Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Значение важнейших химических элементов и соединений для клетки и организма

Элементный состав организма

По химическому составу клетки разных организмов могут заметно отличаться, однако состоят они из одинаковых элементов. В клетках обнаружено около 70 элементов периодической таблицы Д.И. Менделеева, но только 24 из них имеют важное значение и встречаются в живых организмах постоянно.

Макроэлементы – кислород, углеводород, водород, азот – входят в состав молекул органических веществ. К макроэлементам в последнее время относят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента.

Магний входит в состав хлорофилла; железо – гемоглобина; фосфор – костной ткани, нуклеиновых кислот; кальций – костей, черепашек моллюсков, сера – в состав белков; калий, натрий и хлор-ионы берут участие в смене потенциала клеточной мембраны.

Микроэлементы представлены в клетке сотыми и тысячными долями процента. Это цинк, медь, йод, фтор, молибден, бор и др.

Микроэлементы входят в состав ферментов, гормонов, пигментов.

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Это уран, золото, ртуть, цезий и др.

Вода и её биологическое значение

Вода количественно занимает среди химических соединений первое место во всех клетках. В зависимости от типа клеток, их функционального состояния, вида организма и условий его нахождения её содержание в клетках существенно колеблется.

Клетки костной ткани содержат не больше 20% воды, жировой ткани – около 40%, мышечные клетки – 76%, а клетки зародыша – более 90%.

Замечание 1

В клетках любого организма с возрастом количество воды заметно уменьшается.

Отсюда – вывод, что чем выше функциональная активность организма в целом и каждой клетки отдельно тем большим в них есть содержание воды, и наоборот.

«Значение важнейших химических элементов и соединений для клетки и организма» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти
Замечание 2

Обязательным условием жизненной активности клеток является наличие воды. Она является основной частью цитоплазмы, поддерживает её структуру и стойкость коллоидов, входящих в состав цитоплазмы.

Роль воды в клетке определяется её химическими и структурными свойствами. Прежде всего это связано с небольшим размером молекул, их полярностью и способностью соединяться с помощью водородных связей.

Вода и её биологическое значение. Автор24 — интернет-биржа студенческих работ

Водородные связи образуются при участии атомов водорода, соединённых с электронегативным атомом (обычно кислородом или азотом). При этом атом Гидрогена приобретает настолько большой позитивный заряд, что может образовать новую связь с другим электронегативным атомом (кислорода или азота). Так же связываются друг с другом молекулы воды, у которых один конец имеет позитивный заряд, а другой – негативный. Такую молекулу называют диполем. Более электронегативный атом кислорода одной молекулы воды притягивается к позитивно заряженному атому водорода другой молекулы с образованием водородной связи.

Вода и её биологическое значение. Автор24 — интернет-биржа студенческих работ

Благодаря тому, что молекулы воды полярные и способны образовывать водородные связи, вода является совершенным растворителем для полярных веществ, которые называются гидрофильными. Такими являются соединения ионного характера, в которых заряженные частички (ионы) диссоциируют (разделяются) в воде при растворении вещества (соли). Такую же способность имеют и некоторые неионные соединения, в молекуле которых находятся заряженные (полярные) группы (в сахарах, аминокислотах, простых спиртах это ОН-группы). Вещества, состоящие из неполярных молекул (липиды), в воде практически нерастворимы, то есть они гидрофобы.

При переходе вещества в раствор, его структурные частички (молекулы или ионы) приобретают возможность двигаться свободнее, а, соответственно, возрастает реакционная способность вещества. Благодаря этому вода является основной средой, где происходит большинство химических реакций. Кроме того, все окислительно-восстановительные реакции и реакции гидролиза проходят при непосредственном участии воды.

Вода имеет наибольшую удельную теплоёмкость среди всех известных веществ. Это означает, что при существенном увеличении тепловой энергии температура воды повышается сравнительно немного. Это обусловлено использованием значительного количества этой энергии на разрыв водородных связей, которые ограничивают подвижность молекул воды.

Благодаря большой теплоёмкости вода служит защитой для тканей растений и животных от сильного и быстрого повышения температуры, а высокая теплота парообразования является основой для надёжной стабилизации температуры тела организма. Необходимость значительного количества энергии для испарения воды вызвана тем, что между её молекулами существуют водородные связи. Эта энергия поступает из окружающей среды, потому испарение сопровождается охлаждением. Этот процесс можно наблюдать во время потоотделения, в случае тепловой задышки у собак, важна она и в процессе охлаждения транспирирующих органов растений, особенно в пустынных условиях и в условиях сухих степей и периодов засухи в других регионах.

Вода имеет так же высокую теплопроводность, чем обеспечивается равномерное распределение тепла по организму. Таким образом нет риска возникновения локальных «горячих точек», которые могут стать причиной повреждения элементов клеток. Значит, высокая удельная теплоёмкость и высокая для жидкости теплопроводность делают воду идеальной средой для поддержания оптимального теплового режима организма.

Для воды характерно высокое поверхностное натяжение. Это её свойство очень важно для адсорбционных процессов, движения растворов по тканях (кровообращение, восходящее и нисходящее движение по растению и т.п.).

Вода используется как источник кислорода и водорода, которые выделяются во время световой фазы фотосинтеза.

К важным физиологическим свойствам воды относится её способность растворять газы ($O_2$, $CO_2$ и др.). Кроме того, вода как растворитель участвует в процессе осмоса, что играет важную роль в жизнедеятельности клеток и организма.

Свойства углеводорода и его биологическая роль

Если не брать во внимание воду, можно сказать, что большая часть молекул клетки принадлежит к углеводородным, так называемым органическим, соединениям.

Замечание 3

Углеводород, имея уникальные химические способности, фундаментальные для жизни, составляет её химическую основу.

Благодаря небольшому размеру и наличию на внешней оболочке четырёх электронов атом углеводорода может образовывать четыре крепких ковалентных связи с другими атомами.

Самое важное значение имеет способность атомов углеводорода соединяться друг с другом, образуя цепи, кольца и, в конце концов, скелет больших и сложных органических молекул.

К тому же углеводород легко образует ковалентные связи с другими биогенными элементами (обычно с $H, Mg, P, O, S$). Именно этим объясняется существование астрономического количества разнообразных органических соединений, которые обеспечивают существование живых организмов во всех его проявлениях. Разнообразие их проявляется в структуре и размерах молекул, их химических свойствах, степени насыщенности карбонового скелета и различной форме молекул, что определяется углами внутримолекулярных связей.

Биополимеры

Это высокомолекулярные (молекулярная масса 103 – 109) органические соединения, макромолекулы которых состоят из большого количества звеньев, которые повторяются, - мономеров.

К биополимерам относятся белки, нуклеиновые кислоты, полисахариды и их производные (крахмал, гликоген, целлюлоза, гемицеллюлоза, пектиновые вещества, хитин и пр.). Мономерами для них являются соответственно аминокислоты, нуклеотиды и моносахариды.

Замечание 4

Около 90% сухой массы клетки составляют биополимеры: у растений преобладают полисахариды, а у животных – белки.

Пример 1

В клетке бактерий находится около 3 тыс. видов белков и 1 тыс. нуклеиновых кислот, а у человека количество белков оценивают в 5 млн.

Биополимеры не только образуют структурную основу живых организмов, но и в процессах жизнедеятельности играют проводящую роль.

Структурной основой биополимеров являются линейные (белки, нуклеиновые кислоты, целлюлоза) или разветвлённые (гликоген) цепи.

Такая структура обусловливает ряд характерных свойств:

  • для взаимодействия биополимеров характерна кооперативность, то есть тесная взаимосвязь всех функциональных групп. Это значит, что одни группы биополимера, взаимодействуя, изменяют характер взаимодействия других его групп.

    Пример 2

    Примером такого кооперативного взаимодействия является связывание гемоглобином – белком эритроцитов крови – молекул кислорода в процессе дыхания.

  • Полимеры имеют способность образовывать интерполимерные комплексы, возникающие между отдельными частями молекулы или между различными молекулами.

Замечание 5

Все основные биологические процессы в организме - биосинтез белков и нуклеиновых кислот, имунные реакции, реакции обмена веществ - и осуществляются благодаря образованию биополимерных комплексов и другим свойствам биополимеров.

Дата последнего обновления статьи: 28.10.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot