Справочник от Автор24
Поделись лекцией за скидку на Автор24

Суть, причины и последствия автокорреляции

  • 👀 459 просмотров
  • 📌 432 загрузки
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Суть, причины и последствия автокорреляции» doc
Лекция 10 Автокорреляция. Вопросы: 1. Суть, причины и последствия автокорреляции. 2. Обнаружение автокорреляции. 3. Методы устранения автокорреляции. 1. Суть, причины и последствия автокорреляции. Одной из предпосылок регрессионного анализа является независимость случайного члена в любом наблюдении от его значений во всех других наблюдениях, т.е. . Если данное условие не выполняется, то говорят, что случайный член подвержен автокорреляции. Поскольку значения случайных членов неизвестны, то проверяется статистическая некоррелированность остатков, в частности двух последовательных и . Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов. Пусть - коэффициент корреляции между двумя соседними случайными членами и : • если > 0, то автокорреляция положительная; • если < 0, то автокорреляция отрицательная; • если = 0, то автокорреляция отсутствует, и третье условие Гаусса-Маркова удовлетворяется. Среди основных причин, вызывающих появление автокорреляции, можно выделить следующие. Ошибки спецификации: неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдений от линии регрессии. Инерция в изменении экономических показателей: многие экономические показатели обладают определенной цикличностью, связанной с волнообразностью деловой активности. Экономический подъем приводит к росту занятости, сокращению инфляции, увеличению ВНП и т.д. Этот рост продолжается до тех пор, пока изменение конъюнктуры рынка и ряда экономических характеристик не приведет к замедлению роста, затем остановке и движению вспять рассматриваемых показателей. Эффект паутины: экономические показатели реагируют на изменение экономических условий с запаздыванием. Например, большая цена сельхозпродукции в прошедшем году вызовет (скорее всего) ее перепроизводство в текущем году, а, следовательно, цена на нее снизится и т.д. Сглаживание данных: данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам. Последствия автокорреляции схожи с последствиями гетероскедастичности: 1. Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными. 2. Дисперсии оценок являются смещенными (заниженными), это влечет увеличение t-статистик, и признанию статистически значимыми объясняющие переменные, которые такими не являются. 3. Оценка дисперсии регрессии S2 является смещенной (заниженной). 4. Выводы по t- и по F-статистикам оказываются неверными, из-за чего ухудшаются прогнозные качества модели. 2. Обнаружение автокорреляции. В силу неизвестности значений параметров регрессии неизвестными будут также и истинные значения отклонений , поэтому выводы об их независимости осуществляются на основе оценок , полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции. Графический метод. Существует несколько вариантов графического определения автокорреляции. Один из них состоит в анализе последовательно-временных графиков. По оси абсцисс откладывают время, либо порядковый номер наблюдения, а по оси ординат – отклонения (Рис. 1). Рис. 1. Естественно предположить, что на рис. 1, а - г имеются определенные связи между отклонениями, т.е. автокорреляция имеет место. Отсутствие зависимости на рис. 1, д скорее всего свидетельствует об отсутствии автокорреляции. Например, на рис. 1, б отклонения вначале в основном отрицательные, затем положительные, потом снова отрицательные. Это свидетельствует о наличии между отклонениями определенной зависимости. Более того, можно утверждать, что в этом случае имеет место положительная автокорреляция остатков. Она становится весьма наглядной, если график 1, б дополнить графиком зависимости от (рис. 2). Рис. 2 Подавляющее большинство точек на этом графике расположено в I и III четвертях декартовой системы координат, подтверждая положительную зависимость между соседними отклонениями. Современные ППП решение задач построения регрессии дополняют графическим представлением результатов: график реальных колебаний зависимой переменной накладывается на график колебаний переменной по уравнению регрессии. Сопоставление этих графиков часто дает возможность выдвинуть гипотезу о наличии автокорреляции. Метод рядов. Последовательно определяются знаки отклонений . Например, (-----)(+++++++)(---)(++++)(-), т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях. Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называют длиной ряда. Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если рядов слишком много, то вероятна отрицательная автокорреляция. Пусть n – объем выборки, n1 и n2 – общее количество, соответственно, знаков «+» и «-», k – количество рядов. При достаточно большом количестве наблюдений (n1 > 10, n2 > 10) и отсутствии автокорреляции случайная величина k имеет асимптотически нормальное распределение с ; . Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется. Число определяется по таблице функции стандартного нормального распределения из равенства F() = . Например, при , =1,96 и при , =2,58. Для небольшого числа наблюдений (n1 < 20, n2 < 20) разработаны таблицы критических значений количества рядов при n наблюдениях. Суть таблиц в следующем. На пересечении строки n1 и столбца n2 определяются нижнее k1 и верхнее k2 значения при уровне значимости (Рис.3). автокорреляция > 0 автокорреляция = 0 автокорреляция < 0 ______kk1_________k1
«Суть, причины и последствия автокорреляции» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты

Тебе могут подойти лекции

Смотреть все 207 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot