Суть, причины и последствия автокорреляции
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Лекция 10
Автокорреляция.
Вопросы:
1. Суть, причины и последствия автокорреляции.
2. Обнаружение автокорреляции.
3. Методы устранения автокорреляции.
1. Суть, причины и последствия автокорреляции.
Одной из предпосылок регрессионного анализа является независимость случайного члена в любом наблюдении от его значений во всех других наблюдениях, т.е. .
Если данное условие не выполняется, то говорят, что случайный член подвержен автокорреляции. Поскольку значения случайных членов неизвестны, то проверяется статистическая некоррелированность остатков, в частности двух последовательных и . Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов.
Пусть - коэффициент корреляции между двумя соседними случайными членами и :
• если > 0, то автокорреляция положительная;
• если < 0, то автокорреляция отрицательная;
• если = 0, то автокорреляция отсутствует, и третье условие Гаусса-Маркова удовлетворяется.
Среди основных причин, вызывающих появление автокорреляции, можно выделить следующие.
Ошибки спецификации: неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдений от линии регрессии.
Инерция в изменении экономических показателей: многие экономические показатели обладают определенной цикличностью, связанной с волнообразностью деловой активности. Экономический подъем приводит к росту занятости, сокращению инфляции, увеличению ВНП и т.д. Этот рост продолжается до тех пор, пока изменение конъюнктуры рынка и ряда экономических характеристик не приведет к замедлению роста, затем остановке и движению вспять рассматриваемых показателей.
Эффект паутины: экономические показатели реагируют на изменение экономических условий с запаздыванием. Например, большая цена сельхозпродукции в прошедшем году вызовет (скорее всего) ее перепроизводство в текущем году, а, следовательно, цена на нее снизится и т.д.
Сглаживание данных: данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам.
Последствия автокорреляции схожи с последствиями гетероскедастичности:
1. Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными.
2. Дисперсии оценок являются смещенными (заниженными), это влечет увеличение t-статистик, и признанию статистически значимыми объясняющие переменные, которые такими не являются.
3. Оценка дисперсии регрессии S2 является смещенной (заниженной).
4. Выводы по t- и по F-статистикам оказываются неверными, из-за чего ухудшаются прогнозные качества модели.
2. Обнаружение автокорреляции.
В силу неизвестности значений параметров регрессии неизвестными будут также и истинные значения отклонений , поэтому выводы об их независимости осуществляются на основе оценок , полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.
Графический метод. Существует несколько вариантов графического определения автокорреляции. Один из них состоит в анализе последовательно-временных графиков. По оси абсцисс откладывают время, либо порядковый номер наблюдения, а по оси ординат – отклонения (Рис. 1).
Рис. 1.
Естественно предположить, что на рис. 1, а - г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. 1, д скорее всего свидетельствует об отсутствии автокорреляции.
Например, на рис. 1, б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости. Более того, можно утверждать, что в этом случае имеет место положительная автокорреляция остатков. Она становится весьма наглядной, если график 1, б дополнить графиком зависимости от (рис. 2).
Рис. 2
Подавляющее большинство точек на этом графике расположено в I и III четвертях декартовой системы координат, подтверждая положительную зависимость между соседними отклонениями.
Современные ППП решение задач построения регрессии дополняют графическим представлением результатов: график реальных колебаний зависимой переменной накладывается на график колебаний переменной по уравнению регрессии. Сопоставление этих графиков часто дает возможность выдвинуть гипотезу о наличии автокорреляции.
Метод рядов. Последовательно определяются знаки отклонений . Например,
(-----)(+++++++)(---)(++++)(-), т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях.
Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называют длиной ряда. Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если рядов слишком много, то вероятна отрицательная автокорреляция. Пусть n – объем выборки, n1 и n2 – общее количество, соответственно, знаков «+» и «-», k – количество рядов.
При достаточно большом количестве наблюдений (n1 > 10,
n2 > 10) и отсутствии автокорреляции случайная величина k имеет асимптотически нормальное распределение с
; .
Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется.
Число определяется по таблице функции стандартного нормального распределения из равенства F() = . Например, при , =1,96 и при , =2,58.
Для небольшого числа наблюдений (n1 < 20, n2 < 20) разработаны таблицы критических значений количества рядов при n наблюдениях. Суть таблиц в следующем.
На пересечении строки n1 и столбца n2 определяются нижнее k1 и верхнее k2 значения при уровне значимости (Рис.3).
автокорреляция > 0 автокорреляция = 0 автокорреляция < 0
______kk1_________k1
Тебе могут подойти лекции
А давай сэкономим
твое время?
твое время?
Дарим 500 рублей на первый заказ,
а ты выбери эксперта и расслабься
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве
Не ищи – спроси
у ChatGPT!
у ChatGPT!
Боты в Telegram ответят на учебные вопросы, решат задачу или найдут литературу
Попробовать в Telegram
Оставляя свои контактные данные и нажимая «Попробовать в Telegram», я соглашаюсь пройти процедуру
регистрации на Платформе, принимаю условия
Пользовательского соглашения
и
Политики конфиденциальности
в целях заключения соглашения.
Пишешь реферат?
Попробуй нейросеть, напиши уникальный реферат
с реальными источниками за 5 минут
с реальными источниками за 5 минут
Суть, причины и последствия автокорреляции
Хочу потратить еще 2 дня на работу и мне нужен только скопированный текст,
пришлите в ТГ