Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Равностепенно непрерывные функции

Предмет Высшая математика
👍 Проверено Автор24

система определенных в области D функций fk, для которой при любом заданном числе ε > 0 можно найти число δ > 0, такое, что при всех k и всяких x, y ∈ D, удовлетворяющих условию |x − y| < δ , имеет место неравенство |fk(x) − fk(y)| < ε

Научные статьи на тему «Равностепенно непрерывные функции»

О слабых базисах в функциональных пространствах

В статье показывается, что в монтелевском строго сетевом (в смысле Де Вильде) пространстве с полным сепарабельным сильным сопряженным всякий слабый базис является базисом Шаудера с равностепенно непрерывной системой коэффициентных функционалов. Этот результат применяется к базисам в пространствах голоморфных функций. В частности, из него следует абсолютность всех базисов в ряде неметризуемых ядерных функциональных пространств.

Научный журнал

О характеристиках роста операторнозначных функций

В работе обобщаются теорема Лиувилля и понятия порядка и типа роста целой функции на случай операторнозначных функций со значением в пространстве ${\rm Lec}({\bf H}_1,{\bf H})$ всех линейных непрерывных операторов, действующих из локально выпуклого пространства ${\bf H}_1$ в локально выпуклое пространство ${\bf H},$, наделенном равностепенно непрерывной борнологией. Найдены формулы, выражающие порядок и тип операторнозначной функции через характеристики последовательности коэффициентов. Установлены некоторые свойства порядка и типа операторнозначной функции.

Научный журнал

Еще термины по предмету «Высшая математика»

Изоклина

кривая, в каждой точке которой наклон поля направлений один и тот же

🌟 Рекомендуем тебе

Кантора теорема

1. если функция непрерывна в ограниченной замкнутой области, то она равномерно непрерывна в этой области; 2. множество, состоящее из всех подмножеств данного непустого множества M (булеан), не эквивалентно ни самому M, ни его подмножеству

🌟 Рекомендуем тебе
Смотреть больше терминов

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot