Аксиома III (динамика)
аксиома независимости действия сил; если на материальную точку или тело действует несколько сил, то, ускорение, получаемое точкой или телом, будет такое же, как и при действии одной силы, равной геометрической сумме сил.
положительно определённые, отрицательно определённые функции.
Рассматривается система уравненийdxdt = A(·)x + B(·)u,u = S∗(·)x,где A(·) ∈ Rn×n, B(·) ∈ Rn×m, S(·) ∈ Rn×m. Элементы матриц A(·), B(·), S(·) равномерноограничены и являются функционалами произвольной природы. Предполагается, что выше главной диагонали матрицы A(·) имеется k знакоопределённых элементов αil jl (·) (l ∈ 1, k),каждый из которых является единственным значимым элементом в своей строке и своём столб-це. Остальные элементы, стоящие выше главной диагонали, достаточно малы. Предполагается, что выполняется m = n k, и элементы βij (·) матрицы B(·) обладают свойствомinf |βiss(·)| = β0 > 0 при is ∈ 1,n \ {i1,..., ik}.(·)Остальные элементы матрицы B(·) нулевые.Строится положительно определённая матрица H = {hij } следующего вида. На главной диагонали стоят положительные числа hii = hi, hiljl = hjlil = -0, 5jhil hjl sign αiljl (·).Остальные элементы матрицы H нулевые. С помощью анализа производной от функции Ляпунова V (x) = x∗H-1x определяются такие hi (i ∈ 1, n) и λi 0 (i ∈ 1,...
аксиома независимости действия сил; если на материальную точку или тело действует несколько сил, то, ускорение, получаемое точкой или телом, будет такое же, как и при действии одной силы, равной геометрической сумме сил.
движение всех её точек.
сила, которая одна заменяет действие всей системы сил.
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне