Общие закономерности роста и развития организма
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Лекция 1. Общие закономерности роста и развития организма
Физическое развитие, как один из основных критериев здоровья, характеризуется интенсификацией ростовых процессов и их замедлением, наступлением половой зрелости и формирования дефинитивных размеров тела, тесно связано с адаптационным резервом детского организма, расходуемым на достаточно длительном отрезке онтогенеза.
Физическое развитие детей и подростков подчиняется биологическим законам и определяет общие закономерности роста и развития организма:
• чем моложе детский организм, тем интенсивнее протекают в нем процессы роста и развития;
• процессы роста и развития протекают неравномерно и каждому возрастному периоду свойственны определенные анатомо-физиологические особенности;
• в протекании процессов роста и развития наблюдаются половые отличия.
Основными закономерностями роста и развития является:
эндогенность - рост и развитие организма не обусловлены внешними воздействиями, а совершаются по внутренним, присущим самому организма и запечатленным в наследственной программе законам. Рост - реализация естественной потребности организма в достижении взрослого состояния, когда делается возможным продолжение рода;
• необратимость - человек не может вернуться к тем особенностям строения, которые были у него в детстве;
• цикличность - существуют периоды активизации и торможения роста. Первое отмечается в период до рождения и в первые месяцы жизни, затем интенсификация роста происходит в 6-7 лет и 11-14 лет;
• постепенность - человек в своем развитии проходит ряд этапов, совершающихся последовательно один за другим;
• синхронность - процессы роста и старения совершаются относительно одновременно в разных органах и системах организма. В процессе возрастного развития происходит видоизменения пропорций тела за счет разной скорости роста отдельных его частей. Основной характеристикой процесса роста является его скорость. Поскольку рост различных размеров тела протекает не равномерно, то на отдельных этапах возрастного развития говорят о продинамии (сходстве ростовых процессов) и гетеродинамии (их несоответствии). Тотальные размеры тела (длина, масса, окружность грудной клетки), характеризующие процессы роста и физического развития человека, позволяют получить суммарную характеристику ростовых закономерностей.
Рост и развитие ребенка, т.е. количественные и качественные изменения тесно взаимосвязаны друг с другом. Постепенные количественные и качественные изменения, происходящие в процессе роста организма, приводят к появлению у ребенка новых качественных особенностей.
Весь период развития живого существа, от момента оплодотворения до естественного окончания индивидуальной жизни, называют – онтогенез. В онтогенезе выделяют два относительных этапа развития:
• Пренатальный – начинается с момента зачатия до рождения ребенка.
• Постнатальный – от момента рождения до смерти человека.
Наряду с гармоничностью развития существуют особые этапы наиболее резких скачкообразных атомо – физиологических преобразований.
В постнатальном развитии выделяют три таких «критических периода» или «возрастного кризиса».
Возраст
Изменяющиеся факторы
Последствия
от 2х до 4х
Развитие сферы общения с внешним миром.
Развитие формы речи.
Развитие формы сознания.
Повышение воспитательных требований.
Повышение двигательной деятельности
с 6 до 8 лет
Новые люди
Новые друзья
Новые обязанности
Уменьшение двигательной деятельности
с 11 до 15 лет
Изменение гормонального баланса с созреванием и перестройкой работы желез внутренней секреции.
Расширение круга общения
Конфликты в семье и в школе
Вспыльчивый характер
Важной биологической особенностью в развитии ребенка является то, что формирование их функциональных систем происходит намного раньше, чем это им требуется.
Принцип опережающего развития органов и функциональных систем у детей и подростков является своеобразной «страховкой», которую дает природа человеку на случай непредвиденных обстоятельств.
Лекция 2. Анатомия и физиология нервной системы и ВНД
Общие данные о нервной системе. Вся нервная система делится на центральную и периферическую. К центральной нервной системе относится головной и спинной мозг. От них по всему телу расходятся нервные волокна - периферическая нервная система. Она соединяет мозг с органами чувств и с исполнительными органами - мышцами и железами. Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде.
Стимулы внешней среды (свет, звук, запах, прикосновение и т.п.) преобразуются специальными чувствительными клетками (рецепторами) в нервные импульсы - серию электрических и химических изменений в нервном волокне. Нервные импульсы передаются по чувствительным (афферентным) нервным волокнам в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются по моторным (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам). Эти исполнительные органы называются эффекторами.
Основная функция нервной системы - интеграция внешнего воздействия с соответствующей приспособительной реакцией организма. Структурной единицей нервной системы является нервная клетка - нейрон. Он состоит из тела клетки, ядра, разветвленных отростков - дендритов - по ним нервные импульсы идут к телу клетки - и одного длинного отростка - аксона - по нему нервный импульс проходит от тела клетки к другим клеткам или эффекторам.
Возрастные особенности рефлекторной деятельности. Ребенок рождается с набором безусловных рефлексов, рефлекторные дуги которых начинают формироваться на 3-м месяце пренатального развития. Так, первые сосательные и дыхательные движения появляются у плода именно на этом этапе онтогенеза, а активное движение плода наблюдается на 4—5-м месяце внутриутробного развития. К моменту рождения у ребенка формируется большинство врожденных безусловных рефлексов, обеспечивающих ему нормальное функционирование вегетативной сферы, его вегетативный «комфорт».
Возможность простых пищевых условных реакций, несмотря на морфологическую и функциональную незрелость мозга, возникает уже на первые-вторые сутки, а к концу первого месяца развития образуются условные рефлексы с двигательного анализатора и вестибулярною аппарата: двигательные и временные. Все эти рефлексы очень медленно формируются, они чрезвычайно нежны и легко тормозятся, что, видимо, связано с незрелостью корковых клеток и резким преобладанием процессов возбуждения над тормозными и их широкой иррадиацией.
Со второго месяца жизни образуются рефлексы слуховые, зрительные и тактильные, а к 5-му месяцу развития у ребенка вырабатываются все основные виды условного торможения. Важное значение в совершенствовании условно рефлекторной деятельности имеет обучение ребенка. Чем раньше начато обучение, т. е. выработка условных рефлексов, тем быстрее идет их формирование впоследствии.
К концу первого года развития ребенок относительно хорошо различает вкус пищи, запахи, форму и цвет предметов, различает голоса и лица. Значительно совершенствуются движения, некоторые дети начинают ходить. Ребенок пытается произносить отдельные слова («мама», «папа», «деда», «тетя», «дядя» и др.), и у него формируются условные рефлексы на словесные раздражители. Следовательно, уже в конце первого года полным ходом идет развитие второй сигнальной системы и формируется ее совместная деятельность с первой.
Развитие речи — это трудная задача. Она требует координации деятельности дыхательных мышц, мышц гортани, языка, глотки и губ. Пока эта координация не развилась, ребенок произносит многие звуки и слова неправильно.
Облегчить формирование речи можно верным произношением слов и грамматических оборотов, чтобы ребенок постоянно слышал нужные ему образцы. Взрослые, как правило, обращаясь к ребенку, стараются копировать звуки, которые произносит ребенок, полагая, что таким образом они смогут найти с ним «общий язык». Это - глубокое заблуждение. Между пониманием ребенком слов и умением их произносить существует огромная дистанция. Отсутствие нужных образцов для подражания задерживает становление речи ребенка.
Ребенок начинает понимать слова очень рано, и поэтому, для развития речи важно «разговаривать» с ребенком с первых дней после его рождения. Меняя распашонку или пеленку, перекладывая ребенка или подготавливая его к кормлению, желательно делать это не молча, а обращаться к ребенку с соответствующими словами, называя свои действия.
Первая сигнальная система - анализ и синтез непосредственных, конкретных сигналов предметов и явлений окружающего мира, приходящих от зрительных, слуховых и других рецепторов организма и составляющих
Вторая сигнальная система - (только у человека) связь между словесными сигналами и речью, восприятии слов—слышимых, произносимых (вслух или про себя) и видимых (при чтении).
На втором году развития ребенка совершенствуются все виды условно-рефлекторной деятельности и продолжается формирование второй сигнальной системы, значительно увеличивается словарный запас (250—300 слов); непосредственные раздражители или их комплексы начинают вызывать словесные реакции. Если у годовалого ребенка условные рефлексы на непосредственные раздражители образуются в 8—12 раз быстрее, чем на слово, то в два года слова приобретают сигнальное значение.
Решающее значение в формировании речи ребенка и всей второй сигнальной системы в целом имеет общение ребенка со взрослыми, т.е. окружающая социальная среда и процессы обучения. Этот факт — еще одно доказательство решающей роли среды в развертывании потенциальных возможностей генотипа. Дети, лишенные языковой среды, общения с людьми, не владеют речью, более того, их интеллектуальные способности остаются на примитивном животном уровне. При этом возраст с двух до пяти является «критическим» в овладении речью. Известны случаи, что дети, похищенные волками в раннем детстве и возвращенные в человеческое общество после пяти лет, способны научиться говорить лишь в ограниченных пределах, а возвращенные лишь после 10 лет не в состоянии произнести уже ни одного слова.
Второй и третий год жизни отличаются живой ориентировочной и исследовательской деятельностью. «При этом,— пишет М. М. Кольцова,— сущность ориентировочного рефлекса ребенка этого возраста правильнее может быть охарактеризована не вопросом «что это такое?», а вопросом «что с этим можно сделать?». Ребенок тянется к каждому предмету, трогает его, ощупывает, толкает, пробует поднять и т. д.».
Таким образом, описанный возраст ребенка характеризуется «предметным» характером мышления, т. е. решающим значением мышечных ощущений. Эта особенность в значительной степени связана с морфологическим созреванием мозга, так как многие моторные корковые зоны и зоны кожно-мышечной чувствительности уже к 1—2 годам достигают достаточно высокой функциональной полноценности. Основным фактором, стимулирующим созревание этих корковых зон, являются мышечные сокращения и высокая двигательная активность ребенка. Ограничение его подвижности на этом этапе онтогенеза значительно замедляет психическое и физическое развитие.
Период до трех лет характеризуется также необычайной легкостью образования условных рефлексов на самые различные раздражители, в том числе на размеры, тяжесть, удаленность и окраску предметов. Павлов считал эти виды условных рефлексов прообразами понятий, развиваемых без слов («группированное отражение явлений внешнего мира в мозгу»).
Примечательной особенностью двух - трехлетнего ребенка является легкость выработки динамических стереотипов. Интересно, что каждый новый стереотип вырабатывается легче. М. М. Кольцова пишет: «Теперь для ребенка становятся важными не только режим дня: часы сна, бодрствования, питания и прогулок,— но и последовательность в надевании или снимании одежды или порядок слов в знакомой сказке и песенке — все получает значение. Очевидно, что при недостаточно сильных и подвижных еще нервных процессах дети нуждаются в стереотипах, которые облегчают приспособление к окружающей среде».
Условные связи и динамические стереотипы у детей до трех лет отличаются необычайной прочностью, поэтому их переделка для ребенка всегда событие неприятное. Важным условием в воспитательной работе в это время является бережное отношение ко всем вырабатываемым стереотипам.
Возраст от трех до пяти лет характеризуется дальнейшим развитием речи и совершенствованием нервных процессов (увеличивается их сила, подвижность и уравновешенность), процессы внутреннего торможения приобретают доминирующее значение, но запоздалое торможение и условный тормоз вырабатываются с трудом. Динамические стереотипы вырабатываются все так же легко. Их количество увеличивается с каждым днем, но их переделка уже не вызывает нарушений высшей нервной деятельности, что обусловлено указанными выше функциональными изменениями. Ориентировочный рефлекс на посторонние раздражители продолжительнее и интенсивнее, чем у детей школьного возраста, что может быть использовано эффективно для торможения у детей вредных привычек и навыков.
Таким образом, перед творческой инициативой воспитателя в этот период открываются поистине неисчерпаемые возможности. Многие выдающиеся педагоги (Д.А.Ушинский, А.С.Макаренко) эмпирически считали возраст от двух до пяти особенно ответственным за гармоничное формирование всех физических и психических возможностей человека. Физиологически это основывается на том, что условные связи и динамические стереотипы, возникающие в это время, отличаются исключительной прочностью и проносятся человеком через всю его жизнь. При этом их постоянное проявление необязательно, они могут быть длительное время заторможенными, но в определенных условиях легко восстанавливаются, подавляя выработанные позже условные связи.
К пяти — семи годам еще более повышается роль сигнальной системы слов, и дети начинают свободно говорить. «Слово в этом возрасте уже имеет значение «сигнала сигналов», т. е. получает обобщающее значение, близкое к тому, которое оно имеет для взрослого человека».
Это обусловлено тем, что только к семи годам постнатального развития функционально созревает материальный субстрат второй сигнальной системы. В связи с этим для воспитателей особо важно помнить, что только к семи годам слово может эффективно применяться для образования условных связей. Злоупотребление словом до этого возраста без достаточной его связи с непосредственными раздражителями не только малоэффективно, но и наносит ребенку функциональный вред, заставляя мозг ребенка работать в нефизиологических условиях.
Существующие немногочисленные данные физиологии свидетельствуют, что младший школьный возраст (с 7 до 12 лет) — период относительно «спокойного» развития высшей нервной деятельности. Сила процессов торможения и возбуждения, их подвижность, уравновешенность и взаимная индукция, а также уменьшение силы внешнего торможения обеспечивают возможности широкого обучения ребенка. Это переход «от рефлекторной эмоциональности к интеллектуализации эмоций»
Однако только на базе обучения письму и чтению слово становится предметом сознания ребенка, все более отдаляясь от связанных с ним образов предметов и действии. Незначительное ухудшение процессов высшей нервной деятельности наблюдается только в 1-м классе в связи с процессами адаптации к школе. Интересно отметить, что в младшем школьном возрасте на основе развития второй сигнальной системы условно - рефлекторная деятельность ребенка приобретает специфический характер, свойственный только человеку. Например, при выработке вегетативных и сомато - двигательных условных рефлексов у детей в ряде случаев наблюдается ответная реакция только на безусловный раздражитель, а условный не вызывает реакции. Так, если испытуемому была дана словесная инструкция, что после звонка он получит клюквенный сок, то слюноотделение начинается только при предъявлении безусловного раздражителя. Подобные случаи «не образования» условного рефлекса проявляются тем чаще, чем старше возраст испытуемого, а среди детей одного возраста — у более дисциплинированных и способных.
Словесная инструкция значительно ускоряет образование условных рефлексов и в некоторых случаях даже не требует безусловного подкрепления: условные рефлексы образуются у человека в отсутствие непосредственных раздражителей. Эти особенности условно-рефлекторной деятельности обусловливают громадное значение словесного педагогического воздействия в процессе учебно-воспитательной работы с младшими школьниками.
Особое значение для учителя и воспитателя имеет следующий возрастной период—подростковый (с 11 — 12 до 15—17 лет). Это время больших эндокринных преобразований в организме подростков и формирования у них вторичных половых признаков, что в свою очередь сказывается и на свойствах высшей нервной деятельности. Нарушается уравновешенность нервных процессов, большую силу приобретает возбуждение, замедляется прирост подвижности нервных процессов, значительно ухудшается дифференцировка условных раздражителей. Ослабляется деятельность коры, а вместе с тем и второй сигнальной системы. Образно этот период можно было бы назвать «горным ущельем».
Все функциональные изменения приводят к психической неуравновешенности подростка (вспыльчивость, «взрывная» ответная реакция даже на незначительные раздражения) и частым конфликтам с родителями и педагогами.
Положение подростка, как правило, усугубляется все более усложняющимися требованиями к нему со стороны взрослых и, прежде всего школы. К сожалению, сегодня далеко не каждый педагог учитывает в своей работе функциональные возможности детей, отсюда и те трудности, которые возникают у педагога и большинства родителей в их общении с подростками.
Только правильный здоровый режим, спокойная обстановка, твердая программа занятий, физическая культура и спорт, интересная внеклассная работа, доброжелательность и понимание со стороны взрослых являются основными условиями для того, чтобы переходный период прошел без развития функциональных расстройств и связанных с ним осложнений в жизни ребенка.
Старший школьный возраст (15-18 лет) совпадает с окончательным морфофункциональным созреванием всех физиологических систем человеческого тела. Значительно повышается роль корковых процессов в регуляции психической деятельности и физиологических функций организма, ведущее значение получают корковые процессы, обеспечивающие функционирование второй сигнальной системы.
Все свойства основных нервных процессов достигают уровня взрослого человека. Если на всех предыдущих этапах условия для развития ребенка были оптимальными, то высшая нервная деятельность старших школьников становится упорядоченной и гармоничной.
Изменение высшей нервной деятельности у детей и подростков под влиянием различных факторов. Высшая нервная деятельность обеспечивает человеку адекватное приспособление к действию факторов окружающей среды, поэтому те или иные влияния среды вызывают разнообразные изменения высшей нервной деятельности. В зависимости от силы внешнего влияния изменения высшей нервной деятельности могут колебаться в пределах нормы или выходить за них, становясь патологическими.
Учебные занятия требуют напряженной работы головного мозга, и прежде всего его высшего отдела — коры головного мозга. Особенно интенсивно работают те корковые структуры, которые связаны с деятельностью второй сигнальной системы и сложными аналитико-синтетическими процессами. Естественно, что нагрузка на нервные элементы не должна превышать их функциональных возможностей, иначе неизбежны патологические изменения высшей нервной деятельности. Если учебные занятия в школе организованы согласно гигиеническим требованиям, то изменения высшей нервной деятельности не выходят за пределы нормы. Обычно в конце учебного дня наблюдается ослабление возбудительного и тормозного процессов, нарушение индукционных процессов и соотношения между первой и второй сигнальной системами. Особенно резко эти изменения заметны у младших школьников.
Важно отметить, что включение в учебные занятия уроков труда и физкультуры сопровождается в конце учебного дня менее выраженными изменениями высшей нервной деятельности.
Большое значение для сохранения нормальной работоспособности учащихся имеет активный отдых после школы: подвижные игры, занятия спортом, прогулки на свежем воздухе. Особо важное значение для сохранения нормального уровня высшей нервной деятельности имеет ночной сон. Недостаточная продолжительность ночного сна у школьников приводит к нарушению аналитико-синтетической деятельности мозга, затруднению образования условно-рефлекторных связей и дисбалансу соотношения между сигнальными системами. Соблюдение гигиены ночного сна нормализует высшую нервную деятельность, и все ее нарушения, наблюдавшиеся в результате неполноценного сна, исчезают.
Различные химические вещества, меняя функциональное состояние корковых клеток и подкорковых образований головного мозга, значительно изменяют и высшую нервную деятельность. Обычно действие химических веществ на высшую нервную деятельность взрослого и ребенка характеризуется аналогичными изменениями, но у детей и подростков эти изменения всегда выражены ярче. Далеко не безобидными являются в этом отношении чай и кофе, содержащие кофеин. Это вещество в малых дозах усиливает корковый процесс возбуждения, а в больших — вызывает его угнетение и развитие запредельного торможения. Большие дозы кофеина вызывают также неблагоприятные изменения вегетативных функций. В связи с тем что у детей и подростков процессы возбуждения несколько преобладают над процессами торможения, независимо от типа их высшей нервной деятельности, употребление крепкого чая и кофе для них является нежелательным.
Значительное влияние на высшую нервную деятельность детей и подростков оказывает никотин. В малых дозах он угнетает тормозной процесс и усиливает возбуждение, а в больших — угнетает и процессы возбуждения. У человека в результате длительного курения нарушается нормальное соотношение между процессами возбуждения и торможения и значительно снижается работоспособность корковых клеток.
Особенно разрушительное действие на высшую нервную деятельность детей и подростков оказывает употребление различных наркотических средств, в том числе и алкоголя. Их действие на высшую нервную деятельность имеет много общего, обычно первая фаза характеризуется ослаблением тормозных процессов, в результате чего начинает преобладать возбуждение. Это характеризуется повышением настроения и кратковременным увеличением работоспособности. Затем возбудительный процесс постепенно ослабляется и развивается тормозной, что часто приводит к наступлению тяжелого наркотического сна.
У детей привыкание к наркотикам и алкоголю обычно не наблюдается. У подростков же оно наступает очень быстро. Из всех наркоманий особенно широко у подростков встречается алкоголизм, который приводит к быстрой деградации личности. Подросток становится злобным, агрессивным и грубым. Переход от бытового пьянства к алкоголизму у подростков происходит примерно за два года. Опьянение у подростков характеризуется всегда более выраженными изменениями высшей нервной деятельности в сравнении со взрослыми: у них очень быстро наступает угнетение корковых процессов. В результате ослабляется контроль со стороны сознания за поведением, начинают резко проявляться инстинкты, что часто приводит подростков на скамью подсудимых. Учителям и воспитателям для организации эффективной борьбы против алкоголизма среди подростков необходимо вести пропаганду гигиенических знаний не только среди подростков, но и родителей, так как, по данным специальных исследований, среди малолетних преступников около 70 % «познакомились» с алкоголем в 10 — 11 лет и в большинстве случаев это была вина родителей.
Имеются данные, что дети в возрасте от 8 до 12 лет получали впервые напитки от родителей в 65 % случаев, в возрасте 12—14 лет —в 40 %, в возрасте 15—16 лет — в 32%.
Лекция 3. Анатомия и физиология желез внутренней секреции (эндокринной системы)
Существуют две внутрь выделяющие специализированные структуры: железы внутренней секреции, одиночные эндокринные клетки.
Железы внутренней секреции: центральные, периферические. К центральным относятся гипофиз, эпифиз, нейросекреторные ядра гипоталамуса. К периферическим относятся все остальные:
• Аденогипофизозависимые - щитовидная железа, кора надпочечников, половые железы,
• Аденогипофизонезависимые - паращитовидные железы, островковый аппарат поджелудочной железы, одиночные эндокринные клетки.
Есть истинные железы и железы смешанной функции (например, поджелудочная железа одновременно является железной внешней и внутренней секреции, половые железы, плацента и др.)
Одиночные эндокринные клетки могут быть в различных органах (в эндокринных и неэндокринных). Эти железы обладают повышенной функциональной активностью, называются APUD - системой. Клетки этой системы поглощают и декарбоксилируют предшественников аминокислот и вырабатывают нейроамины (некоторые авторы считают их нейротрансмиттерами). Эти клетки бывают различного происхождения:
Неврального происхождения - развиваются из нервного гребешка (в гипоталамусе, гипофизе, надпочечники (мозговое вещество), щитовидные железы, околощитовидные железы.
Неневрального происхождения - развиваются из источника, где находятся (ГЭП - система в желудке, кишечнике, поджелудочной железе, в почках, в сердце, клетки яичников и семенников.
Биологические активные вещества вырабатываемые клетками оказывают местные и дистантные действия. Регулируются эти действия вегетативной нервной системой.
Все железы вырабатывают гормоны (“приводящие в движение”). Гормоны - биологические активные вещества, обладающие строго специфическим и избирательным действием, способные повышать или понижать уровень жизнедеятельности организма.
Стероидные гормоны - производятся из холестерина в коре надпочечников, в половых железах.
Полипептидные гормоны - белковые гормоны (инсулин, пролактин, АКТГ и др.)
Гормоны производные аминокислот - адреналин, норадреналин, дофамин, и др.
Гормоны производные жирных кислот - простогландины.
По физиологическому действию гормоны подразделяются на:
Пусковые (гормоны гипофиза, эпифиза, гипоталамуса). Воздействуют на другие железы внутренней секреции
Исполнители - воздействуют на отдельные процессы в тканях и органах
Орган реагирующий на данный гормон является органом-мишенью (эффектор). Клетки этого органа снабжены рецепторами. Механизм действия гормонов различен, скорость выделения гормонов меняется в течение суток, так как существует суточный ритм выделения гормонов.
Способы доставки и эффективность действия гормонов различны:
Гуморальный путь - по гемокапиллярами, таким путем осуществляется дистантный эффект.
Может идти выделение гормонов в окружающую тканевую жидкость, при этом осуществляется местный паракринный эффект.
Нейрогормональный путь предполагает накопление гормона в нервных клетках и транспортировку их по аксонам через аксобазальные синапсы.
Регуляция поступления гормона в крови происходит, как правило, по механизму отрицательной обратной связи. Избыточное содержание гормона в крови приводит к торможению их производства и наоборот.
Биологическое действие гормонов сводится к обеспечению гомеостаза. Изменения внешней, внутренней Среды сопровождаются изменением скорости выработки гормонов. Все эти эндокринные системы рассеяны по организму, но имеют ряд общих признаков:
• Отсутствие выводных протоков, так как выработанные вещества поступают прямо в кровь.
• Обладают высокой степенью васкуоляризации.
• Гормоны вырабатываемые в клетках образуются в малых количествах и обладают повышенной биологической активностью.
• В эндокринных клетках интенсивно развит синтетический и секреторный аппарат.
Эндокринную систему отличает тесная морфофункциональная связь с нервной системой посредством нейросекреторных клеток. Общность функций эндокринной системы основанная на взаимосвязи и строгом подчинении (субординации).
Эктодермальное происхождение имеют щитовидные, паращитовидные железы, аденогипофиз. Эндодермальное происхождение имеет островковый аппарат поджелудочной железы. Целодермальное происхождение имеют надпочечники, половые железы. Нейральное происхождение имеет гипоталамус, нейрогипофиз, эпифиз, мозговое вещество надпочечников.
Гипоталамус развивается из базальной части промежуточного мозгового пузыря. Принадлежит к ЦНС, и объединяет нервную и эндокринную систему в нейросекреторную систему. Контролирует все железы внутренней секреции через гипофиз. В сером веществе гипоталамуса находятся нейроны и нейросекреторные клетки организованные в ядра. Выделяют 32 пары ядер. Контроль гипоталамуса осуществляется посредством нейросекреции по 2 путям:
• Нейральный - по аксонам
• Гуморальный - по сосудам
В передней части гипоталамуса находятся 2 парных ядра: супраоптическое ядро, которое выделяет вазопрессин (антидиуретический гормон); паравентрикулярное ядро, которое секретирует окситоцин (действует на миометрий матки, миоэпителиальные клетки молочной железы).
Эти гормоны по аксонам идут в заднюю долю гипофиза.
Средний отдел гипоталамуса составляют мелкие нейросекреторные клетки образующие аркуатное ядро и вентромедиальное. Гормоны поступают по аксонам в первичную гемокапиллярную сеть. Эти ядра выделяют гормоны способные суживать и расширять сосуды. Их образование зависит от содержания в крови продуктов метаболизма сердечной мышцы. Нейросекреторная деятельность испытывает влияние высших отделов головного мозга и эпифиза.
Гипофиз относится к центральным эндокринным органам. Расположен под основанием головного мозга. Состоит из 2 частей: аденогипофиз - передняя доля и промежуточная часть, нейрогипофиз - задняя доля.
Гипофиз развивается из двух зачатков на 4-5 неделе эмбрионального развития: из эктодермального и нейрального карманов.
Из эпителия выстилающего ротовую полость выпячивается карман (карман Ратке) к основанию мозга. На 8 неделе этот карман отшнуровывается от ротовой полости. Начинает формироваться задняя доля - выпячивание промежуточного пузыря. Затем происходит дифференцировка клеток, и с 9 по 20 неделю начинается синтез гормонов.
Передняя доля составляет 75%. Она образована эпителиальными тяжами, между которыми находятся синусоидные гемокапилляры, которые сопровождается рыхлой соединительной тканью. Клетки передней доли называются аденоциты. Они бывают в зависимости от отношения к окраске хромофильными (45-45%) и хромофобными (55-60%).
Хромофильные аденоциты в свою очередь делятся на ацидофильные (30-35%) и базофильные (5-10%). Ацидофильные делятся на соматотропоциты (выделяют гормон роста) и мамотропоциты (выделяют пролактин). Базофильные клетки делятся на тиротропоциты (выделяют тиреотропный гормон) и гонадотропопоциты (выделяют гонадотропные гормоны).
Адренокортикотропные клетки являются слабобазофильными клетками, они выделяют АКТГ которые действует в свою очередь на кору надпочечников.
Хромофобные аденоциты делятся на: недиференцированные клетки, клетки находящиеся на разных стадиях дифференцировки, специализированные клетки, фолликулозвездчатые клетки (выполняют опорную, фагоцитирующую функции).
Промежуточная часть гипофиза у человека развита слабо (составляет 2% от массы гипофиза). Состоит из гемокапилляров и тяжей эпителиальных клеток с базофильной цитоплазмой. Эти клетки способны вырабатывать секрет и его накапливать. Секретом их являются меланиноцитотропин, липотропин.
Задняя доля гипофиза (нейрогипофиз) образована эпендимоглиальными клетками - питуриоциты. В нейрогипофизе много пучков аксонов идущих из переднего гипоталамуса. По аксонам из гипоталамуса приносится вазопрессин и окситоцин. В задней доле эти гормоны накапливаются и затем по меренадобности выделяются в кровь.
Эпифиз (шишковидная железа). Закладывается на 5-6 неделе в виде выпячивания крыши промежуточного мозга. На 7-8 неделе в зачаток промежуточного желудочка врастает соединительная ткань и начинается дифференцировка клеток. Эпифиз покрывается соединительнотканной оболочкой, которая делит его на дольки и составляет строму железы. Секреторные клетки эпифиза - пинеалоциты (светлые, более крупные, и темные более мелкие). Поддерживающие клетки называются глиоциты. Глиальные клетки являются астроглией. Наибольший рассвет эпифиз проходит в 5-6 лет, затем он инволюционирует при этом происходит некоторое сокращение количества пинеалоцитов которые атрофируются, а взамен их образуется соединительная ткань.
Функция эпифиза: эпифиз участвует в регуляции процессов протекающих в организме циклически, деятельность эпифиза связывают с функцией поддержания биоритма (смена сна и бодрствования). Также считается что эпифиз участвует в адаптации организма к меняющейся освещенности, так как было доказана чувствительность клеток эпифиза к свету. Эпифиз участвует в смене направленности синтеза гормонов - днем идет выработка серотонина, ночью выработка меланина (также регулирует половое созревание).
Лекция 4. Анатомия, физиология и гигиена опорно-двигательного аппарата
Скелет человека. Скелет человека состоит из головного и туловищного отделов. Головной отдел делится на мозговую и лицевую части. Мозговая частьб состоит из 2 весочных костей, 2 теменных костей, 1 лобной, затылочной, и частично решетчатой костей. В состав лицевого скелета аходит парная верхная челюсть и нижняя кости, в лункакх которых закреплены зубы.
Позвоночник состоит из 7 шейных, 12 грудных, 5 поясничных, 5 кресцовых, 4-5 копчиковых позвонков. Дуги позвонков образуют позвоночный канал. Пзвоночник имеет 4 изгиба - это приспособление к прямохождению. Между позвонками находятся эластичные пластинки, что улучшает гибкость позвоночника.
Грудная клетка состоит из: грудины, 12 пар ребер, 12 грудных позвонков. Первые 10 пар соединены с позвонкками, последнии же 2 пары не соединены с ними. Грудная клетка нужна для охраны сердца и других внутренних органов.
Пояс верхних конечностей состоит из лопатки, большая тонкая иреугольная кость, и ключицы, которая соединяет лопатку с грудиной.
Скелет верхних конечностей состоит из плечевой кости, предплечья: лучвая и локтевая кости, запястье, 5 костей пясти и фалангов пвлцев.
Пояс нижних конечностей состоит из 2 тазовых костей, каждая из которых состоит из срошихся между собой подвздошной, лонной и седалищной костей.
Мышцы человека. В организме человека насчитывают около 600 скелетных мышц. Мышечная система составляет значительную часть обшей массы тела человека. Если у новорожденных масса всех мышц составляет 23% массы тела, а в 8 лет - 27%, то в 17-18 лет она достигает 43-44%, а у спортсменов с хорошо развитой мускулатурой - даже 50%. Отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее - жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей. За весь период роста ребенка масса мускулатуры увеличивается в 35 раз. В период полового созревания (12-16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. Мышцы в это время становятся длинными и тонкими, а подростки выглядят длинноногими и длиннорукими. В 15-18 лет продолжается дальнейший рост поперечника мышц. Развитие мышц продолжается до 25-30 лет Мышцы ребенка бледнее, нежнее и более эластичны, чем мышцы взрослого человека.
В мышце различают среднюю часть - брюшко, состоящее из мышечной ткани, и сухожилие, образованное плотной соединительной тканью. С помощью сухожилий мышцы прикрепляются к костям, однако некоторые мышцы могут прикрепляться и к различным органам (глазному яблоку), к коже (мышцы лица и шеи) и т.д. В мышцах новорожденного сухожилия развиты слабо. Лишь к 12 -14 годам устанавливаются те мышечно-сухожильные отношения, которые характерны для мышц взрослого. Каждая мышца состоит из большого количества поперечно-полосатых мышечных волокон, расположенных параллельно и связанных между собой прослойками рыхлой соединительной ткани в пучки. Вся мышца снаружи покрыта тонкой соединительной оболочкой – фасцией. Содержимое мышечных волокон состоит из саркоплазмы, в которой располагаются сократительные нити - миофибриллы, а также митохондрии и другие органоиды клетки. Мышцы богаты кровеносными сосудами, по которым кровь приносит к ним питательные вещества и кислород, а выносит продукты обмена. Имеются в мышцах и лимфатические сосуды. В мышцах расположены нервные окончания - рецепторы, которые воспринимают степень сокращения и растяжения мышцы. Форма и величина мышц зависит от выполняемой ими работы. Различают мышцы длинные, широкие, короткие и круговые. Длинные мышцы располагаются на конечностях, короткие - там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины, груди). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами. По функции различают мышцы - сгибатели, разгибатели, приводящие и отводящие мышцы, а также мышцы, вращающие внутрь и наружу.
Мышечная ткань, составляет основную массу мышц и осуществляет их сократительную функцию. В зависимости от строения мышечной ткани различают сердечную, гладкие и поперечнополостные мышцы.
Одним из необходимых условий нормального развития и существования человека является движение. Движение влияет на формирование структур и обеспечивает многие функции человеческого организма.
Движения, особенно сложные, стимулируют работу головного мозга, благотворно влияя на психическое и интеллектуальное развитие. Мышление, высшие формы анализа и развитие памяти также находятся в тесном взаимодействии с движением.
Дефицит движения (гиподинамия) вызывает болезненное состояние, выражающееся в нарушениях обмена веществ, снижении регулирующей и координирующей способностей нервной системы, ослаблении защитных свойств организма. Недостаток движения оказывается причиной нарушений в деятельности сердца и легких, снижения функций эндокринной системы, которая вместе с нервной системой осуществляет регуляцию процессов в человеческом организме.
Сколиоз и плоскостопие. Сколиоз – боковое искривление позвоночника. Чаще всего приобретенное (5-15 лет), но бывает и врожденное. Неправильная поза детей во время занятий ведет к неравномерной нагрузке на позвоночник и мышцы спины.
Заболевание начинается со слабости мышц спины, плохой осанки, выступающей лопатки. В дальнейшем возникает изменение самих позвонков и их связок, т.е. образуется стойкое боковое искривление. Оно может быть следствием перенесенного рахита, длительных асимметричных нагрузок на мышцы спины. К сколиозу может привести перелом позвонка, его разрушение болезненным процессом (остеомиелит, туберкулез, сифилис). При укорочении одной ноги может наступить функциональный сколиоз.
Клинически можно выделить три стадии. Первая: при утомлении мышц спины появляется сколиоз, а после отдыха искривление исчезает. Вторая стадия: искривление делается постоянным, подвижность позвоночника резко уменьшается. Изменяется форма грудной клетки, лопатка выступает и становится выше на выпуклой стороне грудного сколиоза. При третьей стадии изменяется положение внутренних органов, затрудняется их функция.
Профилактика гораздо эффективнее лечения. Большое значение имеют физкультура и спорт, правильная осанка ребенка, соблюдение режима труда и отдыха.
В основном построено на общемобилизующих и специальных гимнастических упражнениях под наблюдением врача. Иногда рекомендуется ношение корсета, а в запущенных случаях – оперативное вмешательство.
Плоскостопие у детей и взрослых – следствие врожденных дефектов опорно-двигательного аппарата, повышенной эластичности суставов и связок, слабости мелких мышц, поддерживающих поперечный и продольный свод стопы, а также результат воздействия длительной работы в положении стоя, хождения на высоких каблуках и в узких туфлях, деформирующего положения пальцев и вызывающего нарушения рессорной функции свода стопы.
Выделяют два вида плоскостопия – это поперечное плоскостопие, которое составляет 55 % от общего числа деформации стоп и продольное плоскостопие - 29 %. По происхождению плоскостопие различают: врожденную плоскую стопу, травматическую, паралитическую и статическую. Врожденное плоскостопие можно установить только после 5-6 лет, так как у всех детей моложе этого возраста определяются все элементы плоской стопы. Травматическое плоскостопие – последствие перелома лодыжек, пяточной кости, предплюсневых костей. Паралитическая стопа – результат паралича подошвенных мышц стопы. Статическое плоскостопие возникает в следствии слабости связочного аппарата мышц костей стопы и голени. Для выраженного плоскостопия типичны следующие признаки: стопа удлинена и расширена в средней части, продольный свод опущен и ладьевидная кость обрисовывается сквозь кожу на внутреннем крае стопы, походка неуклюжая, носки сильно развернуты в сторону, иногда ограничен объем движений во всех суставов стоп. В случае прогрессирования продольного плоскостопия увеличивается длина стоп в основном в следствии опускания продольного свода. При развитии поперечного плоскостопия длина стоп уменьшается за счет веерообразного расхождения плюсневых костей и отклонения первого пальца к наружи.
Хотя при внешнем осмотре и определяют наличие плоскостопия, для более точного определения существует ряд методов. В частности такой метод: измеряют циркулем высоту стопы, то есть расстояние от пола до верхней поверхности ладьевидной кости, которое хорошо прощупывается приблизительно на палец кпереди от голеностопного сустава. Величину расхождения ножек циркуля определяют по измерительной линейке в миллиметрах, после этого измеряют длину стопы - расстояние от кончика первого пальца до задней округлости пятки миллиметрах, величину высоты стопы умножают на сто и делят на длину стопы. Полученная величина является «подометрическим индексом». Индекс нормального свода колеблется в пределах от 31 до 29. Индекс от 29 до 25 указывает на пониженный свод (плоскостопие). Ниже 25 – на выраженное плоскостопие.
Снижение свода стопы, его уплощение ослабляет амортизацию вертикальных вибраций позвоночника при ходьбе и способствует нарушению осанки, развитию остеохондроза. Плоскостопие изменяет походку, вызывает развитие утомления при незначительных пеших нагрузках вследствие ухудшения кровоснабжения и лимфотока в мелких суставах стопы, мышцах голени. Статистические нагрузки на плоскую стопу еще более возрастают при избыточном весе. Нередко плоскостопие и лимфостаз (застой лимфы и венозной крови в нижних конечностях, отеки стопы и голеностопных суставов) вызывают болевые ощущения, ограничивают двигательную активность и усугубляют порочный круг взаимосвязанных причин общего нездоровья.
Для статического плоскостопия характерны определенные болевые участки: на подошве в центре свода и внутреннего края пятки; на тыле стопы в ее центральной части между ладивидной и таранной костями; под внутренней и наружной лодыжкой между головками предплюсневых костей; в мышцах голени в следствии их перегрузки; в коленном и тазобедренном суставах; в бедре; в области поясницы.
Профилактика: Необходимо выработать правильную походку, избегать разведение носков при ходьбе. Очень важно ношение обуви хорошо подобранной по ноге. Внутренний край ботинка должен быть прямым, чтобы не отводить к наружи первый палец. Носок просторный. Высота каблука должна быть 3-4 см. Подметка из упругого материала. В некоторых случаях рекомендуется применение специальных стелек.
Лечение: Выбор лечения зависит от происхождения, степени деформации и возраста больного. При легких формах специального лечения не требуется. Обычно назначают ЛФК, массаж, физиотерапию, ношение корригирующей обуви. У себя в центре мы применяем новейшие инструментальные методы лечения. К ним относятся:
• адаптивное биоуправление мышц стопы;
• электростимуляция мышц стопы;
• вибрационный массаж нижних конечностей.
• в качестве домашнего задания мы рекомендуем лечебную физкультуру.
Упражнения для детей при плоскостопии: 1 - зажав мячик между ногами, медленно идти, стараясь не уронить его; 2 - сидя на полу упереться руками в пол и стараться как можно выше поднять ногами мяч; 3 - положить на пол палку и пройти по ней босиком, заложив руки за голову; 4 - поднять пальцами ног с пола носовой платок; 5 - вращать на полу мяч ногой; 6 - сидя на стуле, брать пальцами ног разбросанные по полу карандаши; 7 - подскоки на одной ноге, на цыпочках; в пальцах другой ноги зажат платок; 8 - ходьба попеременно на носках и пятках.
Лекция 5. Анатомия и физиология пищеварительной системы
Клетки и ткани организма человека нуждаются в постоянном пополнении питательными веществами. Организм получает их в составе пищи, содержащей белки, жиры, углеводы, которые используются в качестве строительного материала при роете и воссоздании новых клеток взамен отмирающих. Пища служит также источником энергии, которая расходуется в процессе жизнедеятельности организма.
Большое значение для нормальной жизнедеятельности имеют витамины, минеральные соли и вода, поступающие с пищей. Витамины входят в состав разнообразных ферментных систем, а вода необходима в качестве растворителя. Перед тем как быть усвоенной организмом, пища подвергается механической и химической обработке. Эти процессы осуществляются в органах пищеварения, которые состоят из пищевода, желудка, кишечника, желез. Расщепление пищи невозможно без ферментов, вырабатываемых пищеварительными железами. Все ферменты в живых организмах имеют белковую природу; в небольших количествах они вступают в реакцию и по ее окончании выходят неизмененными. Ферменты отличаются специфичностью: например, фермент, расщепляющий белки, не действует на молекулу крахмала, и наоборот. Все пищеварительные ферменты способствуют растворению в воде исходного вещества, подготавливая его к дальнейшему расщеплению.
Каждый фермент действует при определенных условиях, лучше всего при температуре 38-40°С. Ее повышение подавляет активность, а иногда и разрушает фермент. На ферменты оказывает влияние и химическая среда: одни из них активны только в кислой среде (например, пепсин), другие - в щелочной (птиалин и ферменты поджелудочного сока).
Пищеварительный канал имеет длину около 8-10 м, на своем протяжении он образует расширения - полости и сужения. Стенка пищеварительного канала состоит из трех слоев: внутреннего, среднего, наружного. Внутренний представлен слизистым и подслизистым слоями. Клетки слизистого слоя - самые поверхностные, обращены в просвет канала и вырабатывают слизь, а в расположенном под ним подслизистом слое залегают пищеварительные железы. Внутренний слой богат кровеносными и лимфатическими сосудами. Средний слой включает гладкую мускулатуру, которая, сокращаясь, передвигает пищу по пищеварительному каналу. Наружный слой состоит из соединительной ткани, образующей серозную оболочку, к которой на протяжении тонкой кишки прикрепляется брыжейка.
Пищеварительный канал делится на следующие отделы: ротовую полость, глотку, пищевод, желудок, тонкий и толстый кишечник.
Ротовая полость снизу ограничена дном, образованным мышцами, спереди и снаружи – зубами и деснами, сверху – твердым и мягким нёбом. Задний отдел мягкого нёба выпячивается, образуя язычок. Сзади и по бокам ротовой полости мягкое нёбо формирует складки – нёбные дужки, между которыми лежат нёбные миндалины. Миндалины есть у корня языка и в носоглотке, в совокупности они образуют лимфоидное глоточное кольцо, в котором частично задерживаются проникающие с пищей микробы. В полости рта находится язык, состоящий из поперечно-полосатой мышечной ткани, покрытой слизистой оболочкой. В этом органе различают корень, тело и кончик. Язык участвует в перемешивании пищи и образовании пищевого комка. На его поверхности расположены нитевидные, грибовидные и листовидные сосочки, в которых оканчиваются вкусовые рецепторы; рецепторы корня языка воспринимают горький вкус, рецепторы кончика- сладкий, а рецепторы боковых поверхностей - кислый и соленый. У человека язык вместе с губами и челюстями выполняет функцию устной речи.
В ячейках челюстей находятся зубы, механически перерабатывающие пищу. У человека 32 зуба, они дифференцированы: в каждой половине челюсти имеются два резца, один клык, два малых коренных и три больших коренных. В зубе выделяют коронку, шейку и корень. Часть зуба, выступающая на поверхность челюсти, называется коронкой. Она состоит из дентина – вещества, близкого к кости, и покрыта эмалью, обладающей значительно большей плотностью, чем дентин. Суженная часть зуба, лежащая на границе между коронкой и корнем, называется шейкой. Часть зуба, находящаяся в лунке, именуется корнем. Корень, как и шейка, состоит из дентина и с поверхности покрыт цементом. Внутри зуба имеется полость, заполненная рыхлой соединительной тканью с нервами и кровеносными сосудами, образующими пульпу.
Слизистая оболочка рта богата железами, выделяющими слизь. В ротовую полость открываются протоки трех пар крупных слюнных желез: околоушных, подъязычных, подчелюстных и множества мелких. Слюна на 98-99% состоит из воды; из органических веществ в ней имеется белок муцин и ферменты птиалин и мальтаза.
Ротовая полость сзади переходит в воронкообразную глотку, соединяющую рот с пищеводом. В глотке перекрещиваются пищеварительные и дыхательные пути. Акт глотания происходит в результате сокращения поперечнополосатых мышц, и пища попадает в пищевод - мышечную трубку длиной около 25 см. Пищевод проходит через диафрагму и на уровне 11-го грудного позвонка открывается в желудок.
Желудок – это сильно расширенный отдел пищеварительного канала, расположенный в верхней части брюшной полости под диафрагмой. В нем выделяют входную и выходную части, дно, тело, а также большую и малую кривизну. Слизистая оболочка складчатая, что при заполнении пищей позволяет желудку растягиваться. В средней части желудка (в его теле) находятся железы. Они образованы тремя видами клеток, которые выделяют либо ферменты, либо соляную кислоту, либо слизь. На выходной части желудка железы, выделяющие кислоту, отсутствуют. Выходное отверстие замыкается сильной запирательной мышцей - сфинктером. Пища из желудка поступает в тонкий кишечник длиной 5-7м. Его начальный отдел - двенадцатиперстная кишка, далее идут тощая и подвздошная. Двенадцатиперстная кишка (около 25 см) имеет форму подковы, в нее открываются протоки печени и поджелудочной железы.
Печень - самая крупная железа пищеварительного тракта. Она состоит из двух неравных долей и располагается в брюшной полости, справа под диафрагмой; левая доля печени прикрывает большую часть желудка. Снаружи печень покрыта серозной оболочкой, под которой залегает плотная соединительнотканная капсула; в воротах печени капсула образует утолщение и вместе с кровеносными сосудами внедряется в печень, разделяя ее на доли. В воротах печени проходят сосуды, нервы, желчный проток. Вся венозная кровь от кишечника, желудка, селезенки и от поджелудочной железы поступает в печень через воротную вену. Здесь кровь освобождается от вредных продуктов. На нижней поверхности печени расположен желчный пузырь - резервуар, в котором скапливается желчь, вырабатываемая печенью.
Основную массу печени составляют эпителиальные (железистые) клетки, продуцирующие желчь. Желчь поступает в печеночный проток, который, соединяясь с протоком желчного пузыря, образует общий желчный проток, открывающийся в двенадцатиперстную кишку. Желчь вырабатывается непрерывно, но когда пищеварения не происходит, она накапливается в желчном пузыре. В момент пищеварения она поступает в двенадцатиперстную кишку. Цвет желчи желто-бурый и обусловлен пигментом билирубином, образующимся в результате распада гемоглобина. Желчь горькая на вкус, содержит 90% воды и 10% органических и минеральных веществ.
Кроме эпителиальных клеток в печени имеются клетки звездчатой формы, обладающие фагоцитарными свойствами. Печень участвует в процессе обмена углеводов, накапливая в своих клетках гликоген (животный крахмал), который здесь же может расщепляться до глюкозы. Печень регулирует поступление глюкозы в кровь, тем самым поддерживая концентрацию сахара на постоянном уровне. В ней синтезируются белки фибриноген и протромбин, участвующие в свертывании крови. Одновременно она обезвреживает некоторые ядовитые вещества, образующиеся в результате гниения белков и поступающие с током крови из толстого кишечника. В печени происходит расщепление аминокислот, в результате чего образуется аммиак, который превращается здесь в мочевину. Работа печени по обезвреживанию ядовитых продуктов всасывания и обмена веществ составляет ее барьерную функцию.
Поджелудочная железа разделена перегородками на ряд долек. В ней выделяют головку, охватываемую изгибом двенадцатиперстной кишки, тело и хвост, прилегающие к левой почке и селезенке. По всей длине железы проходит ее проток, открывающийся в двенадцатиперстную кишку. Железистые клетки долек вырабатывают поджелудочный, или панкреатический, сок. Сок имеет выраженную щелочность и содержит несколько ферментов, участвующих в расщеплении белков, жиров и углеводов.
Тонкий отдел кишечника начинается двенадцатиперстной кишкой, которая переходит в тощую, продолжающуюся в подвздошную. Слизистая стенка тонкой кишки содержит много трубчатых желез, выделяющих кишечный сок, и покрыта тончайшими выростами - ворсинками. Их общее количество достигает 4 млн., высота ворсинок около 1 мм, совместная всасывающая поверхность составляет 4-5 м². Поверхность ворсинки покрыта однослойным эпителием; в центре ее проходят лимфатический сосуд и артерия, распадающиеся на капилляры. Благодаря мышечным волокнам и нервным разветвлениям ворсинка способна сокращаться. Это осуществляется рефлекторно в ответ на соприкосновение с пищевой кашицей и усиливает циркуляцию лимфы и крови в период пищеварения и всасывания. Тощая и подвздошная кишка с их ворсинками- основное место всасывания питательных веществ.
Толстая кишка имеет сравнительно небольшую длину – около 1,5-2 м и объединяет слепую (с червеобразным отростком), ободочную и прямую кишку. Слепую кишку продолжает ободочная, в которую впадает подвздошная кишка. Слизистая оболочка толстого кишечника имеет полулунные складки, но ворсинок в ней нет. Брюшина, покрывающая толстую кишку, имеет жировые кольцеобразные складки. Конечный отдел пищеварительной трубки - прямая кишка, заканчивающаяся анальным, отверстием.
Пищеварение в различных отделах желудочно-кишечного тракта.
В ротовой полости происходит механическое размельчение пищи, под воздействием секрета слюнных желез и жевательных движений происходит перемешивание, смачивание пищи, формирование пищевого комка. Функции слюны:
• пищеварительная, осуществляется за счет ферментов - амилазы и мальтазы, воздействующих преимущественно на крахмал,
• благодаря растворению пищевых веществ слюна обеспечивает воздействие на вкусовые рецепторы и способствует возникновению вкусовых ощущений,
• слюна смачивает благодаря муцину отдельные частицы пищи и тем самым участвует в формировании пищевого комка,
• слюна стимулирует секрецию желудочно-кишечного сока,
• слюна необходима для акта глотания.
Пища находится в ротовой полости непродолжительное время 15 - 30 с, поэтому в ротовой полости не происходит полного расщепления крахмала. Однако действие слюны продолжается некоторое время в желудке, где продолжается переваривание крахмала.
Химическая обработка пищи в полости желудка осуществляется за счет ферментов желудочного сока и слюны. Механическая обработка обеспечивается за счет моторной деятельности. Под влиянием химических и механических воздействий пищевые комки в желудке превращаются в пищевую кашицу (химус).
Секреторная функция обеспечивается железами слизистой оболочки желудка.
Моторная функция обеспечивается за счет сокращения мускулатуры стенки желудка, благодаря чему происходит перемешивание пищи и продвижение ее в двенадцатиперстную кишку.
Всасывательная функция способствует поступлению в организм минеральных веществ, воды, продуктов расщепления белка.
Желудочный сок представлен органическими и неорганическими веществами. Главной неорганической частью является соляная кислота. Органическая часть желудочного сока состоит из белковых и небелковых компонентов. Из небелковых это азот, мочевина, аммиак, молочная кислота, аминокислоты, полипептиды.
Из белковых – муцин и гастромукопротеид (внутренний фактор Касла), ферменты.
Муцин предохраняет слизистую оболочку желудка от агрессивного действия соляной кислоты, а также механического воздействия пищи. Он также предотвращает разрушение витаминов С, группы В, возбуждает секрецию желудочных желез и поджелудочной железы. Гастромукопротеин необходим для всасывания витамина В12, при взаимодействии с которым образуется антианемический фактор. Ферменты составляют главную часть органических веществ, входящих в состав желудочного сока. К ним относят пепсин, гастриксин, химозин. Первостепенная роль среди ферментов принадлежит пепсину. В активную форму он переходит при воздействии соляной кислоты и проявляет свое действие только в кислой среде.
Пепсин расщепляет белки.
Гастриксин расщепляет желатину, которая в большом количестве содержится в соединительной ткани.
Химозин вызывает створаживание молока и переводит растворимый белок казеиноген в нерастворимый казеин.
Способность к расщеплению углеводов и жиров в желудке слабая.
Переваривание углеводов осуществляется амилазой и мальтазой слюны под прикрытием муцина.
Самая высокая кислотность желудочного сока наблюдается при переваривании белковой пищи животного происхождения, самая низкая при переваривании углеводов. Установлено, что белки растительного происхождения лучше перевариваются в среде с невысокой кислотностью желудочного сока.
К веществам способным стимулировать выделение желудочного сока относят: экстрактивные вещества мяса и печени (бульоны), спирты, продукты расщепления пищи. Секреция желудка тормозится продуктами расщепления жира.
Эвакуация из желудка происходит через 6-10 часов. Углеводистая пища эвакуируется быстрее, чем пища богатая белками. А жирная пища может задерживаться в желудке очень долго, до 10 часов.
Открытие пилорического сфинктера происходит вследствие раздражения слизистой оболочки пилорического отдела соляной кислотой. Открывается сфинктер привратника и содержимое желудка поступает в двенадцатиперстную кишку (ДПК), среда в ДПК становится кислой вместо щелочной. Это способствует рефлекторному закрытию сфинктера привратника. Начинается процесс переваривания в ДПК.
В ДПК изливаются три вида пищеварительных соков: панкреатический (сок поджелудочной железы), желчь, кишечный сок. Все они имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного сока входят три вида ферментов, расщепляющих белки, жиры и углеводы.
Протеолитические ферменты: трипсин, химотрипсин, эластаза, карбоксипептидазы. Роль протеолитических ферментов заключается в распаде нативных белков и продуктов их первичной обработки в желудке (альбумоз и пептонов) до низкомолекулярных полипептидов и аминокислот.
Амилолитические ферменты: альфа-амилаза. Их роль состоит в дальнейшем расщеплении углеводов до глюкозы и мальтозы.
Липолитические ферменты: липаза, фосфолипаза А. Липаза секретируется в активном состоянии, ее активность возрастает под действием желчных кислот. Липаза расщепляет жиры до глицерина и жирных кислот.
В регуляции пищеварения в ДПК существенную роль отводят соляной кислоте. Она активирует биологически активное вещество просекретин и переводит его в секретин, который резко усиливает выделение пищеварительных соков в ДПК.
При сопоставлении количества панкреатического сока, выделившегося при употреблении белковой, углеводной и жирной пищи, отмечено наибольшее количество сока выделяется на углеводную пищу, а наименьшее на жирную. При этом сок полученный на белковую пищу животного происхождения имел более щелочную реакцию, чем сок выделяющийся на углеводную и жирную пищу. Отмечено также, что поджелудочная железа обладает способностью за счет изменения количества отделяемого сока и состава ферментов приспосабливаться к переработке различной по объему и качеству пищи.
Желчь – продукт секреции печеночных клеток, представляет собой жидкость золотисто- желтого цвета, имеющую щелочную реакцию. Основными компонентами желчи являются желчные кислоты (преимущественно холевая), пигменты (билирубин и биливердин) и холестерин. Различают желчь печеночную и желчь пузырную (находящуюся в полости желчного пузыря). Отличия пузырной желчи от печеночной состоит в том, что слизистая оболочка пузыря продуцирует муцин и обладает способность всасывать воду, поэтому в пузыре желчь имеет вязкую и тягучую консистенцию. Основные функции желчи:
- повышает активность ферментов панкреатического сока, особенно липазы,
- непосредственно участвует в пищеварении за счет собственных ферментов амилазы и протеаз,
- выводит из организма различные экзо- и эндогенные токсичные продукты и продукты обмена веществ,
- эмульгирует жиры и готовит их к дальнейшему расщеплению,
- необходима для всасывания жирорастворимых витаминов A,D,E,K,
- усиливает секреторную функцию поджелудочной железы,
- повышает тонус и моторику ЖКТ,
- участвует в пристеночном пищеварении в тонком кишечнике,
- оказывает бактериостатическое влияние на флору кишечника, предупреждая развитие гнилостных процессов.
Установлено, что наибольшее количество желчи выделяется при смешанном питании. Максимальным желчегонным эффектом обладают жиры.
Кишечное пищеварение завершает этап механической и химической обработки пищи. В тонком кишечнике осуществляется окончательная переработка пищи и всасывание продуктов расщепления жиров, белков и углеводов (пристеночное пищеварение). Основными ферментами кишечного сока являются пептидазы, расщепляющие пептиды до аминокислот, кислая и щелочная фосфатазы расщепляющие фосфолипиды, липаза воздействующая на нерасщепленные в ДПК жиры. Карбогидразы завершающие расщепление углеводов и превращающие полисахариды и дисахариды в моносахара. Специфических ферментом кишечника является энтерокиназа, которая катализирует превращение трипсиногена в трипсин. На поверхности кишечника осуществляется пристеночное или контактное пищеварение. В нем принимают участие ферменты фиксированные на клеточной мембране энтероцита. Если полостное пищеварение обеспечивает начальный гидролиз пищевых веществ до промежуточных продуктов, то мембранное (пристеночное) пищеварение осуществляет его конечную стадию - гидролиз промежуточных пищевых продуктов и переход их к всасыванию.
Основной функцией проксимальной части толстого кишечника является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма. Существенная роль в процессах осуществляемых в толстом кишечнике принадлежит микрофлоре - бактериям заселяющим его нисходящие отделы. Бактерии выделяют молочную кислоту обладающую антисептическими свойствами, осуществляют синтез витаминов: витамина К, пантотеновой. Микрофлора инактивирует агрессивные ферменты верхних отделов ЖКТ, подавляет развитие патогенных микроорганизмов. Отрицательная роль микроорганизмов кишечника состоит в том, что они в определенных условиях образуют эндотоксины и могут стать причиной заболеваний.
Гигиена питания. Пищевые отравления возникают в результате потребления с пищей продуктов, содержащих ядовитые вещества. Такие отравления могут вызвать ядовитые грибы и ягоды, коренья, ошибочно принятые за съедобные, а также продукты, приготовленные из зерновых культур, куда попадают семена некоторых сорных ядовитых растений и споры или гифы грибов. Например, присутствие в хлебе спорыньи вызывает “злую корчу”, примесь семян куколя - разрушение эритроцитов. Для предупреждения этих пищевых отравлений необходима тщательная очистка зерна от ядовитых семян и спорыньи. Отравления могут быть вызваны также соединениями металлов (медь, цинк, свинец), если они попадают в пищу. Особую опасность представляет отравление несвежей пищей, в которой размножились микроорганизмы и накопились ядовитые продукты их жизнедеятельности - токсины. Такими продуктами могут быть изделия из фарша, студень, колбаса, мясо, рыба. Они быстро портятся, поэтому их нельзя долго хранить.
Под пищеварением понимают совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в форму: доступную для усвоения клетками организма. Физические изменения заключаются в размельчении пищи, перемешивании и растворении. Химические воздействия на пищевые продукты осуществляют ферменты пищеварительных желез. Ферментативному воздействию подвергаются белки, жиры и углеводы. Вода, минеральные соли, витамины поступают в кровь в неизмененном виде.
В результате обработки пищи организм человека получает энергетические субстраты, пластический материал: необходимый для роста и воспроизведение клеток.
Гигиена питания – раздел гигиены, изучающий проблемы полноценного и рационального питания здорового человека. Вопросы питания больных и принципы лечебного питания разрабатываются диетологией.
Исследования по гигиене питания направлены на обоснование оптимального режима и характера питания населения, а также предупреждение заболеваний, возникающих при недостатке в продуктах питания тех или иных пищевых веществ или вследствие попадания в организм с пищей микроорганизмов, способных вызвать заболевание, токсинов и различных химических веществ.
Изучение питания здорового человека производится с учетом возраста, профессии, физической и нервно-психической нагрузки в процессе труда, условий быта и коммунального обеспечения, а также национальных и климатографических особенностей. Гигиена питания разрабатывает нормы питания, меры профилактики авитаминозов и гиповитаминозов. Важной проблемой гигиены питания является изучение энергетических затрат организма и его потребности в белках, жирах, углеводах, минеральных солях, витаминах у различных проф. Групп населения, например, у рабочих промышленных предприятий с различной степенью механизации и автоматизации труда, лиц умственного труда и др. Увеличение количества людей пожилого возраста выдвинуло перед гигиеной питания задачу научного обоснования питания пожилых людей. Гигиена питания занимается разработкой методов контроля качества продуктов на предприятиях общественного питания, пищевой промышленности и в торговой сети, направленных на своевременное предупреждение проникновения или внесения в продукты питания посторонних, в том числе вредных веществ, а также разработкой мероприятий по профилактике пищевых отравлений, токсикоинфекций, интоксикаций. Гигиена питания занимается изучением биологической ценности, химического состава и калорийности как традиционных, так и новых пищевых продуктов. Результаты этих исследований издаются в виде официальных таблиц калорийности и химического состава продуктов. В задачи отделов гигиены питания СЭС входит предупредительный и текущий санитарный надзор за проектированием, строительством и эксплуатацией предприятий пищевой промышленности, торговли, общественного питания.
Обмен веществ и энергии. Метаболизм или обмен веществ - совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. В обмене веществ можно выделить два основных этапа: подготовительный - когда поступившее алиментарным путем вещество подвергается химическим превращениям, в результате которых оно может поступить в кровь и далее проникнуть в клетки, и собственно метаболизм, т.е. химические превращения соединений, проникнувших внутрь клеток.
Метаболический путь – это характер и последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образовавшиеся в процессе метаболизма называются метаболитами, а последнее соединение метаболического пути - конечный продукт.
Процесс распада сложных веществ на более простые называется катаболизмом. Так, поступающие в пищей белки, жиры, углеводы под действием ферментов пищеварительного тракта распадаются на более простые составные части (аминокислоты, жирные кислоты и моносахариды). При этом высвобождается энергия. Обратный процесс, т. е. синтез сложных соединений из более простых называется анаболизмом. Он идет с затратой энергии. Из образовавшихся в результате пищеварения аминокислот, жирных кислот и моносахаридов в клетках синтезируются новые клеточные белки, фосфолипиды мембран и полисахариды.
Существует понятие амфиболизм, когда одно соединение разрушается, но при этом синтезируется другое.
Метаболический цикл - это метаболический путь, один из конечных продуктов которого идентичен одному из соединений, вовлеченных в этот процесс.
Частный путь метаболизма - совокупность превращений одного определенного соединения (углеводы или белки). Общий путь метаболизма - когда вовлекаются два и более видов соединений (углеводы, липиды и частично белки вовлечены в энергетический метаболизм).
Субстраты метаболизма - соединения поступающие с пищей. Среди них выделяют основные пищевые вещества (белки, углеводы, липиды) и минорные, которые поступают в малых количествах (витамины, минеральные вещества).
Интенсивность метаболизма определяется потребностью клетки в тех или иных веществах или энергии, регуляция осуществляется четырьмя путями:
• Суммарная скорость реакций определенного метаболического пути определяется концентрацией каждого из ферментов этого пути, значением рН среды, внутриклеточной концентрацией каждого из промежуточных продуктов, концентрацией кофакторов и коферментов.
• Активностью регуляторных (аллостерических) ферментов, которые обычно катализируют начальные этапы метаболических путей. Большинство из них ингибируется конечным продуктом данного пути и этот вид ингибирования называется «по принципу обратной связи».
• Генетический контроль, определяющий скорость синтеза того или иного фермента. Яркий пример - появление в клетке индуцибельных ферментов в ответ на поступление соответствующего субстрата.
• Гормональная регуляция. Ряд гормонов способны активировать или ингибировать многие ферменты метаболических путей.
Живые организмы представляют собой термодинамически неустойчивые системы. Для их формирования и функционирования необходимо непрерывное поступление энергии в форме, пригодной для многопланового использования. Для получения энергии практически все живые существа на планете приспособились подвергать гидролизу одну из пирофосфатных связей АТФ. В связи с этим одна из главных задач биоэнергетики живых организмов это восполнение использованных АТФ из АДФ и АМФ.
Основной источник энергии в клетке - окисление субстратов кислородом воздуха. Этот процесс осуществляется тремя путями: присоединением кислорода к атому углерода, отщеплением водорода или потерей электрона. В клетках окисление протекает в форме последовательного переноса водорода и электронов от субстрата к кислороду. Кислород играет в этом случае роль восстанавливающегося соединения (окислителя). Окислительные реакции протекают с высвобождением энергии. Для биологических реакций характерны сравнительно небольшие изменения энергии. Это достигается за счет дробления процесса окисления на ряд промежуточных стадий, что позволяет запасать ее небольшими порциями в виде макроэргических соединений (АТФ). Восстановление атома кислорода при взаимодействии с парой протонов и электронов приводит к образованию молекулы воды.
Лекция 6. Физиология крови
Состав крови.
Кровь = плазма + форменные элементы крови (44 %).
Плазма = вода (90 %) + растворенные вещества (10 %).
Сыворотка = плазма – фибриноген.
Общее количество крови в организме – 7 % от массы тела, а у детей - 8-9 %.
Гематокрит - часть объема крови, приходящаяся на долю эритроцитов - у мужчин 0,44-0,46, у женщин - 0,41-0,43. Вязкость - 4,5.
Растворенные вещества:
• электролиты
• белки крови
• транспортируемые вещества: питательные вещества (глюкоза, аминокислоты, жирные кислоты), промежуточные и конечные продукты метаболизма (мочевина, креатинин), регуляторные вещества (гормоны)
Форменные элементы крови:
• эритроциты (красные клетки крови) - безъядерные плоские клетки крови в форме двояковогнутых дисков. Количество – 5,4 ´ 1012/л. Основная функция – транспорт О2 и СО2.
• лейкоциты (белые клетки крови) – округлые клетки с ядрами. Количество – 4 - 10´ 109/л. Основная функция – защита организма от чужеродных веществ и микроорганизмов.
• тромбоциты (кровяные пластинки) – безъядерные фрагменты клеток. Количество – 150 - 300 ´ 109л. Основная функция – образование тромба.
Функции крови
• Интегративная – кровь является внутренней средой организма, которая объединяет все клетки, органы и системы организма
• Транспортная – кровь переносит питательные вещества, продукты метаболизма, газы, регуляторные вещества; с током крови переносятся клетки.
• Гомеостатическая – в крови существуют собственные системы, обеспечивающие поддержание постоянства внутренней среды организма: система свертывания крови, которая предупреждает кровопотерю при повреждении сосудов, буферные системы, которые поддерживают постоянство рН крови.
• Защитная – в крови существуют механизмы, обеспечивающие нейтрализацию проникших в организм чужеродных веществ и клеток.
Плазма крови.
В крови содержатся следующие электролиты:
• неорганические катионы: Na+, K+, Ca++, Mg++.
• неорганические анионы: Cl-, HCO3-, PO4---, HPO4--, H2PO4
• органические анионы
Функции электролитов:
• обеспечивают существование осмотического давления крови
• входят в состав буферных систем крови
• электролиты крови необходимы для поддержания постоянного ионного состава тканевой жидкости и клеток.
Для организма является важным поддержание постоянного осмотического давления крови (зависит от концентрации растворенных в крови электролитов, глюкозы, мочевины), поддержание постоянного соотношения концентраций отдельных электролитов.
Молекулярная масса белков крови – от 44 до 1 300 кД. На основании подвижности молекул в геле при электрофорезе, все белки крови подразделяют на 5 фракций. Подвижность молекул белка при электрофорезе зависит от молекулярной массы белка, формы молекулы, изоэлектрической точки.
Функции белков крови:
• Перенос низкомолекулярных веществ. Многие вещества, попадающие в кровь, связываются со специальными белками. Белки защищают эти вещества от деградации, удерживают их в растворе. Трансферрин – обеспечивает транспорт ионов Fe3+, a 1-липопротеин и b -липопротеин – фосфолипидов и липидов, a 2- макроглобулин – цитокинов, гормонов.
• Связывание электролитов. Все белки плазмы связывают катионы крови, переводя их в недиффундирующую форму. Это явление играет роль в регуляции осмотического давления и ионного состава крови.
• Обеспечивают онкотическое давление крови.
• Входят в состав буферных систем крови.
• Входят в состав свертывающей системы крови
• Входят в состав защитных систем крови.
Буферные системы крови обеспечивают постоянство рН крови. Принцип работы буферной системы – смещение равновесия обратимой реакции диссоциации в соответствии с правилом Ле-Шателье. При повышении рН буферные системы выделяют ионы Н+, при снижении рН – связывают излишние ионы Н+. Существуют следующие буферные системы крови:
• бикарбонатный буфер: СО2 + Н20 = Н2СО3 = НСО3– + Н+
• фосфатный буфер: Н2РО4– = НРО42– + Н+
• белковый буфер: –NH2 + H+ = –NH3+; -COOH = –COO– + H+
Клетки крови. Эритроциты имеют форму двояковогнутых дисков диаметром 7,5 мкм. Такая форма эритроцита увеличивает площадь его поверхности, что ускоряет диффузию газов через мембрану эритроцита. Особенности строения. Эритроциты не имеют ядра. Эритроциты более чем на 90% состоят из воды и гемоглобина Свойства. Эритроциты эластичны и легко деформируются. Это свойство позволяет эритроцитам проходить через узкие капилляры. Количество эритроцитов в крови – 5,4 ´ 1012/л. Эритроциты составляют 45 % общего объема крови. Этот показатель называют гематокрит. Функции эритроцитов – транспорт кислорода и углекислого газа. Образование происходит к красном костном мозге. Эритропоэз – процесс образования эритроцитов, который протекает в красном костном мозге. Время жизни эритроцита – 120 дней. Эритропоэз стимулируется гормоном эритропоэтином, который синтезируется в почках и печени.
Молекула гемоглобина состоит из 4 белковых цепей (2 a -цепи и 2 b -цепи). Каждая белковая цепь содержит гем. Гем – это порфириновое кольцо, в центре которого находится ионFe++. Каждый атом железа может присоединить одну молекулу кислорода, поэтому молекула гемоглобина присоединяет 4 молекулы кислорода. Молекулы углекислого газа присоединяются к свободным аминогруппам основных кислот гемоглобина, поэтому молекула гемоглобина может связать несколько десятков молекул углекислого газа. Молекулярная масса гемоглобина – 64,500. Содержание гемоглобина в крови – 150 г/л.
Лейкоциты – округлые клетки диаметром 10-20 мкм.
Лейкоциты способны к амебоидному движению, благодаря чему могут мигрировать из крови в ткани. Лейкоциты способны окружать инородные тела и захватывать их в цитоплазму (фагоцитоз).
Количество лейкоцитов колеблется в норме от 4´ 109/л до 10´ 109/л. Во время инфекции количество лейкоцитов увеличивается (лейкоцитоз). Уменьшение количества лейкоцитов ниже нормы называют лейкопенией. Функции лейкоцитов – защита организма от чужеродных белков, патогенных организмов (вирусы, бактерии, паразиты), раковых клеток . Образование лимфоцитов происходит в лимфатической системе, гранулоцитов и моноцитов – в красном костном мозге. Время жизни лейкоцита – до нескольких суток.
В зависимости от наличия в цитоплазме гранул, лейкоциты подразделяют на 2 группы – гранулярные лейкоциты (гранулоциты) и агранулярные лейкоциты (агранулоциты). Гранулоциты подразделяются на 3 группы, в зависимости от того, какими красителями окрашиваются их гранулы. Гранулы нейтрофилов окрашиваются нейтральными красителями, гранулы эозинофилов – кислыми, а базофилов – основными красителями.
Нейтрофилы составляют 50-70 % лейкоцитов. Нейтрофилы могут быстро проникать из капилляров в ткани. Нейтрофилы фагоцитируют бактерии и продукты распада тканей и разрушают их своими лизосомальными ферментами. Гной состоит главным образом из остатков разрушенных нейтрофилов.
Эозинофилы составляют 2-4 % лейкоцитов крови. Эозинофилы могут выделять вещества, которые разрушают мембраны чужеродных клеток.
Базофилы составляют 2-4 % лейкоцитов крови. Цитоплазматические гранулы базофилов содержат гепарин и гистамин. Базофилы усиливают иммунный ответ. Участвуют в развитии аллергических реакций.
Моноциты составляют 4-8 % лейкоцитов крови. Моноциты обладают выраженной способностью к фагоцитозу. Моноциты образуются в костном мозге и выходят в кровь. В крови они находятся 2-3 суток, после чего мигрируют в ткани и дифференцируются в тканевые макрофаги. Моноциты и макрофаги фагоцитируют чужеродные структуры, выделяют в кровоток лейкотриены, интерлейкин-1, интерферон.
Лимфоциты составляют 25-40 % лейкоцитов крови. Лимфоциты созревают в тимусе (Т-лимоциты) или в красном костном мозге (В-лимфоциты). Т- лимфоциты являются регуляторами иммунного ответа. В-лимфоциты продуцируют антитела во время иммунного ответа.
Тромбоциты представляют собой плоские безъядерные фрагменты клеток неправильной формы длиной 1-4 мкм и толщиной 0,5-0,75 мкм..
В крови тромбоциты пребывают в неактивном состоянии. Будучи активированы, они секретируют ряд биоактивных веществ. Количество тромбоцитов в крови составляет 150–300 ´ 109/л в 1 мкл. Функции тромбоцитов – участвуют в механизмах гемостаза.
Образование тромбоцитов. В красном костном мозге стволовая клетка крови дифференцируется в гигантскую клетку – мегакариоцит. При действии гормона тромбопоэтина, мегакариоцит отщепляет до 1000 фрагментов цитоплазмы – тромбоцитов. Тромбоциты циркулируют в крови 5-11 суток, а затем разрушаются.
Лекция 7. Физиология сердечно-сосудистой системы
Основное значение сердечно-сосудистой системы состоит в снабжении кровью органов и тканей. Сердечно-сосудистая система состоит из сердца, кровеносных и лимфатических сосудов.
Сердце человека – это полый мышечный орган, разделенный вертикальной перегородкой на левую и правую половины, а горизонтальной на четыре полости: два предсердия и два желудочка. Сердце окружено как мешком соединительнотканной оболочкой - перикардом. В сердце существуют два вида клапанов: атриовентрикулярные (отделяющие предсердия от желудочков) и полулунные (между желудочками и крупными сосудами - аортой и легочной артерией). Основная роль клапанного аппарата состоит в препятствии обратному току крови.
В камерах сердца берут свое начало и заканчиваются два круга кровообращения.
Большой круг начинается аортой, которая отходит от левого желудочка. Аорта переходит в артерии, артерии в артериолы, артериолы в капилляры, капилляры в венулы, венулы в вены. Все вены большого круга собирают свою кровь в полые вены: верхнюю - от верхней части туловища, нижнюю – от нижней. Обе вены впадают в правое предсердие.
Из правого предсердия кровь поступает в правый желудочек, где начинается малый круг кровообращения. Кровь из правого желудочка поступает в легочный ствол, который несет кровь в легкие. Легочные артерии ветвятся до капилляров, затем кровь собирается в венулы, вены и поступает в левое предсердие где и заканчивается малый круг кровообращения. Основная роль большого круга - это обеспечение обмена веществ организма, основная роль малого круга - насыщение крови кислородом.
Основными физиологическими функциями сердца являются: возбудимость, способность проводить возбуждение, сократимость, автоматизм.
Под сердечным автоматизмом понимают способность сердца сокращаться под воздействием импульсов возникающих в нем самом. Эту функцию выполняет атипичная сердечная ткань которая состоит из: синоаурикулярного узла, атриовентрикулярного узла, пучка Гисса. Особенностью автоматизма сердца является то, что вышележащий участок автоматизма подавляет автоматизм нижележащего. Ведущим водителем ритма является синоаурикулярный узел.
Под сердечным циклом понимают одно полное сокращение сердца. Сердечный цикл состоит из систолы (период сокращения) и диастолы (период расслабления). Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы желудочки наполняются кровью.
Ритм сердца – это количество сердечных сокращений за одну минуту.
Аритмия – нарушение ритма сердечных сокращений, тахикардия - учащение частоты сердечных сокращений (ЧСС), возникает часто при усилении влияния симпатической нервной системы, брадикардия – урежение ЧСС, возникает часто при усилении влияния парасимпатической нервной системы.
Экстрасистолия – это внеочередное сердечное сокращение.
Сердечные блокады - нарушение функции проводимости сердца, обусловленные поражением атипичных сердечных клеток.
К показателям сердечной деятельности относят: ударный объем – количество крови, которое выбрасывается в сосуды при каждом сокращении сердца.
Минутный объем – это количество крови, которое сердце выбрасывает в легочный ствол и аорту в течение минуты. Минутный объем сердца увеличивается при физической нагрузке. При умеренной нагрузке минутный объем сердца повышается как за счет роста силы сердечных сокращений, так и за счет частоты. При нагрузках большой мощности только за счет роста ЧСС.
Регуляция сердечной деятельности осуществляется за счет нейрогуморальных воздействий, изменяющих интенсивность сокращений сердца и приспосабливающих его деятельность к потребностям организма и условиям существования. Влияние нервной системы на деятельность сердца осуществляется за счет блуждающего нерва (парасимпатический отдел ЦНС) и за счет симпатических нервов (симпатический отдел ЦНС). Окончания этих нервов изменяют автоматизм синоаурикулярного узла, скорость проведения возбуждения по проводящей системе сердца, интенсивность сердечных сокращений. Блуждающий нерв при возбуждении уменьшает ЧСС и силу сердечных сокращений, снижает возбудимость и тонус сердечной мышцы, скорость проведения возбуждения. Симпатические нервы наоборот учащают ЧСС, увеличивают силу сердечных сокращений, повышают возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения. Гуморальные влияния на сердце реализуются гормонами, электролитами, и другими биологически активными веществами, являющимися продуктами жизнедеятельности органов и систем. Ацетилхолин (АЦХ) и норадреналин (НА) - медиаторы нервной системы – оказывают выраженное влияние на работу сердца. Действие АЦХ аналогично действию парасимпатической, а норадреналина действию симпатической нервной системы.
Кровеносные сосуды. В сосудистой системе различают: магистральные (крупные эластические артерии), резистивные (мелкие артерии, артериолы, прекапиллярные сфинктеры и посткапиллярные сфинктеры, венулы), капилляры (обменные сосуды), емкостные сосуды (вены и венулы), шунтирующие сосуды.
Под артериальным давлением (АД) понимают давление в стенках кровеносных сосудов. Величина давления в артериях ритмически колеблется, достигая наиболее высокого уровня в период систолы и снижается в момент диастолы. Это объясняется тем, что выбрасываемая при систоле кровь встречает сопротивление стенок артерий и массы крови, заполняющей артериальную систему, давление в артериях повышается и возникает некоторое растяжение их стенок. В период диастолы АД понижается и поддерживается на определенном уровне за счет эластического сокращения стенок артерий и сопротивления артериол, благодаря чему продолжается продвижение крови в артериолы, капилляры и вены. Следовательно, величина АД пропорциональна количеству крови, выбрасываемой сердцем в аорту (т.е. ударному объему) и периферическому сопротивлению. Различают систолическое (САД), диастолическое (ДАД), пульсовое и среднее АД.
Систолическое АД – это давление обусловленное систолой левого желудочка (100-120 мм рт.ст.). Диастолическое давление определяется тонусом резистивных сосудов в период диастолы сердца (60-80 мм рт.ст.). Разность между САД и ДАД называется пульсовым давлением. Среднее АД равняется сумме ДАД и 1/3 пульсового давления. Среднее АД выражает энергию непрерывного движения крови и постоянно для данного организма. Повышение артериального давления называют гипертензией. Понижение АД называют гипотензией. АД выражают в миллиметрах ртутного столба. Нормальное систолическое давление колеблется в пределах 100-140 мм рт.ст., диастолическое давление 60-90 мм рт.ст.
Обычно давление измеряется в плечевой артерии. Для этого на обнаженное плечо обследуемого накладывают и закрепляют манжетку, которая должна прилегать настолько плотно, чтобы между ней и кожей проходил один палец. Край манжетки, где имеется резиновая трубка, должен быть обращен книзу и располагаться на 2-3 см выше локтевой ямки. После закрепления манжетки обследуемый удобно укладывает руку ладонью вверх, мышцы руки должны быть расслаблены. В локтевом сгибе находят по пульсации плечевую артерию, прикладывают к ней фонендоскоп, закрывают вентиль сфигмоманометра и накачивают воздух в манжету и манометр. Высота давления воздуха в манжете, сдавливающей артерию, соответствует уровню ртути на шкале прибора. Воздух нагнетается в манжету до тех пор, пока давление в ней не превысит примерно на 30 мм рт.ст. Тот уровень, при котором перестает определятся пульсация плечевой или лучевой артерии. После этого вентиль открывают и начинают медленно выпускать воздух из манжеты. Одновременно фонендоскопом выслушивают плечевую артерию и следят за показанием шкалы манометра. Когда давление в манжете станет чуть ниже систолического, над плечевой артерией начинают выслушиваться тоны, синхронные с деятельностью сердца. Показание манометра в момент первого появления тонов отмечают как величину систолического давления. Эта величина обычно указывается с точностью до 5 мм (например 135, 130, 125 мм рт.ст. и т.д.). При дальнейшем снижении давления в манжете тоны постепенно ослабевают и исчезают. Это давление диастолическое.
АД у здоровых людей подвержено значительным физиологическим колебаниям в зависимости от физической нагрузки, эмоционального напряжения, положения тела, времени приема пищи и др. факторов. Наиболее низкое давление бывает утром, натощак, в покое, т.е в тех условиях, в которых определяется основной обмен, поэтому такое давление называется основным или базальным. При первом измерении уровень АД может оказаться выше, чем в действительности, что связано с реакцией клиента на процедуру измерения. Поэтому рекомендуется не снимая манжеты и лишь выпуская из нее воздух, измерить давление несколько раз и учитывать последнюю наименьшую цифру. Кратковременное повышение АД может наблюдаться при большой физической нагрузке, особенно у нетренированных лиц, при психическом возбуждении, употреблении алкоголя, крепкого чая, кофе, при неумеренном курении и сильных болях.
Пульсом называют ритмические колебания стенки артерий, обусловленные сокращением сердца, выбросом крови в артериальную систему и изменением в ней давления в течение систолы и диастолы.
Распространение пульсовой волны связано со способностью стенок артерий к эластическому растяжению и спадению. Как правило, пульс начинают исследовать на лучевой артерии, поскольку она располагается поверхностно, непосредственно под кожей и хорошо прощупывается между шиловидным отростком лучевой кости и сухожилием внутренней лучевой мышцы. При пальпации пульса кисть исследуемого охватывают правой рукой в области лучезапястного сустава так, что бы 1 палец располагался на тыльной стороне предплечья, а остальные на передней его поверхности. Нащупав артерию, прижимают ее к подлежащей кости. Пульсовая волна под пальцами ощущается в виде расширения артерии. Пульс на лучевых артериях может быть неодинаковым, поэтому в начале исследования нужно пальпировать его на обеих лучевых артериях одновременно, двумя руками.
Исследование артериального пульса дает возможность получать важные сведения о работе сердца и состоянии кровообращения. Это исследование проводится в определенном порядке. Вначале надо убедиться, что пульс одинаково прощупывается на обеих руках. Для этого пальпируют одновременно две лучевые артерии и сравнивают величину пульсовых волн на правой и левой руках (в норме она одинакова). Величина пульсовой волны на одной руке может оказаться меньше, чем на другой, и тогда говорят о различном пульсе. Он наблюдается при односторонних аномалиях строения или расположения артерии, ее сужении, сдавлении опухолью, рубцами др. Различный пульс будет возникать не только при изменении лучевой артерии, но и при аналогичных изменениях вышерасположенных артерий – плечевой, подключичной. Если выявлен различный пульс, дальнейшее его исследование проводят на той руке, где пульсовые волны лучше выражены.
Определяются следующие свойства пульса: ритм, частота, напряжение, наполнение, величина и форма. У здорового человека сокращения сердца и пульсовой волны следуют друг за другом через равные промежутки времени, т.е. пульс ритмичен. В нормальных условиях частота пульса соответствует частоте сердечных сокращений и равна 60-80 ударов в минуту. Частоту пульса подсчитывают в течении 1 мин. В положении лежа пульс в среднем на 10 ударов меньше, чем стоя. У физически развитых людей частота пульса ниже 60 уд/мин, а у тренированных спортсменов до 40-50 уд/мин, что указывает на экономичную работу сердца. В состоянии покоя частота сердечных сокращений (ЧСС) зависит от возраста, пола, позы. С возрастом она уменьшается.
Пульс у находящегося в состоянии покоя здорового человека ритмичный, без перебоев, хорошего наполнения и напряжения. Ритмичным считается такой пульс, когда количество ударов за 10 с отмечается от предыдущего подсчета за такой же период времени не более, чем на один удар. Для подсчета пользуются секундомером или обычными часами с секундной стрелкой. Чтобы получить сравниваемые данные, измеряйте пульс всегда в одном и том же положении (лежа, сидя или стоя). Например, утром измеряйте пульс сразу после сна лежа. Перед занятием и после них - сидя. Определяя величину пульса следует помнить, что сердечно-сосудистая система очень чувствительна к различным влияниям (эмоциональным, физическим нагрузкам и др.). Вот почему наиболее спокойный пульс регистрируется утром, сразу после пробуждения, в горизонтальном положении. Перед тренировкой он может существенно повышаться. Во время занятий контроль за ЧСС можно проводить путем подсчета пульса за 10 с. Учащение пульса в покое на следующий день после тренировки (особенно при плохом самочувствии, нарушении сна, нежелание тренироваться и т.д.) свидетельствует об утомлении. Для лиц, регулярно занимающихся физическими упражнениями, ЧСС в покое более 80 уд/мин расценивается как признак утомления. В дневнике самоконтроля записывается число ударов пульса и отмечается его ритмичность.
Для оценки физической работоспособности используют данные о характере и продолжительности процессов, полученных в результате выполнения различных функциональных проб с регистрацией ЧСС после нагрузки. В качестве таких проб можно использовать следующие упражнения.
Не очень физически подготовленные люди, а также дети делают 20 глубоких и равномерных приседаний за 30 с (приседая, вытянуть руки вперед, вставая – опустить), затем сразу же, сидя, подсчитывают пульс за 10с в течение 3 мин. Если пульс восстанавливается к концу первой минуты - отлично, к концу 2-й - хорошо, к концу 3-й - удовлетворительно. При этом пульс учащается не более чем на 50-70% от исходной величины. Если в течение 3 мин пульс не восстанавливается - неудовлетворительно. Бывает, что учащение пульса происходит на 80% и более по сравнению с исходным, что указывает на снижение функционального состояния сердечно-сосудистой системы.
При хорошей физической подготовленности используют бег на месте в течение 3 мин в умеренном темпе (180 шагов в минуту) с высоким подниманием бедра и движениями рук, как при обычном беге. Если пульс учащается не более чем на 100% и восстанавливается на 2-3 минуте – отлично, на 4-й – хорошо, на 5-й – удовлетворительно. Если пульс возрастает более чем на 100%, а восстановление происходит более чем за 5 минут, то такое состояние оценивается как неудовлетворительное.
Пробы с приседаниями или с дозированным бегом на месте не следует проводить сразу после еды или после занятий. По ЧСС во время занятий можно судить о величине и интенсивности физической нагрузки для данного человека и режим работы (аэробный, анаэробный) в котором проводится тренировка.
Микроциркуляторное звено является центральным в сердечно-сосудистой системе. Оно обеспечивает основную функцию крови - транскапиллярный обмен. Микроциркуляторное звено представлено мелкими артериями, артериолами, капиллярами, венулами, мелкими венами. Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двухсторонней проницаемостью. Проницаемость капилляров – это активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма. Кровь из микроциркуляторного русла попадает в вены. В венах давление низкое от 10-15 мм.рт.ст в мелких до 0 мм.рт.ст. в крупных. Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающая функция грудной клетки.
При физической нагрузке существенно возрастают потребности организма, в частности в кислороде. Наблюдается условнорефлекторное усиление работы сердца, поступление части депонированной крови в общий круг кровообращения, увеличивается выброс адреналина мозговым веществом надпочечников. Адреналин стимулирует работу сердца, суживает сосуды внутренних органов, что ведет к подъему АД, росту линейной скорости кровотока через сердце, мозг, легкие. Значительно во время физической активности возрастает кровоснабжение мышц. Причиной этого является интенсивный обмен веществ в мышце, что способствует скоплению в ней продуктов метаболизма (углекислого газа, молочной кислоты и др.), которые обладают выраженным сосудорасширяющим эффектом и способствуют более мощному раскрытию капилляров. Расширение диаметра сосудов мышц не сопровождается падением артериального давления в результате активации прессорных механизмов в ЦНС, а так же повышенной концентрации глюкокортикоидов и катехоламинов в крови. Работа скелетных мышц усиливает венозный кровоток, что способствует быстрому венозному возврату крови. А повышение содержания продуктов метаболизма в крови, в частности углекислоты ведет к стимуляции дыхательного центра, увеличению глубины и частоты дыхания. Это в свою очередь увеличивает отрицательное давление грудной клетки, важнейшего механизма способствующего увеличению венозного возврата к сердцу.
Лекция 8. Физиология органов дыхания
Нормальное функционирование органов и систем человека возможно только при условии быстрого и своевременного восстановления энергетического баланса. Организм получает энергию за счет окисления органических субстратов - углеводов, жиров, белков.
Дыхание – это сложный непрерывный процесс поддержания на оптимальном уровне окислительно-восстановительных процессов в организме человека. В процессе дыхания принято различать три звена: легочное дыхание, транспорт газов кровью, тканевое дыхание.
Легочное дыхание – это газообмен между организмом и окружающим его атмосферным воздухом. Оно делится на два этапа: газообмен между атмосферным и альвеолярным воздухом, газообмен между альвеолярным воздухом и кровью.
Легочное дыхание осуществляется за счет активности аппарата внешнего дыхания который включает в себя дыхательные пути (носоглотка, трахея, крупные бронхи), легкие, плевру, дыхательные мышцы, скелет грудной клетки, диафрагму. Основная функция аппарата легочного дыхания это доставка кислорода из окружающего воздуха и освобождение от избытка углекислого газа. Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления газов по пути их следования.
Тканевое дыхание тоже разделено на два этапа. Первый этап – это обмен газов между кровью и тканями, второй связан с потреблением кислорода клетками и выделением ими углекислого газа. Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Обычно вдох короче выдоха. Оптимальное соотношение вдох/выдох=1/2.
Акт вдоха (осуществляется вследствие увеличения объема грудной клетки в трех направлениях: вертикальном, переднезаднем и горизонтальном. Благодаря движению ребер грудная клетка увеличивается в горизонтальном и переднезаднем направлениях, а в результате уплощения диафрагмы органы брюшной полости оттесняются вниз, в стороны и вперед, размер грудной клетки увеличивается в вертикальном направлении.
В зависимости от преимущественного участия в акте вдоха мышц грудной клетки и диафрагмы различают грудной (реберный) или брюшной (диафрагмальный) тип дыхания. У мужчин преобладает брюшной тип, у женщин - грудной тип дыхания. В некоторых случаях, например при физической нагрузке, в акте дыхания могут принимать участие вспомогательные мышцы - это мышцы плечевого пояса и шеи (грудинно-ключично-сосцевидная, лестничные мышцы, грудные большая и малая, передние зубчатые).
Оптимальным считается так называемое полное дыхание, в котором одновременно представлены и грудной и брюшное. Затем по оптимальности стоит брюшное, и самое неоптимальное это грудное дыхание. Преобладание грудного дыхания у женщин чаще всего обусловлено беременностью во время которой диафрагмальное дыхание практически отсутствует. После родов мало женщин занимается дыхательной гимнастикой способной восстановить нормальную экскурсию грудной клетки, последствием чего является так называемый гипервентиляционный синдром. Сущность гипервентиляционного синдрома состоит в следующем.
В норме при полном дыхании экскурсия верхних и нижних отделов легких осуществляется равномерно, у женщин с преобладанием грудного дыхания диафрагма в дыхании практически не участвует. Это приводит к недостаточной вентиляции нижних отделов легких. При физической нагрузке компенсацию в недостатке кислорода женщина пытается возместить за счет очень раннего включения мышц дополнительной дыхательной мускулатуры плечевого пояса и шеи, однако это увеличивает объем преимущественно верхних и средних отделов легких. В нижних отделах по прежнему вентиляция снижена. Дополнительная мускулатура не в состоянии столь длительно поддерживать дыхание. Возникают локальные изменения мышц, микроспазмы, образование участков ишемии (малокровия) в мышцах, и как результат – боли в грудной клетке, шее с иррадиацией в руку, снижена толерантность к физическим нагрузкам.
Более того для дальнейшей компенсации недостатка кислорода организм начинает не столько углублять дыхание, сколько учащать его, в результате из организма выводится много углекислого газа, возникает его недостаток (гипокапния). Гипокапния приводит к повышению порога возбуждения мышц нарушению работы дыхательного центра в головном мозге. Это сопровождается головокружением, тошнотой, потемнением в глазах, сдавливающими головными болями, периодическими судорожными сокращениями отдельных мышц. Кроме того гипокинезия диафрагмы способствует застою желчи в желчном пузыре и печени, снижению моторики желудочно-кишечного тракта и как следствие нарушению пищеварения, способствующему нарушению обмена веществ и ожирению. Поэтому адекватное отношение тренеров к дыхательным упражнениям во время занятий будет способствовать улучшению результатов у клиентов. Признаками включения дополнительной дыхательной мускулатуры являются: поднятие плеч на вдохе, увеличение глубины подключичных ямок во время вдоха.
Акт выдоха (экспирация) осуществляется в результате расслабления наружных межреберных мышц и поднятия купола диафрагмы. При этом грудная клетка возвращается в исходное положение и дыхательная поверхность легких уменьшается.
Кислород находится в крови в двух состояниях: физическом растворении (2-3%) и в химической связи с гемоглобином (97%). Гемоглобин образует с кислородом непрочное, легко диссоциирующее соединение – оксигемоглобин. Сродство кислорода к гемоглобину существенно понижается в кислой среде, что характерно в тканях при избытке углекислоты, что увеличивает отдачу кислорода в капиллярах. Здесь же угольная кислота отнимает часть основания от восстановленного гемоглобина, в результате в эритроцитах и в плазме в образуются бикарбонаты. А гемоглобин превращается в карбоксигемоглобин. При поступлении крови в легкие карбоангидраза эритроцитов расщепляет бикарбонаты образуя свободный СО2, а карбоксигемоглобин, отдавая СО2, превращается в оксигемоглобин снова. Свободный СО2 выделяется из легких при выдохе.
Тканевое дыхание представляет собой процесс использования кислорода в клетке – его утилизацию в митохондриях, направленную на выработку энергии (АТФ) и в микросомах (обезвреживание токсических продуктов метаболизма) в клетках.
Физическая нагрузка сопровождается значительными сдвигами в активности органов и физиологических систем организма. Повышенные энерготраты обеспечиваются увеличением утилизации кислорода, что приводит к нарастанию содержания углекислого газа в жидкостях и тканях организма. В условиях относительной кислородной недостаточности (гипоксии) может изменяться характер и тканевого дыхания в котором начинают преобладать процессы анаэробного окисления. Анаэробное дыхание обусловливает увеличение в крови и тканях таких метаболитов как молочная кислота, продукты перекисного окисления липидов и др. Эти вещества оказывают стимулирующий эффект на сосудистые рефлексогенные зоны (хеморецепторы), непосредственно на нейроны самого дыхательного центра и клетки коры головного мозга, обладающих очень высокой чувствительностью к гипоксии и ацидозу. Стимуляция центральной нервной системы приводит к углублению и учащению дыхательных движений, система дыхания начинает обеспечивать возросшие потребности организма в кислороде.