В термодинамике под открытой понимается такая термодинамическая система, которая обладает способностью к обмену с окружающей средой массой, работой и теплотой. Системами открытого типа считаются живые системы, которые также называют неравновесными.
Живой организм может получать пищу, воду и кислород из внешней среды, при этом он выделяет в нее разные вещества. Теплообмен осуществляется между средой и организмом.
Открытые системы
Рисунок 1. Термодинамика для открытых систем. Автор24 — интернет-биржа студенческих работ
Открытые системы способны производить непосредственный энергообмен с окружающей средой посредством вещества, информации и импульса. Все реальные системы будут считаться при этом открытыми. К самому значимому типу открытых систем относятся химические, в пределах которых осуществляются определенные реакции.
Живые организмы и экосистемы также можно рассматривать как открытые химические системы. Такой подход позволяет проводить важные исследования процессов их жизнедеятельности и активного развития на платформе законов неравновесной термодинамики, физической и химической кинетики. Открытые системы в условиях неорганической природы осуществляют определенный обмен с внешней средой, состоящей из разных систем. Этим системам свойственны вещество и энергия.
Неравновесное состояние в этом случае будет характеризоваться параметрами, аналогичными равновесным:
- определенной температурой;
- химическим потенциалом компонентов системы.
Энтропия в открытых системах также сохранит свою неизменность. Это объясняется тем, что в них осуществляются необратимые процессы, но при этом энтропия накапливаться не будет. Она выводится в окружающую среду.
Свойства открытых систем в термодинамике
В открытых системах наиболее уникальные свойства будут проявляться в условиях нелинейных процессов (когда в них мы наблюдаем вероятность появления термодинамических, устойчивых неравновесных состояний). При этом их характеризует определенная временная (пространственная) упорядоченность. Это диссипативная структура, само существование которой подразумевает наличие факта непрерывного обмена окружающей среды с веществом (энергией).
Автором первого определения открытой системы стал австрийский физик Э. Шредингер. Он сделал акцент на особенности биологических систем, которая должна заключаться в непосредственном энерго-вещественном обмене с окружающей средой. Система, взаимодействующая со средой, не способна сохранять свою замкнутость. Это объясняется тем, что она должна получать новые вещества или энергию. При этом данная система должна одновременно выводить в пространство отработанную энергию (использованное вещество).
При поступлении энергии (или вещества) неравновесность в системе растет. Следствием этого становится процесс разрушения прежних связей элементов системы друг с другом, которые определяют ее структуру. В такой ситуации возникают новые связи между элементами, они способствуют кооперативным процессам.
В качестве примера наглядной демонстрации процессов самоорганизации можно рассмотреть работу лазера. Хаотические колебательные движения, которые совершают частицы кристалла, будут приводиться в движение за счет энергии, поступающей извне. Это провоцирует повышение мощности лазерного излучения. Г. Хакен, исследуя процессы самоорганизации в лазере, охарактеризовал новое направление исследований – синергетическое.
В качестве еще одного примера можно рассматривать самоорганизацию в химических реакциях. Она связана с поступлением извне новых реагентов – веществ. Эти вещества отвечают за обеспечение продолжения реакции и за выведение в окружающую среду ее продуктов.
В формате открытых систем нелинейные процессы изучаются на базе уравнений химической кинетики. Накапливающиеся в открытых системах активные продукты реакции (теплоты) могут спровоцировать автоколебательный режим реакций. Для этого будет нужна реализация в системе обратной связи. Это, в свою очередь, характеризуется ускорением реакции под воздействием или продукта, или теплоты, выделяющейся при реакции.
Что касается открытой химической системы, то в ней (с наличием положительной обратной связи) возникают саморегулирующиеся непрекращающиеся химические реакции. Внешне самоорганизация проявляется с возникновением концентрических волн в жидкой среде. Это особенно заметно в автоколебательных реакциях, открытых Б. Белоусовым.
На основании проводимых Р. Пригожиным экспериментов с периодическими реакциями, ему удалось построить брюсселятор (теоретическую модель, положенную впоследствии в основу нелинейной или неравновесной термодинамики).
Рисунок 2. Энтропия в открытых системах. Автор24 — интернет-биржа студенческих работ
Нелинейность в термодинамике означает задействование в ней нелинейных математических уравнений, где содержатся переменные во второй или выше степени. Открытие самоорганизации системы в условиях простейшей неорганической природы играет существенную роль в научном и мировоззренческом понимании. Это демонстрирует вероятность осуществления процессов в основе материи и рассматривает взаимосвязь органической и неорганической природы.
С позиции самоорганизации весь окружающий мир и Вселенная будут представлять собой комплекс разносторонних и самоорганизующихся процессов, выступающих основанием для любой эволюции.
Энтропия открытых систем в термодинамических процессах
При неравновесном состоянии энтропия открытых систем определяется суммой значений энтропий отдельных малых элементов в системе. Эти элементы пребывают в состоянии локального равновесия (следствие аддитивности энтропии).
Потоки энергии и вещества в системе провоцируются процессом отклонений параметров термодинамики от их равновесных значений. Повышение энтропии системы становится возможным за счет процессов переноса. Энтропия в рамках замкнутых систем будет расти и при этом стремиться к своему максимуму и равновесному значению.
В открытой системе допускается вероятность стационарных состояний с постоянной энтропией (при условии ее постоянного производства). При этом энтропия должна быть отведена от системы. В термодинамике открытых систем стационарному состоянию отводится роль, аналогичная термодинамическому равновесию (термодинамика равновесных процессов в отношении изолированных систем).