Абелев интеграл
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
множество, в котором определена ассоциативная бинарная алгебраическая операция
В статье изучаются частные случаи алгебр многоместных отношений, а именно алгебры бинарных операций, определенных на элементах конечных и бесконечных множеств. Инструментальную основу исследования составляют унарная и ассоциативная бинарная операции над 3-местными отношениями, которые индуцируются операциями взятия обратного и произведения над 2-местными отношениями. Это позволяет перенести основные понятия, связанные со свойствами функциональности, инъективности, сюръективности и тотальности 2-местных отношений, на 3-местные отношения и сформулировать критерии выполнения подобных свойств в терминах упорядоченных полугрупп. Возникающая при этом система последовательных вложенний моноида квазигрупповых операций в моноид бинарных операций, а затем в моноид 3-местных отношений соответствует последовательным вложениям моноидов биекций, функций и 2-местных отношений. Разработанный аппарат позволяет применять к бинарным операциям и соответствующим им конечным группоидам быстрые алгоритмы ...
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
незамкнутая центральная поверхность 2-го порядка
символ, обозначающий мощность множества; в случае конечного множества натуральное число: число элементов в множестве
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне