Испытания Бернулли
последовательность n независимых испытаний, каждое с двумя исходами ("успех" - "неудача"), вероятности которых (p,q) не меняются от испытания к испытанию
такие события, любые два из которых являются взаимно несовместными
,H_{n} $ попарно несовместные события, то события $A\bigcap H_{1} $, $A\bigcap H_{2} $, \dots , $A\bigcap...
H_{n} $ также несовместные....
+P(H_{n} )\cdot P(A/H_{n} ).\]
Замечание
Несовместные события $H_{1} ,H_{2} ,......
События $B_{1}$ и $B_{2} $ несовместны, а также эти два события образуют полную группу вероятностей,...
Эти события $Н_1$, $Н_2$ и $Н_3$ несовместные, а также эти три события образуют полную группу вероятностей
Основными понятиями теории вероятностей являются понятия события и вероятности события....
Событие
Определение 1
Событием будем называть любое утверждение, которое может как произойти,...
исходного события $B$ ко всем элементарным событиям $N$....
следующим условиям:
Данная функция всегда неотрицательна,
Вероятность того, что произойдет хотя бы одно из попарно...
несовместных событий равняется сумме их вероятностей.
последовательность n независимых испытаний, каждое с двумя исходами ("успех" - "неудача"), вероятности которых (p,q) не меняются от испытания к испытанию
значение, которое могут принимать рассматриваемые в математической логике высказывания; число различных истинностных значений определяет значность, или валентность логики
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве