Гиперболоид
незамкнутая центральная поверхность 2-го порядка
тройка (a, b, c) положительных целых чисел, удовлетворяющая пифагорову уравнению, т.е. a2 + b2 = c2; общая формула: a = 2mn, b = m2 − n2, c = m2 + n2, где m > n — положительные целые числа
В статье представлен результат исследования Пифагоровых троек с фиксированным значением одной из компонент. Понятие пифагоровы тройки как тройки натуральные чисел уудовлетворяющих равенству , связано с геометрической теоремой Пифагора ддя прямоугольных треугольныков, где сторона длины с лежит напротив прямого угла. Во времена Пифагора (Ⅵ век до н. э.) пользовались только натуральными числами. Но это не очень ограничивало их применение. Действительно, египетский треугольник с соотношением сторон активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид. В последнее время отвлекаются от геометрического содержания пифагоровых троек и их диоавантова уравнения. В исследовательской работе использованы зарубежные достоверные источники и материалы.
Рассмотрены подмножества прямоугольных треугольников с целочисленными длинами сторон (пифагоровых треугольников), имеющих одинаковую гипотенузу. Такие подмножества называются диофантовыми, так как Диофант в 3-й книге «Арифметика» впервые нашел четыре пифагоровых треугольника с одинаковой гипотенузой ([1], c.112). Доказано, что диофантово семейство с гипотенузой mn=p1p2...pn, где рi- последовательные простые числа вида 4k+1 (kÎN), состоит из пифагоровых треугольников. Указан метод нахождения таких семейств, и дана компьютерная программа Н.В.Малаховского определения диофантовых семейств для произвольного nÎN. Решена задача определения диофантова семейства с заданной гипотенузой сÎN.
незамкнутая центральная поверхность 2-го порядка
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
идеал, состоящий только из нулевого элемента
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне