Boolean functions are a modelling tool useful in many applications; monotone Boolean functions make up an important class of these functions. For instance, monotone Boolean functions can be used for describing the structure of the feasible subsystems of an infeasible system of constraints, because feasibility is a monotone feature. In this paper we consider monotone Boolean functions (MBFs), associated with undirected graphs, whose upper zeros are defined as binary tuples for which the corresponding subgraph of the original undirected graphs is either the empty graph, or it has no edges. For this class of MBFs, we present the settings of problems which are related to the search for upper zeros and maximal upper zeros of these functions. The notion of k-vertices and (k,m)-vertices in a graph is introduced. It is shown that for any k-vertices of the original graph there exists a maximal upper zero of an MBF associated with the graph, in which the component xi corresponding to this k-v...
Рассматриваются алгоритмы булевого поиска и взвешенное зонное ранжирование, а также их модификации. Показаны результаты экспериментов, где для подбора коэффициентов при взвешенном зонном ранжировании применены алгоритмы: случайный и генетический.