Абелев интеграл
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
делитель целого числа, являющийся простым числом
простые множители....
Пример 4
Число $96$ разложить на простые множители.
Решение....
Используем алгоритм разложения на простые множители:
Число $96$ не является простым....
Используем алгоритм разложения на простые множители:
Число $1230$ не является простым....
Используем алгоритм разложения на простые множители:
Число $840$ не является простым.
Предмет исследования. В алгебре полиномиальных матриц (над алгеброй K полиномов от одной буквы) размера n на n изучается вопрос единственности разложения на простые множители. Актуальность. Теория делимости является классической частью математики, вошедшей в процесс обучения в высших учебных заведениях. Автору неизвестно, изучался ли вопрос о единственности разложения на простые множители. Между тем в линейной теории автоматического управления (многоканальные системы) давно и успешно используются понятия наибольшего левого и правого делителей полиномиальных матриц, что может служить основой теории делимости для полиномиальных матриц. Важнейший вопрос теории делимости - существование и единственность разложения на простые множители. Вопрос единственности разложения на простые множители затруднён тем, что в кольце матриц нет коммутативности. Результаты. Показано, что в кольце полиномиальных матриц левые и правые идеалы главные (матрицы над алгеброй полиномов от одной буквы). Отсюда сл...
Также НОД можно вычислить через каноническое разложение чисел на простые множители....
После к простым множителям подписывают их наименьшую степень и перемножают....
, либо его можно разложить до простых множителей, причём единственным способом....
Числа, которые можно разложить на простые множители, называются составными....
При поиске НОК для взаимно простых чисел их разложения не содержат одних и тех же простых множителей.
В работе рассматривается новый класс рядов Дирихле — дзета-функции моноидов натуральных чисел. Изучаются обратные ряды Дирихле для дзета-функции моноидов натуральных чисел. Показано, что вопрос о существовании эйлерова произведения для дзетафункции моноида связан с однозначностью разложения на простые множители в этом моноиде. Вводится понятие взаимно простых множеств натуральных чисел и показано, что для таких множеств имеет место мультипликативность минимальных моноидов и соответствующих дзета-функций моноидов. Показано, что если все простые элементы моноида являются простыми числами, то характеристическая функция моноида будет мультипликативной функцией и в этом случае дзета-функция моноида будет обобщённой L-функцией. Рассматриваются различные примеры моноидов и соответствующих дзета-функций моноидов. Изучена связь вопросов обращения дзета-функции моноида и обобщённой функции Мёбиуса на моноиде как частично упорядоченном множестве с помощью отношения делимости натуральных чисел....
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
замкнутая ломаная линия
аксиальный вектор
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве