Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Правило Лопиталя

Правило Лопиталя

Определение 1

Правило Лопиталя:при некоторых условиях предел отношения функций, переменная которых стремится к $a$, равен пределу отношения их производных, при $x$, также стремящемся к $a$ :

$\mathop{\lim }\limits_{x\to a} \frac{f(x)}{g(x)} =\mathop{\lim }\limits_{x\to a} \frac{f'(x)}{g'(x)} $

Правило Лопиталя было открыто шведским математиком Иоганном Бернулли, который затем рассказал в письме о нём Лопиталю. Лопиталь же опубликовал это правило в первом учебнике по дифференциальному исчислению в 1696 году со своим авторством.

Правило Лопиталя применяется для выражений, сводимых к неопределенностям следующего вида:

$\frac{0}{0} \begin{array}{ccc} {} & {} & {\frac{\infty }{\infty } } \end{array}$

Вместо нуля в первом выражении может быть какая-либо бесконечно малая величина.

В общем случае правилом Лопиталя можно воспользоваться, если и в числителе, и в знаменателе одновременно нуль или бесконечность.

Условия, при которых можно применять правило Лопиталя:

  • Соблюдается условие, при котором пределы функций $f(x)$ и $g(x)$ при $x$ стремящемся к $a$ равны между собой и стремятся к нулю или бесконечности: $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to a} g(x)=0$ или $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to a} g(x)=\infty $;
  • Возможно получить производные $f(x)$ и $g(x)$ в окрестности $a$;
  • Производная функции $g(x)$ не нулевая $g'(x)\ne 0$ в окрестности $a$;
  • Предел отношения производных функций $f(x)$ и $g(x)$, в записи выглядящий как $\mathop{\lim }\limits_{x\to a} \frac{f'(x)}{g'(x)} $ существует.

Доказательство правила Лопиталя:

  1. Пусть даны функции $f(x)$ и $g(x)$, причём наблюдается равенство пределов:
  2. $\mathop{\lim }\limits_{x\to a+0} f(x)=\mathop{\lim }\limits_{x\to a+0} g(x)=0 $.
  3. Доопределим функции в точке $a$. Для этой точки будет справедливым условие:
  4. $\frac{f(x)}{g(x)} =\frac{f(x)-f(a)}{g(x)-g(a)} =\frac{f'(c)}{g'(c)}$.
  5. Величина $c$ зависит от $x$, но если $x\to a+0$, то $c\to a$.
  6. $\mathop{\lim }\limits_{x\to a+0} \frac{f(x)}{g(x)} =\mathop{\lim }\limits_{c\to a+0} \frac{f'(c)}{g'(c)} =\mathop{\lim }\limits_{x\to a+0} \frac{f'(c)}{g'(c)} $.
«Правило Лопиталя» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Алгоритм вычисления решения с использованием правила Лопиталя

  1. Проверка всего выражения на неопределенность.
  2. Проверка всех условий, изложенных выше перед дальнейшим использованием правила Лопиталя.
  3. Проверка стремления производной функции к $0$.
  4. Повторная проверка на неопределенность.

Пример № 1:

Найти предел:

$\mathop{\lim }\limits_{x\to 0} \frac{x^{2} +5x}{3x} $

Решение:

Проверим условия применимости правила Лопиталя:

  • Предел функции $f(x)$ равен пределу $g(x)$ и оба они равны нулю: $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to 0} (x^{2} +5x)=0$; $\mathop{\lim }\limits_{x\to a} g(x)=\mathop{\lim }\limits_{x\to 0} (3x)=0$
  • $f(x)$ и $g(x)$ дифференцируемы в окрестности $a$
  • $g'(x)=3\ne 0$ в окрестности $a$
  • $\mathop{\lim }\limits_{x\to a} \frac{f'(x)}{g'(x)} =\mathop{\lim }\limits_{x\to 0} \frac{2x+5}{3} $

Запишем производную и найдем предел функции:

$\mathop{\lim }\limits_{x\to 0} \frac{x^{2} +5x}{3x} =\left\langle \frac{0}{0} \right\rangle =\mathop{\lim }\limits_{x\to 0} \frac{\left(x^{2} +5x\right)'}{\left(3x\right)'} =\mathop{\lim }\limits_{x\to 0} \frac{2x+5}{3} =\frac{0+5}{3} =\frac{5}{3} $

Пример № 2:

Найти предел:

$\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -3x^{2} +2x}{x^{3} -x} $

Решение:

Проверим условия применимости правила Лопиталя:

  • $\mathop{\lim }\limits_{x\to a} f(x)=\mathop{\lim }\limits_{x\to \infty } (x^{3} -3x^{2} +2x)=\infty $; $\mathop{\lim }\limits_{x\to a} g(x)=\mathop{\lim }\limits_{x\to \infty } (x^{3} -x)=\infty $
  • $f(x)$ и $g(x)$ дифференцируемы в окрестности $a$
  • $g'(x)=6\ne 0$ в окрестности $a$
  • $\mathop{\lim }\limits_{x\to a} \frac{f'(x)}{g'(x)} =\mathop{\lim }\limits_{x\to \infty } \frac{3x^{2} -6x+2}{3x^{2} -1} $

Запишем производную и найдем предел функции:

$\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -3x^{2} +2x}{x^{3} -x} =\left\langle \frac{\infty }{\infty } \right\rangle =\mathop{\lim }\limits_{x\to \infty } \frac{\left(x^{3} -3x^{2} +2x\right)'}{\left(x^{3} -x\right)'} =\mathop{\lim }\limits_{x\to \infty } \frac{3x^{2} -6x+2}{3x^{2} -1} =\left\langle \frac{\infty }{\infty } \right\rangle $

Повторяем вычисление производной пока не избавимся от неопределенности:

$\mathop{\lim }\limits_{x\to \infty } \frac{\left(3x^{2} -6x+2\right)'}{\left(3x^{2} -1\right)'} =\mathop{\lim }\limits_{x\to \infty } \frac{6x-6}{6x} =\left\langle \frac{\infty }{\infty } \right\rangle =\mathop{\lim }\limits_{x\to \infty } \frac{\left(6x-6\right)'}{\left(6x\right)'} =\frac{6}{6} =1$

Пример № 3:

Найти предел:

$\mathop{\lim }\limits_{x\to 0} \frac{\sin 5x}{x} $

Решение:

$\mathop{\lim }\limits_{x\to 0} \frac{\sin 5x}{x} =\left\langle \frac{0}{0} \right\rangle =\mathop{\lim }\limits_{x\to 0} \frac{\left(\sin 5x\right)'}{\left(x\right)'} =\mathop{\lim }\limits_{x\to 0} \frac{5\cos 5x}{1} =5\mathop{\lim }\limits_{x\to 0} \cos 5x=5$

Пример № 4:

Найти предел:

$\mathop{\lim }\limits_{x\to \infty } (1+x^{2} )^{1/x} $

Решение:

Прологарифмируем функцию:

$\ln y=\frac{1}{x} \ln (1+x^{2} )=\frac{\ln (1+x^{2} )}{x} $

$\mathop{\lim }\limits_{x\to \infty } \frac{\ln (1+x^{2} )}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{\left[\ln (1+x^{2} )\right]'}{x'} =\mathop{\lim }\limits_{x\to \infty } \frac{\frac{2x}{1+x^{2} } }{1} =0$

Поскольку функция $ln(y)$ — непрерывная, получим:

$\mathop{\lim }\limits_{x\to \infty } (\ln y)=\ln (\mathop{\lim }\limits_{x\to \infty } y)$

Следовательно,

$\ln (\mathop{\lim }\limits_{x\to \infty } y)=0$

$\mathop{\lim }\limits_{x\to \infty } y=1$

Значит,

$\mathop{\lim }\limits_{x\to \infty } (1+x^{2} )^{1/x} =1$

Воспользуйся нейросетью от Автор24
Не понимаешь, как писать работу?
Попробовать ИИ
Дата последнего обновления статьи: 17.12.2023
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot