Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Энтропия простыми словами с формулами

Понятие энтропии ввел Р. Клаузиус в 1865 г.

Энтропия – функция состояния

Для того чтобы выяснить в чем состоит физический смысл энтропии, рассмотрим изотермический процесс и приведенное количество теплоты в этом процессе на очень малом участке этого процесса -$\frac{\delta Q}{T}$, где $\delta Q$ – количество теплоты, которое получает тело, $T$ – температура тела.

Приведенное количество теплоты, которое сообщается телу в любом обратимом круговом процессе:

$\oint {\frac{\delta Q}{T}=0\left( 1 \right).}$

Равенство нулю левой части выражения (1), который берут по замкнутому контуру, означает, что отношение δQ/T – это полный дифференциал некоторой функции состояния системы, которая не зависит от формы пути перехода системы из начального состояния в конечное.

Введем следующее обозначение:

$\frac{\delta Q}{T}=dS\left( 2 \right)$.

Определение 1

Энтропией ($S$) называют функцию состояния, дифференциал которой равен приведенному количеству тепла на малом участке термодинамического процесса, которое передано системе в этом процессе.

Для обратимых процессов изменение энтропии равно нулю:

$\Delta S=0\left( 3 \right)$.

Если выполняется необратимый процесс, то энтропия системы увеличивается:

$\Delta S$>$0\, \left( 4 \right)$.

Все реальные процессы являются необратимыми, поэтому в реальности энтропия изолированной системы способна только расти. Она становится максимальной в состоянии термодинамического равновесия.

Замечание 1

Формулы (3) и (4) выполняются только в том случае, если система замкнута. В том случае, если термодинамическая система может обмениваться теплом с внешней средой, то поведение энтропии может быть любым.

«Энтропия простыми словами с формулами» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Неравенство Клаузиуса

Выражения (3) и (4) объединяются в неравенство, которое называется неравенством Клаузиуса:

$\Delta S\ge \left( 5 \right)$.

Неравенство Клаузиуса означает, что для замкнутой системы энтропия способна увеличиваться (если процесс необратим), или не изменяется (процесс обратим).

Неравенство Клаузиуса является математической записью второго начала термодинамики.

Знак изменения энтропии указывает направление течения процесса в обратимом процессе.

Во всех ординарных термодинамических системах при стремлении температуры к бесконечности, внутренняя энергия системы безгранично растет. Абсолютная температура при равновесных процессах может только большей нуля, следовательно, если система подвергается нагреву, то:

$dS$>$0.$

При уменьшении температуры системы имеем:

$dS$

Изменение энтропии в равновесном процессе

Допустим, что термодинамическая система совершает равновесный переход из состояния 1 в состояние 2, тогда изменение энтропии найдем как:

$\Delta S=S_{2}-S_{1}=\int\limits_1^2 {\frac{\delta Q}{T}=\int\limits_1^2{\frac{dU+\delta A}{T}\left( 6 \right),} }$

где $dU$ – изменение внутренней энергии в рассматриваемом процессе; $\delta A$ – работа, выполняемая в этом процессе.

Выражение (6) способно определить энтропию с точностью до аддитивной константы. Это означает то, что физическим смыслом обладает не энтропия, а ее разность.

$S=\int\limits_{обр} {\frac{\delta Q}{T}+const\, \left( 7 \right).}$

Свойства энтропии

Замечание 2

Энтропия – аддитивная величина. Это означает, что энтропию системы можно найти как сумму энтропий тел, которые эту систему образуют.

Свойство аддитивности имеют:

  • масса;
  • внутренняя энергия;
  • количество теплоты.

Аддитивными не являются:

  • объем,
  • температура,
  • давление.
Определение 2

Термодинамический процесс, в котором энтропия остается постоянной, называется изоэнтропийным процессом.

Так, при обратимом адиабатном процессе мы имеем:

$\delta Q=0\to S=const.$

Энтропия однородной термодинамической системы – это функция пары независимых параметров, характеризующих ее состояние, например, $ p,V$ или $ T,V$ при $ m=const$.

В этой связи можно записать, что:

$\left( V,T \right)=\int\limits_0^T {C_{V}\frac{dT}{T}+S_{01\, }\left( 8\right).}$

или

$S\left( p,T \right)=\int\limits_0^T {C_{p}\frac{dT}{T}+S_{02\, }\left( 9\right),}$

где $\int\limits_0^T {C_{V}\frac{dT}{T},}$ – находят для обратимого изобарного процесса; $\int\limits_0^T {C_{p}\frac{dT}{T}}$ – вычисляют для обратимого изохорного процесса, при изменении температуры от 0К до $T$; $C_V$ – теплоемкость изохорного процесса; $C_p$ – теплоемкость при изобарном процессе; $S_{01 }=S(V,0)$ ; $S_{02 }=S(p,0).$

Статистический смысл энтропии

Допустим, что энтропия в обратимом процессе претерпевает изменения под воздействием внешних условий, которые оказывают влияние на систему. Механизм действия этих условий на энтропию можно сформулировать так:

  1. Внешние условия определяют микросостояния, которые доступны системе, а также их количество.
  2. В рамках доступных для системы микросостояний, она приходит в состояние равновесия.
  3. Энтропия получает соответствующее значение. Получается, что величина энтропии идет за изменением внешних условий, принимая наибольшую величину, совместимую с внешними условиями.

Глубокий смысл энтропии раскрывается в статистической физике. Энтропия связана с термодинамической вероятностью состояния системы.

Определение 3

Термодинамическая вероятность ($W$) – количество способов, реализации данного состояния термодинамической системы. Или иначе, это число микросостояний, реализующих данное макросостояние.

Термодинамическая вероятность всегда больше или равна единице.

Энтропия системы и термодинамическая вероятность связаны между собой формулой Больцмана:

$S=k ln⁡(W) (10),$

где $k$ – постоянная Больцмана.

  1. Формула (10) означает, что энтропия определена натуральным логарифмом количества микросостояний, которые реализуют рассматриваемое макросостояние.
  2. Согласно формуле Больцмана, энтропия – это мера вероятности состояния термодинамической системы.
  3. Говорят, что энтропия – мера беспорядка системы. Это статистическая интерпретация энтропии. Большее количество микросостояний, которое осуществляет макросостояние, соответствует большей энтропии.
  4. Если система находится в состоянии термодинамического равновесия, что соответствует наиболее вероятному состоянию системы, количество микросостояний наибольшее, энтропия в этом случае максимальна.
  5. Поскольку при необратимых процессах энтропия увеличивается, при статистическом толковании это значит, процессы в замкнутой системе проходят в направлении роста количества микросостояний. Это означает, что процессы идут от менее вероятных к более вероятным, до достижения вероятностью максимальной величины.
Замечание 3

Все статистические законы справедливы для систем, которые составлены из огромного количества частиц. Но эти законы могут нарушаться с небольшим числом частиц. Для систем с малым количеством частиц возможны флуктуации, это значит, что энтропия и термодинамическая вероятность состояний замкнутой системы на некотором временном отрезке могут убывать, а не расти или не изменяться.

Дата последнего обновления статьи: 29.03.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot