Нуль
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
функция, аргументы и значения которой — натуральные числа
последовательности
Введем два определения числовой последовательности:
Определение 1
Числовая функция...
Арифметическая прогрессия
Определение 3
Арифметической прогрессией называется последовательность...
В этом определении данное наперед заданное число будем называть разностью арифметической прогрессии....
Для обозначения арифметической прогрессии в ее начале изображается следующий символ:
Из рекуррентного...
Последовательность положительных четных чисел имеет вид
$2,4,6,8,10,…$
Она является арифметической.
В статье изучаются суммы Шимуры для арифметических функций. В ряде случаев получены точные формулы, исследовались связи между суммами Шимуры для различных функций, доказаны некоторые арифметические тождества. Суммы Шимуры появились в формулах теории модулярных форм полуцелого веса, но их можно изучать для арифметических функций любой природы.
Набор таких функций приведён в таблице ниже:
Рисунок 2. Таблица....
Аргументом могут служить любые арифметические выражения....
Аргументы тригонометрических функций определяются в радианах....
В состав арифметических выражений могут включаться числа, переменные, функции, между которыми стоят знаки...
арифметических операций.
Многие вопросы теории чисел связаны с исследованием рядов Дирихле 𝑓(𝑠) = ∞Σ︀ 𝑛=1 𝑎𝑛𝑛−𝑠 и сумматорных функций Φ(𝑥) = Σ︀ 𝑛≤𝑥 𝑎𝑛 их коэффициентов. Наиболее известным примером ряда Дирихле является дзета-функция Римана 𝜁(𝑠), определенная для любого комплексного числа 𝑠 = 𝜎 + 𝑖𝑡 с действительной частью ℜ𝑠 = 𝜎 > 1 как 𝜁(𝑠) = ∞Σ︀ 𝑛=1 1 𝑛𝑠 . Квадрат дзета-функции 𝜁2(𝑠) = ∞Σ︀ 𝑛=1 𝜏(𝑛) 𝑛𝑠 , ℜ𝑠 > 1, связян с функцией делителей 𝜏 (𝑛) = Σ︀ 𝑑|𝑛 1, дающей число натуральных делителей натурального числа 𝑛. Сумматорной функцией ряда Дирихле 𝜁2(𝑠) является функция 𝐷(𝑥) = Σ︀ 𝑛≤𝑥 𝜏 (𝑛), вопросы асимптотической оценки которой известны как проблема делителей Дирихле. В общем случае, 𝜁𝑘(𝑠) = ∞Σ︀ 𝑛=1 𝜏𝑘(𝑛) 𝑛𝑠 , ℜ𝑠 > 1, где функция 𝜏𝑘(𝑛) = Σ︀ 𝑛=𝑛1·...·𝑛𝑘 1 дает число представлений натурального числа 𝑛 в виде произведения 𝑘 натуральных сомножителей. Cумматорной функцией ряда Дирихле 𝜁𝑘(𝑠) является функция 𝐷𝑘(𝑥) = Σ︀ 𝑛≤𝑥 𝜏𝑘(𝑛). Ее изучение это многомерная проблема делителей Дирихле. Логарифмическая пр...
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
цепь, не содержащая цикла (т. е. все ее вершины различны)
истинный нормальный делитель
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве