Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Теоретические основы
1. Пропускная способность и режим работы
магистрального газопровода
Пропускная способность и режим работы магистрального газопровода (МГ) определяются совместной работой КС и линейных участков, его составляющих. При этом режимы работы отдельных КС и участков, в связи с различием их геометрических размеров, давления и температуры газа, значительно отличаются, что диктует необходимость поочередного расчета всех элементов системы. Выходные параметры одного элемента являются входными параметрами следующего за ним. Таким образом, поочередно следуют расчеты работы участков и компрессорных станций. На каждом этапе ведется проверка соответствия полученных параметров условиям нормальной работы газопровода и оптимальности режима.
По аналогичной схеме будет работать математическая модель МГ при расчетах на ЭВМ. Для ее реализации требуется формализовать работу основных элементов системы: участок, газоперекачивающий агрегат (ГПА), пылеуловитель (ПУ), аппарат воздушного охлаждения (АВО).
Рассмотрим поочередно основные уравнения, позволяющие оценить изменения параметров газа при его перемещении по элементам МГ, и на их основе составим алгоритмы решения важнейших задач эксплуатации газопровода.
Основным расчетным уравнением для участка МГ является уравнение пропускной способности. В общем случае пропускная способность участка зависит от его длины, внутреннего диаметра труб, перепада давления, физических свойств газа и рельефа трассы. Учитывая, что плотность газа мала, влиянием рельефа чаще всего можно пренебречь. Согласно ОНТП газопровод рассчитывается как горизонтальный при разности геодезических отметок менее 100 м. В этом случае уравнение пропускной способности используется в следующем виде:
, ( 1)
где - пропускная способность участка (Т = 293К, Р = 0,1 МПа), млн. м3/сут; Р1, Р2 - давление в начале и в конце участка, МПа; D - эквивалентный диаметр труб, м; z - коэффициент сжимаемости газа при среднем значении давления и температуры в участке; T - средняя
температура газа в участке, К; l - длина участка, км; λ - расчетное значение коэффициента гидравлического сопротивления.
Для определения пропускной способности необходимо определить:
• коэффициент гидравлического сопротивления;
• среднее давление газа на участке;
• среднюю температуру газа на участке;
• физические свойства газа при Pср и Tср.
1.1. Определение физических свойств газа
Физические свойства газа определяются при средних значениях Т и Р участка (расчет участка), при Т и Р на входе в ЦН (расчет ЦН) и при средних значениях Т и Р в АВО (расчет АВО).
Широкое использование ЭВМ диктует необходимость аналитического определения физических свойств газа. При гидравлических и тепловых расчетах МГ используются следующие физические величины: коэффициент сжимаемости, динамическая вязкость, удельная теплоемкость и коэффициент Джоуля - Томсона. Базовым параметром является относительная плотность газа (Δ), или плотность газа при стандартных условиях (ρСТ), между которыми существует следующая связь:
. ( 2)
Коэффициент сжимаемости (z) и динамическая вязкость газа (η) определяются через приведенные значения давления и температуры:
, ( 3)
где PПР и ТПР - приведенные давление и температура; Р и PКР - давление, при котором определяются свойства и критическое давление газа; Т и ТКР - температура, при которой определяются свойства и критическая температура газа:
( 4)
. ( 5)
В настоящее время для определения коэффициента сжимаемости и динамической вязкости газа рекомендуется использовать следующие зависимости:
, ( 6)
где ;
, ( 7)
где η - динамическая вязкость газа, Па c.
Удельная теплоемкость cp (кДж/(кгК)) и коэффициент Джоуля - Томсона Di (К/МПа) газа определяются из уравнений ( 8) и ( 9):
, ( 8)
. ( 9)
При решении задач следует постоянно следить за соответствием условий, при которых определяются физические свойства газа реальным, условиям рассчитываемого участка газопровода.
1.2. Определение коэффициента гидравлического сопротивления
В общем случае коэффициент гидравлического сопротивления зависит от числа Рейнольдса Re и относительной шероховатости ε
, ( 10)
где k – эквивалентная шероховатость труб.
При отсутствии уточненных данных k принимается равным 0,03 мм.
Число Рейнольдса определяется зависимостью
, ( 11)
где η – динамическая вязкость газа, Пас.
Приняв и , получаем
. ( 12)
Для практических расчетов Re можно определять по следующей формуле
( 13)
где Q – объемная производительность МГ, млн. м3/сут; D – внутренний диаметр труб, м.
Для условий МГ можно считать динамическую вязкость постоянной величиной. В таком случае постоянной величиной будет и Re.
Для расчетов МГ нормами технологического проектирования рекомендуется формула ВНИИгаза
. ( 14)
Эта формула справедлива для всей области турбулентного режима
течения газа. МГ при полной их загрузке обычно работают в квадратичной зоне этого режима. Для определения зоны, в которой работает МГ, используются переходные значения числа Рейнольдса и производительности
, ( 15)
. ( 16)
В квадратичной зоне влияние Re незначительно, поэтому
( 17)
или при k = 0,03 мм
, ( 18)
здесь D – диаметр МГ, мм.
На гидравлическое сопротивление МГ оказывают влияние местные сопротивления и засорение труб. Для учета этих факторов при расчетах используется расчетное значение коэффициента гидравлического сопротивления
, ( 19)
где Е – коэффициент гидравлической эффективности газопровода.
В соответствии с ОНТП и правилами технической эксплуатации МГ, при отсутствии реального значения эффективности работы МГ, принимается Е = 0,95 для газопровода оборудованного узлами для очистки труб и Е = 0,92 при их отсутствии.
2. Определение давления в магистральном газопроводе
Давление является основным параметром, по которому контролируется режим работы трубопроводов.
Газ поступает на КС с давлением и температурой в конце подводящего трубопровода (головная КС) или предшествующего участка (промежуточные КС) Р2 и Т2. На выходе станции (в начале следующего участка) давление будет Р1. Степень сжатия станции при этом составит
. ( 20)
Учитывая потери во входном и выходном коллекторах, степень сжатия нагнетателей должна быть более высокой:
, ( 21)
где ΔРВ, ΔРН - потери давления во входном и выходном коллекторах КС; ΔРА - потери давления в аппаратах воздушного охлаждения, ΔРА=0,0588 МПа.
Возможность реализации требуемой степени сжатия определяется располагаемой мощностью привода нагнетателя ND:
, ( 22)
где ND, Ni - потребляемая мощность двигателя и внутренняя мощность нагнетателя; ηМ - механический КПД нагнетателя.
Для электроприводных ГПА ηМ = 0,9
Внутренняя мощность нагнетателя определяется с помощью приведенных характеристик:
, ( 23)
где - приведенная мощность нагнетателя, п, пН - фактическая и номинальная частота вращения ротора нагнетателя; ρВ - плотность газа при условиях входа в нагнетатель, кг/м3.
, ( 24)
где РВ, РСТ - давление (абсолютное) газа на входе нагнетателя и при стандартных условиях, Па; ТВ, ТСТ - температура газа на входе нагнетателя и при стандартных условиях, Т; zВ - коэффициент сжимаемости газа при условиях входа в нагнетатель; R - газовая постоянная, Дж/(кгК):
. ( 25)
Допускается определение внутренней мощности из ( 26)
, ( 26)
где Ni - внутренняя мощность, кВт; Q - производительность нагнетателя, млн.м3/сут; ηП - политропический КПД нагнетателя; К - показатель адиабаты сжатия, К=1,31.
Располагаемая мощность ГТУ и электродвигателя зависит от условий их работы.
Используя ( 26), можно определить максимальную производительность нагнетателя, а соответственно и КС, при требуемой степени сжатия и располагаемой мощности ГПА или максимальную степень сжатия при заданной производительности. Полученный таким образом результат не всегда может быть реализован при использовании конкретного типа нагнетателя с заданной проточной частью. Реализуемые значения степени сжатия определяются только по приведенным характеристикам ЦН.
Приведенная характеристика нагнетателя представляет собой
графическое изображение трех функций:
.
Аналитически эти функции можно аппроксимировать полиномами
( 27)
где QЛР - приведенная производительность, м3/мин:
, ( 28)
где пН, п - номинальная и фактическая частота вращения рабочего колеса нагнетателя; QВ - производительность при условиях входа в нагнетатель, м3/мин
, ( 29)
где Q - производительность нагнетателя при стандартных условиях, млн. м3/сут.
Зависимость ε - QПР описывается для случая
, ( 30)
где ТПР, ZПР, RПР - приведенные параметры нагнетателя; - приведенная частота вращения рабочего колеса ЦН.
Развиваемая ЦН степень сжатия при любой частоте вращения может быть пересчитана по уравнению
, ( 31)
где ε - степень сжатия ЦН при приведенной частоте вращения, равной 1,00.
Уравнение ( 31) позволяет определить частоту вращения рабочего колеса, при которой ЦН создает требуемую степень сжатия:
. ( 32)
При этом должны соблюдаться условия ( 22), ( 33), ( 34) и
, ( 33)
. ( 34)
Давление на выходе КС не должно превышать рабочего давления МГ РР:
. ( 35)
Пользуясь уравнением ( 1) можно определить давление в любой точке участка МГ
. ( 36)
где
Из ( 36) видно, что Р2 меняется по длине участка линейно.
Из рис. 1 видно, что
.
Тогда для давления в любой точке участка можно записать
. ( 37)
Рис. 1. Изменение Р2 по длине участка
Следовательно, давление по длине участка меняется по параболическому закону и среднее давление должно определяться как среднегеометрическое.
. ( 38)
Рис. 2. Изменение Р по длине участка
3. Расчет сложных трубопроводов
Практически участок между КС представляет собой либо несколько параллельных трубопроводов, каждый из которых состоит из нескольких подучастков с различным внутренним диаметром, либо несколько подучастков, отличающихся числом ниток или внутренним диаметром. Расчет таких сложных трубопроводов заменяют расчетом простого, используя понятия эквивалентного диаметра или коэффициента расхода.
Эквивалентным диаметром DЭК называется диаметр простого трубопровода, имеющего пропускную способность, равную пропускной способности реального трубопровода при прочих равных условиях.
Коэффициентом расхода kp называют отношение пропускной способности реального трубопровода к пропускной способности эталонного трубопровода q0 с произвольно выбранным эталонным диаметром D0 при прочих равных условиях:
. ( 39)
Для случая простого трубопровода
, ( 40)
где Di и λi - диаметр и коэффициент гидравлического сопротивления простого трубопровода; D0 и λ0 - диаметр и коэффициент гидравлического сопротивления эталонного трубопровода.
При квадратичном режиме течения газа
. ( 41)
При параллельном соединении простых трубопроводов
, ( 42)
. ( 43)
При последовательном соединении трубопроводов
, ( 44)
, ( 45)
где l, li - длина участка и подучастков.
Для сложного газопровода с последовательным и параллельным соединением участков коэффициент расхода kp или эквивалентный диаметр DЭК определяются последовательным использованием формул ( 43) и ( 45) или ( 42) и ( 44).
При расчете МГ с применением коэффициент расхода имеет следующий вид:
, ( 46)
где D0, λ0 - диаметр и коэффициент гидравлического сопротивления эталонного трубопровода.
4. Температурный режим участка газопровода
Температурный режим работы участка зависит от многих факторов.
1. Температуры газа на входе в КС (Т2).
2. Повышения температуры газа при его компремировании
, ( 47)
где Тв – температура газа на выходе ЦН; ε – степень сжатия нагнетателя; ηп– политропический КПД ЦН.
3. Охлаждение газа в АВО
, ( 48)
где Т1 – температура на выходе КС; Q0 – теоретический теплосъем с одного АВО при двух работающих вентиляторах, Вт; kA2, kA1, kA0 – коэффициенты тепловой эффективности АВО при 1,2 и 0 работающих вентиляторах; n2, n1, n0 – количество АВО работающих с 2,1 и 0 вентиляторов; М – массовый расход газа через все АВО; срт – теплоемкость газа при условиях АВО
, ( 49)
здесь TA - температура воздуха.
Теплосъем Q0 удобно определять по номограммам теплового расчета АВО. Теплосъем АВО типа 2АВГ – 75с при двух работающих вентиляторах описывается следующей зависимостью
, ( 50)
где Q0 – теплосъем с одного АВО при двух работающих вентиляторах, кВт; tH – температура газа за нагнетателем, 0С; ta – температура воздуха, 0С; ср – удельная теплоемкость газа, Дж/(кг.град); M1 – расход газа через один АВО, кг/с.
Значения коэффициентов kA1 и kA0 также определяются по результатам эксплуатации АВО. В первом приближении можно принять kA1=0,55-0,60, kA0=0,18-0,20.
Количество работающих вентиляторов для реализации заданной температуры на выходе КС определяется из ( 49). Принимая во внимание, что при регулировании температуры сначала отключают поочередно по одному вентилятору на всех АВО и только после этого начинают отключение вторых, в сумме уравнения ( 49) никогда не будет больше двух слагаемых. Для определения схемы работы удобно воспользоваться величиной среднего коэффициента эффективности:
, ( 51)
где n - количество работающих на КС АВО.
В зависимости от величины kСР возможны следующие варианты:
;
;
;
.
Схема работы АВО определяется из условия минимума затрат электроэнергии для обеспечения оптимальной температуры газа за КС. Не рекомендуется принимать температуру на выходе КС Т1 > 500С и меньше значения, при котором температура газа в конце участка меньше 271 К или температуры грунта для участков вечной мерзлоты.
Газ в участке охлаждается вследствие теплообмена с окружающей средой и его расширения при снижении давления.
( 52)
где Di – коэффициент Джоуля-Томсона, К/МПа; T0 – температура окружающей среды, К;
, ( 53)
где k – полный коэффициент теплопередачи, Вт/(м2К);.
Пренебрегая влиянием дросселирования газа, получим уравнение Шухова
. ( 54)
В соответствии с ( 54) температура газа стремиться в бесконечности к температуре окружающей среды. С учетом дроссельного эффекта температура газа в конце участка меньше температуры окружающей среды. При температуре грунта близкой к 0 0С температура газа может быть отрицательной, что вызовет промораживание грунта вокруг труб и дополнительные деформации трубопровода. Рекомендуется ограничивать температуру газа в конце участка Т2 = 271273 К, что приводит к ограничению температуры газа на выходе КС.
Т.к. температура газа по длине участка меняется экспоненциально, то средняя температура определяется как среднегеометрическая
. ( 55)
Рис. 3. Распределение температуры газа по длине участка
При известных или принятых значениях температуры газа в начале и в конце участка с достаточной точностью среднею температуру можно определить, используя следующее уравнение
( 56)
Расстояние между КС определяется из уравнения пропускной способности ( 1) при давлениях P1 в начале участка и P2 в конце. Для случая электроприводных ГПА все участки между собой равны. Конечный
участок рассчитывается при давлениях P1 и PK и получается в α раз длиннее:
. ( 57)
В этом случае теоретическое число КС n0 определится зависимостью
, ( 58)
где L - длина МГ; l и lK - длина промежуточного и конечного участка.
Так как газопровод рекомендуется сооружать без лупинга, дробное число КС обычно округляется в большую сторону. Утонченные длины участков определяются из выражений
, ( 59)
, ( 60)
где n - принятое число станций.
При оборудовании ГПА газовыми турбинами производительность газопровода уменьшается на величину топливного газа, что приводит к увеличению длин участков:
, ( 61)
где lГi - длина i-го участка; ni - номер КС, работающей на i-й участок.
В этом случае теоретическое число КС можно определить из равенства
. ( 62)
Расстановка КС производится в соответствии с ( 62) и с учетом условий строительства и эксплуатации МГ.
Примеры решения задач
Особенностью расчета газопровода является то, что чаще всего имеется недостаток информации о параметрах его работы. Обычно невозможно определить гидравлический режим течения газа или определить среднюю температуру и среднее давление газа в участке. В этом случае задача решается методом последовательных приближений. Режимом течения газа или недостающими параметрами задаются на основании имеющего опыта или рекомендаций. Затем принятые параметры определяются, и проверяется сходимость полученных значений с принятыми. Если расхождение превышает требуемую точность расчета или режим отличается от предположенного, то расчеты повторяются с новыми значениями параметров или при новом режиме.
Пример 1. Оценить диапазон изменения коэффициента сжимаемости газа и промежуточных величин его определяющих.
Относительная плотность газа может меняться от 0,55 до 0,62. Давление газа в газопроводе может принимать значения от 2,0 МПа в конце газопровода до 7,36 МПа на выходе КС. Температура газа изменяется от -2°С в конце участка до 50° С на выходе КС.
Решение
Определим плотность газа при стандартах условиях и его критические параметры для минимальных значений параметров D = 0,55, t= -2° С, Р=2,0 МПа:
абсолютное значение температуры Т = - 2 + 273 = 271 К;
абсолютное значение давления Р = 2,0 + 0,1 = 2,1МПа;
Ркр = 0,1773 (26,831 – 0,663) = 4,64 МПа;
Ткр =155,24 (0,564 + 0,663) = 191,7 К.
Определим приведенные параметры и τ:
РПР =2,1/4,64 = 0,43;
ТПР = 271/191,7 = 1,41;
t = 1 – 1,68 × 1,41 + 0,78 Ркр 1,412 + 0,0107 × 1,413 = 0,21.
Коэффициент сжимаемости газа Zmax
= 0,949
При максимальных значениях D = 0,62, Р=7,46 МПа и Т = 323 К:
rст = 0,62; Ркр = 4,62МПа; Ткр = 204,8 К; РПР =1,59; ТПР =1,58;
t = 0,33 и zmin = 0,885.
Вывод. В условиях МГ параметры меняются в следующих пределах:
rст = 0,663 ¸ 0,747 кг/м3;
РКР = 4,64 ¸ 4,62 МПа; ТКР = 191,7 ¸ 204,8 К;
РКР = 0,45 ¸ 1,59; ТПР = l,47 ¸ 1,58;
t =0,21÷ 0,33;
z = 0,951 ¸ 0.825.
Пример 2. Определить физические свойства газа при условиях в начале и в конце участка МГ.
Примем для газопровода с рабочим давлением 7,36 МПа абсолютное давление в начале участка P1 = 7,46 МПа и температуру Т1=300 К и, соответственно, в конце участка Р2 = 5,1 МПа и Т2 = 280 К. Относительная плотность транспортируемого газа D = 0,58.
Решение
Аналогично примера 1 определим плотность газа при стандартных условиях и коэффициент сжимаемости газа при условиях начала (z1) и конца (z2) участка:
Дж/(кг×град);
К/МПа;
= 12∙10-6 Па×с.
В конце участка: СР2 = 2,66 Дж/(кг×град); Di2 = 4,14 K/МПа; h2=11,5·10-6Па×с.
Прмер 3. По участку газопровода с внутренним диаметром 1400 мм перекачивается 90 млн. м3 газа в сутки. Давление и температура газа в начале участка P1 = 7,36 МПа, Т1 = 300 К. В конце участка Р2 = 5,1 МПа, Т2==280 К. Относительная плотность транспортируемого газа Δ=0,58. Оценить влияние изменения скорости течения газа по длине участка на общее изменение давления в нем.
Решение
Из примера 2 имеем: rст = 0,699 кг/м3, z1 = 0,869, z2=0,878.
Определим секундную производительность участка
.
Используя уравнение состояния газа, и приняв коэффициент сжимаемости газа при стандартных условиях равным единице, получим следующее уравнение для определения объемной производительности при рабочих условиях
,
м3/с,
м3/с.
Для определения скорости течения газа в трубопроводе воспользуемся следующей зависимостью
,
,
.
Для определения снижения давления за счет изменения скорости течения газа воспользуемся зависимостью
.
Плотность газа при рабочих условиях определим аналогично тому, как определили производительность
,
кг/м3,
кг/м3,
Па.
Оценим в процентах долю снижения давления от изменения скорости течения газа в общих потерях давления в участке
,
откуда
.
Вывод. Влияние изменения кинетической энергии газа в участке на общие потери давления в нем незначительно и им, при решении инженерных задач, можно пренебречь.
Пример 4. Определить давление и температуру газа в конце участка МГ длиной 100 км и диаметром 1000 мм, если давление и температура в начале участка P1 = 5,0 МПа и Т1 = 30 °С. Производительность газопровода Q = 30 млн. м3/сут. Температура грунта на глубине заложения трубопровода Т0 = 0° С. Транспортируется газ с относительной плотностью Δ = 0,58.
Решение
1. Точность определения давления и температуры.
Точностью определения параметров работы участка зададимся с учетом точности установленных на газопроводе приборов. Примем точность определения давления ΔР = 0,1 МПа и температуры ΔТ =1 К.
2. Определение средних значений давления и температуры в участке.
Зададимся значениями давления и температуры в конце участка:
P2 =3,5 МПа, Т1 = 273 K,
.
где P1 – абсолютное давление газа в начале участка, МПа P2 – абсолютное давление газа в конце участка, МПа.
Примем атмосферное давление Ра = 0,1 МПа, тогда P1 = 5,1 МПа
МПа.
Так как значения температуры грунта и полного коэффициента теплопередачи неизвестны, то ориентировочное значение средней температуры газа в участке Тср определим из уравнения
,
где Т1, Т2 - температура газа в начале и в конце участка, К
К.
3.Определение физических свойств газа при среднем значение температуры и давления в участке
где ρст - плотность газа при стандартных условиях, кг/м3,
ρв - плотность воздуха при стандартных условиях, кг/м3
кг/м3,
кг/м3.
Определим критические значения давления Pкр и температуры Ткр газа
Pкр = 0, 1773(26, 831- ρст), МПа,
Ткр = 156,24(0,564+ ρст), К
Ркр =0,1773(26,831-0,699) = 4,63 МПа,
Ткр =156,24(0,564+0,699)= 197 К.
Приведенные значения Рпр и Тпр
Рпр = Pср / Pкр = 4,35/4,63 = 0,939,
Тпр = Тср / Ткр = 283/197 = 1,434.
Найдем значение τ
τ = 1-1,68Тпр +0,78 Тпр2 +0,0107 Тпр3 =
= 1-1,68 ·1,434+078·14342+0,0107·1 4343 = 0,22
Определим коэффициент сжимаемости газа z
.
Динамическая вязкость газа η
,
Па·с.
Удельная теплоёмкость газа
.
Коэффициент Джоуля-Томсона
К/Па.
4. Определение коэффициента гидравлического сопротивления λ
Для оценки гидравлического режима течения газа найдём значение переходной производительности QП
млн. м3/сут,
Q › QП - газ течет при квадратичном режиме.
Тогда при эквивалентной шероховатости труб kэ = 0,03 мм
,
где D - внутренний диаметр труб, мм
.
Расчетное значение λр
где Е - коэффициент гидравлической эффективности участка.
В соответствии с ОНТП примем Е = 0,95
5.Определение давления в конце участка.
Из уравнения пропускной способности участка
млн. м3/сут
определим P2
МПа.
Определение температуры газа.
,
.
Массовая производительность участка
кг/с.
Примем полный коэффициент теплопередачи к = 1,5 Вт/(м2·град) и найдем значение коэффициента а
1/кг
7. Оценка сходимости результатов.
МПа,
К.
Сходимость результатов неудовлетворительная, следовательно, требуется уточнение значений Р2 и Тср.
Принимаем Р2 = 3,34 МПа, Тср = 291,6 К и повторяем расчет. Результаты расчета приведены в табл. 1.
Таблица 1
Параметры работы участка
Приближение
Параметры
1
2
Р2, МПа
Т2, К
Рср, МПа
Тср, К
Z
CР, кДж/(кг·град)
Di, К/МПа
η, Па·с
QП, млн м3/сут
λ
λр
а, 1/км
Р21, МПа
Тср1, К
3,5
273
4,35
283
0,900
2,58
4,2
11,3·10-6
25,9
0,0096
0,0112
7,51·10-3
3,54
291,6
3,54
-
4,37
291,6
0,911
2,57
3,9
11,7·10-6
26,4
0,0096
0,0112
7,55·10-3
3,46
291,6
Температура в конце участка
Вывод: Р2 = 3,46 МПа, Т2 = 282,7 К.
Пример 5. Определить максимальную аккумулирующую способность последнего участка МГ диаметром 1400 мм, работающего с производительностью 100 млн. м3/год, если максимальное давление P1 = 7,36 МПа и минимальное давление в конце газопровода PMIN = 1,5 МПа. Транспортируется газ с относительной плотностью Δ=0,58 при средней температуре 280 К.
Плотность газа при стандартных условиях ρСТ = 0,699 кг/м3.
Среднее давление газа в участке Рср= 5,16 МПа.
Коэффициент сжимаемости газа при Рср и Тср z= 0,877.
Коэффициент гидравлического сопротивления l = 0,01.
Максимальная длина конечного участка lkmax = 211 км.
Примем длину конечного участка lК = lkmax / 2 = 105,5 км.
Решение
Определяем максимальное давление в конце участка
МПа.
Определяем минимальное давление в начале участка
МПа.
Находим максимальное и минимальное среднее давление в участке:
.
Плотность газа в участке при этих давлениях: rmax=56 кг/м3; rmin=31кг/м3.
Аккумулирующая способность последнего участка составит
млн. м3.
Вывод. Аккумулирующая способность последнего участка достигает 8,1% суточной производительности МГ, что не всегда может гарантировать сглаживание часовой неравномерности