические пластины 2. Усилия Р передаются на пластины через опорные плиты 4, а полученный сигнал снимается с металлических обкладок. К этому же типу датчиков относятся металлические и полупроводниковые термометры сопротивления, предназначенные для измерения температуры в диапазоне от -50 до +180°С для медных и от -250 до +650°С для платиновых термометров сопротивления.
В параметрических датчиках, представляющих индуктивные и емкостные преобразователи, питание осуществляется от переменного тока. Принцип работы этих преобразователей основан на изменении реактивного сопротивления в зависимости от величины зазора между неподвижной и подвижной частями.
Имеется много различных конструкции индуктивных преобразователей. Наибольшее распространение получили преобразователи с подвижным якорем (рис.181,а) и соленоидного типа (рис.181,б). Они используются для измерения небольших линейных и угловых перемещений, деформаций и в управлении следящими системами. Преобразователь состоит из магнитопровода 2 с обмоткой 1 и якоря 3 соединенного с рабочим органом машины или. ОГП кранов. Изменение воздушного зазора δ, представляющего входную величину, изменяет, в свою очередь, индуктивность и сопротивление обмотки дросселя. При этом увеличение зазора уменьшает индуктивность и сопротивление обмотки и ведет к увеличению тока. Дифференциальные трансформаторы с подвижным сердечником используются в основном в электрических измерительных преобразователях с силовой
компенсацией в качестве индикатора рассогласования. Такой преобразователь представляет цилиндрический каркас с перемещающимся сердечником. По всей длине каркаса навита первичная обмотка W1, поверх которой симметрично расположены две вторичные обмотки W1′ и W2", выполненные в виде двух одинаковых катушек. Индикатор уровня типа ДИУ-СЧА (рис.182,а) устроен и работает следующим образом. Сердечник 1, перемещающийся внутри катушек с обмотками, связан посредством жесткой тяги 3 с поплавком 4, находящимся в баке 5 с контролируемой жидкостью. Для уравновешивания выталкивающей силы при изменении уровня жидкости и соответствующего перемещения подлавка и сердечника служит пружина 2. При положении сердечника в средней части трансформатора во вторичных обмотках индуктируются одинаковые электродвижущие силы (ЭДС) и разность потенциалов ΔU на выходе трансформатора равна нулю. Перемещение сердечника вверх вызывает увеличение ЭДС индуктируемой в обмотке W2’, ее уменьшение в обмотке W2" и появление сигнала ΔU на выходе, значение которого фиксируется прибором КСД-3.
Работа широко используемого поворотно-трансформаторного датчика (рис.182,б) состоит в изменении индукции в обмотках датчика W1 при угловом перемещении сердечника (ротора) с обмоткой WВ, соединенного с поворотным устройством машины. На обмотку возбуждения WВ подается входное напряжение Uвх, а с обмоток W1 снимается выходное напряжение Uвых. При фиксированном установочном положении ротора ЭДС в обмотках W1 равны между собой и Uвых = 0. После перемещения ротора в обмотках W1 создаются различные значения ЭДС и происходит изменение напряжения Uвых от минимального до максимально возможного (при αмах=90°).
Тахогенераторы представляют собой маломощные (до 100Вт) электрические машины переменного или постоянного тока для преобразования скорости механического вращения в электрический сигнал. Тахогенератор переменного тока (рис.183.,а) состоит из ряда расположенных на статоре 1 обмоток 2, соединенных между собой последовательно. Ротор 3 является постоянным магнитом и выполняется в виде
специальной звездочки или стержня с числом полюсов, равным числу обмоток. Тахогенератор постоянного тока (рис.183,б) является аналогичным генератором с независимым возбуждением от постоянных магнитов 2, установленных в статоре 1. В пространстве между полюсами магнита вращается якорь генератора с обмоткой, с контактной дорожки которого с помощью щеток снимается значение ЭДС. На выходе с тахогенераторов снимается напряжение, пропорциональное частоте вращения.
Емкостные преобразователи в общем случае представляют собой конденсатор, емкостное сопротивление которого изменяется при изменении входной регулируемой величины (зазора между подвижной и неподвижной частями). Эти преобразователи делятся на конструкции с переменной длиной зазора (рис.32,а) и с переменной площадью пластин (рис.184,б). В преобразователе с изменяемым зазором измеряемая величина воздействует на среднюю подвижную пластину, которая изменяет расстояние d между основными неподвижными пластинами. Увеличение значения d при перемещении подвижной пластины ведет к уменьшению емкости датчика и снижению сопротивления. Этот преобразователь используют для измерения небольших перемещений и величин (усилий, давления и др.).
Наряду с рассмотренными, применяют и различные виды фото- и термоэлектрических, ионизационных и других преобразователей.
К датчикам, используемым в подъемно-транспортных, строительных и дорожных машинах и оборудовании, так же как и ко всем другим элементам и устройствам автоматики и к системе в целом
предъявляются особые требования, обусловленные тяжелыми условиями эксплуатации машин. Они должны выдерживать обычные для указанных машин вибрационные и ударные перегрузки, падения напряжения в сети и при рабочей нагрузке. Большое значение имеет и относительная влажность, достигающая 98%, а также температура окружающей среды, которая может изменяться от -60°С на открытом воздухе до +150°С в специальных производствах например, в пропарочных камерах. При этом наиболее сильное воздействие может оказать термоудар, как например, при быстром нагреве после запуска охлажденного до -40°С двигателя машин. Это может оказать разрушительное влияние особенно на элементы электроники и соединительные цепи. Одновременно элементы и системы автоматики в целом должны обладать водонепроницаемостью, пыле-, грязе-, влаго- и коррозийной стойкостью, помехоустойчивостью, надежностью, долговечностью и сохранять работоспособность при воздействии паров масел, жидкого топлива и агрессивных примесей выхлопных газов. К основным требованиям следует отнести также необходимые, особенно для передвижных машин, быстродействие и точность, простоту конструкции, минимально возможные размеры и массу, удобство эксплуатации и невысокую стоимость.