Справочник от Автор24
Поделись лекцией за скидку на Автор24

Структура и функционирование природных экосистем

  • 👀 128046 просмотров
  • 📌 128009 загрузок
Выбери формат для чтения
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Структура и функционирование природных экосистем» pdf
Раздел 4. Структура и функционирование природных экосистем План 1. 2. 3. 4. 5. 6. 7. 8. Структура сообщества. Понятия местообитания и экологической ниши. Типы связей между организмами. Структура и функционирование экосистем. Круговороты веществ. Биологическая продуктивность экосистем. Изменение экосистем. Подразделение экосистем. 1. Структура сообщества. В сообществах различают видовую, пространственную и экологическую структуру. а) Видовая структура. Представляет разнообразие видов и соотношение их численности или массы в сообществе. Каждое конкретное сообщество характеризуется строго определённым видовым составом. Например, возьмём смешанный лес и реку. Соответственно у этих экосистем будет разное видовое разнообразие и соотношение между видами. Видовое разнообразие зависит от возраста сообщества (молодые сообщества беднее, чем зрелые) и от благоприятности основных экологических факторов. В тех экосистемах, где возникают наилучшие условия неживой среды, появляются богатые видами сообщества. Различают два вида разнообразия. Видовое разнообразие в данном местообитании, и сумма всех видов всех местообитаний в данном районе. Высоким видовым разнообразием отличаются переходные зоны между сообществами (например, лесостепь). В сообществе различают следующие по численности виды: преобладающие, второстепенные, малочисленные и редкие. Среди первой группы можно выделить определяющие, которые формируют сообщество (преимущественно растения). б) Пространственная структура. Определяется, прежде всего, сложением его растительной части, разделением наземной и подземной массы растений. Заселение организмами того или иного местообитания определяется его экологическими факторами, и в первую очередь особенностями атмосферы, горной породы, почвы и её вод. В ходе длительного эволюционного развития, приспосабливаясь к определённым экологическим факторам, живые организмы так разместились в сообществе, что практически не мешают друг другу, их раз(с)пределение носит ярусный характер. Вертикальная структура – разслоение сообщества на равновысокие структурные части. При малой ярусности сообщество называют простым, большой – сложным. Ярусность выражена и в травянистых сообществах, но менее отчётливо и выделяется меньше ярусов, чем в лесах. 1 Мозаичность обусловлена неоднородностью рельефа почв, средообразующее влияние растений и их биологические особенности. в) Экологическая структура. Сообщества слагаются из определённых экологических групп организмов, занимая сходные экологические ниши, в разных сообществах могут иметь разный видовой состав. Например, на увлажнённых территориях преобладают водные растения, в сухих условиях – засухоустойчивые. 2. Понятия местообитания и экологической ниши. Местообитание – территория земной или водной (толщи) поверхности, занимаемая популяцией (видом), с сочетанием присущих её экологических факторов. Разделение экологических ниш между видами произходит за счёт приуроченности разных видов к разным местообитаниям, разной пищи и разному времени использования одного и того же местообитания. Экологической нишей называют положение вида, которое oi занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды. Экологическая ниша отображает участие вида в биоценозе. При этом имеется в виду не территориальное его размещение, а функциональное проявление организма в сообществе. Существование вида в сообществе определяется сочетанием и действием многих факторов, но в определении принадлежности организмов к той или иной нише исходят из характера питания этих организмов, из их способности добывать или поставлять пищу. Так, зеленое растение, принимая участие в сложении биоценоза, обеспечивает существование целому ряду экологических ниш. Это могут быть ниши, охватывающие организмы, питающиеся тканями корней или тканями листьев, цветками, плодами, выделениями корней и т. д. На сужение или расширение экологической ниши вида в сообществе большое влияние оказывают конкуренты. Сформулированное Г. Ф. Гаузе правило конкурентного исключения для близких по экологии видов может быть выражено таким образом, что два вида не уживаются в одной экологической нише. Выход из конкуренции достигается расхождением требований к среде, изменению образа жизни или, другими словами, является разграничением экологических ниш видов. В этом случае они приобретают способность сосуществовать в одном биоценозе. Так, в мангровых зарослях побережья Южной Флориды обитают самые разные цапли и нередко на одной и той же отмели кормятся рыбой до девяти разных видов. При этом они практически не мешают друг другу, так как в их поведении — в том, какие охотничьи участки они предпочитают и как ловят рыбу, — выработались приспособления, позволяющие им занимать различные ниши в пределах одной и той же отмели. Экологические ниши видов изменчивы в пространстве и во времени. Нередко в биоценозе один и тот же вид в разные периоды развития может занимать различные экологические ниши. Так, головастик питается растительной пищей, а взрослая лягушка—типичное плотоядное животное, и им свойственны различные экологические ниши и специфические трофические уровни. Разными экологическими нишами зимой и летом в связи с миграциями характеризуются и перелетные птицы. У насекомоядных птиц зимние 2 экологические ниши отличаются от летних. В разные экологические ниши входят личинки оводов, паразитирующие на крупных млекопитающих, и их взрослые особи, не принимающие совсем пищу, или некоторые бабочки, у которых чрезвычайно активными являются гусеницы, пожирающие листья, хвою, а взрослые потребляют нектар или вообще не питаются. То же и у майского хруща: взрослое насекомое относится к экологической нише листоедов, а личинка — корнеед. Среди водорослей имеются виды, которые функционируют то как автотрофы, то как гетеротрофы, тем самым занимая в определенные периоды жизни те или иные экологические ниши. У растений, живущих в одном ярусе, экологические ниши сходны, что способствует ослаблению конкуренции между растениями разных ярусов и обусловливает освоение ими различных экологических ниш. В биоценозе разные виды растений занимают разные экологические ниши, что ослабляет межвидовую конкурентную напряженность. Один и тот же вид растений в различных природных зонах может занимать разные экологические ниши. Так, сосна и черника в бору-черничнике, водные растения (рдесты, кубышка, водокрас, ряски) поселяются вместе, но распределяются по различным нишам. Седмичник и черника в лесах умеренной полосы являются типичными теневыми формами, а в лесотундре и тундре растут на открытых пространствах и становятся световыми. На экологическую нишу вида оказывают влияние межвидовая и внутривидовая конкуренции. При наличии конкуренции с близкородственными или экологически сходными видами зона местообитания сокращается, т. е. вид распространяется в наиболее< благоприятных для него зонах, где он обладает преимуществом по сравнению со своими конкурентами. Если межвидовая конкуренция сужает экологическую нишу вида, не давая проявиться в полном объеме, то внутривидовая конкуренция, напротив, способствует расширению экологических ниш. При возросшей численности вида начинается использование дополнительных кормов, освоение новых местообитаний, появление новых биоценотических связей. 3. Типы связей между организмами. Живые организмы определённым образом связаны друг с другом. Различают следующие типы связей между видами: трофические, топические, форические, фабрические. Наиболее важными являются трофические и топические связи, так как именно они удерживают организмы разных видов друг возле друга, объединяя их в сообщество. Трофические связи наблюдаются, когда один вид питается другим —либо их мертвыми остатками, либо продуктами их жизнедеятельности. Как стрекозы, ловящие на лету других насекомых, так и жуки-навозники, питающиеся пометом крупных копытных, и пчелы, собирающие нектар растений, вступают в прямую трофическую связь с видами, которые предоставляют им пищу. При конкуренции двух видов из-за объектов питания между ними возникает косвенная трофическая связь, вследствие того что деятельность одного отражается на снабжении кормом другого. Воздействие одного вида на поедаемость другого или доступность для него пищи расценивается так же, как 3 косвенная трофическая связь между ними. Так, гусеницы бабочек-монашенок, объедая хвою сосен, облегчают короедам доступ к ослабленным деревьям. Топические связи характеризуют любое физическое или химическое изменение условий обитания одного вида в результате жизнедеятельности другого. Данный вид связей отличается большим разноообразием. Топические связи заключаются в создании одним видом среды для другого (внутренний паразитизм или норовый комменсализм), в формировании субстрата, на котором поселяются или избегают поселяться представители других видов, во влиянии на движение воды, воздуха, изменение температуры, освещенности окружающего пространства, в насыщении среды продуктами насыщения и т. д. Морские желуди, поселяющиеся на коже китов, лишайники на стволах деревьев связаны прямой топической связью с организмами, представляющими им субстрат или среду обитания. Значительная роль в создании или изменении среды для других организмов принадлежит растениям. Из-за особенностей энергообмена растительность является мощным фактором перераспределения тепла у поверхности Земли и создания мезо- или микроклимата. Под пологом леса подлесок, напочвенный покров, животные находятся в условиях более выравненных температур, более высокой влажности воздуха и т. д. Хотя и в меньшей степени, травянистая растительность; также изменяет режим окружающего пространства. В результате положительных или отрицательных топических взаимоотношений одни виды определяют или исключают возможность существования в биоценозе других видов. В биоценозе трофические и топические связи имеют наибольшее значение, составляют основу его существования. Эти типы| отношений удерживают друг возле друга организмы разных видов, объединяя их в сравнительно стабильные сообщества разных масштабов. Форические связи — это участие одного вида в распространении другого. В роли транспортировщиков выступают животные. Как нами было отмечено ранее, перенос животными семян, спор, пыльцы растений называют зоохорией. Перенос же животными других, более мелких животных называют форезией (от лат. форас, — наружу, вон). Обычно перенос осуществляется с помощью специальных и разнообразных приспособлений. Форезия животных преимущественно распространена среди мелких членистоногих: например, у разнообразных групп клещей представляет собой один из способов пассивного их расселения. Она свойственна видам, для которых перенос из одного биотипа в другой жизненно необходим для сохранения или процветания. Так, многие летающие насекомые — посетители скоплений быстро разлагающихся органических остатков (трупов, животных, куч гниющих растений и др.) — несут на себе гамазовых, уроподовых или тирогли-фоидных клещей, переселяющихся данным способом от одного скопления пищевых материалов к другому. Фабрические связи — это такой тип биоценотических отношений, в которые вступает вид, используя для своих сооружений (фабрикации) продукты выделения или мертвые остатки или даже живых особей другого вида (В. Н. Беклемишев, 1970). Например, птицы употребляют для постройки гнезд ветви деревьев, листья, траву, шерсть млекопитающих, пух и перья других видов 4 птиц и т. д. Пчела-мегахила помещает яйца и запасы в стаканчики, которые сооружены из мягких листьев различных кустарников (акации, сирени, шиповника и др.). Каждый конкретный вид из-за сложности межвидовых взаимоотношений может преуспевать не везде, где складываются подходящие для него условия физической среды. Отмечают физиологический и синэкологический оптимумы в распространении вида. Физиологический оптимум — благоприятное для вида сочетание всех видов абиотических факторов, при котором возможны наиболее быстрые темпы роста и размножения. Синэкологический оптимум — биотическое окружение, при котором вид испытывает наименьшее давление со стороны врагов и конкурентов, что позволяет ему успешно размножаться. Физиологический и синзкологический оптимумы далеко не всегда совпадают. Большинство листостебельных растений — амфитолерантные формы с широким оптимумом от слабокислых до слабощелочных значений рН и с диапазоном толерантности от 3,5 до 8,5 рН при выращивании в одновидовых посевах. В естественном же распространении некоторые из них ограничены относительно низкими пределами рН. В таком случае их синэкологический оптимум не совпадает с физиологическим оптимумом. 4. Структура и функционирование экосистем. Раз(с)мотрим структуру и функционирование экосистемы на примере леса и водоёма. Основу любой экологической системы составляет растительность, которая в процессе фотосинтеза для своего роста создаёт органические вещества из неорганических, т.е. являются производителем органических веществ (I). Растительность бывает нескольких форм роста (деревья, кустарники, кустарнички, травы, мхи и лишайники). В экосистеме пищевые и энергетические связи идут в направлении от производителей органических веществ к потребителям и организациям, которые разлагают органические вещества. Питаясь друг другом, живые организмы образуют цепи питания – последовательность организмов, по которой передаётся энергия, заключённая в лице, от её первоначального източника. Каждое звено называется трофическим уровнем. В пищевой цепи редко бывает больше 4-5 трофических уровней. С точки зрения трофической структуры (от греч. trophe — питание), экосистему можно разделить на два яруса. 1. Верхний — автотрофный (самостоятельно питающийся) ярус, или «зеленый пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии счета, использование простых неорганических соединений. 2. Нижний—гетеро-трофный (питаемый другими) ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т. д., в котором преобладают использование, трансформация и разложение сложных соединений. С биологической точки зрения, в составе экосистемы выделяют следующие компоненты: 1) неорганические вещества (С, N, СО2, Н2О и др.), включающиеся в круговороты; 2) органические соединения (белки, углеводы, липиды, гумусовые вещества и т. д.), связывающие биотическую и 5 абиотические части; 3) воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы; 4) продуцентов, автотрофных организмов (зеленые растения, сине-зеленые водоросли, фото- и хемосинтезирующие бактерии), производящих пищу из простых неорганических веществ. 5) консументов, или фаготрофов (от греч. phagos — пожиратель), — гетеротрофных организмов, главным образом животных, питающихся другими организмами или частицами органического вещества; 6) редуцентов и детритофагов — гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлеченного сап-рофитами из растений и других организмов. Консументы питаются живым (биофаги) или мертвым (сапрофаги) органическим материалом. Среди биофагов могут быть выделены расти'тельноядные организмы или фитофаги (первичные консументы, к ним относятся и повреждающие растения вирусы, грибы и паразитические сосудистые растения), хищники (вторичные консументы, в том числе и паразиты первичных консументов) и конечные потребители — вершинные хищники (третичные консументы). В экосистеме пищевые и энергетические связи между категориями всегда однозначны и идут в направлении: автотрофы → гетеротрофы. Или в более полном виде: автотрофы → консументы → редуценты (деструкторы). Организмы, участвующие в различных процессах круговорота, частично разделены в пространстве. Автотрофные процессы наиболее активно протекают в верхнем ярусе («зеленом поясе»), где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивно протекают в нижнем ярусе («коричневом поясе»), где в почвах и осадках накапливаются органические вещества. Основные функции компонентов экосистемы отчасти разделены и во времени, так как возможен значительный разрыв во времени между продуцированном органического вещества автотроф-ными организмами и его потребление гетеротрофами. В целом же три живых компонента экосистем (продуценты, консументы и редуценты) можно рассматривать как три функциональных царства природы, так как их разделение основано на типе питания и используемом источнике энергии. Первоисточником энергии для экосистем служит Солнце. Поток энергии по данным Т.А. Акимовой, В.В. Хаскина (1994), посылаемый солнцем к планете Земля, превышает 20 млн. ЭДж в год. Из-за шарообразности земли к границе всей атмосферы подходит только четверть этого потока. Из нее около 70% отражается, поглощается атмосферой, излучается в виде длинноволнового инфракрасного излучения. Падающая на поверхность Земли солнечная радиация составляет 1,54 млн. ЭДж в год. Это огромное количество энергии в 5000 раз превышает всю энергетику человечества конца XX столетия и в 5,5 раза — энергию всех доступных ресурсов ископаемого топлива органического происхождения, накопленных в течение, как минимум, 100 млн. лет. 6 Большая часть солнечной энергии, достигающей поверхности планеты, превращается непосредственно в тепло, нагревая воду или почву, от которых в свою очередь нагревается воздух. Это тепло служит движущей силой круговорота воды, воздушных потоков и океанических течений, определяющих погоду, постепенно отдается в космическое пространство, где и теряется. Для определения места экосистем в этом природном потоке энергии важно представлять, что как бы протяженны и сложны они ни были, ими используется лишь небольшая его часть. Отсюда следует один из основных принципов функционирования экосистем: они существуют за счет не загрязняющей среду и практически вечной солнечной энергии, количество которой относительно постоянно и избыточно. В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых в свою очередь может служить пищей нескольким видам. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме. В экосистеме органические вещества производятся растительными организмами из неорганических веществ в процессе фотосинтеза. Затем они используются потребителями органических веществ. Выделенные в процессе жизнедеятельности или после гибели организмов органические вещества подвергаются минерализации, т.е. превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы растительными организмами для производства органических веществ. Так осуществляется биологический круговорот веществ. 5. Круговороты веществ. Солнечная энергия на Земле вызывает два круговорота веществ: большой, или геологический, наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, биологический (биотический), развивающийся на основе большого и состоящий в непрерывном, циклическом, но неравномерном во времени и пространстве, и сопровождающийся более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экологических систем различного уровня организации. Оба круговорота взаимно связаны и представляют как бы единый процесс. Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связывается при дыхании и высвобождается при фотосинтезе) за 2000 лет, углекислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 000 000 лет (рис. 12.8). Взаимодействие абиотических факторов и живых организмов экосистемы сопровождается непрерывным круговоротом вещества между биотопом и биоценозом в виде чередующихся то органических, то минеральных соединений. Обмен химических элементов между живыми организмами и неорганической средой, различные стадии которого происходят внутри 7 экосистемы, называют биогеохимическим круговоротом, или биогеохимическим циклом. Существование подобных круговоротов создает возможность для саморегуляции (гомеостаза) системы, что придает экосистеме устойчивость: удивительное постоянство процентного содержания различных элементов. Здесь действует принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов. Рассмотрим более подробно основные биохимические круговороты. Круговорот воды. Самый значительный по переносимым массам и по затратам энергии круговорот на Земле — это планетарный гидрологический цикл — круговорот воды. Каждую секунду в него вовлекается 16,5 млн м3 воды и тратится на это более 40 млрд МВт солнечной энергии (Т. А. Акимова, В.В. Хас-кин, 1994). Но данный круговорот — это не только перенос водных масс. Это фазовые превращения, образование растворов и взвесей, выпадение осадков, кристаллизация, процессы фотосинтеза, а также разнообразные химические реакции. В этой среде возникла и продолжается жизнь. Вода — основной элемент, необходимый для жизни. Количественно это самая распространенная неорганическая составляющая живой материи. У человека вода составляет 63% массы тела, грибов — 80%, растений — 80—90%, а у некоторых медуз — 98%. Вода, как мы увидим несколько позднее, участвующая в биологическом круговороте и служащая источником водорода и кислорода, составляет лишь небольшую часть своего общего объема. В жидком, твердом и парообразном состояниях вода присутствует во всех трех главных составных частях биосферы: атмосфере, гидросфере, литосфере. Все воды объединяются общим понятием «гидросферы». Составные части гидросферы связаны между собой постоянным обменом и взаимодействием. Вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образует малый круговорот. Когда водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. При этом часть осадков испаряется и поступает обратно в атмосферу, другая — питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоками, завершая тем самым большой круговорот. Над океанами выпадает 7/9 общего количества осадков, а над континентами 2/9. Замкнутая, бессточная часть суши в 3,5 раза беднее осадками, чем периферийная часть суши. Вода, выпавшая на сушу, в процессе фильтрации через почву обогащается минеральными и органическими веществами, образуя подземные воды. Вместе с поверхностными стоками она поступает в реки, а затем в океаны. Поступление воды в Мировой океан (осадки, приток речных вод) и испарение с его поверхности составляет 1260 мм в год. Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0,03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего 8 земного шара существует один источник притока воды — атмосферные осадки и один источник расхода — испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Подсчитано, что 1 га елового леса на влажной почве за год транспирирует около 4000 м3 воды, что эквивалентно 378 мм осадков. Суммарное испарение, или масса воды, испаряемой древесной или травянистой растительностью, испарившейся с поверхности почвы, играет важную роль в круговороте воды на континентах. Грунтовые воды, проникая сквозь ткани растений в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений. Наиболее замедленной частью круговорота воды является деятельность полярных ледников. Круговорот здесь совершается за 8,0 тыс. лет, что отражает медленное движение и процесс таяния ледниковых масс. Подземные воды обновляются за 5,0 тыс. лет, воды океанов — за 3,0 тыс. лет, атмосферные воды — за 10 суток. Наибольшей активностью обмена, после атмосферной влаги, отличаются речные воды, которые сменяются в среднем каждые 11 суток. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре. Происходящий в природе круговорот самоочищающейся воды — вечное движение, обеспечивающее жизнь на Земле. Пресной воды на Земле очень мало. Вместе с зоной активного водоснабжения подземными водами это лишь 300 млн км3, причем 97% находится в ледниках Антарктиды, Гренландии, в полярных зонах и горах. Однако естественный круговорот воды гарантирует, что без воды Земля не останется. Биотический (биологический) круговорот. Под биотическим (биологическим) круговоротом понимается циркуляция веществ между почвой, растениями, животными и микроорганизмами. По определению Н. П. Ремезова, Л. Е. Родина и Н. И. Базилевич, биотический (биологический) круговорот — это поступление химических элементов из почвы, воды и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения и возвращение их обратно в процессе жизнедеятельности с ежегодным опадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы (Н. Ф. Реймерс, 1990). Первичный биотический круговорот по Т.А. Акимовой, В.В. Хаскину (1994) состоял из примитивных одноклеточных продуцентов (П) и редуцентовдеструкторов (Д). Микроорганизмы способны быстро размножаться и приспосабливаться к разным условиям, например, использовать в своем питании всевозможные субстраты — источники углерода. Высшие организмы такими способностями не обладают. В целостных экосистемах они могут существовать в виде надстройки на фундаменте микроорганизмов. Вначале развиваются многоклеточные растения (Р) — высшие продуценты. Вместе с одноклеточными они создают в процессе фотосинтеза органическое вещество, используя энергию солнечного излучения. В дальнейшем подключаются первичные консументы — растительноядные 9 животные (Т), а затем и плотоядные консументы. Нами был рассмотрен биотический круговорот суши. Это в полной мере относится и к биотическому круговороту водных экосистем, например океана. Все организмы занимают определенное место в биотическом круговороте и выполняют свои функции по трансформации достающихся им ветвей потока энергии и по передаче биомассы. Всех объединяет, обезличивает их вещества и замыкает общий круг система одноклеточных редуцентов (деструкторов). В абиотическую среду биосферы они возвращают все элементы, необходимые для новых и новых оборотов. Следует подчеркнуть наиболее важные особенности биотического круговорота. Фотосинтез относится к мощному естественному процессу, вовлекающему ежегодно в круговорот огромные массы вещества биосферы и определяющему ее высокий кислородный потенциал. Он выступает регулятором основных геохимических процессов в биосфере и фактором, определяющим наличие свободной энергии верхних оболочек земного шара. Фотосинтез представляет собой химическую реакцию, которая протекает, как известно, за счет солнечной энергии при участии хлорофилла зеленых растений: nCO2 + nH2О + энергия → СnH2nOn + nO2 За счет углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Прямыми продуктами фотосинтеза являются различные органические соединения, а в целом процесс фотосинтеза носит довольно сложный характер. Глюкоза является простейшим продуктом фотосинтеза, образование которой совершается следующим путем: 6СО2 + 6Н2O → С6Н12O6 + 6O2. Помимо фотосинтеза с участием кислорода (так называемый кислородный фотосинтез) следует остановиться и на бескислородном фотосинтезе, или хемосинтезе. К хемосинтезирующим организмам относятся нитрификато-ры, карбоксидобактерии, серобактерии, тионовые железобактерии, водородные бактерии. Они называются так по субстратам окисления, которыми могут быть NH3, NO2, CO, H2S, S, Fe2+, H2. Некоторые виды — облигатные хемолитоавтотрофы, другие — факультативные. К последним относятся карбоксидобактерии и водородные бактерии. Хемосинтез характерен для глубоководных гидротермальных источников. Фотосинтез происходит за немногим исключением на всей поверхности Земли, создает огромный геохимический эффект и может быть выражен как количество всей массы углерода, вовлекаемой ежегодно в построение органического — живого вещества всей биосферы. В общий круговорот материи, связанной с построением путем фотосинтеза органического вещества, вовлекаются и такие химические элементы, как N, P, S, а также металлы — К, Са, Mg, Na, Al. При гибели организма происходит обратный процесс — разложение органического вещества путем окисления, гниения и т. д. с образованием 10 конечных продуктов разложения. Следовательно, общую реакцию фотосинтеза можно выразить в глобальном масштабе следующим образом: жизнь → mCO2 + nH2O Cm⋅n(H2O) + mO2. ←   смерть В биосфере Земли этот процесс приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Биомасса экосферы (2⋅1012 т) на семь порядков меньше массы земной коры (2⋅1019 т). Растения Земли ежегодно продуцируют органическое вещество, равное 1,6⋅1011 т, или 8% биомассы экосферы. Деструкторы, составляющие менее 1% суммарной биомассы организмов планеты, перерабатывают массу органического вещества, в 10 раз превосходящую их собственную биомассу. В среднем период обновления биомассы равен 12,5 годам. Допустим, что масса живого вещества и продуктивность биосферы были такими же от кембрия до современности (530 млн лет), то суммарное количество органического вещества, которое прошло через глобальный биотический круговорот и было использовано жизнью на планете, составит 2⋅1012⋅5,3⋅108/12,5 =8,5⋅1019 т, что в 4 раза больше массы земной коры. По поводу данных расчетов Н. С. Печуркин (1988) писал: «Мы можем утверждать, что атомы, составляющие наши тела, побывали в древних бактериях, и в динозаврах, и в мамонтах». Закон биогенной миграции атомов В. И. Вернадского гласит: «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории». В. И. Вернадский в 1928—1930 гг. в своих глубоких обобщениях относительно процессов в биосфере дал представление о пяти основных биогеохимических функциях живого вещества. Первая функция — газовая. Большинство газов верхних горизонтов планеты порождено жизнью. Подземные горючие газы являются продуктами разложения органических веществ растительного происхождения, захороненных ранее в осадочных толщах. Наиболее распространенный — это болотный газ — метан (СН4,). Вторая функция — концентрационная. Организмы накапливают в своих телах многие химические элементы. Среди них на первом месте стоит углерод. Содержание углерода в углях по степени концентрации в тысячи раз больше, чем в среднем для земной коры. Нефть — концентратор углерода и водорода, так как имеет биогенное происхождение. Среди металлов по концентрации первое место занимает кальций. Целые горные хребты сложены остатками животных с известковым скелетом. Концентраторами кремния являются диатомовые водоросли, радиолярии и некоторые губки, йода — водоросли 11 ламинарии, железа и марганца — особые бактерии. Позвоночными животными накапливается фосфор, сосредотачиваясь в их костях. Третья функция — окислительно-восстановительная. В истории многих химических элементов с переменной валентностью она играет важную роль. Организмы, обитающие в разных водоемах, в процессе своей жизнедеятельности и после гибели регулируют кислородный режим и тем самым создают условия, благоприятные для растворения или же осаждения ряда металлов с переменной валентностью (V, Mn, Fe). Четвертая функция — биохимическая. Она связана с ростом, размножением и перемещением живых организмов в пространстве. Размножение приводит к быстрому распространению живых организмов, «расползанию» живого вещества в разные географические области. Пятая функция — это биогеохимическая деятельность человечества, охватывающая все возрастающее количество вещества земной коры для нужд промышленности, транспорта, сельского хозяйства. Данная функция занимает особое место в истории земного шара и заслуживает внимательного отношения и изучения. Таким образом, все живое население нашей планеты — живое вещество — находится в постоянном круговороте биофильных химических элементов. Биологический круговорот веществ в биосфере связан с большим геологическим круговоротом. 6. Биологическая продуктивность экосистем. Внутри каждой экосистемы трофические сети имеют хорошо выраженную структуру, которая характеризуется природой и количеством организмов, представленных на каждом уровне различных пищевых цепей. Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют не схемы пищевых сетей, а экологические пирамиды. Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме. Они строятся в виде прямоугольников одинаковой ширины, но длина прямоугольников должна быть пропорциональна значению измеряемого объекта. Отсюда можно получить пирамиды численности, биомассы и энергии. Экологические пирамиды отражают фундаментальные характеристики любого биоценоза, когда они показывают его трофическую структуру: — их высота пропорциональна длине рассматриваемой пищевой цепи, т. е. числу содержащихся в ней трофических уровней; — их форма более или менее отражает эффективность превращений энергии при переходе с одного уровня на другой. Пирамиды численности. Они представляют собой наиболее простое приближение к изучению трофической структуры экосистемы. При этом сначала подсчитывают число организмов на данной территории, сгруппировав их по трофическим уровням и представив в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема). Установлено основное правило, которое гласит, что в любой среде растений больше, чем 12 животных, травоядных больше, чем плотоядных, насекомых больше, чем птиц, и т. д. Пирамиды численности отражают плотность организмов на каждом трофическом уровне. В построении различных пирамид численности отмечается большое разнообразие. Нередко они перевернуты. Например, в лесу насчитывается значительно меньше деревьев (первичные продуценты), чем насекомых (растительноядные). Подобная же картина наблюдается в пищевых цепях сапрофитов и паразитов. Пирамида биомассы. Отражает более полно пищевые взаимоотношения в экосистеме, так как в ней учитывается суммарная масса организмов (биомасса) каждого трофического уровня. Прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема. Форма пирамиды биомассы нередко сходна с формой пирамиды численности. Характерно уменьшение биомассы на каждом следующем трофическом уровне. Пирамиды биомассы, так же как и численности, могут быть не только прямыми, но и перевернутыми. Перевернутые пирамиды биомассы свойственны водным экосистемам, в которых первичные продуценты, например фитопланктонные водоросли, очень быстро делятся, а их потребители — зоопланктонные ракообразные — гораздо крупнее, но имеют длительный цикл воспроизводства. В частности, это относится к пресноводной среде, где первичная продуктивность обеспечивается микроскопическими организмами, скорость обмена веществ которых повышена, т. е. биомасса мала, производительность велика. Пирамида энергии. Наиболее фундаментальным способом отображения связей между организмами наразных трофических уровнях служат пирамиды энергии. Они представляют эффективность преобразования энергии и продуктивность пищевых цепей, строятся подсчетом количества энергии (ккал), аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне. Так, можно относительно легко определить количество энергии, накопленной в биомассе, и сложнее оценить общее количество энергии, поглощенной на каждом трофическом уровне. Построив график, можно констатировать, что деструкторы, значимость которых представляется небольшой в пирамиде биомассы, а в пирамиде численности наоборот; получают значительную часть энергии, проходящей через экосистему. При этом только часть всей этой энергии остается в организмах на каждом трофическом уровне экосистемы и сохраняется в биомассе, остальная часть используется для удовлетворения метаболических потребностей живых существ: поддержание существования, рост, воспроизводство. Животные также расходуют значительное количество энергии и для мышечной работы. Рассмотрим более подробно, что происходит с энергией при ее передаче через пищевую цепь. Ранее уже было отмечено, что солнечная энергия, полученная растением, лишь частично используется в процессе фотосинтеза. Фиксированная в 13 углеводах энергия представляет собой валовую продукцию экосистемы (Пв). Углеводы идут на построение протоплазмы и рост растений. Часть их энергии затрачивается на дыхание (Д1). Чистая продукция (Пч) определяется по формуле: Пч = Пв – Д1 Следовательно, поток энергии, проходящий через уровень продуцентов, или валовую продукцию, можно представить: Пв = Пч + Д1. Определенное количество созданных продуцентами веществ служит кормом (К) фитофагов. Остальное как итог отмирает и перерабатывается редуцентами (Н). Ассимилированный фитофагами корм (А) лишь частично используется для образования их биомассы (Пд). Главным образом он растрачивается на обеспечение энергией процессов дыхания (Д) и в определенной степени выводится из организма в виде выделений и экскрементов (Э). Поток энергии, проходящий через второй трофический уровень, выражается следующим образом: А2 =П2 + Д2. Консументы второго порядка (хищники) не истребляют всю биомассу своих жертв. При этом из того количества ее, которое они уничтожают, только часть используется на создание биомассы их собственного трофического уровня. Остальная же часть в основном затрачивается на энергию дыхания, выделяется с экскретами и экскрементами. Поток энергии, проходящий через уровень консументов второго порядка (плотоядные), выражается формулой: А3 = П3 + Д3. Подобным образом можно проследить совокупность пищевой цепи и до последнего трофического уровня. Распределив по вертикали различные затраты энергии на трофических уровнях, получим полную картину пищевой пирамиды в экосистеме. Поток энергии, выражающийся количеством ассимилированного вещества по цепи питания, на каждом трофическом уровне уменьшается или: Пч > П2 > П3 и т.д. Р. Линдеман в 1942 г. впервые сформулировал закон пирамиды энергий, который в учебниках нередко называют «законом 10%». Согласно этому закону с одного трофичес-когоуровня экологической пирамиды переходит на другой ее уровень в среднем не более 10% энергии. Последующим гетеротрофам передается только 10—20% исходной энергии. Используя закон пирамиды энергий, нетрудно подсчитать, что количество энергии, доходящее до третичных плотоядных (V трофический уровень), составляет около 0,0001 энергии, поглощенной продуцентами. Отсюда следует, что передача энергии с одного уровня на другой происходит с очень малым КПД. Это объясняет ограниченное количество звеньев в пищевой цепи независимо от того или иного биоценоза. Е. Одум (1959) в предельно упрощенной пищевой цепи - люцерна → теленок → ребенок оценил превращение энергии, проиллюстрировал величину ее потерь. Допустим, рассуждал он, имеется посев люцерны на площади 4 га. На этом поле кормятся телята (предполагается, что они едят только люцерну), а 14 12-летний мальчик питается исключительно телятиной. Результаты расчетов, представленные в виде трех пирамид: численности, биомассы и энергии, — свидетельствуют; что люцерна использует всего 0,24% всей падающей на поле солнечной энергии, теленком усваивается 8% этой продукции и только 0,7% биомассы теленка обеспечивает развитие ребенка в течение года. Е. Одум, таким образом, показал, что только одна миллионная доля приходящейся солнечной энергии превращается в биомассу плотоядного, в данном случае способствует увеличению массы ребенка, а остальное теряется, рассеивается в деградированной форме в окружающей среде. Приведенный пример наглядно иллюстрирует очень низкую экологическую эффективность экосистем и малый КПД при превращении в пищевых цепях. Можно констатировать следующее: если 1000 ккал (сут м2) зафиксирована продуцентами, то 10 ккал (сут. м2) переходит в биомассу травоядных и только 1 ккал (сут. м2) — в биомассу плотоядных. Поскольку определенное количество вещества может быть использовано каждым биоценозом неоднократно, а порция энергии один раз, то целесообразнее говорить, что в экосистеме происходит каскадный перенос энергии. Консументы служат управляющим и стабилизирующим звеном в экосистеме. Консументы порождают спектр разнообразия в ценозе, препятствуя монополии доминантов. Правило управляющего значения консументов можно с полным основанием отнести к достаточно фундаментальным. Согласно кибернетическим воззрениям, управляющая система должна быть сложнее по структуре, чем управляемая, то становится ясной причина множественности видов консументов. Управляющее значение консументов имеет и энергетическую подоснову. Поток энергии, проходящий через тот или другой трофический уровень, не может абсолютно определяться наличием пищи в нижележащем трофическом уровне. Всегда остается, как известно, достаточный «запас», так как полное уничтожение корма привело бы к гибели потребителей. Эти общие закономерности наблюдаются в рамках популяционных процессов, сообществ, уровней экологической пирамиды, биоценозов в целом. Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановочное производство биомассы (живой материи) — один из фундаментальных процессов биосферы. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называют первичной продукцией экосистемы (сообщества). Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах — эквивалентном числе ккалорий или джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в экосистеме. Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата 15 растений. А как известно, лишь часть энергии света, получаемой зеленой поверхностью, может быть использована растениями. Из коротковолнового излучения Солнца только 44% относится к фотосинтетически активной радиации (ФАР) — свет по длине волны, пригодный для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза 10—12% энергии ФАР, что составляет около половины от теоретически возможного, отмечается в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5% считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 % из-за ограничения фотосинтетической активности растений множеством факторов, среди них таких, как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Средний коэффициент использования энергии ФАР для территории России равен 0,8%, на европейской части страны составляет 1,0—1,2%, а в восточных районах, где условия увлажнения менее благоприятны, не превышает 0,4—0,8%. Скорость, с которой растения накапливают химическую энергию, называют валовой первичной продуктивностью (ВПП). Около 20% этой энергии расходуется растениями и?1| дыхание и фотодыхание. Скорость накопления органического веще4| ства за вычетом этого расхода называется чистой первичной иро-| дуктивностью (ЧПП). Это энергия, которую могут использовать| организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называется вторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постеленное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений. Мировое распределение первичной биологической продукции весьма неравномерно. Чистая продукция меняется от 3000 г/м2/год до нуля в экстрааридных пустынях, лишенных растений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы — соответственно от 60 кг/м2 до нуля. Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса. 1. Сообщества высшей продуктивности, 3000—2000 г/м2/год. Сюда относятся тропические леса, посевы риса и сахарного тростника. Запас биомассы в этом классе продуктивности весьма различен и превышает 50 кг/м2 в лесных сообществах и равен продуктивности у однолетних сельскохозяйственных культур. 2. Сообщества высокой продуктивности, 2000—1000 г/м2/год. В этот класс включены листопадные леса умеренной полосы, луга при применении удобрений, посевы кукурузы. Максимальная биомасса приближается к биомассе первого класса. Минимальная биомасса соответственно равна чистой биологической продукции однолетних культур. 16 3. Сообщества умеренной продуктивности, 1000—250 г/м2/год. К этому классу относится основная масса возделываемых сельскохозяйственных культур, кустарники, степи. Биомасса степей меняется в пределах 0,2—5 кг/м2. 4. Сообщества низкой продуктивности, ниже 250 г/м^год — пустыни, полупустыни (в отечественной литературе их называют чаще опустыненными степями), тундры. 7. Изменение экосистем. Сложение экосистем — динамический процесс. В экосистемах постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные. Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов. Суточная динамика экосистем связана главным образом с ритмикой природных явлений и носит строго периодический характер. Нами уже было рассмотрено, что в каждом биоценозе имеются группы организмов, активность жизни у которых приходится на разное время суток. Одни активны днем, другие — ночью. Отсюда в составе и в соотношении отдельных видов биоценоза той или иной экосистемы происходят периодические изменения, так как отдельные организмы на определенное время выключаются из него. Суточную динамику биоценоза обеспечивают как животные, так и растения. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов — ночью не происходит фотосинтез, нередко у растений цветки раскрываются только в ночные часы и опыляются ночными животными, другие приспособлены к опылению днем. Суточная динамика в биоценозах, как правило, выражена тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью. Более значительные отклонения в биоценозах наблюдаются при сезонной динамике. Это обусловлено биологическими циклами организмов, которые зависят от сезонной цикличности явлений природы. Так, смена времени года значительное влияние оказывает на жизнедеятельность животных и растений (спячка, зимний сон, диапауза и миграции у животных; периоды цветения, плодоношения, активного роста, листопада и зимнего покоя у растений). Сезонной изменчивости подвержена нередко и ярусная структура биоценоза. Отдельные ярусы растений в соответствующие сезоны года могут полностью исчезать, например, состоящий из однолетников травянистый ярус. Длительность биологических сезонов в разных широтах неодинакова. В связи с этим сезонная динамика биоценозов арктической, умеренной и тропической зон различна. Она выражена наиболее четко в экосистемах умеренного климата и в северных широтах. Многолетняя изменчивость является нормальной в жизни любого биоценоза. Так, количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Тем самым оказывается существенное влияние на растения и животных. При этом происходит выработка экологических ниш — 17 функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии. Многолетние изменения в составе биоценозов повторяются и в связи с периодическими изменениями общей циркуляции атмосферы, в свою очередь, обусловленной усилением или ослаблением солнечной активности. В процессе суточной и сезонной динамики целостность биоценозов обычно не нарушается. Биоценоз испытывает лишь периодические колебания качественных и количественных характеристик. Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиями. Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession — последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат — оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования. Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями. На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, — зарастание небольшого озера с последующим появлением на его месте болота, а затем леса. Вначале по краям озера образуется сплавна — плавающий ковер из осок, мхов и других растений. Постоянно озеро заполняется отмершими остатками растений — торфом. Образуется болото, постепенно зарастающее лесом. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией. 18 Сукцессии в природе чрезвычайно разномасштабны. Их можно наблюдать в банках с культурами, представляющими собой планктонные сообщества — различные виды плавающих водорослей и их потребителей — коловраток, жгутиковых в лужах и прудах, на заброшенных пашнях, выветрившихся скалах и др. В организации экосистем иерархичность проявляется и в сукцессионных процессах — более крупные преобразования биоценозов складываются из более мелких. В стабильных экосистемах с отрегулированным круговоротом веществ также постоянно осуществляются локальные сукцессионные смены, поддерживающие сложную внутреннюю структуру сообществ. Типы сукцессионных смен. Выделяют два главных типа сукцессионных смен: 1 — с участием автотрофного и гетеротрофного населения; 2 — с участием только гетеротрофов. Сукцессии второго типа совершаются лишь в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых и существует сообщество: в кучах или буртах навоза, в разлагающейся растительной массе, в загрязненных органическими веществами водоемах и т. д. Процесс сукцессии. По Ф. Клементсу (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение незанятого жизнью участка. 2. Миграция на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными. Первичной сукцессией называется процесс развития и смены экосистем на незаселенных ранее участках, начинающихся с их колонизации. Классический пример — постоянное обрастание голых скал с развитием в конечном итоге на них леса. Так, в первичных сукцессиях, протекающих на скалах Уральских гор, различают следующие этапы. 1. Поселение эндолитических и накипных лишайников, сплошь покрывающих каменистую поверхность. Накипные лишайники несут своеобразную микрофлору и содержат богатую фауну простейших, коловраток, нематод. Мелкие клещи — сапрофаги и пер-вичнобескрылые насекомые обнаруживаются сначала только в трещинах. Активность всего населения прерывиста, отмечается главным образом после выпадения осадков в виде дождя или смачивания скал влагой туманов. Данные сообщества организмов называют пионерными. 2. Преобладание листоватых лишайников, которые постепенно образуют сплошной ковер. Под круговинками лишайников в результате выделяемых ими кислот и механического сокращения слоевищ при высыхании образуются выщербленности, идет отмирание слоевищ и накопление детрита. В большом количестве под лишайниками встречаются мелкие членистоногие: коллемболы, панцирные клещи, личинки комаров-толкунчиков, сеноеды и другие. Образуется микрогоризонт, состоящий из их экскрементов. 3. Поселение литофильных мхов Hedwidia u Pleurozium schreberi. Под ними погребаются лишайники и подлишайниковые пленочные почвы. Ризоиды 19 мхов здесь прикрепляются не к камню, а к мелкозему, который имеет мощность не менее 3 см. Колебания температуры и влажности под мхами в несколько раз меньше, чем под лишайниками. Усиливается деятельность микроорганизмов, увеличивается разнообразие групп животных. 4. Появление гипновых мхов и сосудистых растений. В разложении растительных остатков и формировании почвенного профиля постепенно уменьшается роль мелких членистоногих и растет участие более крупных беспозвоночных — сапрофагов: энхитреид, дождевых червей, личинок насекомых. 5. Заселение крупными растениями, способствующее дальнейшему накоплению и образованию почвы. Ее слой оказывается достаточным для развития кустарников и деревьев. Их опадающие листья и ветви не дают расти мхам и большинству других мелких видов, начавших сукцессию. Так, постепенно на изначально голых скалах идет процесс смены лишайников мхами, мхов травами и наконец лесом. Такие сукцессии в геоботанике называют экогенетически-ми, так как они ведут к преобразованию самого местообитания. Вторичная сукцессия — это восстановление экосистемы, когда-то уже существовавшей на данной территории. Она начинается в том случае, если уже в сложившемся биоценозе нарушены установившиеся взаимосвязи организмов в результате извержения вулкана, пожара, вырубки, вспашки и т. д. Смены, ведущие к восстановлению прежнего биоценоза, получили название в геоботанике демутационных. Примером может служить динамика видового, разнообразия на острове, Кракатау после полного уничтожения аборигенной флоры и фауны вулканическим взрывом в 1893 году. Климаксовоя экосистема. Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно постояннуючисленностьидальнейшейсменыеесоставанепроисходит. Такое равновесное состояние называют климаксом, а экосистему — кли-максовой. В разных абиотических условиях формируются неодинаковые климаксовые экосистемы. В жарком и влажном климате это будет дождевой тропический лес, в сухом и жарком — пустыня. Основные биомы земли — это климаксовые экосистемы соответствующих географических областей. Изменения в экосистеме во время сукцессии. Продуктивность и биомасса. Как уже отмечалось, сукцессия является закономерным, направленным процессом, а изменения, которые происходят на той или иной ее стадии, свойственны любому сообществу и не зависят от его видового состава или географического местоположения. Основными называют четыре типа сукцесси-онных изменений. 1. В процессе сукцессии виды растений и животных непрерывно сменяются. 2. Сукцессионные изменения всегда сопровождаются повышением видового разнообразия организмов. 3. Биомасса органического вещества увеличивается по ходу сукцессии. 4. Снижение чистой продукции сообщества и повышение интенсивности дыхания — важнейшие явления сукцессии. Следует также отметить, что смена фаз сукцессии идет в соответствии с определенными правилами. Каждая фаза готовит среду для возникновения 20 последующей. Здесь действует закон последовательности прохождения фаз развития: фазы развития природной системы могут следовать лишь в эволюционно закрепленном (исторически, экологически обусловленном) порядке, обычно от относительно простого к сложному, как правило, без выпадения промежуточных этапов, но, возможно, с очень быстрым их прохождением или эволюционно закрепленным отсутствием. Когда экосистема приближается к состоянию климакса, в ней, как и во всех равновесных системах, происходит замедление всех процессов развития. Это положение находит отражение в законе сукцессионного замедления: процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов. При этом восстановительный тип сукцессии меняется на вековой их ход, т. е. саморазвитие идет в пределах климакса или узлового развития. Эмпирический закон сукцессионного замедления является следствием правила Г. Одума и Р. Пинкертона, или правила максимума энергии поддержания зрелой системы: сукцессия идет в направлении фундаментального сдвига потока энергии в сторону увеличения ее количества, направленного на поддержание системы. Правило Г. Одума и Р. Пинкертона, в свою очередь, базируется на правиле максимума энергии в биологических системах, сформулированном А. Лоткой. Вопрос этот в дальнейшем был хорошо разработан Р. Маргалефом, Ю. Одумом и известен как доказательство принципа «нулевого максимума», или минимализации прироста в зрелой экосистеме: экосистема в сукцессионном развитии стремится к образованию наибольшей биомассы при наименьшей биологической продуктивности. Линдеман (1942) экспериментально доказал, что сукцессии сопровождаются повышением продуктивности вплоть до климаксового сообщества, в котором превращение энергии происходит наиболее эффективно. Данные исследований сукцессии дубовых и дубово-ясеневых лесов показывают, что на поздних стадиях их продуктивность действительно возрастает. Однако при переходе к кли-максному сообществу обычно происходит снижение общей продуктивности. Таким образом, продуктивность в старых лесах ниже, чем в молодых, которые, в свою очередь, могут иметь меньшую продуктивность, чем предшествовавшие им более богатые видами ярусы травянистых растений. Сходное падение продуктивности наблюдается и в некоторых водных системах. Для этого есть несколько причин. Одна из них то, что накопление питательных веществ в растущей биомассе леса на корню может вести к уменьшению их круговорота. Снижение общей продуктивности могло быть просто результатом уменьшения жизненности особей по мере увеличения их среднего возраста в сообществе. По мере прохождения сукцессии все большая доля доступных питательных веществ накапливается в биомассе сообщества, и соответственно уменьшается их содержание в абиотическом компоненте экосистемы (в почве или воде). Возрастает также количество образующегося детрита. Главными первичными консументами становятся не травоядные, а детритоядные 21 организмы. Соответствующие изменения происходят и в трофических сетях. Детрит становится основным источником питательных веществ. В ходе сукцессии увеличивается замкнутость биогеохимических круговоротов веществ. Примерно за 10 лет с момента начала восстановления растительного покрова разомкнутость круговоротов уменьшается со 100 до 10%, а далее она еще больше снижается, достигая минимума в климаксовой фазе. Правило увеличения замкнутости биогеохимического круговорота веществ в ходе сукцессии, со всей уверенностью можно утверждать, нарушается антропогенной трансформацией растительности и вообще естественных экосистем. Несомненно, это ведет к длинному ряду аномалий в биосфере и ее подразделениях. Снижение разнообразия видов в климаксе не означает малой его экологической значимости. Разнообразие видов формирует сукцессию, ее направление, обеспечивает заполненность реального пространства жизнью. Недостаточное количество видов, составляющих комплекс, не могло бы сформировать сукцессионный ряд, и постепенно, с разрушением климаксовых экосистем произошло бы полное опустынивание планеты. Значение разнообразия функционально как в статике, так и в динамике. Следует отметить, что там, где разнообразие видов недостаточно для формирования биосферы, служащей основой нормального естественного хода сукцессионного процесса, а сама среда резко нарушена, сукцессия не достигает фазы климакса, а заканчивается узловым сообществом — параклимаксом, длительно или кратковременно производным сообществом. Чем глубже нарушенность среды того или иного пространства, тем на более ранних фазах оканчивается сукцессия. При потере одного или группы видов в результате их уничтожения (антропогенное исчезновение местообитаний, реже вымирание) достижение климакса не является полным восстановлением природной обстановки. Фактически это новая экосистема, потому что в ней возникли новые связи, утеряны многие старые, сложилась иная «притертость» видов. В старое состояние экосистема вернуться не может, так как утерянный вид восстановить невозможно. 1. Миграция. Часть популяции может мигрировать, найти местообитания с подходящими условиями и продолжить там свое существование. 2. Адаптация. В генофонде могут присутствовать аллели, которые позволят отдельным особям выжить в новых условиях и оставить потомство. Через несколько поколений под действием естественного отбора возникает популяция, хорошо приспособленная к изменившимся условиям существования. 3. Вымирание. Если ни одна особь популяции не может мигрировать, опасаясь воздействия неблагоприятных факторов, а те уходят за пределы устойчивости всех индивидов, то популяция вымрет, а ее генофонд исчезает. Если одни виды вымирают, а выжившие особи других размножаются, адаптируются и изменяются под действием естественного отбора, можно говорить об эволюционной сукцессии. 22 Закон эволюционно-экологической необратимости гласит: экосистема, потерявшая часть своих элементов или сменившаяся другой в результате дисбаланса экологических компонентов, не может вернуться к первоначальному своему состоянию в ходе сукцессии, если в ходе изменений произошли эволюционные (микроэволюционные) перемены в экологических элементах (сохранившихся или временно утерянных). В том случае, когда какие-то виды утеряны в промежуточных фазах сукцессии, то данная потеря может быть функционально скомпенсирована, но не полностью. При снижении разнообразия за критический уровень, ход сукцессии искажается, и фактически климакс, идентичный прошлому, достигнут не может быть. Для оценки характера восстановленных экосистем закон эволюционноэкологической необратимости имеет важное значение. При потере элементов это, по сути дела, совершенно экологически новые природные образования с вновь образовавшимися закономерностями и связями. Так, перенос в прошлом выбывшего из состава экосистемы вида в ходе его реакклиматизации не является механическим его возвращением. Это фактически внедрение нового вида в обновленную экосистему. Закон эволюционно-экологической необратимости подчеркивает направленность эволюции не только на уровне биосистем, но и на всех других иерархических уровнях сложения биоты. 8. Подразделение экосистем. Существующие на Земле экосистемы разнообразны. Выделяют микроэкосистемы (например, ствол гниющего дерева), мезоэкосистемы (лес, пруд и т. д.), макроэкосистемы (континент, океан и др.) и глобальную — биосфера. Крупные наземные экосистемы называют биомами. Каждый биом включает в себя целый ряд меньших по размерам, связанных друг с другом экосистем. Изучение географического распределения экосистем может быть предпринято только на уровне крупных экологических единиц — макроэкосистем, которые рассматриваются в континентальном масштабе. Экосистемы не разбросаны в беспорядке, наоборот, сгруппированы в достаточно регулярных зонах как по горизонтали (по широте), так и по вертикали (по высоте). Это подтверждается периодическим законом географической зональности А. А. Григорьева — М. И. Будыко: со сменой физико-географических поясов Земли аналогичные ландшафтные зоны и их некоторые общие свойства периодически повторяются. Об этом шла речь и при рассмотрении наземно-воздушной среды жизни. Установленная законом периодичность проявляется в том, что величины индекса сухости меняются в разных зонах от 0 до 4—5, трижды между полюсами и экватором они близки к 1. Этим значениям соответствует наибольшая биологическая продуктивность ландшафтов. Периодическое повторение свойств в рядах систем одного иерархического уровня, вероятно, является общим законом мироздания, сформулированного как закон периодичности строения системных^совокупностей, или системнопериодический закон — конкретные природные системы одного уровня (подуровня) организации составляют периодический или повторяющийся ряд 23 морфологически аналогичных структур в пределах верхних и нижних системных пространственно-временных границ, за которые ми существование систем данного уровня делается невозможным. Они переходят в неустойчивое состояние или превращаются в иную системную структуру, в том числе другого уровня организации. Два абиотических фактора — температура и количество осадков — определяют размещение по земной поверхности основных наземных биомов. Режим температуры и осадков на некоторой территории в течение достаточно долгого периода времени и есть то, что мы называем климатом. Климат в разных районах земного шара неодинаков. Годовая сумма осадков меняется от 0 до 2500 мм и более. При этом они выпадают равномерно в течение года или их основная доля приходится на определенный период — влажный сезон. Среднегодовая температура также варьирует от отрицательных величин до 38°С. Температуры могут быть практически постоянными в течение всего года (у экватора) или меняться по сезонам. Следует отметить, что режимы температуры и осадков сочетаются между собой весьма неодинаковым образом. Специфика климатических условий в свою очередь определяет развитие того или иного биома. От экватора к полюсам видна определенная симметрия в распределении биомов различных полушарий. 1. Дождевые тропические леса (север Южной Америки, Центральная Америка, западная и центральная части экваториальной Африки, ЮгоВосточная Азия, прибрежные районы северо-запада Австралии, острова Индийского и Тихого океанов). Климат — без смены сезонов (близость к экватору), температура — среднегодовая выше 17°С (обычно 28°С), осадки — среднегодовое количество превышает 2400 мм. Растительность: господствуют леса. Насчитываются сотни видов деревьев высотой до 60 м. На их стволах и ветвях — растения-эпифиты, корни которых не достигают почвы, и деревянистые лианы, укореняющиеся в почве и взбирающиеся по деревьям до их вершин. Все это образует густой полог. Животный м и р: видовой состав богаче, чем во всех других биомах вместе взятых. Особенно многочисленны земноводные, пресмыкающиеся и птицы (лягушки, ящерицы, змеи, попугаи), обезьяны и другие мелкие млекопитающие, экзотические насекомые с яркой окраской, в водоемах — ярко окрашенные рыбы. Прочие особенности: почвы, как правило, маломощные и бедные, большая часть питательных веществ содержится в биомассе поверхности укорененной растительности. 2. Саванны (субэкваториальная Африка, Южная Америка, значительная часть южной Индии). Климат— сухой и жаркий большую часть года. Обильные дожди в течение влажного сезона. Температура— среднегодовая высокая. Осадки — 750—1650 мм/год, главным образом во время сезона дождей. Растительность: мятликовые (злаковые) растения с редкими листопадными деревьями. Животный мир: крупные растительноядные млекопитающие, такие, как антилопы, зебры, жирафы, носороги, из хищников — львы, леопарды, гепарды. 24 3. Пустыни (некоторые районы Африки, например Сахара; Ближнего Востока и Центральной Азии, Большой Бассейн и юго-запад США и север Мексики и др.). Климат — очень сухой. Температура — жаркие дни и холодные ночи. Осадки — менее 250 мм/год. Растительно с т ь: редкостойный кустарник, нередко колючий, иногда — кактусы и низкие травы, быстро покрывающие землю цветущим ковром после редких дождей. Корневые системы у растений обширные поверхностные, перехватывающие влагу редких осадков, а также стержневые корни, проникающие в землю до уровня грунтовых вод (30 м и глубже). Животный мир: разнообразные грызуны (кенгуровая крыса и др.), жабы, ящерицы, змеи и другие пресмыкающиеся, совы, орлы, грифы, мелкие птицы и насекомые в большом количестве. 4. Степи (центр Северной Америки, Россия, отдельные районы Африки и Австралии, юго-восток Южной Америки). Климат — сезонный. Температура — летние от умеренного теплого до жаркого, зимние температуры ниже 0°С. Осадки — 750—2000 мм/год. Растительность: господствуют мятликовые (злаковые) высотой до 2 м и выше в некоторых прериях Северной Америки или до 50 см, например, в степях России, с отдельными деревьями и кустарниками на влажных участках. Животный мир: крупные растительноядные млекопитающие — бизоны, вилорогие антилопы (Северная Америка), дикие лошади (Евразия), кенгуру (Австралия), жирафы, зебры, белые носороги, антилопы (Африка); из хищников — койоты, львы, леопарды, гепарды, гиены, разнообразные птицы и мелкие роющие млекопитающие, такие, как кролик, суслик, трубкозуб. 5. Леса умеренного пояса (Западная Европа, Восточная Азия, восток США). Климат— сезонный с зимними температурами ниже 0°С. Осадки— 750—2000 мм/год. Растительность: господствуют леса из широколиственных листопадных пород деревьев высотой до 35—45 м (дуб, гикори, клен), кустарниковый подлесок, мхи, лишайники. Животный мир: млекопитающие (белохвостый олень, дикобраз, енот, опоссум, белка, кролик, землеройки), птицы (славки, дятлы, дрозды, совы, соколы), змеи, лягушки, саламандры, рыбы (форель, окунь, сом и др.), обильная почвенная микрофауна. Биота адаптирована к сезонному климату: спячка, миграции, состояние покоя в зимние месяцы. 6. Хвойные леса, тайга (северные районы Северной Америки, Европы и Азии). Климат — долгая и холодная зима, много осадков выпадает в виде снега. Растительность: господствуют вечнозеленые хвойные леса, большей частью еловые, сосновые, пихтовые. Животный мир: крупные травоядные копытные (олень-мул, северный олень), мелкие растительноядные млекопитающие (заяцбеляк, белка, грызуны), волк, рысь, лисица, черный медведь, гризли, росомаха, норка и другие хищники, многочисленные кровососущие насекомые во время короткого лета. Множество болот и озер. Толстая лесная подстилка. 7. Тундра (в северном полушарии к северу от тайги). Климат — очень холодный с полярным днем и полярной ночью. Температура — среднегодовая ниже — 5°С. За несколько недель короткого лета земля оттаивает не более 1 м в глубину. Осадки — менее 250 мм/год. Растительность: господствуют медленно 25 растущие лишайники, мхи, злаки и осоки, карликовые кустарники. Животный мир: крупные травоядные копытные (северный олень, мускусный бык), мелкие роющие млекопитающие (кругаогодично, например, лемминги), хищники, приобретающие зимой маскирующую белую окраску (песец, рысь, горностай, полярная сова). В тундре коротким летом гнездится большое число перелетных птиц, среди них особенно много водоплавающих, которые питаются имеющимися здесь в изобилии насекомыми и пресноводными беспозвоночными. Вертикальная зональность экосистем суши, особенно в местах с резко выраженным рельефом, также весьма четкая. Высотная ярусность сообществ живых организмов во многих отношениях сходна с широтным распределением крупных биомов. Влажность является основным фактором, определяющим тип биома. При достаточно большом количестве осадков, как правило, развивается лесная растительность. Температура при этом определяет тип леса. Точно так же обстоит дело в биомах степи и пустыни. Смена типов растительности в холодных регионах происходит при меньших годовых суммах осадков, так как при низких температурах меньше воды теряется на испарение. Температурный фактор становится главным только в очень холодных условиях с вечной мерзлотой. Так, в тундре тепла хватает лишь на то, чтобы сошел снег и оттаяли самые верхние горизонты почвы. Ниже в ней постоянно сохраняется лед. Это явление и называется вечной мерзлотой. Она ограничивает распространение на север еловых и пихтовых лесов из-за препятствия глубокому проникновению в почву их корневой системы и в то же время не мешает произрастанию карликовых морозоустойчивых растений тундры. При дальнейшем понижении температуры карликовая морозоустойчивая растительность тундры сменяется полярными пустынями. Каждый биом характеризуется специфическим составом не только растений, но и животных. Так, белый полярный медведь водится только во льдах Арктики. Почему бы ему не жить в других биомах? Причина в том, что белый медведь приспособился к определенному комплексу условий. Он живет только там, где одновременно есть холодная вода, соответствующая пища (питается он в первую очередь тюленями, молодыми моржами, рыбой и выброшенными на мель китами) и дрейфующие льды. Там, где хоть одно из этих трех условий отсутствует, нет и медведей. Таким образом, сложение экосистем в значительной мере зависит от их функциональной «предназначенности» и наоборот. По Н. Ф. Реймерсу (1994), это находит отражение в принципе экологической комплементарности (дополнительности): никакая функциональная часть экосистемы (экологический компонент, элемент и т. д.) не может существовать без других функционально дополняющих частей. Близок к нему и расширяющий его принцип экологической конгруэнтности (соответствия): функционально дополняя друг друга, живые составляющие экосистемы вырабатывают для этого соответствующие приспособления, скоординированные с условиями абиотической среды, в значительной мере преобразуемой теми же организмами (биоклимат и т. д.), т. е. наблюдается двойной ряд соответствия — между 26 организмами и средой их обитания — внешней и создаваемой ценозом. Например, виды, составляющие экосистемы пустыни, приспособлены^ одной стороны, к ее климатическим и другим абиотическим условиям, а с другой — к среде экосистемы и друг к другу. Это же характерно для организмов любого биома и другого более низко или высоко стоящего в иерархии систем подразделения биосферы. В связи с этим здесь уместно привести принцип (закон) формирования экосистемы (функционально-пространственной экологической целостности, связи биотоп — биоценоз): длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и соответственно приспособлены друг к другу, что обеспечивает воспроизводство среды обитания каждого вида и относительно неизменное существование всех экологических компонентов. Совершенно очевидно, чти принцип формирования экосистемы есть суммарное отражение принципа экологической комплементарности (дополнительности и принципа экологической конгруэнтности (соответствия). Лекция подготовлена на основе следующих материалов: 1. Степановских А.С. Экология. Учебник для вузов. — М.: юнити-дана, 2001. - 703 с. 2. Степановских А.С. Общая экология [Электронный ресурс]: учебник для вузов/ Степановских А.С.— Электрон. текстовые данные.— Москва: ЮНИТИ-ДАНА, 2012.— 687 c. — Режим доступа: http://www.iprbookshop.ru/8105.html. — ЭБС «IPRbooks». 3. Большаков В.Н. Экология [Электронный ресурс]: учебник/ Большаков В.Н., Качак В.В., Коберниченко В.Г.— Электрон. текстовые данные.— Москва: Логос, 2013.— 504 c.— Режим доступа: http://www.iprbookshop.ru/14327.html. — ЭБС «IPRbooks. 27
«Структура и функционирование природных экосистем» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты

Тебе могут подойти лекции

Смотреть все 141 лекция
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot