Вторая кривизна
кручение
функция u, удовлетворяющая в рассматриваемой области бигармоническому уравнению Δ2u = 0, где Δ — оператор Лапласа
Третья краевая задача для бигармонического уравнения в шаре широко известна в теории упругости. В данной работе предлагается новый операторный метод решения этой задачи.
Аналогично известному элементарному решению уравнения Лапласа вводится элементарное решение бигармонического уравнения. Находится связь этого элементарного решения с элементарным решением уравнения Лапласа. В зависимости от размерности пространства, в котором исследуется краевая задача, через введенное элементарное решение бигармонического уравнения в явном виде определяется некоторая симметричная функция двух переменных. Затем доказывается, что эта функция обладает свойствами функции Грина задачи Дирихле для бигармонического уравнения в единичном шаре. Отдельно исследуются два случая, когда размерность пространства два и когда размерность пространства больше двух. Аналогично функции Грина задачи Дирихле для уравнения Пуассона в шаре находится разложение функции Грина задачи Дирихле для бигармонического уравнения в шаре по полной, ортогональной на единичной сфере системе однородных гармонических многочленов. Это сделано в случае размерности пространства больше четырех. С помощью пол...
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне