Изоклина
кривая, в каждой точке которой наклон поля направлений один и тот же
такие числа (полиномы), любые два из которых являются взаимно простыми
Во многих прикладных задачах математической физики часто возникает ситуация когда требуется определить неизвестные полиномы из краевого условия. Так, например, в работе [1] было показано, что произвольный полином от спектрального параметра из краевого условия однозначно определяется по конечному набору собственных значений. В [2] восстанавливался неизвестный полином степени m в нераспадающихся краевых условиях по (m+1) ненулевым попарно различным собственным значениям. Однако, собственные значения в работе [2] предполагались простыми. В работе [3] рассматривался случай, когда нулевое собственное значение является кратным. В этом случае для идентификации полинома используется меньшее число собственных значений (
кривая, в каждой точке которой наклон поля направлений один и тот же
дифференциал функции нескольких переменных
аксиальный вектор
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве