Геометрический ряд
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
поверхность, первуюквадратичнуюформу которой можно (путем выбора подходящих параметров) представить в виде ds2 = (f (u) + g(v))(du2 + dv2)
Автор доказывает, что поверхность допускает нетривиальные бесконечно малые геодезические деформации тогда и только тогда, когда поверхность является поверхностью Лиувилля.
Для систем Бертрана на поверхностях вращения с римановыми и псевдоримановыми метриками посчитан период движения по замкнутым траекториям. Также посчитано время движения по неограниченным траекториям, с помощью чего установлена полнота соответствующих потоков в фазовом пространстве. Для указанных гамильтоновых систем построены бифуркационные диаграммы отображения момента, описано слоение Лиувилля, показано, что слоем может быть окружность, тор, цилиндр и пара цилиндров. Данная система является примером, богатым особенностями, такими как резонансность и совпадения числа вращения всех торов Лиувилля, наличия перестроек слоёв Лиувилля не через критические множества, что позволит в дальнейшим описать все виды некомпактных перестроек для систем вращения.
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
дробная часть десятичного логарифма положительного числа
дифференциал функции нескольких переменных
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне