Абелев интеграл
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
функция u, удовлетворяющая в рассматриваемой области бигармоническому уравнению Δ2u = 0, где Δ — оператор Лапласа
Третья краевая задача для бигармонического уравнения в шаре широко известна в теории упругости. В данной работе предлагается новый операторный метод решения этой задачи.
Аналогично известному элементарному решению уравнения Лапласа вводится элементарное решение бигармонического уравнения. Находится связь этого элементарного решения с элементарным решением уравнения Лапласа. В зависимости от размерности пространства, в котором исследуется краевая задача, через введенное элементарное решение бигармонического уравнения в явном виде определяется некоторая симметричная функция двух переменных. Затем доказывается, что эта функция обладает свойствами функции Грина задачи Дирихле для бигармонического уравнения в единичном шаре. Отдельно исследуются два случая, когда размерность пространства два и когда размерность пространства больше двух. Аналогично функции Грина задачи Дирихле для уравнения Пуассона в шаре находится разложение функции Грина задачи Дирихле для бигармонического уравнения в шаре по полной, ортогональной на единичной сфере системе однородных гармонических многочленов. Это сделано в случае размерности пространства больше четырех. С помощью пол...
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне