Выбери формат для чтения
Загружаем конспект в формате docx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
МИНОБРНАУКИ РФ
Тверской государственный технический университет
Кафедра торфяные машины и оборудование
В.В. Шелгунов
ТЕХНОЛОГИЧЕСКИЕ ЭНЕРГОНОСИТЕЛИ ПРЕДПРИЯТИЙ
Курс лекций для студентов направления
13.03.01 Теплоэнергетика и теплотехника
Профиль – Автономные энергетические системы
Тверь 2017
СОДЕРЖАНИЕ
Вводная лекция по дисциплине
1. Энергоносители. Виды, классификация и характеристика.
2. Графики нагрузок по энергоносителям. Способы выравнивания неравномерности графиков.
3. Система воздухоснабжения промышленных предприятий.
3.1. Применение сжатого воздуха.
3.2. Требования к качеству сжатого воздуха.
3.3. Очистка сжатого воздуха
3.4. Технология производства сжатого воздуха.
3.4.1. Получение и распределение сжатого воздуха.
3.4.2. Поршневые компрессорные установки.
3.4.3. Технология получения сжатого воздуха с помощью центробежных компрессоров
3.5. Обслуживание компрессорной установки
3.6. Потребление сжатого воздуха на промышленных предприятиях. Тип, характер и разветвленность воздушных сетей предприятия.
3.7. Гидравлический расчет воздухопроводов
3.8. Анализ систем воздухоснабжения предприятий
3.8. Комплекс необходимых мероприятий по модернизации системы снабжения сжатым воздухом.
4. Системы технического водоснабжения промышленных предприятий
4.1. Назначение СТВПП
4.2. Выбор источника водоснабжения.
4.3. Водопроводные системы предприятий
4.4. Классификация систем водоснабжения
4.5. Схемы систем производственного водоснабжения
4.6. Загрязнение технологической воды.
4.7. Гигиенические критерии качества восстановленной воды при ее использовании в системах технического водоснабжения
4.8. Состав систем технического водоснабжения промышленного предприятия.
4.9. Прямоточные системы водоснабжения и их характеристики.
4.10. Характеристики и особенности СТВС ПП с повторным использованием воды.
4.11. Оборотная схема технического водоснабжения
4.12. Бессточные системы технического водоснабжения.
4.13. Характеристики основных сооружений СТВСПП.
4.13.1. Водозаборные сооружения.
4.13.2. Насосные станции.
4.13.3. Очистные сооружения.
4.13.4. Охлаждающие устройства, трубопроводы и арматура
4.13.5. Расчет систем водоснабжения.
5. Газоснабжение промышленных предприятий
5.1. Назначение газоснабжения
5.2. Горючие газы, их назначение и классификация.
5.3. Режимы потребления газа
5.4. Расчетные часовые расходы газа
5.5. Типы газопроводов
5.6. Получение промышленного газа из твердого и жидкого топлива
5.7. Транспортировка газа потребителю.
Устройство газопроводов низкого и среднего давления
Вводная лекция по дисциплине
«Технологические энергоносители предприятий»
Цель изучения дисциплины состоит в освоении принципов, структуры и функционирования систем производства и распределения энергоносителей и отличительных особенностей их основных элементов: станций и установок по производству сжатого воздуха, холода, продуктов разделения воздуха, систем водо- и топливоснабжения, вопросов эксплуатации оборудования на различных промышленных предприятиях.
Значение и задачи энергетического хозяйства.
Любой технологический процесс требует определенного расхода топлива, электрической и тепловой энергии, поэтому промышленные предприятия являются крупнейшими потребителями различных видов топлива и энергии. В промышленности расходуется примерно половина всего топлива и две трети энергии. В качестве топлива предприятия используют уголь, кокс, мазут, дрова и древесные отходы, природный газ, диоксид углерода (например, для сварочного производства). С развитием научно-технического прогресса и ростом производства потребление энергии систематически растет. Растет и доля затрат на энергоресурсы. Доля энергозатрат в себестоимости продукции доходит до 40–45%.
За XX век количество энергии, затрачиваемое на единицу промышленной продукции в развитых странах мира, возросло в 10–12 раз. В связи с этим повышается роль энергетического хозяйства в обеспечении бесперебойного функционирования производственного процесса, повышается его значение с целью снижения издержек производства и повышения уровня рентабельности промышленных предприятий.
Энергетическое хозяйство промышленного предприятия – это совокупность энергетических установок и вспомогательных устройств с целью обеспечения бесперебойного снабжения предприятия различными видами энергии и энергоносителей, таких, как натуральное топливо (газ, мазут и др.), электрический ток, сжатый воздух, горячая вода, конденсат.
К основным видам промышленной энергии относятся: тепловая и химическая энергия топлива, тепловая энергия пара и горячей воды, механическая энергия и электроэнергия.
Основными задачами энергетического хозяйства являются надежное и бесперебойное обеспечение предприятия всеми видами энергии установленных параметров при минимальных затратах.
Энергообеспечение предприятия имеет специфические особенности, обусловленные особенностями производства и потребления энергии:
- производство энергии, как правило, должно осуществляться в момент потребления;
- энергия должна доставляться на рабочие места бесперебойно и в необходимом количестве. Перебои в снабжении энергией вызывают прекращение процесса производства, нарушение технологии;
- энергия потребляется неравномерно в течение суток и года. Это вызвано природными условиями (летние и зимние периоды, день, ночь) и организацией производства;
- мощность установок по производству энергии должна обеспечивать максимум потребления.
По характеру использования энергия бывает: технологической, двигательной (силовой), отопительной, осветительной и санитарно-вентиляционной. Для промышленных предприятий наибольшее значение имеет потребление энергии на двигательные и технологические цели. В качестве двигательной силы технологического и подъемно-транспортного оборудования используются главным образом электроэнергия и в небольшом количестве пар и сжатый воздух.
Различные виды энергии и энергоносителей применяются на всех стадиях технологии производства изделия. При этом единство и взаимообусловленность технологии и энергетики – наиболее характерная черта большинства производственных процессов промышленного предприятия. В число потребителей электроэнергии необходимо отнести и такие участки производства, как слаботочные средства связи: телефоны, радио, диспетчерская связь.
Структура и функции энергетического хозяйства.
Энергообеспечение большинства промышленных предприятий построено на централизованной системе, когда они получают энергоносители со стороны: электроэнергию – от энергетической системы (через заводскую понизительную подстанцию) или от заводской электростанции, связанной с энергетической системой; пар – по тепловой сети районной энергетической системы при заводской теплоцентрали; газ – из сети дальнего газоснабжения природным газом.
Потребляемые предприятием энергоресурсы могут производиться, и на самом предприятии: электроэнергия – на заводской электрической станции, пар и горячая вода – в котельных, генераторный газ – на газогенераторной станции.
Распространен и комбинированный вариант обеспечения энергоресурсами, когда часть энергии покрывается за счет ее обеспечения от собственных установок, а часть – централизованно. Наиболее экономичной формой энергоснабжения крупных промышленных предприятий является включение заводской ТЭЦ в энерготехническую систему. В таком случае в часы, когда предприятию требуется дополнительное количество энергии, оно забирает ее из энергосистемы. Это избавляет изолированные заводские электростанции от необходимости иметь дополнительные мощности для обеспечения максимальной нагрузки в часы пик, когда же падает потребность в электроэнергии, такая станция может отдавать избыточную электроэнергию в энергосистему.
Энергетическое хозяйство предприятия выполняет следующие функции:
- обеспечение предприятия всеми видами энергии;
- наблюдение за строгим выполнением правил эксплуатации энергетического оборудования;
- организация и проведение ремонтных работ;
- организация рационального использования и выявления резервов по экономии топлива и энергии;
- разработка и осуществление мероприятий по реконструкции и развитию энергетического хозяйства предприятия.
Состав и размеры энергетического хозяйства предприятия зависят от характера и масштабов производства, применяемых технологических процессов, особенностей энергоснабжения.
Объекты энергохозяйства и характеристика цехов предприятия представлены на рис. 1, табл. 1.
Рис. 1. Примерная организационная структура управления энергохозяйством промышленного предприятия
Энергетическое хозяйство предприятия подразделяют на две части: общезаводскую и цеховую. Общезаводскую часть образуют генерирующие, преобразовательные установки и общезаводские сети. К цеховой части энергохозяйства относятся первичные энергоприемники, цеховые преобразовательные установки и внутрицеховые распределительные сети.
Общезаводская часть энергохозяйства объединяет ряд цехов: электросиловой (или электростанция), теплосиловой, газовый, электромеханический, слаботочный.
Таблица 1.
Характеристика энергетических цехов предприятия
Наименование цеха
Выполняемые функции
Примерный состав цеха
Электросиловой
Электроснабжение
предприятия на напряжении у рабочих мест
Понизительные подстанции
Мотор-генераторные установки зарядных станций
Электродвигатели высокого напряжения (для генераторов высокой частоты)
Трансформаторные установки (печные трансформаторы дуговых печей)
Теплосиловой
Обеспечение предприятия паром, горячей водой, сжатым воздухом
Получение промышленной воды
Заводские котельные
Тепловая сеть завода
Компрессорные установки и воздушная сеть завода
Система водоснабжения Мазутоперекачивающие установки
Газовый
Снабжение предприятия газом из сети газоснабжения
Обеспечение работы газогенераторной станции предприятия
Снабжение предприятия кислородом и ацетиленом
Газовые вводы или газогенераторная станция предприятия
Кислородная станция
Газовые сети
Электромеханический
Капитальный ремонт электрооборудования и электроаппаратуры
предприятия и изготовление в случае необходимости отдельных видов нового оборудования
Дефектовочная группа
Обмоточная мастерская с сушильно-пропиточным отделением
Слесарно-механическое и сборочное
отделения
Слаботочный
Телефонная и радиосвязь Эксплуатация аккумуляторных установок
АТС, коммутаторные установки, передающие, приемные установки Зарядные станции, аккумуляторное хозяйство электрокарного парка и др.
Большое влияние на состав и размеры энергетического хозяйства оказывает энергетика района. Районные ТЭЦ освобождают промышленные предприятия от необходимости производить энергию, обеспечивая их более дешевой электро- и теплоэнергией. В этом случае на предприятии создаются только трансформаторные подстанции.
Актуальность данного курса подтверждается необходимостью эффективного решения задач выбора рациональных с точки зрения технико-экономических показателей схем производства и распределения сжатого воздуха, холода, продуктов разделения воздуха, технической воды, расчета потребности в энергоносителях, составления и анализа схем и входящих в их состав оборудования на расчетных и нерасчетных режимах, прогнозирования и совершенствования этих систем и их элементов в связи с необходимостью рационального энергопотребления на промышленном предприятии с учетом максимального использования ВЭР. Изучение дисциплины базируется на знаниях, полученных в курсах «Теоретические основы теплотехники» (разделы «Техническая термодинамика» и «Тепломассообмен»), «Нагнетатели и тепловые двигатели».
Общие методические указания
Дисциплина «Технологические энергоносители предприятия» является базовой для изучения прикладных теплотехнических дисциплин.
При изучении дисциплины рекомендуется руководствоваться программой курса и методическими указаниями к ней, самостоятельно овладеть теорией по учебникам и методическим пособиям.
Ниже приводится список литературы, который включает в себя основные учебники, справочные таблицы, которые содержат краткие теоретические основы, необходимые для решения контрольных работ, примеры решения задач, пояснения к решению контрольных задач и ответы на контрольные вопросы.
Таблицы необходимы для нахождения параметров технически важных газов (воздуха, азота, углекислого газа и др.) а также воды и водяного пара.
Перед выполнением практических заданий рекомендуется прослушать обзорные лекции по основным разделам курса, которые читаются в период экзаменационных сессий. В это же время студенты выполняют практические задания под руководством преподавателя. Цель их - более глубокое усвоение теоретического материала и приобретение практических навыков в проведении эксперимента.
Требования, предъявляемые на экзамене по дисциплине - знание теории и понимание физической сущности рассматриваемых в курсе вопросов, а также умение применить теоретические знания к решению практических задач.
Тема 1.
1. Энергоносители. Виды, классификация и характеристика.
Большинство технологических процессов происходят с использованием энергоносителей различного вида и назначения. Под энергоносителями в промышленности понимают материальное тело или материальную среду, обладающую определенным потенциалом и передающую энергию от одного материального тела к другим. Промышленные предприятия при организации своей деятельности используют энергоресурсы различных параметров, различных видов и различного назначения. Для крупных предприятий говорят о потоках энергоносителей. Направление этих потоков тесно связаны между собой и имеют различные характеристики. На предприятии они объединяются под общим названием «энергоресурсы предприятия». Чаще всего в качестве энергоресурсов на предприятии используются:
- электрическая энергия (60-70% потребления);
- вода;
- тепло;
- воздух;
- ПРВ (продукты разделения воздуха);
- расплавы и соли.
Главной задачей энергоносителей на предприятии является обеспечение условий технологического процесса. При выборе энергоносителей и их характеристик руководствуются в первую очередь условием максимальной дешевизны в рамках заданных параметров. При этом в первую очередь обращается внимание на следующие факторы:
- характеристики и условия протекания технологического процесса;
- характеристики и параметры установленного оборудования;
- параметры самого энергоносителя;
- характер обеспечения энергоносителями предприятия (внутреннее или внешнее) и т.д.
В качестве основных характеристик энергоносителей при их выборе учитывают:
- потенциал или параметры (ток, напряжение, температура, давление и т.д.);
- стоимость;
- качество;
- надежность снабжения;
- режимы потребления.
Параметры энергоносителя определяются характеристиками потребляющего оборудования. Если на реальном предприятии применяются энергоносители с явно завышенными параметрами, это приводит к увеличению эксплуатационных расходов и денежных затрат на вспомогательное оборудование (диаметр жил кабеля, увеличение металлоемкости для труб и т.д.). Поэтому окончательный выбор энергоносителя, его качественных и количественных характеристик производится путем сравнения нескольких вариантов в ходе технико-экономических расчетов.
2. Графики нагрузок по энергоносителям.
Способы выравнивания неравномерности графиков.
Графики нагрузок являются основополагающим звеном при расчете и проектировании систем энергообеспечения предприятия. Они дают ясную картину количественных и качественных изменений параметров конкретных энергоносителей за конкретный период времени. Графики нагрузок зависят от типа и назначения энергоносителя, а также от режима работы предприятия. Например, сезонный график тепловой нагрузки имеет неравномерный характер, обусловленный различными климатическими условиями в различное время года.
Рис. 2. Сезонный график нагрузки по теплу промышленного предприятия и ЖКС.
Рис. 3. График электрической нагрузки промышленного предприятия и ЖКС.
Сезонная нагрузка для данного региона имеет относительно постоянный характер. Примером сезонной нагрузки может служить отопление и вентиляция. Для характеристики количественных и качественных показателей графика вводится ряд понятий и обозначений: Qmax, Qmin, Qср, Qmax зим., Qmax лет. и т.д.
Для характеристики зон графиков вводят понятие базовой части, переменной части и пиковой части. Базовая часть находится между осью и минимальной нагрузкой. Переменная часть находится между средней и минимальной нагрузкой. А пиковая часть - между средней и максимальной нагрузкой. Для описания характера изменения графика вводится ряд коэффициентов, в том числе:
α – коэффициент неравномерности графика;
γ – коэффициент заполнения графика;
ki – интегральный коэффициент графика;
tmax и tmin – число часов использования максимума и минимума нагрузки
и т.д.
Эти коэффициенты используются при расчете и оптимизации системы энергообеспечения предприятия, расчете нагрузок и режимов и выбора параметров основного и вспомогательного оборудования.
Общие тенденции, наблюдаемые в сфере производства в условиях перехода к рыночным отношениям, характеризуются сильной неравномерностью графика энергопотребления. Неравномерности графиков нагрузок предприятий приводит к ряду негативных последствий, в том числе:
1. Снижению качества и надежности энергообеспечения предприятия.
2. Резкому повышению нагрузки на генерирующие предприятия и установки.
3. Сокращению сроков эксплуатации оборудования и увеличению эксплуатационных расходов.
4. К увеличению стоимости единицы выпускаемой продукции.
С целью выравнивания неравномерности графиков нагрузок возможно применение следующих методов:
- взаимное сглаживание неравномерности путем рационального размещения на предприятии или в районе однотипных нагрузок различного назначения;
- снижение энергоемкости производства путем улучшения технологий и внедрения элементов менеджмента;
- применение энергопотребляющих и энергопроизводищих агрегатов, имеющих высокий к.п.д.;
- увеличение доли комбинированной выработки электроэнергии на
ТЭЦ;
- увеличение доли использования ВЭРов и тепла природных источников;
- рациональное размещение базовых и пиковых источников, работающих в верхней части суточного графика;
- выбор оптимальной схемы энергоснабжения и оптимизация параметров энергоносителей;
- регулирование и оптимизация отпуска энергоносителей потребителям;
- рационализация графиков и режимов работы предприятий в рамках района или региона.
Тема 2.
3. Система воздухоснабжения промышленных предприятий.
3.1. Применение сжатого воздуха.
Сжатый воздух является одним из основных энергоресурсов и применяется как рабочая среда в технологических процессах (например, в химических производствах) и как энергоноситель (пневмоинструмент, пневмооснастка, пневмоавтоматика и т.д.) практически на всех предприятиях. Сжатый воздух применяется на электроподстанциях для приведения в действие пневматических приводов выключателей и разъединителей. В воздушных выключателях сжатый воздух используется для гашения электрической дуги и вентиляции внутренних полостей выключателей для удаления осаждающейся на них влаги. В выключателях с воздухонаполненным отделителем, а также в выключателях серий ВВБ, ВНВ и др. сжатый воздух выполняет роль основной изолирующей среды между главными контактами выключателя, находящегося в отключенном положении.
Потенциальная энергия сообщается воздуху в процессе его сжатия и используется затем в пневматических приводах для совершения механической работы. Потенциальная энергия преобразуется в кинетическую энергию струи расширяющегося сжатого воздуха.
Для работы воздушных установок сжатый воздух накапливается в резервуарах этих установок. В свою очередь резервуары пополняются от систем, предназначенных для получения сжатого воздуха.
Подбор оптимальной схемы распределения и рациональных режимов производства и потребления сжатого воздуха ведет к экономии, что не может не оказать значительного влияния на энергобаланс предприятия в целом. Поскольку на производство сжатого воздуха расходуется электроэнергия, его экономия влечет за собой снижение затрат на покупку энергоресурсов.
Особенностью выработки сжатого воздуха является то, что производительность компрессорного оборудования зависит от сезонного изменения плотности атмосферного воздуха (летом плотность воздуха на 15-17% ниже, чем зимой) и давления нагнетания.
Увеличение давления с 5,0 до 6,0 кгс/см2 влечет снижение производительности компрессора на 4-7%, а затраты энергии на компремирование при этом возрастают на 7-10%. Существенным фактором, негативно влияющим на работу компрессорного оборудования, является неритмичное потребление сжатого воздуха, объемы которого доходят на некоторых компрессорных станциях до 40%. Для обеспечения стабильной работы потребителей, при наличии значительных объемов неритмичного потребления, персонал компрессорных станций вынужден поддерживать повышенное давление сжатого воздуха на источниках. Кроме того, знакопеременные нагрузки на оборудование при частых циклах «загрузки-разгрузки» компрессоров влекут преждевременный выход из строя отдельных узлов, на восстановление которых требуются значительные финансовые средства, время и трудозатраты.
Сжатый воздух, в силу своих свойств, существенно отличается от других энергоресурсов:
1. Сжатый воздух не обладает собственной калорийностью, характеризующей объемы использования пара и теплофикации;
2. Сжатый воздух не обладает теплотворной способностью, являющейся основной характеристикой всех видов топлива;
3. Сжатый воздух не используется в химических реакциях как кислород и твердое топливо;
4. В силу своей многокомпонентности сжатый воздух не может быть использован для образования защитной среды как азот и аргон;
5. Сжатый воздух не обладает достаточно высокой удельной теплоемкостью (как вода), характеризующей объемы перекачки технической воды;
6. Сжатый воздух, отчасти, как и электроэнергия, используется в различных по принципу действия приводах для трансформации в механическую работу;
7. Отличительной особенностью является возможность преобразования кинетической энергии струи энергоносителя (струйные пневмоприемники) в механическую.
Все эти отличия обусловливают специфику использования сжатого воздуха как энергоресурса. Основной характеристикой ресурса является способность выполнения работы единицей объема при рабочих параметрах. Отсюда вытекает прямая зависимость расхода ресурса от его плотности в сжатом состоянии. В свою очередь, плотность расходуемого воздуха зависит от давления и температуры.
Перечисленные выше свойства сжатого воздуха как энергоресурса и специфические особенности его выработки определяют необходимость организации работы по энергосбережению у потребителей, в сетях и на источниках сжатого воздуха. Необходимо искать и реализовывать наиболее эффективные способы выполнения этой работы, направленной на изменение и настройку системы распределения (конфигурацию и параметры сетей сжатого воздуха) в условиях изменения структуры основных потребителей и постоянно меняющихся требований к параметрам ресурса. В настоящее время эта работа включает в себя следующие основные направления:
- снижение объемов неритмичного потребления ресурса за счет перевода потребителей на локальное снабжение;
- перевод потребителей, не имеющих повышенных требований к параметрам ресурса на снабжение сжатым воздухом более низких параметров;
- снижение давления на источниках (магистральных воздухопроводах) за счет перераспределения снабжения потребителей со сходными требованиями к параметрам энергоносителя.
Регулирование давления сжатого воздуха является эффективным методом экономии энергоресурса. Снижение давления на 0,1 кг/см2 позволяет сократить потребление сжатого воздуха примерно на 2 %. Существуют различные способы регулирования:
- установка ограничительных устройств;
- установка регуляторов и регулирующих клапанов;
- дросселирование на запорной арматуре.
Наиболее эффективным, но и наиболее затратным является второй способ.
Установка регулирующих клапанов позволяет точно поддерживать заданное давление либо его перепад. Установка ограничительных устройств требует предварительного расчета, а также определенных затрат на изготовление, но данный способ не позволяет осуществлять точное поддержание параметров на заданном уровне. Схожий эффект дает дросселирование на запорной арматуре.
Данный способ является самым беззатратным.
3.2. Требования к качеству сжатого воздуха.
В связи с разнообразием функций, выполняемых сжатым воздухом на предприятиях, к его качеству предъявляются определенные требования. Основными показателями качества сжатого воздуха являются давление, влажность и чистота воздуха от загрязнений механическими примесями.
Номинальное давление и колебания давления воздуха, не должны выходить за пределы определенных значений, так как только при соблюдении их заводы-изготовители гарантируют надежную работу аппаратов. К резким колебаниям давления в воздухораспределительной сети приводят сбросы воздуха при отключениях выключателей. Установки для производства сжатого воздуха во всех режимах работы должны с необходимой быстротой восстанавливать давление, создавая условия для безотказной работы аппаратов.
Степень влажности сжатого воздуха имеет особое значение, поскольку при большой влажности возможна конденсация влаги из воздуха как на внутренних поверхностях механизмов, так и на воздухопроводах. Влага на клапанах и вентилях в холодное время года может замерзнуть и вызвать отказ в работе. Влага на внутренних поверхностях деталей снижает их изоляционные свойства и может явиться причиной отказа. Таким образом, конструкции воздушных систем и пневматических приводов рассчитаны на применение в них сухого воздуха.
Таблица 2.
Классы качества сжатого воздуха
Класс
Размер частиц, мкм
Концентрация, мг/м3
Содержание масла, мг/м3
Точка росы, 0С
1
0,1
0,1
0,01
-70
2
1
1
0,1
-40
3
5
5
1
-20
4
40
10
5
3
5
—
—
25
7
6
—
—
—
10
Содержание влаги в виде пара в сжатом воздухе оценивается его относительной влажностью, представляющей собой отношение массы водяного пара, находящегося в данном объеме воздуха, к массе насыщенного водяного пара в том же объеме воздуха и при той же температуре. Относительная влажность обычно выражается в процентах. Она увеличивается как при сжатии воздуха, так и при понижении его температуры. В обоих случаях относительная влажность будет повышаться, пока не наступит состояние насыщения, т. е. состояние равновесия между испарением жидкости и конденсацией пара из воздуха. Дальнейшее увеличение давления или понижение температуры воздуха (а также одновременное изменение этих параметров) приводит к дальнейшей конденсации излишка водяного пара, а относительная влажность, достигнув 100%, изменяться уже не будет.
В основу термодинамического способа осушки воздуха положено явление конденсации влаги из воздуха при его сжатии и охлаждении. В процессе сжатия воздуха количество влаги в каждой единице его объема возрастает, наступает состояние насыщения, и содержащийся в воздухе водяной пар частично превращается в жидкость. При сжатии воздух нагревается; его охлаждают. Чем ниже температура, до которой он охлаждается, тем больше влаги выпадает в осадок. Температура, при которой начинается образование конденсата, называется точкой росы. В эксплуатации сжатый воздух осушают до такой степени, чтобы точка росы была недостижима при возможных изменениях температуры воздуха в распределительных устройствах.
Сжатый воздух очищают от пыли, продуктов коррозии и других механических примесей, так как, попадая на клапаны выключателей, они препятствуют плотному закрыванию клапанов, вызывают повышенные утечки и отказы в работе.
3.3. Очистка сжатого воздуха
При сжатии компрессор вместе с воздухом всасывает все примеси: пыль, влагу, пары масла, химикатов и т.д. Загрязнения, которые были распределены в 10 м3, концентрируются в 1 м3 сжатого воздуха. В нем они присутствуют даже несмотря на фильтры, встраиваемые на входе компрессора, то есть на всасывании. Поэтому в пневмосистеме необходимы средства очистки, такие как циклонные сепараторы, конденсатоотводчики, рефрижераторные и адсорбционные осушители, различные фильтры. Наиболее серьезную проблему представляет влажность, поскольку в воде растворяются практически все примеси, содержащиеся в воздухе. Получившаяся в результате этого растворения агрессивная смесь вызывает коррозию в компрессоре и трубопроводах, а окисляющиеся частицы и продукты коррозии переносятся к оборудованию, потребляющему сжатый воздух, вызывая его преждевременный износ.
Отделение влаги. Как правило, влага в самом компрессоре не конденсируется благодаря повышению температуры воздуха в процессе сжатия. Производители компрессоров учитывают это явление и проектируют машины для рабочих температур около 80 °С.
Влага в сжатом воздухе — это капли жидкости и пар. Отделение капельной влаги происходит в циклонном сепараторе, установленном на выходе компрессора. Сжатый воздух с капельками воды попадает в циклон, где он вовлекается во вращательное движение с высокой скоростью. Под воздействием центробежных сил капельки жидкости оседают на стенках сепаратора и стекают в коллектор, оборудуемый конденсатоотводчиком. При проектировании рекомендуется расположить циклонный сепаратор с требуемой пропускной способностью так, чтобы он был доступен для обслуживания. Появление конденсата связано и с утечками воздуха из компрессора, ресивера, осушителя и фильтров. Для слива конденсата применяют различные устройства: ручные, поплавковые, таймерные и электронные. Основным преимуществом электронных систем является встроенная система измерения уровня жидкости в приемной камере, благодаря которой они не допускают ни малейшей потери сжатого воздуха, открывая клапан только для слива жидкости. Низкая стоимость делает наиболее популярными поплавковые и таймерные устройства.
Сбор и обработка конденсата. Конденсатоотводчики обязательно комбинируются с концевыми охладителями, фильтрами, осушителями, а также устанавливаются в местах возможного выпадения конденсата.
Основная масса компрессоров работает со смазкой и охлаждением маслом, что неизбежно приводит к загрязнению им конденсата. Экологические нормы постоянно ужесточаются, поэтому все компрессорные фирмы предлагают водно-масляные сепараторы для обработки конденсата перед сбросом его в канализацию. В их работу заложены три принципа: флотация, абсорбция и мембранная фильтрация. В простых и дешевых системах конденсат сбрасывается во флотационную камеру, где отделяется крупнокапельное масло, далее протекает сквозь волокнистый материал, поглощающий частички масляной эмульсии, и окончательно очищается в угольной секции. Естественно, такая система требует периодической смены пакетов-картриджей с волокнистым материалом и активированным углем. В более дорогих системах после флотации окончательная очистка производится высоконапорной микрофильтрацией через пористую керамическую мембрану. Серия ultraaqua auto-clean® фирмы Donaldson Ultrafilter с самоочищающейся мембраной предназначена для компрессорных станций от 90КВтдо3МВт.
Осушка воздуха.
При сжатии в компрессоре воздух сильно нагревается, поэтому во вспомогательное оборудование включают охладители и доохладители. Собственно осушка начинается после циклонного сепаратора, где влага, содержащаяся в сжатом воздухе в виде пара, не могла быть удалена механическим путем.
Осушка с охлаждением.
Главная цель процесса осушки с охлаждением — понизить температуру сжатого воздуха до уровня конденсации находящейся в нем в виде пара жидкости. Температура, при которой начинает конденсироваться содержащийся в сжатом воздухе водяной пар, называется «точкой росы».
Рефрижераторные осушители, как правило, полностью собраны и укомплектованы изготовителем. Существуют рефрижераторные осушители различных размеров, отличающиеся мощностью, объемным расходом, температурой точки конденсации влаги. Диапазон производительности по объемному расходу таких осушителей (например, фирмы Donaldson Ultrafilter) лежит в пределах от 10 до 25000 м3/час и более. Очевидно, что с увеличением объемного расхода увеличивается потребность и в мощности встроенной холодильной машины. Основные параметры, учитываемые при выборе рефрижераторного осушителя, таковы: объемный расход воздуха, давление на входе, температура на входе, температура на выходе, точка росы под давлением, температура окружающей среды/хладагента, потребляемая мощность, перепад давления.
Считается, что использование рефрижераторных осушителей экономически выгодно в 90% случаев. Эксплуатационные расходы и затраты энергии при этом способе осушки ниже, чем при использовании других процессов осушения сжатого воздуха.
Однако применение осушителей, основанных на принципе охлаждения, имеет свои ограничения. При отрицательных температурах (если температура окружающей среды ниже температуры замерзания воды) для надежной защиты трубопроводов и клапанов от замерзания необходимо использовать адсорбционный осушитель. При одном и том же объемном расходе воздуха осушитель потребляет меньше энергии с ростом рабочего давления и при повышении точки росы. Больше энергии потребляется с ростом температуры сжатого воздуха на входе и с ростом температуры хладагента. Для определения необходимой точки росы полезно учитывать минимальную температуру окружающей среды, в которой будет находиться линия сжатого воздуха. Если температура точки росы всего на несколько градусов ниже минимальной температуры окружающего воздуха, то образование конденсата в оборудовании исключено. Выбор слишком низкой точки росы ведет к повышенным затратам и не всегда оправдан экономически.
При проектировании пневмосистем с рефрижераторными осушителями следует иметь в виду, что высокая температура в компрессорной станции может быть причиной снижения их производительности по сравнению с заявленной изготовителем.
Адсорбция.
Рис. 4. Адсорбционный осушитель воздуха.
В отличие от рефрижераторных осушителей воздух при адсорбционной осушке не охлаждается. Влага удерживается на поверхности гранул осушающего вещества — адсорбента. Сам процесс адсорбции не требует затрат энергии, она необходима только для восстановления (регенерации) адсорбента, то есть для удаления осажденной на его поверхности влаги. Так как для процесса регенерации необходимо время, адсорбционный осушитель состоит из двух сосудов: в одном воздух осушается, а в другом адсорбент регенерируется.
Для восстановления адсорбента на практике используются два способа: холодная и горячая регенерация.
При холодной регенерации часть потока сжатого осушенного воздуха направляется в сосуд с адсорбентом, где он поглощает и выносит влагу. Этот воздух — отработанный, и в систему он больше не возвращается. Поэтому при проектировании пневмосистемы осушитель учитывают в качестве дополнительного потребителя сжатого воздуха. Чередующиеся циклы регенерации длятся от 3 до 10 минут.
Конструкция осушителей с холодной регенерацией надежна и проста, и они могут быть спроектированы для достижения более низких (до -80 °С) значений точки росы, чем осушители, использующие для восстановления адсорбента горячий способ. Однако они нуждаются в большом объеме сжатого воздуха, что приводит к увеличению эксплуатационных расходов. К сказанному можно добавить, что потери сжатого воздуха на регенерацию адсорбента — величина достаточно постоянная, но ее доля в общем объеме потребляемой энергии может существенно меняться. Обычно на регенерацию адсорбента расходуется около 15% от номинальной производительности осушителя с холодной регенерацией. При оптимальной загрузке компрессора (например, 1000 м3/час) потери составят те же 15% от всей потребляемой энергии. Если же общая потребность в сжатом воздухе снизилась вдвое-втрое, то доля потерь составит уже 30—45%. Поэтому целесообразно выключать осушитель (точнее, остановить смену циклов) при остановках компрессора или при его работе в режиме холостого хода. Практически все модели осушителей Donaldson Ultrafilter снабжены такой функцией. Именно для того, чтобы свести фактический расход сжатого воздуха к оптимальным значениям, осушителю необходим блок управления.
При горячей регенерации для осушки адсорбента используется горячий воздух. Адсорбционные осушители с горячей регенерацией, как правило, имеют самостоятельную систему продувки адсорбента — специально для того, чтобы исключить потребление сжатого воздуха от компрессора. При этом процессе, в зависимости от типа адсорбента, необходима температура от 150 до 300 °С.
Если в осушителях с холодной регенерацией используется алюмогель или так называемая активированная глина, в «горячих» осушителях применяют силикаты, силикагель или двуокись кремния. Адсорбционная емкость, то есть способность поглощать влагу, резко падает с увеличением температуры. Например, при одном и том же расходе сжатого воздуха размер осушителя, рассчитанного на входную температуру 45 °С, окажется в 2 раза большим (и такой осушитель будет в 2 раза дороже), чем для температуры в 35 °С! В этом случае выгоднее поставить дополнительный охладитель после компрессора. Силикаты более чувствительны к температуре входящего воздуха. Верхний предел использования осушителей с горячей регенерацией составляет 40—45 °С. Адсорбент может выдержать от 2000 до 4000 циклов регенерации. Промежуток времени между автоматическими циклами регенерации составляет от 4 до 8 часов. На способность адсорбента поглощать влагу влияют: окисление, вызывающее утрату влагопоглощающих свойств; уменьшение поверхности гранул адсорбента; загрязнение масляными частицами.
Эксплуатация адсорбционных осушителей с горячей регенерацией более экономична, и при больших расходах сжатого воздуха (начиная с 300—1000 м3/мин) дополнительные инвестиции на более дорогое оборудование окупаются за сроки менее 1,5 лет.
При выборе адсорбционного осушителя учитывают его эксплуатационные параметры: точку росы под давлением, максимальную температура сжатого воздуха на входе, максимальный объемный расход сжатого воздуха и минимальное рабочее давление.
Чем ниже необходимая точка росы под давлением, тем больше энергии требуется для ее достижения. Эта энергия в основном определяет стоимость осушки. Для большинства технологических процессов и оборудования более чем достаточно точки росы -25 °С. Более того, вполне приемлема температура и на 2—3 градуса выше. Но осушка при такой температуре обычно применяется в том случае, если речь идет о компрессоре «все в одном». Если же говорить о протяженных пневмопроводах — неотъемлемой составляющей компрессорных цехов, то для них предпочтительнее более низкие значения точки росы. Иначе резко возрастает вероятность коррозии в пневмопроводах и оборудовании.
О важности роли температуры сжатого воздуха на входе дают представление такие цифры: возрастание температуры с 35 до 45 °С, то есть всего на 10 °С, приводит к увеличению влаги в сжатом воздухе на 70%.
Максимальный объемный расход (иначе говоря, пропускная способность) влияет на уровень давления. Следствием выбора слишком маленького осушителя являются потери давления при больших потоках сжатого воздуха. В отношении рабочего давления существует такая зависимость: при меньшем давлении необходим больший осушитель, и наоборот. Речь в этом случае идет об одном и том же количестве сжатого воздуха.
Donaldson Ultrafilter имеет в своей программе несколько серий осушителей с различной конфигурацией цикла горячей регенерации. Большое многообразие моделей призвано обеспечить максимально экономичное решение для любых конкретных условий. Для безмасляных компрессоров (турбо и «сухих винтов») применяется модель с регенерацией от тепла компрессии, то есть работающая от «бесплатного» тепла. Некоторые модели гарантированно обеспечивают точку росы -40 °С даже в условиях тропического климата. Существуют две разновидности блоков управления: таймерные и контроллеры точки росы. Таймерные блоки включают осушитель только тогда, когда компрессор работает с нагрузкой. Периодичность циклов регенерации фиксированная. Контроллеры точки росы регулируют работу осушителя на основе оценки качества сжатого воздуха на выходе, а конкретнее — точки росы. Такие контроллеры совершеннее таймерных, и ими практически стандартно комплектуются осушители Donaldson Ultrafilter большого размера, но на маленьких моделях их пока применяют редко по причине высокой стоимости.
Фильтрация.
Фильтры и сепараторы, применяемые в технологии очистки сжатого воздуха, могут классифицироваться по различным параметрам:
• назначение (всасывающий фильтр, промежуточный, стерильный и т.д.);
• способ фильтрации (пористый фильтр, мембранный и т.д.);
• фильтрующий материал (тканевый фильтр, бумажный, волоконный, спеченные фильтры из частиц металла, керамики, пластика);
• качество (тонкость) фильтрации в зависимости от применяемого фильтроэлемента.
Например, в классификации фирмы Donaldson Ultrafilter имеются следующие фильтры:
• PE — фильтроэлемент для очистки от твердых пылевых частиц сжатого воздуха. Материал — пластик, удерживающая способность для частиц размером более 5 или 25 мкм — 100%.
• SB — фильтроэлемент для грубой очистки. Материал — спеченная бронза, регенерируемый, удерживающая способность для частиц более 5 или 25 мкм — 100%.
• FF — фильтроэлемент для тонкой очистки сжатого воздуха. Материал — микрофибра, задерживающая 99,999% частиц размером 0,01 мкм. Остаточное содержание масла после фильтрации — 0,1 мг/м3 (0,1 промиле).
• MF — фильтроэлемент для тонкой очистки. Материал — микрофибра, задерживающая 99,99998% частиц размером 0,01 мкм. Остаточное содержание масла составляет 0,03 мг/м3.
• SMF — фильтроэлемент для тонкой очистки. Материал —микрофибра, которая задерживает 99,99999% частиц размером 0,01 мкм, остаточное содержание масла — 0,01 мг/м3.
• АК — фильтроэлемент для устранения запахов. Материал — активированный уголь. Остаточное содержание масла менее 0,003 мг/м3.
Корпуса фильтров, в зависимости от требуемой производительности (до 40000 м3/час) и рабочего давления, изготавливаются из алюминия, углеродистой или нержавеющей стали. Все они оборудованы индикатором загрязненности фильтра — дифманометром, а также механическим или электронным конденсатоотводчиком. Модификация superplus® оборудована дифманометром-экономайзером. Это несложное, но эффективное устройство на основании записанных в него данных о мощности компрессоров, стоимости электроэнергии и сменных фильтров показывает экономически оптимальный срок замены элемента (сравнивается стоимость дополнительной энергии, потраченной компрессором на преодоление сопротивления фильтра, со стоимостью нового фильтрующего элемента).
Тщательная фильтрация воздуха резко удорожает эксплуатационные расходы. Например, дорогостоящие фильтры очень тонкой очистки быстро засоряются загрязняющими компонентами атмосферного воздуха, в результате чего резко падает давление в системе. Поэтому следует перед тонкой фильтрацией очищать сжатый воздух от более крупных включений.
Рассматривая сжатый воздух как энергоноситель, нельзя не учитывать вопросы, связанные с его подготовкой. Решая эти вопросы, можно добиться значительного снижения (в некоторых случаях на 70%) затрат на производство сжатого воздуха, обеспечить полноценное, грамотное его потребление, что в свою очередь позволяет сократить производственные затраты.
Тема 3.
3.4. Технология производства сжатого воздуха.
Сжатый воздух получается с помощью различного типа компрессоров. Компрессоры низкого давления называют вентиляторами и применяют для перемещения и подачи воздуха в калориферы сушильных установок, воздухоподогреватели, топки, а также для преодоления сопротивления движению газов, чтобы обеспечить тягодутьевой режим в различных установках.
По принципу устройства и работы компрессоры делятся на две группы – объемные и лопаточные. Объемные компрессоры подразделяются на поршневые и ротационные, а лопаточные – на центробежные и осевые (аксиальные). Несмотря на конструктивные различия термодинамические принципы их работы аналогичны между собой.
Методы получения сжатого воздуха:
— объемный (с помощью объемного компрессора – компрессора статического сжатия, которое происходит в нем вследствие уменьшения объема, где заключен газ);
— динамический (с помощью лопаточного компрессора - компрессора динамического сжатия).
3.4.1. Получение и распределение сжатого воздуха.
Установки для получения и распределения сжатого воздуха состоят из следующих элементов:
- компрессоров с электрическим приводом и автоматической системой управления пуском и остановкой;
- воздушных всасывающих фильтров для очистки воздуха, засасываемого первой ступенью компрессора из атмосферы;
- змеевиковых охладителей с водомаслоотделителями и продувочными клапанами после каждой ступени компрессора;
- воздухосборников (ресиверов) — сосудов для накопления сжатого воздуха и редукторных клапанов, устанавливаемых на выходе воздуха из воздухосборников в распределительную сеть;
- воздухопроводов, арматуры, приборов и вспомогательных устройств, необходимых для нормальной эксплуатации воздухораспределительной сети.
В настоящее время используются компрессоры на номинальное давление 4 и 4,5 МПа (типов ВШ-3/40М и АВШ-1,5/45) и 23 МПа (типа ВШВ-2,3/230). Компрессоры с номинальным давлением 4 и 4,5 МПа применяются при рабочем давлении воздушных выключателей 2 МПа, а компрессоры с повышенным давлением 23 МПа — при рабочем давлении воздушных выключателей 2,6-4 МПа.
Также применяются небольшие автоматизированные компрессоры типа АВВ-5/2 производительностью 0,3 м3/мин с воздухосборниками объемом 0,5 м3, рассчитанными на давление 2 МПа.
На рис. 6 представлена схема установки получения и распределения сжатого воздуха. В установке применены наиболее распространенные в энергосистемах трехступенчатые поршневые компрессоры типа ВШ-3/40М, всасывающие атмосферный воздух в объеме 180 м3/ч с последующим сжатием его до 4-4,15 МПа.
Рис. 5. Оборудование для систем подготовки сжатого воздуха.
Атмосферный воздух засасывается в первую ступень компрессора через воздушный всасывающий фильтр 3, где он проходит над поверхностью масляной ванны, в которой оседает содержащаяся в воздухе пыль. В первой ступени компрессора воздух сжимается до 250 кПа. Нагретый при сжатии воздух поступает в змеевиковый охладитель, трубки которого снаружи обдуваются окружающим воздухом, нагнетаемым вентилятором 5.
Рис. 6. Принципиальная схема установки получения и распределения сжатого воздуха:
1 - электродвигатель компрессора; 2 - система маслосмазки; 3 - воздушный всасывающий фильтр; 4 - компрессор; 5 - вентилятор обдувки; 6 - змеевиковые охладители I, II, III ступеней; 7-9 - водомаслоотделитель; 10 - электромагнитный клапан, управляющий продувкой; 11 - крестовина распределения воздуха; 12 - клапаны поступенчатой продувки; 13 - обратный клапан; 14 - воздухосборник; 1 5 - ручной спускной вентиль и электроподогреватель; 16 - предохранительный пружинный клапан; 17 - манометр; 18 - редукторный клапан; 19 - предохранительный клапан редуктора; 20 - манометры; 21 - линейные масловодоотделители; 22 - магистральные воздухопроводы; 23 - кольцевая воздухораспределительная сеть; 24 - запорный вентиль в распределительном шкафу выключателя; 25 - фильтр; 26 - обратный клапан; 27 - резервуары выключателя; ДТ1, ДТ2 - датчики температуры; ДД1-ДД8 - датчики давления: K 1, K 2, КЗ - компрессорные установки
В процессе охлаждения сжатого воздуха его относительная влажность все время остается на уровне 100%. При этом излишек водяного пара (а также пары масла, попадание которого в систему нагнетания не исключено) конденсируется в водомаслоотделителе 7, откуда конденсат удаляется продувкой. Во второй ступени воздух сжимается до 1,1МПа, в третьей - до 4 МПа, и, так же как и в первой ступени, подвергается осушке. Из охладителя третьей ступени воздух поступает в конечный водомаслоотделитель 9 и далее через обратный клапан 13 в воздухосборник 14. Обратный клапан служит для предотвращения обратного поступления воздуха из воздухосборника в компрессор при остановленном агрегате.
Назначение воздухосборника состоит в том, чтобы аккумулировать сжатый воздух, выравнивать давление в воздухопроводах, смягчать пульсации, вызываемые работой компрессоров, и дополнительно сепарировать воздух от воды и масла. Конденсат накапливается в конденсатосборнике, вваренном в днище сосуда. Из него конденсат периодически удаляется через спускной ручной вентиль 15. Таяние льда в конденсатосборниках производится при помощи керамических электроподогревателей. Каждый воздухосборник снабжается показывающим манометром 17 и для защиты от повышения давления - предохранительным клапаном, который регулируют с таким расчетом, чтобы давление в воздухосборнике не превышало рабочее более чем на 10%. Из воздухосборника в распределительную сеть сжатый воздух поступает через редукторный клапан 18, снижающий давление с 4 до 2 МПа, при этом относительная влажность воздуха уменьшается до 50%. Редукторный клапан автоматически подает воздух в распределительную сеть в строгой соразмерности с его расходом. Он открывается при снижении давления в магистрали до 1,9 МПа и закрывается при давлении 2,1 МПа. В нижней части корпуса редукторного клапана вмонтирован предохранительный клапан 19, назначение которого состоит в том, чтобы не допускать повышения давления в магистрали сверх допустимого (2,1 МПа). Его открытие и выпуск воздуха в атмосферу начинаются при давлении 2,15 МПа. После сброса давления предохранительный клапан закрывается силой сжатых пружин.
Изменение давления перед редукторным клапаном (т. е. в воздухосборнике) не оказывает воздействия на его открытие. По пропускной способности число параллельно устанавливаемых редукторных клапанов выбирают с таким расчетом, чтобы восстановление давления в магистралях и резервуарах воздушных выключателей обеспечивалось за 3-5 мин до значения, достаточного для работы выключателей во втором цикле АПВ, если первый цикл был неуспешным.
Воздухораспределительная сеть 23 служит для подвода сжатого воздуха к распределительным шкафам. Она, как правило, выполняется кольцевой, отдельно для каждого РУ. Питающие магистрали подводятся в двух точках. После редукционного клапана на концевых участках магистралей устанавливают линейные водомаслоотделители 21, представляющие собой небольшие сосуды с патрубками для входа и выхода воздуха. Отделение влаги происходит за счет изменения направления потока воздуха при входе и выходе. В нижней части сосуда установлен запорный ручной вентиль для периодического удаления влаги.
Трубы воздухопроводов прокладывают с уклоном 0,3-0,5% в направлении линейных воздухомаслоотделителей.
Режимы и автоматический контроль работы установок сжатого воздуха. Основным требованием, предъявляемым к компрессорным установкам, является высокая надежность в обеспечении сжатым воздухом аппаратов распределительных устройств. Надежность обеспечивается непрерывным поддержанием достаточного запаса сжатого воздуха в воздухосборниках, установкой резервных компрессоров на случай выхода из работы основных агрегатов, созданием схемы распределительной сети, позволяющей выводить из работы в ремонт любой элемент установки, сохраняя в работе остальные участки.
Режим работы установок сжатого воздуха определяется давлением воздуха в воздухосборниках и в воздухораспределительной сети. Необходимое давление поддерживается периодическими пусками компрессоров. Время между остановкой и последующим пуском компрессоров, зависящее от расхода воздуха на утечки и вентиляцию, должно быть не менее 60 мин, а восстановление нормального давления должно обеспечиваться не более чем за 30 мин. Если компрессоры включаются чаще, их следует осмотреть, проверить давление, создаваемое ими, и давление в воздухосборниках, после чего на слух проверить отсутствие утечек воздуха из воздухопроводов и пневматической аппаратуры.
Операции включения и отключения компрессоров автоматизированы. Агрегаты снабжены устройствами технологической защиты. Пуск рабочего компрессора производится автоматически датчиком давления ДД4 (рис. 16). Импульс на включение подается при снижении давления воздуха в воздухосборниках до 3,8 МПа. Если рабочие компрессоры не смогут восстановить давление до номинального, то при снижении его до 3,7 МПа датчиком ДД5 включается резервный компрессор. Предусмотрен поочередный запуск рабочих компрессоров с интервалом в несколько секунд, чтобы не допускать резкого снижения напряжения в сети собственных нужд. Датчиком ДТ2 блокируется пуск компрессора при температуре масла в картере менее 10°С, так как загустевшая смазка повышает нагрузку на отдельные детали компрессора и электродвигателя. В этом случае включается электроподогреватель масла. После подогрева масла до 10°С запрет пуска снимается автоматически. Остановка резервного и рабочих компрессоров производится теми же датчиками (ДД4 и ДД5 )при давлении 4,1 МПа.
Когда компрессор останавливается, происходит открытие мембранных продувочных клапанов 12 водомаслоотделителей 7-9 для спуска накопившейся в них влаги. У остановленного компрессора клапаны нормально открыты. Закрытие их происходит во время работы компрессора давлением воздуха, поступающего в мембранные полости через крестовину 11, перед которой установлен электромагнитный клапан 10, управляющий продувкой. Цепь электромагнита связана с пусковым устройством электродвигателя. При отключении электродвигателя с электромагнита снимается напряжение, электромагнитный клапан закрывается, подача сжатого воздуха через крестовину прекращается, и мембранные клапаны открываются.
Датчики давления ДД1 и ДД2 контролируют давление воздуха между I и II ступенями работающего компрессора и подают импульс на остановку при чрезмерном повышении и понижении давления. Кроме того, датчик температуры ДТ1 контролирует превышение температуры масла в компрессоре сверх 70°С, а датчик ДДЗ подает импульс на отключение при недостаточном или слишком большом давлении в циркуляционной системе смазки.
Помимо контроля за работой собственно компрессоров установлены датчики ДД6, сигнализирующие о повышении или понижении (до 3,6 МПа) давления в воздухосборниках, а также в магистралях распределительной сети (датчики ДД7 и ДД8).
Схема управления работой компрессорных установок состоит из двух частей: силовой части - цепей питания электродвигателей компрессоров и их вентиляторов и релейной части - цепей управления, автоматики, технологических защит и сигнализации. Основная аппаратура управления и сигнализации размещается в специальных индивидуальных шкафах, а электроконтактные манометры ДД1-ДДЗ и электроконтактные термометры ДТ1, ДТ2 - на раме компрессора. Общие для всей компрессорной установки цепи автоматики и сигнализации размещаются в отдельном общем шкафу, откуда сигналы отклонений давления воздуха и неисправности в компрессорной передаются на щит управления подстанции. Появление сигнала обязывает персонал явиться в помещение компрессорной для выяснения причины срабатывания сигнального реле. Датчики общей схемы автоматики и сигнализации размещаются на отдельной металлической конструкции в помещении компрессорной.
3.4.2. Поршневые компрессорные установки.
Рис. 7. Поршневая компрессорная установка.
1 — всасывающее устройство; 2 — фильтр; 3 — первая ступень компрессора; 4 — вторая ступень компрессора; 5 — межступенчатый холодильник; 6 — концевой холодильник; 7 — влаго–маслоотделитель; 8 — ресивер; 9 — магистральный вентиль; 10 — пусковой вентиль; 11 — выпускной вентиль; 12 — сборный бак;
13 — магистраль.
Схема работает следующим образом. Поршневой компрессор, приводимый в движение электродвигателем, через воздухозаборное устройство (1) засасывает атмосферный воздух. Пройдя по прямому участку трубопровода, воздух попадает в фильтр (2), где очищается от примеси атмосферной влаги и пыли. Далее, проходя через всасывающий трубопровод, воздух попадает в первую ступень компрессора (3). После сжатия, через обратный клапан и промежуточный трубопровод, воздух нагнетается в межтрубное пространство промежуточного охладителя (5). Из охладителя воздух всасывается второй ступенью компрессора (4) и через нагнетательный трубопровод подается в межтрубное пространство концевого охладителя (6). После охлаждения воздух поступает в водомаслоотделитель (7) и далее в воздухосборник (8), предназначенный для снижения пульсации воздуха и резервировании его части. Из воздухосборника воздух по магистральному трубопроводу (13) поступает в воздушную сеть предприятия и к потребителю. Через продувочный бак (12) осуществляется слив конденсата из концевого охладителя и водомаслоотделителя. Кроме того схема компрессорной установки должна содержать:
а) предохранительные клапана (сброс излишка воздуха);
б) запорные задвижки (предназначены для переключений, отключений, вывода в ремонт элементов компрессорной установки);
в) обратный клапан (предназначен для избежания утечек воздуха из сети при отключении компрессора);
г) разгрузочный вентиль (предназначен для сброса воздуха и облегчения пуска компрессорной установки).
Компрессорные установки выполненные на базе поршневых компрессоров предназначены для производств, в которых потребителям воздуха требуется воздух высокого давления и в небольшом количестве (при малых расходах). Для повышения давления воздуха используется многоступенчатые компрессоры. После каждой ступени могут быть установлены промежуточные холодильники.
3.4.3. Технология получения сжатого воздуха с помощью центробежных компрессоров
Принципиальная схема турбокомпрессорной установки, построенной на базе центробежных компрессоров, имеет вид:
Рис. 8. Турбокомпрессорная установка на базе центробежных компрессоров
1 — воздухоприемник; 2 — фильтр; 3 — дроссельный клапан; 4 — секции компрессора; 5 — межсекционный холодильник; 6 — промежуточный холодильник; 7 — концевой холодильник; 8 — обратный клапан; 9 — глушитель; 10 — антипомпажный клапан; 11 — выхлопная задвижка; 12 — напорный коллектор; 13 — промежуточный отбор.
Компрессорные установки, построенные на базе центробежных компрессоров, используются в производстве с большим расходом воздуха и малых давлениях.
Атмосферный воздух засасывается через воздухоприемник (1) и проходит предварительную очистку в фильтре (2). Между второй и первой ступенью компрессора устанавливается дроссельный клапан (3), связанный с регулятором давления. Это позволяет поддерживать постоянное давление в напорном коллекторе (12) путем открытия или закрытия дроссельной заслонки на входе. Затем воздух поступает в первую секцию турбокомпрессора и далее через межсекционный холодильник (5) во вторую ступень компрессора. Поле второй секции компрессора, пройдя через промежуточный холодильник (6) и третью секцию компрессора, воздух поступает в концевой холодильник (7). После концевого холодильника воздух поступает в напорную линию (12). На участке сети от концевого холодильника до напорной линии устанавливается обратный (8), антипомпажный (10) клапана и выхлопная задвижка (11). Антипомпажный клапан открывается автоматически при уменьшении потребления воздуха, часть воздуха при этом сбрасывается в атмосферу через глушитель (9). При необходимости получить воздух низкого давления возможен промежуточный отбор воздуха (13) с любой из секций компрессора.
Для ручной регулировки сброса воздуха и запуска компрессора в случае одновременной параллельной работы нескольких установок в сеть предназначена выхлопная задвижка (11).
В системе воздухоснабжения, построенной на базе центробежных компрессоров, отсутствует воздухосборник (нет пульсаций и воздуховоды большого диаметра выполняют роль ресивера), а также водомаслоотделитель.
3.5. Обслуживание компрессорной установки
В обязанность персонала, обслуживающего компрессорную установку, входят:
- систематический (не реже 1 раза в смену) осмотр всей компрессорной установки, устройств автоматики и сигнализации;
- наблюдение за пуском и работой компрессоров и электродвигателей, их температурой, давлением масла в системе смазки и воздуха в каждой ступени, а также отсутствием пропусков воздуха и состоянием прокладок в местах уплотнений;
- проверка уровня масла в картере, доливка масла;
- проверка давления воздуха в воздухораспределительной сети;
- продувка водомаслоотделителей; содержание в чистоте оборудования и помещения компрессорной.
Наблюдая за пуском компрессора, обращают внимание на исправность его механической части. Если при пуске будут обнаружены стук клапанов, удары, толчки и другие неполадки, компрессор необходимо немедленно остановить. Последующее включение в работу производится лишь после выявления и устранения неисправности. Всякие исправности и ремонты компрессоров на ходу (в том числе и подтягивания болтов) запрещены.
В процессе эксплуатации следят за исправностью всасывающего фильтра, а также за тем, чтобы в него не попадали пыль и твердые частицы, так как они могут привести к быстрому износу трущихся частей компрессора. Масло в воздушный всасывающий фильтр заливается до отметки, указанной на камере. При высоком уровне масло может попасть в цилиндр компрессора и нарушить его работу. Полную смену масла в воздушном фильтре следует производить через 100-120 ч работы.
При уходе за компрессором важное значение имеет правильная смазка цилиндров, где поршни работают при высокой температуре. Излишняя смазка способствует загрязнению трубопроводов и воздухосборников. Для смазки применяется тщательно профильтрованное масло соответствующего ассортимента.
Требуют наблюдения и воздухосборники. Спуск конденсата из них следует производить не реже 1 раза в сутки, причем в наиболее холодное время суток. В зимний период при низких температурах воздуха рекомендуется включать электроподогреватели конденсатосборников на время, необходимое для таяния образовавшегося в них льда. Электроподогреватели отключаются после спуска влаги. Непрерывный обогрев днищ воздухосборников недопустим, так как он приводит к нагреву воздуха и уменьшению степени его осушки.
На подстанциях должны быть оперативные схемы воздушных коммуникаций с указанием открытых и закрытых при нормальной работе вентилей. При изменении положения вентилей вносится изменение в схему, о чем при сдаче смены сообщается принимающему дежурство. Места расположения вентилей на территории подстанции отмечаются особыми знаками. Доступ к вентилям должен быть свободен в любое время года. В помещениях компрессорных установок должны быть вывешены наглядные принципиальные схемы пневматических и электрических связей всех элементов установок.
Персонал, обслуживающий пневматическую установку, должен хорошо знать возможные неполадки в работе оборудования и способы предупреждения и устранения неисправностей.
О неисправностях в работе установок приготовления сжатого воздуха подаются сигналы на щит управления подстанции. Выводятся, как правило, три сигнала: об отклонении давления от заданного значения в воздухосборниках; об отклонении давления в сети рабочего давления; о неисправности, появившейся в компрессорах. При поступлении любого из этих сигналов оперативный персонал обязан прийти в помещение компрессорной и расшифровать поступивший сигнал по показаниям электроконтактных манометров и положению указателей сигнальных реле на щите автоматики.
В случае поступления сигнала о неисправности в компрессорной, установить который по показаниям сигнальных реле на щите автоматики не удается, следует проверить положения указателей защитных автоматических выключателей каждого компрессора, находящихся на щите собственных нужд.
Неисправности в работе компрессоров и способы их устранения. Неполадки, появляющиеся при работе компрессорной установки, могут привести к аварии и даже к взрыву оборудования. Поэтому при обнаружении неполадок важно своевременно их устранить. Ниже приводятся неполадки, с которыми обычно сталкивается оперативный персонал.
Компрессор не включается. Причиной может быть неисправность электросети или автоматики пуска. В этом случае необходимо проверить наличие напряжения на питающих шинах с. н., положение рукоятки ключа управления компрессором, работу защитных автоматических выключателей и магнитных пускателей, действие аппаратов в схеме пуска.
При понижении температуры воздуха в компрессорной ниже 10°С и неисправности нагревательного патрона для подогрева масла пуск компрессора тоже не произойдет. Следует проверить исправность нагревательного патрона, если он включен в систему автоматики.
Работающий компрессор отключается из-за перегрева масла, высокого или низкого давления масла, высокого давления нагнетания первой (второй) ступени или срабатывания предохранительного клапана первой (второй) ступени.
В этих случаях необходимо последовательно осмотреть и проверить действие приборов и автоматики в схеме автоматического управления, технологической защиты и сигнализации компрессорной установки. Если дефекты не будут обнаружены, о неисправности сообщается ремонтному персоналу, так как причиной отключения компрессора может быть неисправность иного характера (например, ненормальная работа поршней, засорение масляных каналов и их фильтров, утечки в нагнетательном маслопроводе, поломки всасывающих клапанов, неисправности предохранительных клапанов и др.), для устранения которой потребуется разборка компрессора или отдельных его деталей.
Компрессор во время работы не развивает требуемую степень сжатия воздуха. Причиной может быть неплотное закрытие мембранных клапанов продувки или пропуск воздуха в пневматической линии, снабжающей мембранные клапаны рабочим воздухом. Следует осмотреть и проверить работу мембранных клапанов и отсутствие пропусков в пневматической линии.
Не срабатывают продувочные мембраны клапанов. Причиной может быть зависание сердечника или повреждение (сгорание) катушки электромагнитного клапана. Необходимо легким постукиванием сдвинуть сердечник. Сгоревшую катушку следует заменить.
Периодические профилактические осмотры, ремонты, а также техническое обслуживание компрессоров производят специалисты-компрессорщики.
Неисправности и вывод из работы воздухосборников. Воздухосборники - сосуды, работающие под высоким давлением, - должны немедленно отключаться и выводиться из работы в следующих случаях:
- при повышении давления в воздухосборнике выше допустимого;
- при неисправности предохранительного пружинного клапана;
- при обнаружении свищей и трещин в сварных швах, стенках сосуда и запорной арматуре, а также при выпучивании стенок сосуда;
- при неисправности или неполном комплекте крепежных деталей у крышек и люков;
- при возникновении пожара в непосредственной близости от воздухосборника.
Обнаружив неисправность, оперативный персонал должен:
- ввести в работу резервный воздухосборник (резервную компрессорную установку);
- вывести (отключить) из работы воздухосборник, на котором обнаружена неисправность;
- принять меры к снижению давления в сосуде;
- сообщить о неисправности воздухосборника лицу, ответственному за его техническое состояние.
3.6. Потребление сжатого воздуха на промышленных предприятиях.
Тип, характер и разветвленность воздушных сетей предприятия.
Классификация систем воздухоснабжения:
— система низкого давления (2-3 атм.);
— система среднего давления (6-9 атм.);
— системы высокого давления (от 20 атм. и выше ).
Мощность основного и вспомогательного оборудования установленного на компрессорной станции выбирается исходя из условий технологического процесса. Их схемы могут существенно отличаться и зависят в первую очередь от мощности предприятия. Например схема СВСПП (система воздухоснабжения промышленного предприятия) средней мощности может выглядеть следующим образом:
Рис. 9. Схема системы воздухоснабжения промышленных предприятий.
I — секция поршневых компрессоров компрессорной станции; II — секция турбокомпрессоров компрессорной станции; III — транспортные магистрали; IV — межцеховые сети; V — кольцевая сеть предприятия; VI — тупиковые сети; VII — напорные сети; 1 — поршневые компрессоры; 2 — центробежные компрессоры; 3 — фильтры; 4 — водо-маслоотделитель; 5 — концевые холодильники; 6 — ресивер; 7 — потребители воздуха; 8 — дожимной компрессор; 9 — запорно-регулирующая аппаратура; 10 — потребитель воздуха (использует воздух двух давлений)
В состав системы воздухоснабжения предприятия средней мощности входят компрессорные и воздуходувные (последние иногда входят в состав компрессорной станции в качестве отдельных установок) воздушные сети, трубопроводный или баллонный транспорт, распределительное устройство и потребители сжатого воздуха.
Компрессорные станции в зависимости от потребляемого количества воздуха (расхода Q или G) и его давления необходимого для потребителя могут комплектоваться:
— центробежными и поршневыми компрессорами;
— воздуходувками;
— вентиляторами.
Для доставки воздуха потребителям используются разветвленные воздушные сети радиального, магистрального, кольцевого, тупикового типов.
Рис. 10. Типы воздушных сетей
Сети сжатого воздуха на предприятии разделяют на межцеховые и внутренние. Межцеховые сети — участки сети от сборных коллекторов компрессорной станции до ввода в конкретный цех.
Рис. 11. Сети сжатого воздуха
Межцеховые сети прокладываются в каналах и траншеях (подземный способ прокладки), по эстакадам или лотках (надземный способ прокладки). Выбранный способ прокладки должен обеспечивать возможность проведения ремонтных работ и ликвидаций аварий без остановки компрессорной станции. Для отключения отдельных участков цепи и осуществления переключений различного рода устанавливается запорно-регулирующая аппаратура (арматура).
К ней относятся: вентили; задвижки; заслонки; регуляторы; клапана и т.д.
Наиболее надежной считается схема, при которой на каждый крупный потребитель работает свой компрессор, однако в силу дороговизны таких схем чаще используются организация параллельной работы компрессоров на сборный коллектор. Для компенсации температурных деформаций используют:
— специальные участки цепи (компенсаторы);
— подвижные опоры;
— подвижное закрепление трубопровода на опоре.
К внутри цеховым сетям сжатого воздуха относятся все участки воздушной сети начинающиеся от ввода в цех и предназначенные для обеспечения воздухом каждого из потребителей.
В местах ввода воздушной сети в цех оборудуются узлы ввода. Они могут быть выполнены по следующей схеме:
Рис. 12. Узел ввода.
1 — измерительная диафрагма; 2 — редукционный клапан; 3 — манометры; 4 — дифманометры; 5 — водо-маслоотделитель.
В состав узлов ввода также могут входить другие приборы и устройства (термометры, сборные коллектора, задвижки и т.д.).
3.7. Гидравлический расчет воздухопроводов
Под воздухопроводами понимают обычно трубопроводы для воздуха высокого давления (свыше 0,15 ати), подаваемого нагнетателями и компрессорами. Трубопроводы воздуха низкого давления, подаваемого вентиляторами, называют воздуховодами.
Воздухопроводы изготавливаются обычно из стальных шовных (водогазопроводных) или бесшовных горячекатаных труб; иногда применяются стальные холоднотянутые и холоднокатаные трубы. Шовные трубы имеют сравнительно невысокое допускаемое давление (с обычной стенкой должны выдерживать до 20 кгс/см2), поэтому их применяют в неответственных случаях и умеренных давлениях. При прокладке воздухопроводов их сваривают.
Воздуховоды чаще всего бывают сварные или клепанные. При давлении воздуха до 200 – 300 мм их изготовляют из листового железа толщиной от 0,5 – 2 мм и доставляют на место в идее отдельных секций длиной 1 – 3 м. Секции снабжены фланцами и собираются при помощи болтов. Воздуховоды такого типа бывают круглого и прямоугольного сечения (короба). При небольших расходах вентиляторного воздуха, а также при более высоком его давлении воздуховоды изготавливают из стальных труб и делают цельносварными из листовой стали. В ряде случаев воздуховоды делают из кирпича, бетона, железобетона и других материалов (подземные воздуховоды).
В воздухопроводах может допускаться скорость в пределах 5-20 м/с, но рекомендуются значения скоростей 12 – 15 м/с.
В ходе гидравлического расчета находят давление на входе, а также строят характеристика сети газопровода.
Гидравлический расчет:
1) Расчет плотности и расхода газа при данном давлении и температуре.
Расчетным уравнением плотности для газа является:
.
где ρо - плотность газа при нормальных условиях:
,
µгаза - молярная масса газа, νm – молярный объем;
p, T – давление и температура газа,
po, To – давление и температура газа при нормальных условиях.
Температура и давление газа при нормальных условиях:
То = 273 К,
po = 760мм.рт.ст. = 0,760*13600*9,81 Па = 1,01396*105 Па.
2) Выбор труб и определение расчетных скоростей на отдельных участках:
При выборе труб необходимо задаться некоторым значением скорости. Оно выбирается исходя из экономических соображений. Следующий этап состоит в определении диаметров d труб на участках:
.
где F- площадь поперечного сечения трубопровода, ω-средняя скорость движения газа.
По рассчитанному значению d подбирают в справочнике ближайший диаметр стандартной трубы. Затем обратным расчетом вычисляют действительную скорость воды в выбранной стандартной трубе. Если эта скорость ненамного отличается от средне-экономичной (примерно 12-15 м/с), то выбор можно считать законченным.
3) Определение потерь напора на участках:
Наружные сети обычно можно отнести к длинным трубопроводам, где общие потери напора, в основном, определяются потерями на трение, а местные учитываются коэффициентом местных потерь:
,
где b – коэффициент сопротивления трубопровода:
,
где l и d – длина и диаметр трубопровода, F – площадь поперечного сечения трубопровода; ξ - коэффициент местного сопротивления, его значения приводятся в справочниках; λ - коэффициент трения (значение λ определяется рядом условий, в первую очередь режимом течения газа).
Существует последовательное и параллельное соединение трубопроводов. При последовательном:
.
При параллельном :
.
Картина движения газа в потоке может быть различной. Существует ламинарный и турбулентный режимы течения, количественной мерой этих режимов является число Рейнольдса (Re). Его численное значение зависит от соотношения трех величин: средней скорости потока ω, его диаметра d, и вязкости ν, которая рассчитывается по формуле:
,
где ρ – плотность газа, µ – динамическая вязкость газа:
,
где µ0 – динамическая вязкость газа при 0 оС, T – температура газа, С – постоянная для данного газа;
.
Число Рейнольдса является безразмерной величиной. Границей перехода из одного режима в другой считается обычно значение Re=2320 - критическое значение (Reкр). При Re< Reкр – режим течения ламинарный. При Reкр 1000 мм, то V = 0,8 — 0,9 м/с
Вторым параметром, имеющим важное значение для расчета трубопроводов, являются гидравлические потери:
• линейные (по длине труб);
• местные.
Для протяженных и разветвленных ветвей местные потери имеют небольшие значения и при расчетах принимаются 5 — 10 % от линейных.
Для расчета внутренних коммуникаций и сетей малой протяженности потери рассчитываются по формуле:
Для квадратичной области течения используют первую и вторую водопроводную формулу:
1)
2)
Для упрощенных расчетов разработаны таблицы и монограммы.
Водопроводы и водопроводные сети выполняются из металлических и не металлических материалов:
при P от 10 до 16 атм — чугунные трубы;
при P до 10 атм — стальные трубы.
В местных сетях небольшого давления и протяженности используют асбестно–цементные, железобетонные и пластмассовые трубы.
Тема 5.
5. Газоснабжение промышленных предприятий
5.1. Назначение газоснабжения
Газ применяется как основное топливо на ТЭЦ и в котельных. В последнее время разработаны схемы и оборудование для непосредственного применения газа в промышленных отопительных системах и водоподогревателях. Кроме того, во многих случаях газ применяется в качестве топлива при ведении технологических процессов, а иногда газ является исходным технологическим сырьем.
Источниками газоснабжения промышленных предприятий могут быть месторождения природного газа и газовые заводы, на которых при термической переработке твердых топлив, главным образом каменного угля, получают искусственные газы. Кроме того, таз может быть побочным продуктом при технологических процессах.
Наиболее выгодно применять для газоснабжения природный газ. Преимущество его перед другими видами топлива заключается в дешевизне, большой теплотворной способности, высокой транспортабельности (передача по трубам на большое расстояние), отсутствии большого количества сернистых газов, выбрасываемых в воздушный бассейн города, легкой автоматизации процесса сгорания. Замена газом других видов топлива, кроме того, способствует уменьшению территорий на промышленных предприятиях, занятых под склады угля, мазутохранилища и шлаковые отходы, способствуют освобождению транспорта от перевозки топлива. Транспортирование газа от места его получения до потребителей осуществляется в основном по трубопроводам. До города от места его добычи (изготовления) газ передается по магистральным газопроводам. Начальным пунктом является головная компрессорная станнмя, а конечным пунктом магистральных сетей - газораспределительная станция (ГРС), расположенная на вводе в город (промышленный район).
По трассе магистральных газопроводов кроме головной компрессорной стагации устанавливаются промежуточные компрессорные станции для повышения давления газа. Расстояние между ними 130—150 км. После компрессорной станции давление газа повышается до 50—55 ат.
После ГРС газ поступает в сеть высокого давления, которая выполнена в виде кольца (полукольца или лучей). Отсюда газ подается через ГРП (газорегуляторные пункты) в сети среднего и низкого давления. Промышленные предприятия получают газ от городских распределительных сетей среднего и высокого давления через ответвления. На вводе устанавливают главное отключающее устройство, которое размещается вне территории предприятия. Газ к цехам поступает по межцеховым газопроводам, которые могут быть подземными или надземными. Из условий удобства обслуживания отдается предпочтение надземным прокладкам.
Снижение давления газа после сетей высокого или среднего давления осуществляется или в центральном (одном на предприятии) ГРП или на вводе в каждый цех устанавливается ГРУ (газораспределительная установка). На вводе газопровода в город давление газа обычно составляет 10—12 ат.
Расход газа потребителями никогда не бывает равномерным и колеблется по часам суток, дням недели и по времени года. Особенную неравномерность газопотребления вызывает отопительная (сезонная) нагрузка. Суточное потребление газа летом в два раза меньше, чем зимой. В отдельные зимние дни с низкими температурами наружного воздуха потребление газа превышает среднесуточное потребление в течение месяца на 30—40%. Неравномерное потребление газа в летний период приводит к неполному использованию мощностей дальних газопроводов, а в зимний— к необходимости сокращать, а в отдельные дни полностью прекращать подачу газа некоторым потребителям.
Для хранения избытков газа, образующихся вследствие неравномерного потребления, устанавливаются специальные емкости, называемые газгольдерами; предусматриваются специальные «буферные» потребители, потребляющие большое количество газа в летние месяцы (как правило, электрические станции, потребляющие в качестве топлива газ с возможностью его замены мазутом), и создаются крупные подземные хранилища газа.
5.2. Горючие газы, их назначение и классификация.
В качестве сырья для производства сжиженного газа используются природный и нефтяной попутный газы, газовый конденсат и нефть.
Технологические особенности получения сжиженного газа определяются источниками производства: нефте- или газопереработкой, нефтехимией. При нефтепереработке (на нефтеперерабатывающих и нефтехимических предприятиях) сжиженный газ — фактически дополнительный продукт при получении бензинов и прочих продуктов. В отраслях газопереработки и частично в нефтехимии ситуация иная: производимый сжиженный газ является основным продуктом для реализации и/или последующей переработки в продукцию более высоких переделов.
Существует два вида газов:
• природные (добываются в газовых месторождениях и как попутные в нефтяных месторождениях);
• промышленные (коксовые, доменные, конверторные, получаемые с помощью газгольдеров и т.д.);
Газы могут использоваться по 3 направлениям:
1. В качестве топлива в силу дешевизны и широкого применения.
2. В качестве исходного сырья для получения ряда продуктов (химия, парфюмерия, пищевые технологии).
3. Для бытовых целей.
Природный газ широко используется в качестве топлива в основных отраслях промышленности. Промышленные газы используются в качестве ВЭРов, служат источником сырья для сопутствующих производств, а в целом ряде случаев просто выбрасываются в атмосферу.
Природные газы.
Горючие природные газы — результат биохимического и термического разложения органических остатков. Чаще месторождения природного газа сосредоточены в пористых осадочных породах (пески, песчаники, галечники), подстеленных или покрытых плотными (например, глинистыми), породами. Во многих случаях «подошвой» для них служат нефть и вода.
В сухих месторождениях газ находится преимущественно в виде чистого метана с очень малым количеством этана, пропана и бутанов. В газоконденсатных, помимо метана, в значительной доле содержатся этан, пропан, бутан и других более тяжелые углеводороды, вплоть до бензиновых и керосиновых фракций. В попутных нефтяных газах находятся легкие и тяжелые углеводороды, растворенные в нефти.
Согласно требованиям ГОСТ 5542-87, горючие свойства природных газов характеризуются числом Воббе, которое представляет собой отношение теплоты сгорания (низшей или высшей) к корню квадратному из относительной (по воздуху) плотности газа.
Пределы колебания числа Воббе весьма широки, поэтому для каждой газораспределительной системы (по согласованию между поставщиком газа и потребителем) требуется установить номинальное значение числа Воббе с отклонением от него не более ±5%, чтобы учесть неоднородность и непостоянство состава природных газов.
По этим причинам при переводе тепловых установок с одного газа на другой необходимо обращать внимание на близость не только значений чисел Воббе обоих газов, которые обеспечивают постоянство тепловой мощности всех горелок, но и всех их физико-химических характеристик. Подсчет чисел Воббе производится по ГОСТ 22667–82 (табл. 3.2), в котором приведены все необходимые для этого данные (высшая и низшая теплота сгорания газов и их относительная плотность) с учетом коэффициента сжимаемости Z различных газов и паров.
Применение природного газа в качестве топлива дает следующие преимущества:
1. Дешевизна.
2. Удобство регулирования режимов горения.
3. Уменьшение эксплуатационных расходов.
4. Компактность устройств и установок для сжигания газа.
5. Высокая экономичность и гигиеничность.
6. Экологическая чистота.
Сжиженные углеводородные газы.
К сжиженным углеводородным газам относят такие, которые при нормальных физических условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления (без снижения температуры) переходят в жидкое. Это позволяет перевозить и хранить сжиженные углеводороды как жидкости, а газообразные регулировать и сжигать как природные газы.
Основные газообразные углеводороды, входящие в состав сжиженных газов, характеризуются высокой теплотой сгорания, низкими пределами воспламеняемости, высокой плотностью (значительно превосходящей плотность воздуха), высоким объемным коэффициентом расширения жидкости (значительно большим, чем у бензина и керосина), что обусловливает необходимость заполнять баллоны и резервуары не более чем на 85–90% их геометрического объема, значительной упругостью насыщенных паров, возрастающей с ростом температуры, и малой плотностью жидкости относительно воды.
Химический состав сжиженных углеводородных газов различен и зависит от источников их получения. Сжиженные газы из попутных нефтяных и газоконденсатных месторождений состоят из предельных (насыщенных) углеводородов — алканов, имеющих общую химическую формулу СnН2n+2. Основными компонентами этих углеводородов являются пропан и бутан.
Недопустимо наличие в сжиженном газе в значительных количествах этана и метана (они резко увеличивают упругость насыщенных паров), пентана и его изомеров (поскольку это влечет за собой резкое снижение упругости насыщенных паров и повышение точки росы).
Сжиженные газы, получаемые на предприятиях в процессе переработки нефти, кроме алканов содержат непредельные (ненасыщенные) углеводороды — алкены, имеющие общую химическую формулу СnН2n (начиная с n = 2). Основными компонентами этих газов, помимо пропана и бутана, являются пропилен и бутилен. Наличие в сжиженном газе в значительных количествах этилена недопустимо, так как ведет к повышению упругости насыщенных паров.
Свойства сжиженных газов для бытовых целей регламентирует ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные».
Искусственные газы.
Эти газы делят на две группы. К первой относят газы высокотемпературной (около 1000°С) перегонки, получаемые при нагревании твердого топлива без доступа воздуха: коксохимические, коксогазовые, газосланцевые. Производство горючих газов по этому способу основано на пирогенетическом разложении жирных каменных углей и сланцев под воздействием температуры. Ко второй группе относят газы безостаточной газификации, получаемые в результате нагревания твердого топлива в токе воздуха, кислорода и их смесей с водяным паром: доменные, генераторные, подземной газификации.
5.3. Режимы потребления газа
Потребление газа отличается неравномерностью, причем каждой категории газопотребителей свойственны характерные сезонные, недельные и суточные неравномерности потребления.
Наибольшая суточная неравномерность присуща бытовым и другим потребителям, использующим газ для приготовления пищи и горячей воды, наименьшая — промышленным предприятиям с непрерывными технологическими процессами.
Колебания в расходе газа бытовыми потребителями имеют определенную закономерность: в дневные и вечерние часы расход газа наибольший, а в ночные снижается до минимума, доходя при малом числе потребителей почти до нуля. При этом в течение суток наблюдаются часы усиленного потребления газа, соответствующие времени приготовления пищи и приема ванн.
Потребление газа неравномерно и по дням недели; при сравнительно равномерном от понедельника до пятницы в субботу оно увеличивается. Значительное повышение расхода газа наблюдается также в предпраздничные дни, например, 31 декабря, когда потребление газа превышает годовой среднесуточный расход в 1,6–1,8 раза.
Сезонная неравномерность потребления газа объясняется дополнительным расходом на отопление в зимнее время и некоторым уменьшением его летом.
Режимы расхода газа различными категориями потребителей зависят от множества факторов и местных условий, не поддающихся точному учету. По этим причинам любые количественные характеристики режимов расхода газа, составленные на основании исследований проектных, научных и эксплуатационных организаций, должны уточняться в зависимости от местных условий.
5.4. Расчетные часовые расходы газа
Расчетные часовые расходы газа служат исходными данными для определения диаметров газопроводов, для выбора размеров и типов газовой арматуры, аппаратуры и оборудования.
Неравномерность потребления газа обусловливается неравномерными режимами работы каждого установленного прибора или установки и несовпадением часов работы как однотипных, так и разных по назначению приборов.
Системы газоснабжения городов и других населенных пунктов следует рассчитывать на максимальный часовой расход газа исходя из совмещенного суточного графика потребления всеми потребителями.
Расчетный часовой расход газа Qр.ч, м3/ч, при 0°С и давлении 101,3 кПа на хозяйственно-бытовые и коммунальные нужды определяют как долю годового расхода по формуле:
Qр.ч = Kм Qгод,
где Kм — коэффициент часового максимума расхода газа (коэффициент перехода от годового расхода к максимальному часовому); Qгод — годовой расход газа, м3/год.
Коэффициент часового максимума расхода принимают дифференцированно для каждого района газоснабжения, сети которого представляют собой самостоятельную систему, гидравлически не связанную о системами других районов. Значения этого коэффициента для коммунально-бытовых потребителей приведены в справочной литературе.
Расчетный часовой расход газа на технологические и отопительные нужды промышленных, коммунально-бытовых и сельскохозяйственных предприятий следует определять с учетом КПД газового оборудования. Значения коэффициента часового максимума расхода газа необходимо устанавливать при проектировании на основании данных о характере производства и режимах топливопотребления с разработкой совмещенного суточного графика для каждого предприятия в отдельности. Для промышленных предприятий, строительство и ввод в эксплуатацию которых предусмотрены в течение расчетного периода, Qp.ч принимают по данным проектов, а при отсутствии проектов — на основании данных о планируемой мощности предприятий и укрупненных показателей расхода топлива аналогичными предприятиями.
Для отдельных жилых домов и общественных зданий Qp.ч, м3/ч, можно определить и по сумме номинальных расходов газа газовыми приборами с учетом коэффициента одновременности их действия:
Qp.ч = Σk0qini
где k0 — коэффициент одновременности для однотипных приборов или групп их; qi — номинальный расход газа прибором или группой приборов, м3/ч (принимаемый по паспортным данным или техническим характеристикам приборов); ni — число однотипных приборов или групп их.
Расчетный расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, равен сумме транзитного и 0,5 путевого расхода газа на данном участке.
Метод учета неравномерности потребления газа с помощью коэффициентов одновременности приемлем для внутри домовых, дворовых и внутриквартирных газовых сетей, при расчете и проектировании которых известны число квартир, подлежащих газоснабжению, и ассортимент устанавливаемых в них газовых приборов. Он пригоден и для определения расчетных расходов газа в учреждениях и учебных заведениях, оборудуемых газовыми приборами, отдельными газовыми горелками или установками. Значения k0 при этом должны определяться для каждого потребителя в зависимости от режимов газопотребления.
Для расчета городских газопроводов, в особенности связанных в единую систему распределения газа, указанный метод неприемлем из-за многообразия газовых приборов и установок и различных режимов использования газа разными категориями потребителей.
Кроме того, при расчете систем распределения газа установить число подлежащих газоснабжению квартир (в особенности для проектируемых районов и городов) и тем более газовых приборов не представляется возможным. Поэтому при проектировании систем распределения газа расчетные расходы определяются как доли годовых расходов газа.
5.5. Типы газопроводов
Место добычи природного газа не совпадает с местом его потребления. Для доставки газа потребителям используют газопроводы, выполненные по различным схемам.
Газопрово́д — инженерное сооружение, предназначенное для транспортировки газа (в основном природного газа) с помощью трубопровода. Газ по газопроводам и газовым сетям подаётся под определённым избыточным давлением.
Газопроводы подразделяются на:
Магистральные газопроводы — предназначены для транспортировки газа на большие расстояния. Через определённые интервалы на магистрали установлены газокомпрессорные станции, поддерживающие давление в трубопроводе. В конечном пункте магистрального газопровода расположены газораспределительные станции, на которых давление понижается до уровня, необходимого для снабжения потребителей.
Газопроводы распределительных сетей — предназначены для доставки газа от газораспределительных станций к конечному потребителю.
По давлению в магистрали:
- низкого давления — до 0,05 МПа;
- среднего — от 0,05 до 3 МПа;
- высокого — второй категории от 3 до 6 МПа и первой категории — от 6 до 12 МПа.
По типу прокладки:
- Наземные;
- Надземные;
- Подземные;
- Подводные.
Резервные газопроводы сооружаются по стратегическим соображениям, для обеспечения гибкости в погрузке газовозов и для снижения длины маршрута транспортировки.
При значительном удалении потребителя от источника применяется следующая схема дальнего газоснабжения:
Рис. 30. Схема дальнего газоснабжения.
1 – подземное хранилище (или газовая скважина); 2 – заборный и отсекающий вентили; 3 – циклон для очистки газа от пыли; 4 – сборный коллектор; 5 – газоперекачивающая станция; 6 – главная газораспределительная станция; 7 – распредустройство; 8 – газовое хранилище (или газгольдер); 9 – потребители.
Перечень агрегатов и устройств, способ прокладки и вид самой схемы транспортировки газа потребителю зависят от расстояния доставки и суммарной мощности потребителей. Например, на дальних магистральных линиях используются трубопроводы диаметром до 1,6 м. В целях увеличения надежности газоснабжения ПП, городов и поселков применяются многоступенчатые кольцевые схемы. На каждой из ступеней устанавливаются газораспределительные пункты соответствующего давления (высокого, среднего и низкого). В случае использования природного газа на предприятии в качестве основного топлива на нем могут быть установлены газосмесительные станции. Их назначение – приготовление горючей смеси. На газораспределительных пунктах (ГРП), газораспределительных станциях (ГРС) устанавливается контрольно-регулирующая аппаратура и оборудование, работающие в автоматическом режиме.
5.6. Получение промышленного газа из твердого и жидкого топлива
Существуют два способа получения промышленных газов из твердых и жидких сортов топлива:
1. Коксование.
2. Газификация.
Коксование углей.
Широко распространённый технологический процесс, который состоит из стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов.
Подготовка включает обогащение (для удаления минеральных примесей) низкосернистых, малозольных, коксующихся углей, измельчение до зёрен размером около 3 мм, смешение нескольких сортов угля, сушка полученной т. н. «шихты».
Коксование получило преимущественное распространение при получении горючих газов из твердого топлива. Осуществляется путем нагрева твердого топлива в закрытом пространстве. Для коксования шихту загружают в щелевидную коксовую печь (ширина 400—450 мм, объём 30-40 м³). Каналы боковых простенков печей, выложенных огнеупорным кирпичом, обогреваются продуктами сгорания газов: коксового (чаще всего), доменного, генераторного, их смесей и др. Генераторный газ (воздушный газ) — газовая смесь, содержащая (в среднем, об. %) CO — 25, N2 — 70, CO2 — 4 и небольшие примеси других газов.
Получают генераторный газ путём пропускания воздуха над раскалённым каменным углём или коксом в специальных печах — газогенераторах (КПД процесса 65-70 %). Выход из кокса 4,65 м³/кг.
Теплотворная способность генераторного газа составляет 800—1000 ккал на кубометр, причём замена воздуха на кислород при его получении ведёт к значительному увеличению доли монооксида углерода и, соответственно, к увеличению теплотворной способности.
Генераторный газ применяется как топливо в металлургической, стекольной, керамической промышленности, для двигателей внутреннего сгорания, а также для синтеза аммиака.
Рис. 31. Схема улавливания продуктов коксования: 1 — коксовая батарея; 2 — газосборник; 3 — газопровод; 4 — отделитель конденсата; 5 — газовый холодильник; 6 — электрофильтр (для отделения смолы); 7 — газодувка; 8 — трубопровод для отвода конденсата; 9 — отстойник; 10 — хранилище смолы; 11 — хранилище аммиачной воды; 12 — аммиачная колонна; 13 — подогреватель газа; 14 — сатуратор; 15 — каплеотбойник; 16 — бензольный скруббер; 17 — подогреватель насыщенного масла; 18 — бензольная колонна; 19 — холодильник для масла; СБ — сырой бензол; Г- обратный газ; См -смола; СФ — сульфат; СВ — сточные воды.
Продолжительность нагрева составляет 14-16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75-78 % от массы исходного угля) в виде т. н. «коксового пирога» (спёкшейся в пласт массы) — выталкивается специальными машинами («коксовыталкивателями») в железнодорожные вагоны, в которых охлаждается («тушится») водой или инертным газом (азотом).
Парогазовая смесь выделяющихся летучих продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 70 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25-35 °C). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от NH3 и H2S, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ (14-15 % от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.
Из надсмольной воды (9-12 % от массы угля) отгонкой с паром выделяют: NH3 (в виде концентрированной аммиачной воды), фенолы, пиридиновые основания. Очищенную воду после разбавления технической водой направляют на тушение кокса или на биологическую очистку сточных вод на очистные сооружения.
Каменноугольная смола (3-4 % от массы угля) является сложной смесью органических веществ (в настоящее время идентифицировано только ~60 % компонентов смолы — более 500 веществ). Смолу методом ректификации подвергают разделению на фракции: нафталиновую, поглотительную, антраценовую и каменноугольный пёк. Из них, в свою очередь, кристаллизацией, фильтрованием, прессованием и химической очисткой выделяют: нафталин, антрацен, фенантрен, фенолы и каменноугольные масла. Полученные горючие газы отличаются высокой засоренностью и низкой температурой сгорания.
Газификация как процесс промышленным способом осуществляется в специальных газовых генераторах. Подземная газификация осуществляется на местах нахождения дешевых углей путем их сжигания в замкнутом пространстве. Газификация жидкого топлива осуществляется в газогенераторах.
Газификация на промышленном предприятии может осуществляться тремя способами:
1. Центральный (газ вырабатывается на одном месте и подается в различные цеха).
2. Групповой (группы газогенераторов работают на свои цеха).
3. Индивидуальный (один или несколько газогенераторов работают на индивидуального потребителя или на цех).
Рис. 32. Схема ПГУ с газификацией угля и улавливанием СО2
Кроме газов, получаемых из твердых и жидких видов топлива, на предприятиях могут использоваться доменный газ, получаемый при выплавке чугуна, нефтяной газ как побочный продукт при перегонке нефти, коксовый газ как побочный продукт при получении кокса, печные газы как несгоревшие остатки различных видов топлива и т.д. Все они различаются по температуре сгорания, составу и степени засоренности. Современные тенденции развития промышленности свидетельствуют о снижении количества потребляемых промышленных газов и постепенном переходе к увеличению доли сжигаемого природного газа.
5.7. Транспортировка газа потребителю.
Устройство газопроводов низкого и среднего давления
В связи с удаленностью источников от места потребления природного газа, его доставка осуществляется по магистральным линиям при давлении до 5 МПа и диаметре трубопровода до 1,6м. Во всех вновь прокладываемых газопроводах в целях увеличения пропускной способности давления увеличиваются до 7,5 МПа. Для поддержания давления при перекачке газа на большие расстояния через каждые 120-150 км устанавливаются дожимные компрессорные станции. Передача горючего газа от магистральной линии к потребителям осуществляется с помощью сетей соответствующего давления (среднего и низкого), ГРС и ГРП. В связи с большой неравномерностью и сезонностью графиков потребления газа необходимо осуществлять резервирование газа. Для выравнивания сезонных неравномерностей и складирования газа используются подземные хранилища больших объемов (бывшие нефтяные и газовые месторождения). Суточные и часовые неравномерности потребления выравниваются с помощью специальных хранилищ и газгольдеров. В связи с большой взрывопожароопасностью к газовым сетям, ГРС и ГРП, запорно-регулирующей аппаратуре и оборудованию, в соответствии с действующим СниП, предъявляются повышенные требования. Доставка газа к потребителям на местах может осуществляться с помощью подземной и надземной прокладки. Преимущественно используется подземная прокладка. Надземная прокладка допускается на территории ПП, коммунально-бытовых и жилых массивов при целом ряде особо оговоренных условий.
Для подачи газа от групповых установок служат стальные газопроводы, укладываемые подземно и рассчитанные на давление чистого газа 3–5 кПа, а газовоздушных смесей — 1,5–3 кПа.
Подземные газопроводы. Трассировка газопроводов по территории населенных пунктов, внутри кварталов или дворов должна обеспечивать наименьшую протяженность газопроводов и ответвлений от них к жилым зданиям, а также максимальное удаление от надземных строений (в особенности имеющих подвалы) и ненапорных подземных коммуникаций (канализационных труб, каналов для теплопроводов и других емкостей, по которым может распространиться газ). Трассировка газопроводов по незастроенным территориям должна производиться с учетом планировки будущей их застройки.
В соответствии с требованиями действующих «Правил безопасности в газовом хозяйстве» Госгортехнадзора РФ расстояния по горизонтали между газопроводами низкого давления (до 5 кПа) и другими сооружениями должны быть в свету, м, не менее:
- до фундамента зданий и сооружений, путепроводов и тоннелей — 2;
- опор наружного освещения, контактной сети и связи — 1;
- оси крайнего пути железнодорожной колеи 1520 мм — 3,8;
- оси крайнего пути трамвая — 2,8;
- бортового камня улицы, дороги — 1,5;
- наружной бровки кювета или до подошвы насыпи улицы, дороги — 1;
- фундаментов опор воздушных линий электропередачи напряжением до 1 кВ и наружного освещения — 1, свыше 1 до 35 кВ — 5, и выше — 6;
- стволов деревьев — 1,5;
- кустарников — не нормируется.
При прокладке газопроводов между зданиями и под арками зданий, а также на отдельных участках трассы, где приведенные расстояния не могут быть выдержаны, допускается их уменьшать до значений, обеспечивающих сохранность всех подземных сооружений при строительстве и ремонте каждого из них. При необходимости уменьшения расстояния применяются длинномерные бесшовные трубы с увеличенной толщиной стенок; используются гнутые отводы; сварные стыки проверяются физическими методами контроля; трубы защищаются от коррозии весьма усиленной изоляцией.
Минимальные расстояния в плане между инженерными подземными сетями по горизонтали в свету должны быть, м, не менее:
- до водопровода — 1;
- бытовой канализации — 1;
- дренажной и дождевой канализации — 1;
- газопроводов низкого, среднего, высокого давления — 0,5;
- силовых кабелей до 100 кВ и кабелей связи — 1;
- тепловых сетей и общих коллекторов – 2.
Укладка двух и более газопроводов в одной траншее допускается на одном или разных уровнях (ступенями). Расстояния между газопроводами должны быть достаточными для проведения монтажа и ремонта трубопроводов, но не менее 0,4 м для труб диаметром до 300 мм.
Расстояния по вертикали в свету при пересечении подземных газопроводов всех давлений с другими подземными сооружениями и коммуникациями должны быть, м, не менее:
- водопровод, канализация, водосток, телефонная канализация и т. д. — 0,15;
- канал теплосети — 0,2;
- электрокабель, телефонный бронированный кабель — 0,5;
- электрокабель маслонаполненный (110–220 кВ) — 1.
Рис. 33. Схема газоснабжения промышленного предприятия от городских газопроводов среднего давления.
1 – городской распределительный газопровод среднего (или высокого) давления; 2 – ввод газопровода; 3 – задвижка с компенсатором в глубоком колодце; 4 – подземные межцеховые газопроводы среднего или высокого давления; 5 – ГРП и центральный пункт измерения расхода газа; 6 – подземные межцеховые газопроводы среднего давления; 7 – кран; 8 – надземные газопроводы, прокладываемые по стене здания; 9 – шкафная ГРУ (ШРУ); 10 – задвижка с компенсатором в глубоком колодце (отключающее устройство цеха); 11 – штуцер с краном и пробкой для взятия пробы; 12 – продувочный газопровод; 13 – отключающее устройство (задвижка) на вводе в цех; 14 – кран в мелком колодце; 15 – надземные межцеховые газопроводы, прокладываемые по колоннам; 16 – П-образный компенсатор; 17 – задвижка на надземном газопроводе с площадкой и лестницей для его обслуживания; 18 – внутрицеховая ГРУ.
Уменьшение расстояния между газопроводом и электрокабелем или бронированным кабелем связи возможно при условии прокладки их в футлярах, при этом расстояние в свету между газопроводом и стенкой футляра должно быть, м, не менее: при прокладке электрокабеля — 0,25; бронированного кабеля связи — 0,15, а концы футляра должны выходить на 1 м в обе стороны от стенок пересекаемого газопровода.
Надземные газопроводы. Эти газопроводы в большей степени доступны надзору обслуживающего персонала, меньше подвержены деформациям, позволяют быстро устранять возможные неполадки и выполнять ремонтные работы без отключения потребителей. Газопроводы низкого и среднего давления допускается прокладывать по наружным стенам жилых и общественных зданий не ниже IV степени огнестойкости и отдельно стоящим несгораемым опорам, а газопроводы низкого давления с условным диаметром труб до 50 мм — по стенам жилых домов.
Надземные газопроводы следует проектировать с учетом компенсации продольных деформаций и при необходимости, когда не обеспечивается самокомпенсация, предусматривать установку компенсаторов (не сальниковых). Высота прокладки газопровода должна выбираться с учетом обеспечения его осмотра и ремонта. Под оконными проемами и балконами зданий не следует предусматривать фланцевые или резьбовые соединения на газопроводах. Газопроводы, прокладываемые по наружным стенам зданий, эстакадам, опорам, а также стояки на выходе из земли при необходимости должны быть защищены от механических повреждений. Газопроводы должны иметь уклон не менее 0.003, в низших точках необходимо устанавливать устройства для удаления конденсата. Для указанных газопроводов должна предусматриваться теплоизоляция.
Минимальные расстояния по горизонтали в свету от надземных газопроводов, проложенных на опорах, до жилых и общественных зданий должны быть не менее 2 м. Расстояния в свету между совместно проложенными и пересекающимися надземными газопроводами и трубопроводами другого назначения должны приниматься при диаметре газопровода до 300 мм не менее диаметра газопровода, но не менее 100 мм. Расстояния между опорами надземных газопроводов следует определять в соответствии с требованиями действующих «Указаний по расчету стальных трубопроводов различного назначения».
Отключающие устройства. На газопроводах предусматривается установка отключающих устройств на вводах газопроводов в отдельные здания или их группы (два смежных здания и более), а также перед наружными (открытыми) газопотребляющими установками. На подземных газопроводах их следует устанавливать в колодцах мелкого заложения с компенсаторами. На газопроводах с условным проходом менее 100 мм следует применять преимущественно П-образные компенсаторы. При стальной арматуре, присоединяемой к газопроводам с помощью сварки, компенсаторы не устанавливаются.
Установка отключающих устройств на вводах газопроводов низкого давления должна предусматриваться, как правило, снаружи здания. Для арматуры, расположенной на высоте более 2,2 м, следует предусматривать площадки из негорючих материалов с лестницами или дистанционный привод. Для обслуживания арматуры, используемой редко, допускается предусматривать применение переносной лестницы.
При прокладке в одной траншее двух и более газопровод устанавливаемая запорная арматура должна быть смещена относительно друг друга на расстояние, обеспечивающее удобство обслуживания и ремонта.
Газопроводы внутри помещений. Внутри помещений газопроводы прокладываются открыто по стенам, параллельно полу (потолку). Протяженность газопроводов СУГ от стояков до газовых приборов минимальна. Не допускаются пересечения трубами жилых комнат, а при проходе через стены — дымовых и вентиляционных каналов. При креплении газопроводов к стенам необходимо соблюдать расстояния, обеспечивающие возможность осмотра и ремонта газопроводов и установленной на них запорной арматуры. Установка кранов упорной гайкой в сторону стены недопустима.
Взаимное расположение газопроводов и электропроводки внутри зданий должно удовлетворять следующим требованиям:
- от проложенного открыто электрического провода (электропровод) до стенки газопровода должно быть выдержано расстояние не менее 10 см (оно может быть уменьшено до 5 см при прокладке электропроводов в трубках);
в месте пересечения газопровода с открытопроложенным электропроводом последний должен быть заключен в резиновую или эбонитовую трубку, выступающую на 10 см с каждой стороны газопровода;
- при скрыто проложенном электропроводе от стенки газопровода должно быть выдержано расстояние не менее 5 см, считая до края заделанной борозды.
В местах пересечения газопровода с другими трубопроводами (водопровод, канализация) их трубы не должны соприкасаться. Для отключения газа кроме крана на каждом стояке устанавливают краны на вводе в квартиру, в лестничной клетке (при лестничном стояке), на ответвлении от стояка к приборам в кухне и перед каждым прибором. При расположении стояка в кухне и установке в квартире только одного газового прибора (плиты без счетчика) отключающий кран на отводе от стояка можно не устанавливать. Газопроводы, прокладываемые внутри помещений, должны быть выполнены из стальных труб. Соединение труб следует предусматривать, как правило, на сварке. Резьбовые и фланцевые соединения допускаются только в местах установки запорной арматуры и газовых приборов. Разъемные соединения газопроводов должны быть доступны для осмотра и ремонта.
Прокладку газопроводов внутри зданий и сооружений следует предусматривать открытой. В помещениях предприятий бытового обслуживания, общественного питания и лабораторий допускается прокладывать подводящие газопроводы к отдельным агрегатам, газовым приборам в бетонном полу с последующей заделкой труб цементным раствором. При этом для труб должна предусматриваться противокоррозионная изоляция. В местах входа газопровода в пол и выхода из него должны предусматриваться футляры, выступающие над ними не менее чем на 3 см.
Принципиально устройство газопроводов для снабжения промышленных и коммунально-бытовых предприятий с повышенным расходом газа отличается возможностью использования среднего давления. По «Правилам безопасности в газовом хозяйстве» и СНиП 42-01-02 межцеховые газопроводы на промышленных предприятиях могут быть как подземными, так и надземными. Выбор способа прокладки межцеховых газопроводов зависит от степени насыщенности территории подземными коммуникациями, типа грунтов и покрытий, характера строительных сооружений и зданий, расположения цехов, потребляющих газ, и технико-экономических соображений. Как правило, на предприятиях предпочтение отдается надземной прокладке межцеховых газопроводов.
Схемы газоснабжения предприятий, как и способы прокладки газопроводов, разнообразны. При выборе схемы необходимо руководствоваться техническими и экономическими требованиями, а также требованиями надежности и безопасности: обеспечение необходимых параметров горючего газа (давление и расход) перед газовыми горелками теплоагрегатов; минимальные капитало- и металловложения (минимальные диаметры и длины газопроводов, число ГРП и ГРУ); обеспечение надежных и безопасных строительно-монтажных и пусконаладочных работ, эксплуатации.
Рис. 34. Схема газоснабжения предприятия от городского газопровода низкого давления.
1 – городской распределительный газопровод низкого давления; 2 – ввод газопровода; 3 – задвижка с компенсатором в глубоком колодце; 4 – гидравлический затвор; 5 – продувочный газопровод; 6 – штуцер с краном и пробкой для взятия пробы; 7 – подземные межцеховые (дворовые) газопроводы низкого давления; 8 – кран в мелком колодце.
В зависимости от расхода и давления газа, режима работы теплоагрегатов, территориального расположения потребителей газа на предприятии и технико-экономических показателей и с учетом практики проектирования и эксплуатации различают несколько типовых схем газоснабжения промышленных и коммунально-бытовых предприятий.
Коммунально-бытовые предприятия со сравнительно небольшим расходом газа и теплоагрегатами, работающими на газе низкого давления (фабрики-кухни, столовые, встроенные отопительные котельные с секционными котлами и др.), как правило, присоединяются к городским газопроводам низкого давления или резервуарным паркам (для комплексов автономного газоснабжения пропан-бутановыми смесями) (рис. 33).
Схема газоснабжения состоит из ввода газопровода с общим отключающим устройством, межцеховых газопроводов с отключающими устройствами перед каждым цехом, продувочных газопроводов и таких элементов, как контрольные трубки, контрольные проводники, конденсатосборники (для влажных газов), компенсаторы и др.
Общее отключающее устройство (задвижку) устанавливают на вводе газопровода. Оно предназначено для отключения подачи газа при ремонте или аварии системы газоснабжения. Продувочные газопроводы предназначены для удаления воздуха и газовоздушной смеси и заполнения системы чистым газом во время первоначального и последующих (после ремонтов межцеховых газопроводов или длительном отключении системы) пусков. Для определения качества продувки на продувочном газопроводе устанавливают штуцер с краном для отбора пробы среды, состав которой может быть определен на газоанализаторе.
В рассматриваемой схеме газоснабжения условно принята подземная прокладка газопроводов. На схеме не показаны конденсатосборники: для централизованного газоснабжения применяется осушенный природный газ, а при использовании влажных горючих газов газопроводы прокладываются с уклоном и в низких точках системы устанавливаются конденсатосборники.
Средние и крупные промышленные предприятия присоединяются к городским распределительным газопроводам среднего или высокого давления (рис. 34). В качестве примера принято, что в цехах 2 и 3 теплоагрегаты работают на газе среднего давления (давление газа перед горелками агрегатов принято равным), а в цехах 1 и 4 — на газе низкого давления. После общего отключающего устройства на межцеховом газопроводе начального давления газа установлен газорегуляторный пункт (ГРП), предназначенный для снижения давления газа с высокого или среднего до среднего давления, необходимого для теплоагрегатов цехов 2 и 3 с учетом потерь давления. В здании ГРП смонтирован центральный пункт измерения расхода газа, предназначенный для хозяйственных расчетов предприятия с поставщиком. В цехах 1 и 4 для использования газа низкого давления дополнительно установлены газорегуляторная установка (ГРУ).
Для межцеховых газопроводов принята смешанная схема прокладки — подземная и надземная. Надземные газопроводы могут прокладываться по наружным стенам и несгораемым покрытиям промышленных зданий с производствами, отнесенными по пожарной опасности к категориям В, Г и Д, а также по отдельно стоящим колоннам (опорам) и эстакадам из несгораемых материалов. Важное замечание: газопроводы высокого давления могут прокладываться по стенам производственных зданий только над окнами верхних этажей или по глухим стенам.
Диаметры газопроводов определяются гидравлическим расчетом при максимальном расходе газа с учетом перспективного роста потребления, связанного с развитием предприятия, и допустимых потерь давления. Все подземные стальные газопроводы защищаются от коррозии, вызываемой грунтом и блуждающими электрическими токами. Для этого применяются меры как пассивной, так и активной защиты.
К особенностям автономных систем газоснабжения, использующих низкие и средние давления, относится преимущественное использование горелок с принудительной подачей воздуха, оптимизированных для работы на газе низкого давления. В этом случае отпадает необходимость в редуцировании давления, как это необходимо делать при снабжении от централизованных магистралей природного газа (снижение давления в регуляторах достигает 0,1–0,2 МПа).
Таблица 3.
Давление газа в подающих магистралях для разных потребителей
Потребители газа
Давление газа, МПа
Производственные здания, в которых величина давления газа обусловлена требованиями производства
1,2
Прочие производственные здания
0,6
Бытовые здания промышленных предприятий отдельно стоящие, пристроенные к производственным зданиям и встроенные в эти здания
0,3
Административные здания
0,005
Котельные
- отдельно стоящие на территории производственных предприятий
- отдельно стоящие на территории поселений
- пристроенные, встроенные и крышные производственных зданий
- пристроенные, встроенные и крышные общественных, административных и бытовых зданий
- пристроенные, встроенные и крышные жилых зданий
1,2
0,6
0,6
0,3
0,005
Общественные здания (кроме зданий, в которых установка газового оборудования требованиями СНиП 2.08.02 не допускается) и складские
0,005
Жилые здания
0,003
Таблица 4.
Давление газа в надземных газопроводах в зависимости от класса потребителей и особенностей размещения
Размещение надземных газопроводов
Давление газа в газопроводе, МПа, не более
1. На отдельно стоящих опорах, колоннах, эстакадах и этажерках
1,2 (для природного газа); 1,6 (для СУГ)
2. Котельные, производственные здания с помещениями категорий В, Г и Д и здания ГНС (ГНП), общественные и бытовые здания производственного назначения, а также встроенные, пристроенные и крышные котельные к ним:
а) по стенам и кровлям зданий
I и II степеней огнестойкости класса пожарной опасности С0 (по СНиП 21-01)
II степени огнестойкости класса С1 и III степени огнестойкости класса С0
б) по стенам зданий
III степени огнестойкости класса С1, IV степени огнестойкости класса С0
IV степени огнестойкости классов С1 и С2
1,2*
0,6*
0,3*
0,005
3. Жилые, административные, общественные и бытовые здания, а также встроенные, пристроенные и крышные котельные к ним
- по стенам зданий всех степеней огнестойкости
- в случаях размещения ШРП на наружных стенах зданий (только до ШРП)
0,005
0,3