Абелев интеграл
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
Указанный в работе ассоциативный полилинейный полином от 16 переменных, из которых 12 косокоммутативны, позволяет по любому двумерному гладкому инволютивному распределению на неприводимом аффинном алгебраическом многообразии восстанавливать алгебру регулярных функций на нем.
Рассматриваются новые вронскианные тождества, открытые недавно в г. Майкопе. Обсуждаются связи этих тождеств с теорией интегрируемых систем и с общей теорией обратимых преобразований Дарбу для линейных дифференциальных операторов с одной независимой переменной. Объектами изучения в данной работе являются однородные относительно группы растяжений отношения вронскианов двух различных порядков 𝑁 и 𝑁′ > 𝑁. Элементы первого вронскиана порядка 𝑁 являются произвольными функциями, что существенно расширяет возможности теории, а элементы второго вронскиана образованы произведениями заданной степени 𝑛 ≥ 2 этих функций. Группа растяжений позволяет перейти к проективным координатам в рассматриваемом отношении вронскианов и определить, в частности, вложение симметрических функций и многочленов в рассматриваемую теорию.96 Наиболее простым оказывается, естественно, случай 𝑁 = 2, в котором второй вронскиан из произведений оказывается степенью исходного вронскиана и, таким образом, рассматриваемо...
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
точка x0 такая, что f(x0) = 0; можно трактовать как решение уравнения f(x) = 0
функция ex, часто обозначаемая как exp x
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне