Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Применение полупроводников

Термисторы

Как известно, проводимость полупроводников увеличивается с ростом температуры, так как увеличивается число носителей заряда. Приближенно, зависимость проводимости полупроводников от температуры можно представить как:

где $E$ -- энергия активации (энергия, требуемая для перевода электрона в зону проводимости), $k$ -- постоянная Больцмана. Около абсолютного нуля все полупроводники превращаются в изоляторы. Сильная зависимость сопротивления полупроводников от температуры дает возможность использовать их в различных областях техники.

Определение 1

Приборы, которые основываются на зависимости величины сопротивления от температуры, называются термисторами.

Для производства термисторов применяют полупроводники, которые обладают существенной величиной отрицательного сопротивления (обычно, это оксидные полупроводники). Термисторы изготавливают в форме цилиндрических стержней, бусин или нитей, заключенных в баллончики из стекла, керамики или металла с изоляцией.

Основные параметры, которые характеризуют термисторы:

  1. Сопротивление при t=20°.
  2. Температурный коэффициент сопротивления при t=20°.
  3. Время тепловой инерции -- это время, за которое сопротивление термистора изменяется до определенной величины.
  4. Максимальная температура эксплуатации.
  5. Теплоемкость.

В соответствии с назначением термисторы делят на:

  • Измерительные, которые используют для измерения температур и влажности воздуха. Через такой термистор пропускают ток малой величины, который не вызывает заметного разогрева термистора. Температура термистора изменяется только с изменением температуры окружающей среды.
  • Термисторы прямого подогрева. Сопротивление таких термисторов изменяется за счет джоулева тепла. Используя этот вид термисторов, стабилизируют напряжение при очень существенных колебаниях и небольших токах (например, в телефонных линиях). Их применяют для того, чтобы поддерживать постоянство сопротивления электросетей (Используют то, что термисторы имеют отрицательный температурный коэффициент, тогда как все остальные металлические элементы имеют положительный температурный коэффициент). Эти термисторы заменяют движковые реостаты. Довольно часто требуется, чтобы ток в цепи нарастал постепенно, тогда для «выдержки времени» применяют данный тип термисторов.
  • Термисторы косвенного подогрева, в них полупроводник нагревается за счет внешнего источника тепла. Такого рода термисторы применяют для сигнализации о перегреве отдельных частей машины, о недостаточной смазке, изменении уровней жидкости в резервуарах.
«Применение полупроводников» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Фотосопротивления

Как нам известно, электроны в полупроводниках могут переходить в зону проводимости не только при повышении температуры, но и при поглощении фотона (внутренний фотоэффект). Существуют полупроводники энергия перехода электронов, у которых составляет десятые доли электрон -- вольта, то есть на сопротивление подобных проводников оказывает влияние не только видимый свет, но даже инфракрасное излучение. Прибор, основывающийся на изменении сопротивления полупроводников под воздействием освещенности, называют фотосопротивлением. Для видимой части спектра чаще всего используют полупроводники из селена, германия, сернистого кадмия и таллия. Для инфракрасной части спектра применяют полупроводники из сернистого, селенистого и теллуристого свинца.

Основной характеристикой подобных фотосопротивлений является зависимость фототока (I) от величины светового потока (Ф). Во многих случаях эта зависимость имеет вид:

где $0

Вольт -- амперные характеристики фотосопротивлений имеют линейный характер. Фотосопротивления инерционны, это значит, что фототок достигает максимума не мгновенно, спадает он при прекращении освещения, также через некоторое время.

Фотосопротивления используются в автоматике, сортировке изделий по окраске или размерам.

Варисторы

Эмпирически доказано, что в небольших полях закон Ома для полупроводников можно считать применимым. Для разных веществ величина критического поля (напряженность поля при которой начинаются отступления от закона Ома) очень сильно отличается. Величина критического поля зависит от природы полупроводника, температуры, концентрации примесей.

Опытным путем установлено, что электропроводность полупроводника от напряженности поля определяется законом Пуля:

где $\alpha $ -- коэффициент, зависящий от температуры, $E_k$ -- напряженность критического поля.

Определение 2

Полупроводники, проводимость которых существенно растет с увеличением напряженности электрического поля, называются варисторами (ограничителями перенапряжений). Варисторы из карбида кремния используют в виде дисков в разрядниках, которые защищают высоковольтные линии электропередач.

Полупроводниковые выпрямители

При контакте некоторых полупроводников иногда возникает явление, при котором ток хорошо проходит в одном направлении и почти не течет в обратном. Особенно часто возникает такой эффект, если полупроводники имеют разный тип проводимости. Односторонняя проводимость касающихся разнородных полупроводников используется в диодах, триодах. Для их изготовления используют обычно германий и кремний. Такие диоды и триоды имеют довольно большой срок работы, малые габаритные размеры, потребляют мало энергии, коэффициент выпрямления высок.

Униполярная проводимость между проводником и металлом используется в вентильных элементах.

Термоэлементы

Из полупроводников создают термоэлементы. Они состоят из двух полупроводников, которые соединены металлической пластинкой. Полупроводники нагреваются в месте соединения, противоположные концы при этом охлаждаются (воздухом или иным способом). Свободные концы являются полюсами термоэлемента, к ним присоединяют внешнюю цепь. Из термоэлементов создают термоэлектрические батареи. Величина термоэлектрической ЭДС ($\mathcal E$) определяется формулой:

где ${\alpha }_1и\ {\alpha }_2$ -- термоэлектродвижущие силы в каждом полупроводнике при разности температур на концах равной 1°С. КПД термобатарей около 6-7%.

Если через термоэлемент пропустить электроток, то возникает эффект Пельтье, один спай нагревается, другой охлаждается. Это явление используют в холодильниках.

Пример 1

Задание: С чем связано отступление от закона Ома, которое возникает у полупроводников в сильных электрических полях?

Решение:

Запишем закон Ома в дифференциальной форме:

\[I=\sigma E\ \left(1.1\right),\]

где $I$ -- сила тока, $\sigma $ -- коэффициент проводимости, $E$ -- напряжённость электрического поля.

Силу тока можно определить как:

\[I=q_env\ \left(1.2\right),\]

где $q_e$ -- заряд электрона, $n$ -- концентрация заряженных частиц, $v$ -- скорость движения электронов. Используем выражения (1.1) и (1.2) получим, $\sigma $ равна:

\[\sigma =\frac{q_env\ }{E}=q_enu\left(1.3\right),\]

где $u$ -- подвижность электронов. Из выражения (1.3) следует, что закон Ома соблюдается, если подвижность и концентрация не изменяются при изменении напряженности поля. При увеличении E выше определенного значения увеличивается подвижность электронов и растет их концентрация, так как сильное поле изменяет энергосостояние электронов в атомах (уменьшается энергия, требуемая для перехода в зону проводимости). В больших полях свободный электрон получает энергию, которой хватает для ионизации атома решетки или атома примеси, что увеличивает концентрацию электронов проводимости.

Ответ: Отступление от закона Ома связано с влиянием сильных полей на подвижность электронов и их концентрацию.

Пример 2

Задание: Опишите процесс возникновения термоэлектродвижущей силы в полупроводниках (термоэлектрогенератор).

Решение:

В полупроводниках кинетическая энергия теплового движения свободных электронов растет пропорционально абсолютной температуре. Значит, если в полупроводнике создать разность температур, то на конце с более высокой температурой концентрация электронов вырастет. Следовательно, в полупроводнике начнется диффузия свободных электронов в направлении от горячего конца к холодному. Холодный конец полупроводника будет иметь отрицательный заряд, горячий -- положительный (он потеряет часть электронов). Диффузия будет идти до момента, когда появившаяся разность потенциалов не компенсирует диффузионный поток возникшим электрическим током обратного направления. Это равновесие определит появившуюся термо ЭДС.

Дата последнего обновления статьи: 17.02.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot