Справочник от Автор24
Поделись лекцией за скидку на Автор24

Характеристики загрязнений окружающей среды и основные методы ее защиты

  • 👀 373 просмотра
  • 📌 326 загрузок
Выбери формат для чтения
Статья: Характеристики загрязнений окружающей среды и основные методы ее защиты
Найди решение своей задачи среди 1 000 000 ответов
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Характеристики загрязнений окружающей среды и основные методы ее защиты» pdf
Ɋɚɡɞɟɥ 1. ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ ɡɚɝɪɹɡɧɟɧɢɣ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɢ ɨɫɧɨɜɧɵɟ ɦɟɬɨɞɵ ɟɟ ɡɚɳɢɬɵ 1.1. ɉɨɤɚɡɚɬɟɥɢ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ Ɂɚɝɪɹɡɧɟɧɢɟɦ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɦɨɠɧɨ ɧɚɡɜɚɬɶ ɢɡɦɟɧɟɧɢɟ ɤɚɱɟɫɬɜɚ ɫɪɟɞɵ, ɫɩɨɫɨɛɧɨɟ ɜɵɡɜɚɬɶ ɨɬɪɢɰɚɬɟɥɶɧɵɟ ɩɨɫɥɟɞɫɬɜɢɹ. ɋɱɢɬɚɟɬɫɹ, ɱɬɨ ɨɞɢɧɚɤɨɜɵɟ ɚɝɟɧɬɵ ɨɤɚɡɵɜɚɸɬ ɨɞɢɧɚɤɨɜɵɟ ɨɬɪɢɰɚɬɟɥɶɧɵɟ ɜɨɡɞɟɣɫɬɜɢɹ ɧɟɡɚɜɢɫɢɦɨ ɨɬ ɢɯ ɩɪɨɢɫɯɨɠɞɟɧɢɹ, ɩɨɷɬɨɦɭ ɩɵɥɶ, ɢɫɬɨɱɧɢɤɨɦ ɤɨɬɨɪɨɣ ɹɜɥɹɟɬɫɹ ɩɪɢɪɨɞɧɨɟ ɹɜɥɟɧɢɟ (ɧɚɩɪɢɦɟɪ, ɩɵɥɶɧɵɟ ɛɭɪɢ), ɞɨɥɠɧɚ ɫɱɢɬɚɬɶɫɹ ɬɚɤɢɦ ɠɟ ɡɚɝɪɹɡɧɹɸɳɢɦ ɜɟɳɟɫɬɜɨɦ, ɤɚɤ ɢ ɩɵɥɶ, ɜɵɛɪɚɫɵɜɚɟɦɚɹ ɩɪɨɦɵɲɥɟɧɧɵɦ ɩɪɟɞɩɪɢɹɬɢɟɦ, ɯɨɬɹ ɩɨɫɥɟɞɧɹɹ ɦɨɠɟɬ ɛɵɬɶ ɛɨɥɟɟ ɬɨɤɫɢɱɧɨɣ ɜ ɫɢɥɭ ɫɜɨɟɝɨ ɫɥɨɠɧɨɝɨ ɫɨɫɬɚɜɚ. Ɂɚɝɪɹɡɧɟɧɢɹ ɤɥɚɫɫɢɮɢɰɢɪɨɜɚɧɵ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ (ɬɚɛɥ. 1.1). Ɍɚɛɥɢɰɚ 1.1 Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɜɢɞɨɜ ɡɚɝɪɹɡɧɟɧɢɣ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ Ɂɚɝɪɹɡɧɟɧɢɟ 1 Ɉɩɪɟɞɟɥɟɧɢɟ 2 1. Ɇɟɯɚɧɢɱɟɫɤɨɟ Ɂɚɫɨɪɟɧɢɟ ɫɪɟɞɵ ɚɝɟɧɬɚɦɢ, ɨɤɚɡɵɜɚɸɳɢɦɢ ɥɢɲɶ ɦɟɯɚɧɢɱɟɫɤɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɛɟɡ ɯɢɦɢɤɨ-ɮɢɡɢɱɟɫɤɢɯ ɩɨɫɥɟɞɫɬɜɢɣ (ɧɚɩɪɢɦɟɪ, ɦɭɫɨɪɨɦ) 2. ɏɢɦɢɱɟɫɤɨɟ ɂɡɦɟɧɟɧɢɟ ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɫɪɟɞɵ, ɨɤɚɡɵɜɚɸɳɢɯ ɨɬɪɢɰɚɬɟɥɶɧɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɷɤɨɫɢɫɬɟɦɵ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɭɫɬɪɨɣɫɬɜɚ 3. Ɏɢɡɢɱɟɫɤɨɟ ɂɡɦɟɧɟɧɢɟ ɮɢɡɢɱɟɫɤɢɯ ɩɚɪɚɦɟɬɪɨɜ ɫɪɟɞɵ: ɬɟɦɩɟɪɚɬɭɪɧɨ-ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ (ɬɟɩɥɨɜɨɟ ɢɥɢ ɬɟɪɦɚɥɶɧɨɟ), ɜɨɥɧɨɜɵɯ (ɫɜɟɬɨɜɨɟ, ɲɭɦɨɜɨɟ, ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɟ), ɪɚɞɢɚɰɢɨɧɧɵɯ (ɪɚɞɢɚɰɢɨɧɧɨɟ ɢɥɢ ɪɚɞɢɨɚɤɬɢɜɧɨɟ) ɢ ɬ.ɩ. 3.1. Ɍɟɩɥɨɜɨɟ (ɬɟɪɦɚɥɶɧɨɟ) ɉɨɜɵɲɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɫɪɟɞɵ, ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ ɜ ɫɜɹɡɢ ɫ ɩɪɨɦɵɲɥɟɧɧɵɦɢ ɜɵɛɪɨɫɚɦɢ ɧɚɝɪɟɬɨɝɨ ɜɨɡɞɭɯɚ, ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ ɢ ɜɨɞɵ; ɦɨɠɟɬ ɜɨɡɧɢɤɚɬɶ ɢ ɤɚɤ ɜɬɨɪɢɱɧɵɣ ɪɟɡɭɥɶɬɚɬ ɢɡɦɟɧɟɧɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɫɨɫɬɚɜɚ ɫɪɟɞɵ 3.2. ɋɜɟɬɨɜɨɟ ɇɚɪɭɲɟɧɢɟ ɟɫɬɟɫɬɜɟɧɧɨɣ ɨɫɜɟɳɟɧɧɨɫɬɢ ɦɟɫɬɧɨɫɬɢ ɜ ɪɟɡɭɥɶɬɚɬɟ ɞɟɣɫɬɜɢɹ ɢɫɤɭɫɫɬɜɟɧɧɵɯ ɢɫɬɨɱɧɢɤɨɜ ɫɜɟɬɚ; ɦɨɠɟɬ ɩɪɢɜɨɞɢɬɶ ɤ ɚɧɨɦɚɥɢɹɦ ɜ ɠɢɡɧɢ ɪɚɫɬɟɧɢɣ ɢ ɠɢɜɨɬɧɵɯ 1 3.3. ɒɭɦɨɜɨɟ 2 ɍɜɟɥɢɱɟɧɢɟ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɲɭɦɚ ɫɜɟɪɯ ɩɪɢɪɨɞɧɨɝɨ ɭɪɨɜɧɹ; ɭ ɱɟɥɨɜɟɤɚ ɩɪɢɜɨɞɢɬ ɤ ɩɨɜɵɲɟɧɢɸ ɭɬɨɦɥɹɟɦɨɫɬɢ, ɫɧɢɠɟɧɢɸ ɭɦɫɬɜɟɧɧɨɣ ɚɤɬɢɜɧɨɫɬɢ ɢ ɩɪɢ ɞɨɫɬɢɠɟɧɢɢ 90-100 ɞȻ ɤ ɩɨɫɬɟɩɟɧɧɨɣ ɩɨɬɟɪɟ ɫɥɭɯɚ 3.4. ɗɥɟɤɬɪɨɦɚɝɧɢɬɧɨɟ ɂɡɦɟɧɟɧɢɟ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɫɜɨɣɫɬɜ ɫɪɟɞɵ (ɨɬ ɥɢɧɢɣ ɷɥɟɤɬɪɨɩɟɪɟɞɚɱɢ, ɪɚɞɢɨ ɢ ɬɟɥɟɜɢɞɟɧɢɹ, ɪɚɛɨɬɵ ɧɟɤɨɬɨɪɵɯ ɩɪɨɦɵɲɥɟɧɧɵɯ ɭɫɬɚɧɨɜɨɤ ɢ ɞɪ.) ɩɪɢɜɨɞɢɬ ɤ ɝɥɨɛɚɥɶɧɵɦ ɢ ɦɟɫɬɧɵɦ ɝɟɨɝɪɚɮɢɱɟɫɤɢɦ ɚɧɨɦɚɥɢɹɦ ɢ ɢɡɦɟɧɟɧɢɹɦ ɜ ɬɨɧɤɢɯ ɛɢɨɥɨɝɢɱɟɫɤɢɯ ɫɬɪɭɤɬɭɪɚɯ 4. Ɋɚɞɢɚɰɢɨɧɧɨɟ ɉɪɟɜɵɲɟɧɢɟ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɭɪɨɜɧɹ ɫɨɞɟɪɠɚɧɢɹ ɜ ɫɪɟɞɟ ɪɚɞɢɨɚɤɬɢɜɧɵɯ ɜɟɳɟɫɬɜ 5. Ȼɢɨɥɨɝɢɱɟɫɤɨɟ ɉɪɨɧɢɤɚɧɢɟ ɜ ɷɤɨɫɢɫɬɟɦɵ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɭɫɬɪɨɣɫɬɜɚ ɜɢɞɨɜ ɠɢɜɨɬɧɵɯ ɢ ɪɚɫɬɟɧɢɣ, ɱɭɠɞɵɯ ɞɚɧɧɵɦ ɫɨɨɛɳɟɫɬɜɚɦ ɢ ɭɫɬɪɨɣɫɬɜɚɦ 5.1. Ȼɢɨɬɢɱɟɫɤɨɟ Ɋɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɨɩɪɟɞɟɥɟɧɧɵɯ, ɤɚɤ ɩɪɚɜɢɥɨ, ɧɟɠɟɥɚɬɟɥɶɧɵɯ ɫ ɬɨɱɤɢ ɡɪɟɧɢɹ ɥɸɞɟɣ ɛɢɨɝɟɧɧɵɯ ɜɟɳɟɫɬɜ (ɜɵɞɟɥɟɧɢɣ, ɦɟɪɬɜɵɯ ɬɟɥ ɢ ɞɪ.) ɧɚ ɬɟɪɪɢɬɨɪɢɢ, ɝɞɟ ɨɧɢ ɪɚɧɟɟ ɧɟ ɧɚɛɥɸɞɚɥɢɫɶ 5.2. Ɇɢɤɪɨɛɢɨɥɨɝɢɱɟ- ɚ) ɉɨɹɜɥɟɧɢɟ ɧɟɨɛɵɱɚɣɧɨ ɛɨɥɶɲɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɫɤɨɟ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ, ɫɜɹɡɚɧɧɨɟ ɫ ɢɯ ɦɚɫɫɨɜɵɦ ɪɚɡɦɧɨɠɟɧɢɟɦ ɧɚ ɚɧɬɪɨɩɨɝɟɧɧɵɯ ɫɭɛɫɬɪɚɬɚɯ ɢɥɢ ɜ ɫɪɟɞɚɯ, ɢɡɦɟɧɟɧɧɵɯ ɜ ɯɨɞɟ ɯɨɡɹɣɫɬɜɟɧɧɨɣ ɞɟɹɬɟɥɶɧɨɫɬɢ ɱɟɥɨɜɟɤɚ; ɛ) ɉɪɢɨɛɪɟɬɟɧɢɟ ɪɚɧɟɟ ɛɟɡɜɪɟɞɧɨɣ ɮɨɪɦɨɣ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɩɚɬɨɝɟɧɧɵɯ ɫɜɨɣɫɬɜ ɢɥɢ ɫɩɨɫɨɛɧɨɫɬɢ ɩɨɞɚɜɥɹɬɶ ɞɪɭɝɢɟ ɨɪɝɚɧɢɡɦɵ ɜ ɫɨɨɛɳɟɫɬɜɚɯ ȼɫɟ ɩɟɪɟɱɢɫɥɟɧɧɵɟ ɜɢɞɵ ɡɚɝɪɹɡɧɟɧɢɣ ɜɡɚɢɦɨɫɜɹɡɚɧɵ, ɢ ɤɚɠɞɵɣ ɢɡ ɧɢɯ ɦɨɠɟɬ ɹɜɢɬɶɫɹ ɬɨɥɱɤɨɦ ɞɥɹ ɜɨɡɧɢɤɧɨɜɟɧɢɹ ɞɪɭɝɢɯ ɜɢɞɨɜ ɡɚɝɪɹɡɧɟɧɢɹ. ȼ ɱɚɫɬɧɨɫɬɢ, ɯɢɦɢɱɟɫɤɨɟ ɡɚɝɪɹɡɧɟɧɢɟ ɚɬɦɨɫɮɟɪɵ ɦɨɠɟɬ ɫɩɨɫɨɛɫɬɜɨɜɚɬɶ ɩɨɜɵɲɟɧɢɸ ɜɢɪɭɫɧɨɣ ɚɤɬɢɜɧɨɫɬɢ, ɚ ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɛɢɨɥɨɝɢɱɟɫɤɨɦɭ ɡɚɝɪɹɡɧɟɧɢɸ. ɋɭɳɟɫɬɜɭɸɬ ɜɟɪɯɧɹɹ ɢ ɧɢɠɧɹɹ ɤɪɢɬɢɱɟɫɤɢɟ ɝɪɚɧɢɰɵ ɩɚɪɚɦɟɬɪɨɜ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɞɨɫɬɢɠɟɧɢɟ ɤɨɬɨɪɵɯ ɭɝɪɨɠɚɟɬ ɧɚɫɬɭɩɥɟɧɢɟɦ ɧɟɨɛɪɚɬɢɦɵɯ ɫɞɜɢɝɨɜ ɜ ɛɢɨɥɨɝɢɱɟɫɤɨɣ ɫɢɫɬɟɦɟ ɢ ɜ ɟɟ ɨɬɞɟɥɶɧɵɯ ɡɜɟɧɶɹɯ. ɇɟɤɨɬɨɪɵɟ ɜɟɳɟɫɬɜɚ (ɧɚɩɪɢɦɟɪ, ɛɨɥɶɲɢɧɫɬɜɨ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ) ɜ ɡɧɚɱɢɬɟɥɶɧɵɯ ɤɨɥɢɱɟɫɬɜɚɯ ɹɜɥɹɸɬɫɹ ɫɢɥɶɧɵɦɢ ɹɞɚɦɢ, ɚ ɜ ɦɚɥɵɯ ɞɨɡɚɯ ɨɧɢ ɧɟɨɛɯɨɞɢɦɵ, ɬɚɤ ɤɚɤ ɭɦɟɧɶɲɟɧɢɟ ɢɯ ɫɨɞɟɪɠɚɧɢɹ ɜ ɨɪɝɚɧɢɡɦɟ ɱɟɥɨɜɟɤɚ ɧɢɠɟ ɤɪɢɬɢɱɟɫɤɨɣ ɜɟɥɢɱɢɧɵ ɜɵɡɵɜɚɟɬ ɬɹɠɟɥɵɟ ɮɭɧɤɰɢɨɧɚɥɶɧɵɟ ɪɚɫɫɬɪɨɣɫɬɜɚ. Ɂɞɨɪɨɜɶɸ ɜɪɟɞɧɵ ɤɚɤ ɢɡɥɢɲɧɹɹ ɲɭɦɨɜɚɹ ɧɚɝɪɭɡɤɚ, ɬɚɤ ɢ ɨɬɫɭɬɫɬɜɢɟ ɡɜɭɤɨɜ; ɬɨ ɠɟ ɦɨɠɧɨ ɫɤɚɡɚɬɶ ɨɛ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɩɨɥɹɯ, ɪɚɞɢɨɚɤɬɢɜɧɨɦ ɮɨɧɟ, ɬɟɦɩɟɪɚɬɭɪɧɵɯ ɧɚɝɪɭɡɤɚɯ, ɨɩɬɢɱɟɫɤɢɯ ɹɜɥɟɧɢɹɯ ɢ ɩɪɨɱɢɯ ɮɢɡɢɱɟɫɤɢɯ, ɚ ɬɚɤɠɟ ɛɢɨɥɨɝɢɱɟɫɤɢɯ, ɢɧɮɨɪɦɚɰɢɨɧɧɵɯ ɢ ɞɪɭɝɢɯ ɩɚɪɚɦɟɬɪɚɯ. ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɡɚɤɨɧɨɦ Ɋɨɫɫɢɣɫɤɨɣ Ɏɟɞɟɪɚɰɢɢ ɨɛ ɨɯɪɚɧɟ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ (2001 ɝ.) ɩɨɞ ɧɨɪɦɢɪɨɜɚɧɢɟɦ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɩɨɞɪɚɡɭɦɟɜɚɟɬɫɹ ɞɟɹɬɟɥɶɧɨɫɬɶ ɩɨ ɭɫɬɚɧɨɜɥɟɧɢɸ ɧɨɪɦɚɬɢɜɨɜ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɯ ɜɨɡɞɟɣɫɬɜɢɣ ɧɚ ɧɟɟ. Ɂɚɤɨɧ ɧɨɪɦɢɪɭɟɬ ɡɚɝɪɹɡɧɟɧɢɟ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɤɚɤ ɪɚɡɧɨɜɢɞɧɨɫɬɢ ɧɟɛɥɚɝɨɩɪɢɹɬɧɵɯ ɜɨɡɞɟɣɫɬɜɢɣ, ɢɫɯɨɞɹ ɢɡ ɩɪɟɞɩɨɥɨɠɟɧɢɹ ɨ ɫɭɳɟɫɬɜɨɜɚɧɢɢ ɞɨɩɭɫɬɢɦɵɯ ɧɨɪɦ ɜɪɟɞɧɵɯ ɜɨɡɞɟɣɫɬɜɢɣ ɧɚ ɩɪɢɪɨɞɭ, ɝɚɪɚɧɬɢɪɭɸɳɢɯ ɷɤɨɥɨɝɢɱɟɫɤɭɸ ɛɟɡɨɩɚɫɧɨɫɬɶ ɧɚɫɟɥɟɧɢɹ, ɫɨɯɪɚɧɟɧɢɟ ɝɟɧɨɮɨɧɞɚ ɢ ɨɛɟɫɩɟɱɢɜɚɸɳɢɯ ɪɚɰɢɨɧɚɥɶɧɨɟ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɢ ɜɨɫɩɪɨɢɡɜɨɞɫɬɜɨ ɩɪɢɪɨɞɧɵɯ ɪɟɫɭɪɫɨɜ ɜ ɭɫɥɨɜɢɹɯ ɭɫɬɨɣɱɢɜɨɝɨ ɪɚɡɜɢɬɢɹ ɯɨɡɹɣɫɬɜɟɧɧɨɣ ɞɟɹɬɟɥɶɧɨɫɬɢ. ɇɨɪɦɚɬɢɜɵ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɯ ɜɨɡɞɟɣɫɬɜɢɣ ɨɛɪɟɬɚɸɬ ɸɪɢɞɢɱɟɫɤɭɸ ɫɢɥɭ ɢ ɫɬɚɧɨɜɹɬɫɹ ɨɛɹɡɚɬɟɥɶɧɵɦɢ ɞɥɹ ɩɪɢɦɟɧɟɧɢɹ ɧɚ ɬɟɪɪɢɬɨɪɢɢ Ɋɨɫɫɢɢ ɩɨ ɦɟɪɟ ɭɬɜɟɪɠɞɟɧɢɹ Ƚɨɫɤɨɦɫɚɧɷɩɢɞɧɚɞɡɨɪɚ ɢ Ɇɢɧɩɪɢɪɨɞɵ Ɋɨɫɫɢɢ. ɇɨɪɦɚɬɢɜɵ ɜ ɨɛɥɚɫɬɢ ɨɯɪɚɧɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ - ɭɫɬɚɧɨɜɥɟɧɧɵɟ ɧɨɪɦɚɬɢɜɵ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɢ ɧɨɪɦɚɬɢɜɵ ɞɨɩɭɫɬɢɦɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɧɟɟ, ɩɪɢ ɫɨɛɥɸɞɟɧɢɢ ɤɨɬɨɪɵɯ ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɭɫɬɨɣɱɢɜɨɟ ɮɭɧɤɰɢɨɧɢɪɨɜɚɧɢɟ ɟɫɬɟɫɬɜɟɧɧɵɯ ɷɤɨɥɨɝɢɱɟɫɤɢɯ ɫɢɫɬɟɦ ɢ ɫɨɯɪɚɧɹɟɬɫɹ ɛɢɨɥɨɝɢɱɟɫɤɨɟ ɪɚɡɧɨɨɛɪɚɡɢɟ. ɇɨɪɦɚɬɢɜɵ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ - ɧɨɪɦɚɬɢɜɵ, ɤɨɬɨɪɵɟ ɭɫɬɚɧɨɜɥɟɧɵ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɮɢɡɢɱɟɫɤɢɦɢ, ɯɢɦɢɱɟɫɤɢɦɢ, ɛɢɨɥɨɝɢɱɟɫɤɢɦɢ ɢ ɢɧɵɦɢ ɩɨɤɚɡɚɬɟɥɹɦɢ ɞɥɹ ɨɰɟɧɤɢ ɫɨɫɬɨɹɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɢ ɩɪɢ ɫɨɛɥɸɞɟɧɢɢ ɤɨɬɨɪɵɯ ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɛɥɚɝɨɩɪɢɹɬɧɚɹ ɨɤɪɭɠɚɸɳɚɹ ɫɪɟɞɚ. ȼ ɧɚɭɱɧɨ-ɬɟɯɧɢɱɟɫɤɨɣ ɥɢɬɟɪɚɬɭɪɟ ɞɥɹ ɩɨɤɚɡɚɬɟɥɟɣ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɢɫɩɨɥɶɡɭɸɬ ɬɟɪɦɢɧ "ɢɧɞɟɤɫ ɤɚɱɟɫɬɜɚ ɫɪɟɞɵ" (ɥɭɱɲɟɦɭ ɤɚɱɟɫɬɜɭ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɛɨɥɶɲɢɣ ɢɧɞɟɤɫ) ɢ ɬɟɪɦɢɧ "ɢɧɞɟɤɫ ɡɚɝɪɹɡɧɟɧɢɹ ɫɪɟɞɵ" (ɛɨɥɶɲɟɦɭ ɡɚɝɪɹɡɧɟɧɢɸ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɛɨɥɶɲɢɣ ɢɧɞɟɤɫ). Ɇɨɠɧɨ ɫɱɢɬɚɬɶ, ɱɬɨ ɢɧɞɟɤɫ ɤɚɱɟɫɬɜɚ = 1/ɢɧɞɟɤɫ ɡɚɝɪɹɡɧɟɧɢɹ. Ⱦɥɹ ɨɰɟɧɤɢ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɢɫɩɨɥɶɡɭɸɬɫɹ ɫɥɟɞɭɸɳɢɟ ɧɨɪɦɚɬɢɜɵ: - ɧɨɪɦɚɬɢɜɵ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ (ɉȾɄ) ɯɢɦɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɜ ɬɨɦ ɱɢɫɥɟ ɪɚɞɢɨɚɤɬɢɜɧɵɯ, ɢɧɵɯ ɜɟɳɟɫɬɜ ɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɧɨɪɦɚɬɢɜɵ, ɤɨɬɨɪɵɟ ɭɫɬɚɧɨɜɥɟɧɵ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɩɨɤɚɡɚɬɟɥɹɦɢ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɨɝɨ ɫɨɞɟɪɠɚɧɢɹ ɯɢɦɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɜ ɬɨɦ ɱɢɫɥɟ ɪɚɞɢɨɚɤɬɢɜɧɵɯ, ɢɧɵɯ ɜɟɳɟɫɬɜ ɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɜ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɟ ɢ ɧɟɫɨɛɥɸɞɟɧɢɟ ɤɨɬɨɪɵɯ ɦɨɠɟɬ ɩɪɢɜɟɫɬɢ ɤ ɡɚɝɪɹɡɧɟɧɢɸ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɞɟɝɪɚɞɚɰɢɢ ɟɫɬɟɫɬɜɟɧɧɵɯ ɷɤɨɥɨɝɢɱɟɫɤɢɯ ɫɢɫɬɟɦ; - ɧɨɪɦɚɬɢɜɵ ɞɨɩɭɫɬɢɦɵɯ ɮɢɡɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ - ɧɨɪɦɚɬɢɜɵ, ɤɨɬɨɪɵɟ ɭɫɬɚɧɨɜɥɟɧɵ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɭɪɨɜɧɹɦɢ ɞɨɩɭɫɬɢɦɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɮɢɡɢɱɟɫɤɢɯ ɮɚɤɬɨɪɨɜ ɧɚ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ ɢ ɩɪɢ ɫɨɛɥɸɞɟɧɢɢ ɤɨɬɨɪɵɯ ɨɛɟɫɩɟɱɢɜɚɸɬɫɹ ɧɨɪɦɚɬɢɜɵ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. Ʉɪɢɬɟɪɢɹɦɢ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɜ ɧɚɫɬɨɹɳɟɟ ɜɪɟɦɹ ɫɥɭɠɚɬ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ (ɉȾɄ), ɹɜɥɹɸɳɢɟɫɹ ɝɢɝɢɟɧɢɱɟɫɤɢɦɢ ɧɨɪɦɚɦɢ. ȼ ɋɋɋɊ ɛɵɥɢ ɧɚɭɱɧɨ ɨɛɨɫɧɨɜɚɧɵ ɢ ɭɫɬɚɧɨɜɥɟɧɵ ɝɢɝɢɟɧɢɱɟɫɤɢɟ ɧɨɪɦɚɬɢɜɵ ɛɨɥɟɟ ɱɟɦ ɞɥɹ 400 ɜɟɳɟɫɬɜ ɢ ɢɯ ɤɨɦɛɢɧɚɰɢɣ, ɩɪɢɱɟɦ ɜɫɟ ɷɬɢ ɜɟɳɟɫɬɜɚ ɨɬɧɟɫɟɧɵ ɤ ɨɞɧɨɦɭ ɢɡ ɱɟɬɵɪɟɯ ɤɥɚɫɫɨɜ ɨɩɚɫɧɨɫɬɢ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ (ɧɚɢɛɨɥɟɟ ɨɩɚɫɧɵɦ ɹɜɥɹɟɬɫɹ 1-ɣ ɤɥɚɫɫ, ɧɚɢɦɟɧɟɟ ɨɩɚɫɧɵɦ - 4-ɣ). Ⱦɥɹ ɛɨɥɶɲɢɧɫɬɜɚ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɞɜɚ ɡɧɚɱɟɧɢɹ ɉȾɄ: ɦɚɤɫɢɦɚɥɶɧɨ ɪɚɡɨɜɚɹ ɢ ɫɪɟɞɧɟɫɭɬɨɱɧɚɹ. Ɇɚɤɫɢɦɚɥɶɧɨ ɪɚɡɨɜɚɹ ɉȾɄ ɫɜɹɡɚɧɚ, ɜ ɨɫɧɨɜɧɨɦ, ɫ ɜɨɡɦɨɠɧɵɦ ɪɟɮɥɟɤɬɨɪɧɵɦ ɞɟɣɫɬɜɢɟɦ ɜɟɳɟɫɬɜɚ ɧɚ ɨɪɝɚɧɢɡɦ. ɗɬɨ — ɉȾɄ ɩɪɢɦɟɫɢ ɜ ɜɨɡɞɭɯɟ, ɪɟɝɢɫɬɪɢɪɭɟɦɚɹ ɫ 20-ɦɢɧɭɬɧɵɦ ɨɫɪɟɞɧɟɧɢɟɦ; ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɚɹ ɱɚɫɬɨɬɚ ɩɨɹɜɥɟɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ, ɩɪɟɜɵɲɚɸɳɟɣ ɦɚɤɫɢɦɚɥɶɧɨ ɪɚɡɨɜɭɸ ɉȾɄ, ɧɟ ɞɨɥɠɧɚ ɩɪɟɜɵɲɚɬɶ 2 % ɨɛɳɟɝɨ ɱɢɫɥɚ ɢɡɦɟɪɟɧɢɣ. ɋɪɟɞɧɟɫɭɬɨɱɧɚɹ ɉȾɄ ɧɚɩɪɚɜɥɟɧɚ ɧɚ ɩɪɟɞɭɩɪɟɠɞɟɧɢɟ ɯɪɨɧɢɱɟɫɤɨɝɨ ɪɟɡɨɪɛɬɢɜɧɨɝɨ ɞɟɣɫɬɜɢɹ ɜɟɳɟɫɬɜɚ ɩɪɢ ɞɥɢɬɟɥɶɧɨɦ ɜɞɵɯɚɧɢɢ. ɗɬɨ - ɉȾɄ ɩɪɢɦɟɫɢ ɜ ɜɨɡɞɭɯɟ, ɭɫɪɟɞɧɟɧɧɚɹ ɡɚ ɞɥɢɬɟɥɶɧɵɣ ɢɧɬɟɪɜɚɥ ɜɪɟɦɟɧɢ (ɞɨ 1 ɝɨɞɚ). ɗɬɨɣ ɨɩɟɪɚɰɢɟɣ ɧɨɪɦɢɪɭɸɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ ɩɨ ɢɯ ɫɬɚɧɞɚɪɬɚɦ, ɱɬɨ ɞɚɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɫɨɩɨɫɬɚɜɥɹɬɶ ɞɟɣɫɬɜɭɸɳɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɡɥɢɱɧɵɯ ɜɟɳɟɫɬɜ ɜ ɨɞɧɢɯ ɢ ɬɟɯ ɠɟ ɟɞɢɧɢɰɚɯ. ɉȾɄ - ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɜɨɡɞɭɯɟ ɪɚɛɨɱɟɣ ɡɨɧɵ, ɦɝ/ɦ3. ɉȾɄ ɧɟ ɞɨɥɠɧɚ ɜɵɡɵɜɚɬɶ ɡɚɛɨɥɟɜɚɧɢɹ ɢɥɢ ɨɬɤɥɨɧɟɧɢɹ ɜ ɫɨɫɬɨɹɧɢɢ ɡɞɨɪɨɜɶɹ, ɨɛɧɚɪɭɠɢɜɚɟɦɵɯ ɫɨɜɪɟɦɟɧɧɵɦɢ ɦɟɬɨɞɚɦɢ ɢɫɫɥɟɞɨɜɚɧɢɹ, ɜ ɩɪɨɰɟɫɫɟ ɪɚɛɨɬɵ ɢɥɢ ɜ ɨɬɞɚɥɟɧɧɵɟ ɫɪɨɤɢ ɠɢɡɧɢ ɧɚɫɬɨɹɳɟɝɨ ɢ ɩɨɫɥɟɞɭɸɳɟɝɨ ɩɨɤɨɥɟɧɢɣ ɩɪɢ ɟɠɟɞɧɟɜɧɨɣ (ɤɪɨɦɟ ɜɵɯɨɞɧɵɯ ɞɧɟɣ) ɪɚɛɨɬɟ ɜ ɩɪɟɞɟɥɚɯ 8 ɱɚɫɨɜ ɢɥɢ ɞɪɭɝɨɣ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ, ɧɨ ɧɟ ɛɨɥɟɟ 41 ɱɚɫɚ ɜ ɧɟɞɟɥɸ, ɜ ɬɟɱɟɧɢɟ ɜɫɟɝɨ ɪɚɛɨɱɟɝɨ ɫɬɚɠɚ. ɉȾɄɫɫ - ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɚɹ ɫɪɟɞɧɟɫɭɬɨɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɜɨɡɞɭɯɟ ɧɚɫɟɥɟɧɧɵɯ ɦɟɫɬ, ɦɝ/ɦ3. ɉȾɄɫɫ ɧɟ ɞɨɥɠɧɚ ɨɤɚɡɵɜɚɬɶ ɧɚ ɱɟɥɨɜɟɤɚ ɩɪɹɦɨɝɨ ɢɥɢ ɤɨɫɜɟɧɧɨɝɨ ɜɪɟɞɧɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɩɪɢ ɧɟɨɩɪɟɞɟɥɟɧɧɨ ɞɨɥɝɨɦ (ɝɨɞɵ) ɜɞɵɯɚɧɢɢ. ɗɬɨ ɨɫɧɨɜɧɨɣ ɧɨɪɦɚɬɢɜ ɨɰɟɧɤɢ ɫɨɫɬɨɹɧɢɹ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɫ ɫɚɧɢɬɚɪɧɨ-ɝɢɝɢɟɧɢɱɟɫɤɨɣ ɬɨɱɤɢ ɡɪɟɧɢɹ. ɉȾɄɦɪ - ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɚɹ ɦɚɤɫɢɦɚɥɶɧɚɹ ɪɚɡɨɜɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɜɨɡɞɭɯɟ ɧɚɫɟɥɟɧɧɵɯ ɦɟɫɬ, ɦɝ/ɦ3. ɉȾɄɦɪ ɧɟ ɞɨɥɠɧɚ ɜɵɡɵɜɚɬɶ ɪɟɮɥɟɤɬɨɪɧɵɯ (ɜ ɬɨɦ ɱɢɫɥɟ ɫɭɛɫɟɧɫɨɪɧɵɯ) ɪɟɚɤɰɢɣ ɜ ɨɪɝɚɧɢɡɦɟ ɱɟɥɨɜɟɤɚ ɩɪɢ ɜɞɵɯɚɧɢɢ ɜ ɬɟɱɟɧɢɟ 30 ɦɢɧ. ɗɬɨɬ ɩɨɤɚɡɚɬɟɥɶ ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɞɥɹ ɜɟɳɟɫɬɜ, ɨɛɥɚɞɚɸɳɢɯ ɫɩɟɰɢɮɢɱɟɫɤɢɦ ɞɟɣɫɬɜɢɟɦ (ɧɚɩɪɢɦɟɪ, ɪɟɡɤɢɦ ɡɚɩɚɯɨɦ) ɢ ɦɨɠɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶɫɹ ɤɚɤ ɧɨɪɦɚɬɢɜ, ɟɫɥɢ ɟɝɨ ɡɧɚɱɟɧɢɟ ɧɢɠɟ, ɱɟɦ ɉȾɄɫɫ. Ʉɚɱɟɫɬɜɨ ɩɪɢɪɨɞɧɵɯ ɜɨɞ ɡɚɜɢɫɢɬ ɨɬ ɫɨɫɬɚɜɚ ɢ ɤɨɥɢɱɟɫɬɜɚ ɪɚɫɬɜɨɪɟɧɧɵɯ ɢ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ, ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ, ɝɢɞɪɨɛɢɨɧɬɨɜ, ɚ ɬɚɤɠɟ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ, ɤɢɫɥɨɬɧɨɫɬɢ ɢ ɞɪɭɝɢɯ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɩɨɤɚɡɚɬɟɥɟɣ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɨɰɟɧɤɚ ɤɚɱɟɫɬɜɚ ɜɨɞɵ ɦɨɠɟɬ ɩɪɨɢɡɜɨɞɢɬɶɫɹ ɩɨ ɮɢɡɢɱɟɫɤɢɦ, ɯɢɦɢɱɟɫɤɢɦ, ɛɚɤɬɟɪɢɨɥɨɝɢɱɟɫɤɢɦ ɢ ɝɢɞɪɨɛɢɨɥɨɝɢɱɟɫɤɢɦ ɩɨɤɚɡɚɬɟɥɹɦ. ɋɬɚɧɞɚɪɬɵ ɢ ɧɨɪɦɚɬɢɜɵ ɤɚɱɟɫɬɜɚ ɜɨɞɵ ɪɚɡɥɢɱɧɵ ɞɥɹ ɜɨɞɧɵɯ ɨɛɴɟɤɬɨɜ ɫɚɧɢɬɚɪɧɨ-ɛɵɬɨɜɨɝɨ ɢ ɪɵɛɨɯɨɡɹɣɫɬɜɟɧɧɨɝɨ ɧɚɡɧɚɱɟɧɢɹ. ȼ ɋɋɋɊ ɉȾɄ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɩɪɢɪɨɞɧɵɯ ɜɨɞɚɯ ɛɵɥɢ ɭɫɬɚɧɨɜɥɟɧɵ ɛɨɥɟɟ ɱɟɦ ɞɥɹ 800 ɯɢɦɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. ɗɬɢ ɜɟɳɟɫɬɜɚ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɬɪɢ ɝɪɭɩɩɵ ɩɨ ɥɢɦɢɬɢɪɭɸɳɟɦɭ ɩɨɤɚɡɚɬɟɥɸ ɜɪɟɞɧɨɫɬɢ (ɨɛɳɟɫɚɧɢɬɚɪɧɵɣ, ɫɚɧɢɬɚɪɧɨɬɨɤɫɢɤɨɥɨɝɢɱɟɫɤɢɣ, ɨɪɝɚɧɨɥɟɩɬɢɱɟɫɤɢɣ), ɨɫɨɛɨ ɜɵɞɟɥɹɟɬɫɹ ɪɵɛɨɯɨɡɹɣɫɬɜɟɧɧɵɣ ɩɨɤɚɡɚɬɟɥɶ ɜɪɟɞɧɨɫɬɢ. Ʉ ɧɚɫɬɨɹɳɟɦɭ ɜɪɟɦɟɧɢ ɩɨ Ɋɨɫɫɢɣɫɤɨɣ Ɏɟɞɟɪɚɰɢɢ ɭɬɜɟɪɠɞɟɧɨ ɛɨɥɟɟ 1000 ɧɨɪɦɚɬɢɜɨɜ ɉȾɄ, ɢ ɷɬɨ ɧɚɢɛɨɥɟɟ ɨɛɲɢɪɧɚɹ ɢɡ ɫɭɳɟɫɬɜɭɸɳɢɯ ɫɢɫɬɟɦ ɧɨɪɦɢɪɨɜɚɧɢɹ ɤɚɱɟɫɬɜɚ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɵ. Ɉɞɧɢɦ ɢɡ ɮɚɤɬɨɪɨɜ, ɨɩɪɟɞɟɥɹɸɳɢɯ ɤɚɱɟɫɬɜɨ ɩɪɢɪɨɞɧɨɣ ɫɪɟɞɵ, ɹɜɥɹɟɬɫɹ ɩɪɟɞɟɥɶɧɨ-ɞɨɩɭɫɬɢɦɵɣ ɜɵɛɪɨɫ ɜ ɚɬɦɨɫɮɟɪɭ (ɉȾȼ) — ɧɚɭɱɧɨ-ɬɟɯɧɢɱɟɫɤɢɣ ɧɨɪɦɚɬɢɜ, ɭɫɬɚɧɚɜɥɢɜɚɟɦɵɣ ɢɡ ɭɫɥɨɜɢɹ, ɱɬɨɛɵ ɫɨɞɟɪɠɚɧɢɟ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɜɨɡɞɭɯɚ ɨɬ ɢɫɬɨɱɧɢɤɚ ɢɥɢ ɫɨɜɨɤɭɩɧɨɫɬɢ ɢɫɬɨɱɧɢɤɨɜ ɧɟ ɩɪɟɜɵɲɚɥɨ ɡɚɝɪɹɡɧɟɧɢɣ, ɨɩɪɟɞɟɥɟɧɧɵɯ ɧɨɪɦɚɬɢɜɚɦɢ ɤɚɱɟɫɬɜɚ ɜɨɡɞɭɯɚ ɞɥɹ ɧɚɫɟɥɟɧɢɹ, ɚ ɬɚɤɠɟ ɞɥɹ ɠɢɜɨɬɧɨɝɨ ɢ ɪɚɫɬɢɬɟɥɶɧɨɝɨ ɦɢɪɨɜ. ɋɭɳɧɨɫɬɶ ɉȾȼ ɫɨɫɬɨɢɬ ɜ ɧɨɪɦɢɪɨɜɚɧɢɢ ɜɵɛɪɨɫɨɜ, ɬɚɤ ɤɚɤ ɩɪɢ ɫɭɳɟɫɬɜɭɸɳɢɯ ɦɟɬɨɞɚɯ ɫɨɤɪɚɳɟɧɢɹ ɨɬɯɨɞɨɜ ɩɪɨɢɡɜɨɞɫɬɜɚ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɜɨɡɦɨɠɧɨ ɩɨɥɧɨɫɬɶɸ ɢɡɛɟɠɚɬɶ ɩɪɨɧɢɤɚɧɢɹ ɜ ɚɬɦɨɫɮɟɪɭ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ. ȼɦɟɫɬɟ ɫ ɬɟɦ ɦɨɠɧɨ ɭɦɟɧɶɲɢɬɶ ɩɪɨɦɵɲɥɟɧɧɵɟ ɜɵɛɪɨɫɵ ɞɨ ɭɫɬɚɧɨɜɥɟɧɧɨɝɨ ɩɪɟɞɟɥɚ ɢɥɢ ɨɫɥɚɛɢɬɶ ɢɯ ɜɨɡɞɟɣɫɬɜɢɟ ɞɨ ɭɪɨɜɧɟɣ, ɨɩɪɟɞɟɥɹɟɦɵɯ ɉȾɄ. Ⱦɥɹ ɜɵɹɜɥɟɧɢɹ ɫɜɹɡɢ ɦɟɠɞɭ ɉȾȼ ɢ ɉȾɄ ɢɫɫɥɟɞɭɸɬ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɩɪɢɦɟɫɟɣ ɨɬ ɢɯ ɢɫɬɨɱɧɢɤɨɜ ɞɨ ɡɨɧɵ ɜɨɡɞɟɣɫɬɜɢɹ, ɨɛɭɫɥɨɜɥɟɧɧɨɣ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɟɣ ɜ ɚɬɦɨɫɮɟɪɟ. ȼ ɊɎ ɞɟɣɫɬɜɭɟɬ ȽɈɋɌ 17.2.3.02 -78 ɧɚ ɩɪɚɜɢɥɚ ɭɫɬɚɧɨɜɥɟɧɢɹ ɉȾȼ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɩɪɨɦɵɲɥɟɧɧɵɦɢ ɩɪɟɞɩɪɢɹɬɢɹɦɢ. 1.2. ɂɫɬɨɱɧɢɤɢ ɡɚɝɪɹɡɧɟɧɢɹ ɚɬɦɨɫɮɟɪɵ Ɉɩɬɢɦɚɥɶɧɵɟ ɞɥɹ ɠɢɡɧɢ ɢ ɞɟɹɬɟɥɶɧɨɫɬɢ ɱɟɥɨɜɟɤɚ ɭɫɥɨɜɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ (ɢ ɟɟ ɜɚɠɧɟɣɲɟɝɨ ɤɨɦɩɨɧɟɧɬɚ - ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ) ɧɚɯɨɞɹɬɫɹ ɜ ɨɩɪɟɞɟɥɟɧɧɵɯ, ɨɬɧɨɫɢɬɟɥɶɧɨ ɭɡɤɢɯ ɩɪɟɞɟɥɚɯ. ɍɜɟɥɢɱɟɧɢɟ ɢɥɢ ɭɦɟɧɶɲɟɧɢɟ ɝɪɚɧɢɰ ɷɬɢɯ ɩɪɟɞɟɥɨɜ ɨɡɧɚɱɚɟɬ ɤɚɱɟɫɬɜɟɧɧɨɟ ɢɡɦɟɧɟɧɢɟ ɭɫɥɨɜɢɣ ɠɢɡɧɢ ɱɟɥɨɜɟɤɚ. ɉɪɨɦɵɲɥɟɧɧɨɟ ɩɪɨɢɡɜɨɞɫɬɜɨ ɢ ɞɪɭɝɢɟ ɜɢɞɵ ɯɨɡɹɣɫɬɜɟɧɧɨɣ ɞɟɹɬɟɥɶɧɨɫɬɢ ɥɸɞɟɣ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɜɵɞɟɥɟɧɢɟɦ ɜ ɜɨɡɞɭɯ ɩɨɦɟɳɟɧɢɣ ɢ ɜ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ ɪɚɡɥɢɱɧɵɯ ɜɟɳɟɫɬɜ, ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɨɡɞɭɲɧɭɸ ɫɪɟɞɭ. ȼɪɟɞɧɵɟ ɜɟɳɟɫɬɜɚ ɩɨɫɬɭɩɚɸɬ ɜ ɜɨɡɞɭɯ ɩɨɦɟɳɟɧɢɣ ɬɚɤɠɟ ɜ ɪɟɡɭɥɶɬɚɬɟ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ ɥɸɞɟɣ ɢ ɠɢɜɨɬɧɵɯ. ȼ ɜɨɡɞɭɯ ɩɨɫɬɭɩɚɸɬ ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ (ɩɵɥɶ, ɞɵɦ, ɬɭɦɚɧ), ɝɚɡɵ, ɩɚɪɵ, ɚ ɬɚɤɠɟ ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ ɢ ɪɚɞɢɨɚɤɬɢɜɧɵɟ ɜɟɳɟɫɬɜɚ. Ʉɚɱɟɫɬɜɨ ɜɨɡɞɭɯɚ ɭɯɭɞɲɚɟɬɫɹ ɬɚɤɠɟ ɢɡ-ɡɚ ɩɪɢɫɭɬɫɬɜɢɹ ɜ ɜɨɡɞɭɯɟ ɧɨɫɢɬɟɥɟɣ ɧɟɩɪɢɹɬɧɵɯ ɡɚɩɚɯɨɜ. ȼ ɚɬɦɨɫɮɟɪɭ Ɂɟɦɥɢ ɟɠɟɝɨɞɧɨ ɩɨɫɬɭɩɚɟɬ 150 ɦɥɧ. ɬɨɧɧ ɪɚɡɥɢɱɧɵɯ ɚɷɪɨɡɨɥɟɣ; 220 ɦɥɧ. ɬɨɧɧ ɞɢɨɤɫɢɞɚ ɫɟɪɵ; 450 ɦɥɧ. ɬɨɧɧ ɨɤɫɢɞɚ ɭɝɥɟɪɨɞɚ; 75 ɦɥɧ. ɬɨɧɧ ɨɤɫɢɞɨɜ ɚɡɨɬɚ. ȼ ɝɨɞ ɧɚ ɤɚɠɞɨɝɨ ɠɢɬɟɥɹ Ɂɟɦɥɢ ɩɪɢɯɨɞɢɬɫɹ ɜ ɫɪɟɞɧɟɦ 300 ɤɝ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɭ. Ɉɫɧɨɜɧɵɦɢ ɢɫɬɨɱɧɢɤɚɦɢ ɡɚɝɪɹɡɧɟɧɢɹ ɜɧɟɲɧɟɣ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɵ ɹɜɥɹɸɬɫɹ: - ɩɪɨɦɵɲɥɟɧɧɵɟ ɩɪɟɞɩɪɢɹɬɢɹ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɯɢɦɢɱɟɫɤɢɟ, ɧɟɮɬɟɯɢɦɢɱɟɫɤɢɟ ɢ ɦɟɬɚɥɥɭɪɝɢɱɟɫɤɢɟ ɡɚɜɨɞɵ; - ɬɟɩɥɨɝɟɧɟɪɢɪɭɸɳɢɟ ɭɫɬɚɧɨɜɤɢ (ɬɟɩɥɨɜɵɟ ɷɥɟɤɬɪɨɫɬɚɧɰɢɢ, ɨɬɨɩɢɬɟɥɶɧɵɟ ɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɟ ɤɨɬɟɥɶɧɵɟ); - ɬɪɚɧɫɩɨɪɬ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɚɜɬɨɦɨɛɢɥɶɧɵɣ. ɇɚ ɜɵɛɪɨɫɵ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɨɛɴɟɤɬɨɜ ɩɪɢɯɨɞɢɬɫɹ ɨɤɨɥɨ 60%, ɬɪɚɧɫɩɨɪɬ 20-25%, ɩɪɨɦɵɲɥɟɧɧɨɫɬɶ 15-20%. ɉɨɫɬɭɩɥɟɧɢɟ ɜ ɜɨɡɞɭɲɧɭɸ ɫɪɟɞɭ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɩɨɦɟɳɟɧɢɣ ɢ ɜɵɛɪɨɫ ɜ ɚɬɦɨɫɮɟɪɭ ɩɚɪɨɜ, ɝɚɡɨɜ, ɚɷɪɨɡɨɥɟɣ ɢ ɞɪɭɝɢɯ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ - ɩɪɹɦɨɣ ɪɟɡɭɥɶɬɚɬ ɧɟɫɨɜɟɪɲɟɧɫɬɜɚ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨ ɢ ɬɪɚɧɫɩɨɪɬɧɨɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɟɝɨ ɧɟɝɟɪɦɟɬɢɱɧɨɫɬɢ, ɚ ɬɚɤɠɟ ɨɬɫɭɬɫɬɜɢɹ ɢɥɢ ɧɟɞɨɫɬɚɬɨɱɧɨɣ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɢɯ ɢ ɥɨɤɚɥɢɡɭɸɳɢɯ ɭɫɬɪɨɣɫɬɜ ɢ ɫɢɫɬɟɦ. Ʉɨɥɢɱɟɫɬɜɨ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɯ ɜɢɞɨɜ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ, ɜɵɛɪɚɫɵɜɚɟɦɵɯ ɜ ɚɬɦɨɫɮɟɪɭ ɨɬ ɫɬɚɰɢɨɧɚɪɧɵɯ ɢɫɬɨɱɧɢɤɨɜ ɩɨ ɪɹɞɭ ɝɨɪɨɞɨɜ Ɋɨɫɫɢɢ, ɞɚɧɨ ɜ ɬɚɛɥ. 1.2. Ɍɚɛɥɢɰɚ 1.2 ȼɵɛɪɨɫɵ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ ɨɬ ɫɬɚɰɢɨɧɚɪɧɵɯ ɢɫɬɨɱɧɢɤɨɜ ɜ ɪɹɞɟ ɝɨɪɨɞɨɜ Ɋɨɫɫɢɢ, ɬɵɫ.ɬ/ɝɨɞ ȼɪɟɞɧɵɟ ɜɟɳɟɫɬɜɚ Ƚɨɪɨɞ ȼɫɟɝɨ ɬɜɟɪɞɵɟ Ƚɚɡɨɨɛɪɚɡɢɡ ɧɢɯ ɧɵɟ ɢ ɠɢɞ- ɨɤɫɢɞɵ ɨɤɫɢɞɵ ɨɤɫɢɞ ɭɝɤɢɟ ɫɟɪɵ ɚɡɨɬɚ ɥɟɪɨɞɚ 1 2 3 4 5 6 7 Ⱥɪɯɚɧɝɟɥɶɫɤ 85 20 65 45 5 13 Ȼɪɚɬɫɤ 158 41 117 21 6 85 ȼɨɥɝɨɝɪɚɞ 228 42 186 38 19 60 ɂɪɤɭɬɫɤ 94 29 65 29 8 26 Ʉɟɦɟɪɨɜɨ 122 37 85 26 28 21 Ʉɪɚɫɧɨɹɪɫɤ 259 78 181 39 13 115 Ɇɚɝɧɢɬɨɝɨɪɫɤ 849 170 679 84 34 548 Ɇɨɫɤɜɚ 312 30 282 70 99 28 ɇɨɜɨɤɭɡɧɟɰɤ 833 136 697 90 34 562 ɋɚɧɤɬ236 46 190 74 47 41 ɉɟɬɟɪɛɭɪɝ ɍɫɬɶ143 24 119 69 12 36 Ʉɚɦɟɧɨɝɨɪɫɤ ɍɮɚ 304 9 295 72 25 36 ɑɟɥɹɛɢɧɫɤ 427 94 333 60 29 210 ȼ 1988 ɝ. ɧɚ ɨɞɧɨɝɨ ɱɟɥɨɜɟɤɚ ɩɨ Ɋɨɫɫɢɢ ɩɪɢɯɨɞɢɥɨɫɶ ɛɨɥɟɟ 400 ɤɝ ɜɵɛɪɚɫɵɜɚɟɦɵɯ ɜ ɚɬɦɨɫɮɟɪɭ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɝɨɞ. ȼ ɫɜɹɡɢ ɫɨ ɡɧɚɱɢɬɟɥɶɧɵɦ ɭɜɟɥɢɱɟɧɢɟɦ ɚɜɬɨɦɨɛɢɥɶɧɨɝɨ ɩɚɪɤɚ ɩɨɫɬɨɹɧɧɨ ɜɨɡɪɚɫɬɚɟɬ ɟɝɨ ɪɨɥɶ ɜ ɡɚɝɪɹɡɧɟɧɢɢ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ. Ʌɟɝɤɨɜɨɣ ɚɜɬɨɦɨɛɢɥɶ ɜɵɛɪɚɫɵɜɚɟɬ ɨɤɫɢɞɚ ɭɝɥɟɪɨɞɚ ɋɈ ɞɨ 3 ɦ3/ɱ, ɝɪɭɡɨɜɨɣ - ɞɨ 6 ɦ3/ɱ (3-6 ɤɝ/ɱ). Ɉɤɫɢɞ ɭɝɥɟɪɨɞɚ ɜ ɩɨɜɵɲɟɧɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɨɛɧɚɪɭɠɟɧ ɧɚ ɡɧɚɱɢɬɟɥɶɧɨɣ ɜɵɫɨɬɟ, ɚ ɬɚɤɠɟ ɜ ɪɚɛɨɱɢɯ ɢ ɠɢɥɵɯ ɩɨɦɟɳɟɧɢɹɯ ɜɵɫɨɬɧɵɯ ɞɨɦɨɜ, ɧɚ ɭɥɢɰɚɯ ɫ ɢɧɬɟɧɫɢɜɧɵɦ ɚɜɬɨɦɨɛɢɥɶɧɵɦ ɞɜɢɠɟɧɢɟɦ. Ɂɚɝɪɹɡɧɟɧɢɟ ɜɨɡɞɭɯɚ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɨɫɬɭɩɥɟɧɢɹ ɜ ɧɟɝɨ ɪɚɡɥɢɱɧɨɝɨ ɪɨɞɚ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɢɦɟɟɬ ɪɹɞ ɧɟɛɥɚɝɨɩɪɢɹɬɧɵɯ ɩɨɫɥɟɞɫɬɜɢɣ. ɋɚɧɢɬɚɪɧɨ-ɝɢɝɢɟɧɢɱɟɫɤɢɟ ɩɨɫɥɟɞɫɬɜɢɹ. ɉɨɫɤɨɥɶɤɭ ɜɨɡɞɭɯ ɹɜɥɹɟɬɫɹ ɫɪɟɞɨɣ, ɜ ɤɨɬɨɪɨɣ ɱɟɥɨɜɟɤ ɧɚɯɨɞɢɬɫɹ ɜ ɬɟɱɟɧɢɟ ɜɫɟɣ ɠɢɡɧɢ ɢ ɨɬ ɤɨɬɨɪɨɣ ɡɚɜɢɫɢɬ ɟɝɨ ɡɞɨɪɨɜɶɟ, ɫɚɦɨɱɭɜɫɬɜɢɟ ɢ ɪɚɛɨɬɨɫɩɨɫɨɛɧɨɫɬɶ, ɧɚɥɢɱɢɟ ɜ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɨɣ ɩɨɪɨɣ ɞɚɠɟ ɧɟɛɨɥɶɲɢɯ ɤɨɧɰɟɧɬɪɚɰɢɣ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɦɨɠɟɬ ɧɟɛɥɚɝɨɩɪɢɹɬɧɨ ɨɬɪɚɡɢɬɶɫɹ ɧɚ ɱɟɥɨɜɟɤɟ, ɩɪɢɜɟɫɬɢ ɜ ɧɟɨɛɪɚɬɢɦɵɦ ɩɨɫɥɟɞɫɬɜɢɹɦ ɢ ɞɚɠɟ ɤ ɫɦɟɪɬɢ. ɗɤɨɥɨɝɢɱɟɫɤɢɟ ɩɨɫɥɟɞɫɬɜɢɹ. ȼɨɡɞɭɯ ɹɜɥɹɟɬɫɹ ɜɚɠɧɟɣɲɢɦ ɷɥɟɦɟɧɬɨɦ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɧɚɯɨɞɹɳɢɦɫɹ ɜ ɧɟɩɪɟɪɵɜɧɨɦ ɤɨɧɬɚɤɬɟ ɫɨ ɜɫɟɦɢ ɞɪɭɝɢɦɢ ɷɥɟɦɟɧɬɚɦɢ ɠɢɜɨɣ ɢ ɦɟɪɬɜɨɣ ɩɪɢɪɨɞɵ. ɍɯɭɞɲɟɧɢɟ ɤɚɱɟɫɬɜɚ ɜɨɡɞɭɯɚ ɜɫɥɟɞɫɬɜɢɟ ɩɪɢɫɭɬɫɬɜɢɹ ɜ ɧɟɦ ɪɚɡɥɢɱɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɪɢɜɨɞɢɬ ɤ ɝɢɛɟɥɢ ɥɟɫɨɜ, ɩɨɫɟɜɨɜ ɫɟɥɶɫɤɨɯɨɡɹɣɫɬɜɟɧɧɵɯ ɤɭɥɶɬɭɪ, ɬɪɚɜɹɧɨɝɨ ɩɨɤɪɨɜɚ, ɠɢɜɨɬɧɵɯ, ɤ ɡɚɝɪɹɡɧɟɧɢɸ ɜɨɞɨɟɦɨɜ, ɚ ɬɚɤɠɟ ɤ ɩɨɜɪɟɠɞɟɧɢɸ ɩɚɦɹɬɧɢɤɨɜ ɤɭɥɶɬɭɪɵ, ɫɬɪɨɢɬɟɥɶɧɵɯ ɤɨɧɫɬɪɭɤɰɢɣ, ɪɚɡɥɢɱɧɨɝɨ ɪɨɞɚ ɫɨɨɪɭɠɟɧɢɣ ɢ ɬ. ɞ. ɗɤɨɧɨɦɢɱɟɫɤɢɟ ɩɨɫɥɟɞɫɬɜɢɹ. Ɂɚɝɪɹɡɧɟɧɢɟ ɜɨɡɞɭɯɚ ɜɵɡɵɜɚɟɬ ɡɧɚɱɢɬɟɥɶɧɵɟ ɷɤɨɧɨɦɢɱɟɫɤɢɟ ɩɨɬɟɪɢ. Ɂɚɩɵɥɟɧɧɨɫɬɶ ɢ ɡɚɝɚɡɨɜɚɧɧɨɫɬɶ ɜɨɡɞɭɯɚ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɩɨɦɟɳɟɧɢɹɯ ɩɪɢɜɨɞɢɬ ɤ ɫɧɢɠɟɧɢɸ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɬɪɭɞɚ, ɩɨɬɟɪɟ ɪɚɛɨɱɟɝɨ ɜɪɟɦɟɧɢ ɢɡ-ɡɚ ɭɜɟɥɢɱɟɧɢɹ ɡɚɛɨɥɟɜɚɟɦɨɫɬɢ. ȼɨ ɦɧɨɝɢɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ ɧɚɥɢɱɢɟ ɩɵɥɢ ɜ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɟ ɭɯɭɞɲɚɟɬ ɤɚɱɟɫɬɜɨ ɩɪɨɞɭɤɰɢɢ, ɭɫɤɨɪɹɟɬ ɢɡɧɨɫ ɨɛɨɪɭɞɨɜɚɧɢɹ. ȼ ɩɪɨɰɟɫɫɟ ɩɪɨɢɡɜɨɞɫɬɜɚ, ɞɨɛɵɱɢ, ɬɪɚɧɫɩɨɪɬɢɪɨɜɚɧɢɹ ɦɧɨɝɢɯ ɜɢɞɨɜ ɦɚɬɟɪɢɚɥɨɜ, ɫɵɪɶɹ, ɝɨɬɨɜɨɣ ɩɪɨɞɭɤɰɢɢ ɱɚɫɬɶ ɷɬɢɯ ɜɟɳɟɫɬɜ ɩɟɪɟɯɨɞɢɬ ɜ ɩɵɥɟɜɢɞɧɨɟ ɫɨɫɬɨɹɧɢɟ ɢ ɬɟɪɹɟɬɫɹ (ɭɝɨɥɶ, ɪɭɞɚ, ɰɟɦɟɧɬ ɢ ɞɪ.), ɡɚɝɪɹɡɧɹɹ ɜ ɬɨ ɠɟ ɜɪɟɦɹ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ. ɉɨɬɟɪɢ ɧɚ ɪɹɞɟ ɩɪɨɢɡɜɨɞɫɬɜ ɫɨɫɬɚɜɥɹɸɬ ɞɨ 3 - 5 %. ȼɟɥɢɤɢ ɩɨɬɟɪɢ ɢɡ-ɡɚ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. Ɇɟɪɨɩɪɢɹɬɢɹ ɩɨ ɭɦɟɧɶɲɟɧɢɸ ɩɨɫɥɟɞɫɬɜɢɣ ɡɚɝɪɹɡɧɟɧɢɹ ɨɛɯɨɞɹɬɫɹ ɞɨɪɨɝɨ. ɇɚ ɩɪɟɞɩɪɢɹɬɢɹɯ ɢɦɟɸɬ ɦɟɫɬɨ ɨɪɝɚɧɢɡɨɜɚɧɧɵɟ (ɱɟɪɟɡ ɬɪɭɛɵ, ɜɟɧɬɢɥɹɰɢɨɧɧɵɟ ɲɚɯɬɵ ɢ ɬ. ɩ.) ɢ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɵɟ ɜɵɛɪɨɫɵ (ɱɟɪɟɡ ɮɨɧɚɪɢ ɢ ɩɪɨɟɦɵ ɜ ɰɟɯɚɯ, ɨɬ ɦɟɫɬ ɩɨɝɪɭɡɤɢ ɢ ɪɚɡɝɪɭɡɤɢ ɬɪɚɧɫɩɨɪɬɚ, ɢɡ-ɡɚ ɭɬɟɱɟɤ ɜ ɤɨɦɦɭɧɢɤɚɰɢɹɯ ɢ ɞɪ.). ɇɟɨɪɝɚɧɢɡɨɜɚɧɧɵɟ ɜɵɛɪɨɫɵ ɩɨ ɦɧɟɧɢɸ ɫɩɟɰɢɚɥɢɫɬɨɜ ɫɨɫɬɚɜɥɹɸɬ ɨɬ 10 ɞɨ 26 % ɨɬ ɨɛɳɟɝɨ ɤɨɥɢɱɟɫɬɜɚ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɭ. ɉɪɢɱɢɧɚɦɢ ɡɧɚɱɢɬɟɥɶɧɵɯ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɭ ɹɜɥɹɸɬɫɹ: ɨɬɫɭɬɫɬɜɢɟ ɢɥɢ ɧɟɷɮɮɟɤɬɢɜɧɚɹ ɥɨɤɚɥɢɡɚɰɢɹ ɢɫɬɨɱɧɢɤɨɜ ɜɵɞɟɥɟɧɢɹ ɝɚɡɨɜ ɢ ɩɵɥɢ; ɧɟɞɨɫɬɚɬɨɱɧɚɹ ɝɟɪɦɟɬɢɱɧɨɫɬɶ, ɤɨɧɫɬɪɭɤɬɢɜɧɵɟ ɧɟɞɨɫɬɚɬɤɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɨɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ, ɟɝɨ ɬɟɯɧɢɱɟɫɤɚɹ ɧɟɢɫɩɪɚɜɧɨɫɬɶ; ɧɟɩɪɚɜɢɥɶɧɨɟ ɜɟɞɟɧɢɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɢ ɞɪ. 1.3. ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ ɩɵɥɟɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜɨɡɞɭɯɚ ɉɵɥɶ ɢ ɞɪɭɝɢɟ ɚɷɪɨɡɨɥɢ. Ʉɚɱɟɫɬɜɨ ɜɨɡɞɭɯɚ, ɟɝɨ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɨɪɝɚɧɢɡɦ, ɚ ɬɚɤɠɟ ɨɛɨɪɭɞɨɜɚɧɢɟ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɜɨ ɦɧɨɝɨɦ ɨɛɭɫɥɨɜɥɟɧɵ ɫɨɞɟɪɠɚɧɢɟɦ ɜ ɧɟɦ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ, ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ ɩɵɥɟɜɵɯ. ɉɵɥɶ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɛɨɥɶɲɢɦ ɪɚɡɧɨɨɛɪɚɡɢɟɦ ɩɨ ɯɢɦɢɱɟɫɤɨɦɭ ɫɨɫɬɚɜɭ, ɪɚɡɦɟɪɭ ɱɚɫɬɢɰ, ɢɯ ɮɨɪɦɟ, ɩɥɨɬɧɨɫɬɢ, ɯɚɪɚɤɬɟɪɭ ɤɪɚɟɜ ɱɚɫɬɢɰ ɢ ɬ. ɞ. ɋɨɨɬɜɟɬɫɬɜɟɧɧɨ ɪɚɡɧɨɨɛɪɚɡɧɨ ɜɨɡɞɟɣɫɬɜɢɟ ɩɵɥɢ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ ɢ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ. ɉɵɥɶ ɩɪɢɱɢɧɹɟɬ ɜɪɟɞ ɨɪɝɚɧɢɡɦɭ ɜ ɪɟɡɭɥɶɬɚɬɟ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ (ɩɨɜɪɟɠɞɟɧɢɟ ɨɪɝɚɧɨɜ ɞɵɯɚɧɢɹ ɨɫɬɪɵɦɢ ɤɪɨɦɤɚɦɢ ɩɵɥɢ), ɯɢɦɢɱɟɫɤɨɝɨ (ɨɬɪɚɜɥɟɧɢɟ ɹɞɨɜɢɬɨɣ ɩɵɥɶɸ), ɛɚɤɬɟɪɢɨɥɨɝɢɱɟɫɤɨɝɨ (ɜɦɟɫɬɟ ɫ ɩɵɥɶɸ ɜ ɨɪɝɚɧɢɡɦ ɩɪɨɧɢɤɚɸɬ ɛɨɥɟɡɧɟɬɜɨɪɧɵɟ ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ). ɉɨ ɦɧɟɧɢɸ ɝɢɝɢɟɧɢɫɬɨɜ ɩɵɥɟɜɵɟ ɱɚɫɬɢɰɵ ɪɚɡɦɟɪɨɦ 5 ɦɤɦ ɢ ɦɟɧɶɲɟ ɫɩɨɫɨɛɧɵ ɝɥɭɛɨɤɨ ɩɪɨɧɢɤɚɬɶ ɜ ɥɟɝɤɢɟ ɜɩɥɨɬɶ ɞɨ ɚɥɶɜɟɨɥ. ɉɵɥɢɧɤɢ ɪɚɡɦɟɪɨɦ 5…10 ɦɤɦ ɜ ɨɫɧɨɜɧɨɦ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɜ ɜɟɪɯɧɢɯ ɞɵɯɚɬɟɥɶɧɵɯ ɩɭɬɹɯ, ɩɨɱɬɢ ɧɟ ɩɪɨɧɢɤɚɹ ɜ ɥɟɝɤɢɟ. ɉɵɥɶ ɨɤɚɡɵɜɚɟɬ ɜɪɟɞɧɨɟ ɞɟɣɫɬɜɢɟ ɧɚ ɨɪɝɚɧɵ ɞɵɯɚɧɢɹ, ɡɪɟɧɢɟ, ɤɨɠɭ, ɚ ɩɪɢ ɩɪɨɧɢɤɧɨɜɟɧɢɢ ɜ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ — ɬɚɤɠɟ ɧɚ ɩɢɳɟɜɚɪɢɬɟɥɶɧɵɣ ɬɪɚɤɬ. ɇɚɢɛɨɥɟɟ ɬɹɠɟɥɵɟ ɩɨɫɥɟɞɫɬɜɢɹ ɜɵɡɵɜɚɟɬ ɫɢɫɬɟɦɚɬɢɱɟɫɤɨɟ ɜɞɵɯɚɧɢɟ ɩɵɥɢ, ɫɨɞɟɪɠɚɳɟɣ ɫɜɨɛɨɞɧɵɣ ɞɢɨɤɫɢɞ ɤɪɟɦɧɢɹ SiO2. ȼ ɪɟɡɭɥɶɬɚɬɟ ɜɨɡɧɢɤɚɟɬ ɫɢɥɢɤɨɡ. ɗɬɨ ɨɞɧɚ ɢɡ ɮɨɪɦ ɛɨɥɟɡɧɢ ɥɟɝɤɢɯ, ɫɜɹɡɚɧɧɨɣ ɫ ɜɞɵɯɚɧɢɟɦ ɡɚɩɵɥɟɧɧɨɝɨ ɜɨɡɞɭɯɚ, - ɩɧɟɜɦɨɤɨɧɢɨɡɚ. ȼɨɡɞɟɣɫɬɜɢɟ ɩɵɥɢ ɧɚ ɨɪɝɚɧ ɡɪɟɧɢɹ ɜɵɡɵɜɚɟɬ ɤɨɧɴɸɧɤɬɢɜɢɬɵ, ɧɚ ɤɨɠɭ — ɞɟɪɦɚɬɢɬɵ. ɉɵɥɶ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɩɨɦɟɳɟɧɢɹɯ ɨɤɚɡɵɜɚɟɬ ɧɟɛɥɚɝɨɩɪɢɹɬɧɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɨɛɨɪɭɞɨɜɚɧɢɟ, ɜɵɡɵɜɚɹ, ɧɚɩɪɢɦɟɪ, ɟɝɨ ɢɧɬɟɧɫɢɜɧɵɣ ɢɡɧɨɫ. Ɉɫɚɠɞɟɧɢɟ ɩɵɥɢ ɧɚ ɩɨɜɟɪɯɧɨɫɬɶ ɧɚɝɪɟɜɚ ɢ ɨɯɥɚɠɞɟɧɢɹ ɭɯɭɞɲɚɟɬ ɭɫɥɨɜɢɹ ɬɟɩɥɨɨɛɦɟɧɚ ɢ ɬ. ɞ. Ɉɫɚɠɞɟɧɢɟ ɩɵɥɢ ɧɚ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɨɛɨɪɭɞɨɜɚɧɢɢ ɦɨɠɟɬ ɩɪɢɜɟɫɬɢ ɤ ɧɚɪɭɲɟɧɢɸ ɟɝɨ ɪɚɛɨɬɵ, ɤ ɚɜɚɪɢɹɦ. Ɉɪɝɚɧɢɱɟɫɤɢɟ ɩɵɥɢ, ɧɚɩɪɢɦɟɪ, ɦɭɱɧɚɹ, ɦɨɝɭɬ ɛɵɬɶ ɩɢɬɚɬɟɥɶɧɨɣ ɫɪɟɞɨɣ ɞɥɹ ɪɚɡɜɢɬɢɹ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ. ɉɵɥɟɜɵɟ ɱɚɫɬɢɰɵ ɦɨɝɭɬ ɛɵɬɶ ɹɞɪɨɦ ɤɨɧɞɟɧɫɚɰɢɢ ɞɥɹ ɩɚɪɨɜ ɠɢɞɤɨɫɬɟɣ. ȼɦɟɫɬɟ ɫ ɩɵɥɶɸ ɜ ɩɨɦɟɳɟɧɢɟ ɦɨɝɭɬ ɩɪɨɧɢɤɚɬɶ ɜɟɳɟɫɬɜɚ, ɜɵɡɵɜɚɸɳɢɟ ɢɧɬɟɧɫɢɜɧɭɸ ɤɨɪɪɨɡɢɸ ɦɟɬɚɥɥɨɜ ɢ ɬ. ɞ. ɋ ɜɨɡɞɭɯɨɦ ɦɧɨɝɢɟ ɩɵɥɢ ɨɛɪɚɡɭɸɬ ɜɡɪɵɜɨɨɩɚɫɧɵɟ ɫɦɟɫɢ. Ɉɤɫɢɞ ɭɝɥɟɪɨɞɚ (ɭɝɚɪɧɵɣ ɝɚɡ ɋɈ) — ɛɟɫɰɜɟɬɧɵɣ ɝɚɡ, ɛɟɡ ɡɚɩɚɯɚ. ȼɵɫɨɤɨɬɨɤɫɢɱɧɨɟ ɜɟɳɟɫɬɜɨ. ɉɥɨɬɧɨɫɬɶ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɜɨɡɞɭɯɭ 0,967. Ɉɛɪɚɡɭɟɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɧɟɩɨɥɧɨɝɨ ɫɝɨɪɚɧɢɹ ɭɝɥɟɪɨɞɚ (ɫɝɨɪɚɧɢɟ ɭɝɥɟɪɨɞɚ ɜ ɭɫɥɨɜɢɹɯ ɧɟɞɨɫɬɚɬɤɚ ɤɢɫɥɨɪɨɞɚ). ȼɵɞɟɥɟɧɢɹ ɋɈ ɩɪɨɢɫɯɨɞɹɬ ɜ ɥɢɬɟɣɧɵɯ, ɬɟɪɦɢɱɟɫɤɢɯ, ɤɭɡɧɟɱɧɵɯ ɰɟɯɚɯ, ɜ ɤɨɬɟɥɶɧɵɯ, ɨɫɨɛɟɧɧɨ ɪɚɛɨɬɚɸɳɢɯ ɧɚ ɭɝɨɥɶɧɨɦ ɬɨɩɥɢɜɟ, ɋɈ ɫɨɞɟɪɠɢɬɫɹ ɜ ɜɵɯɥɨɩɧɵɯ ɝɚɡɚɯ ɚɜɬɨɦɚɲɢɧ, ɬɪɚɤɬɨɪɨɜ ɢ ɬ. ɞ. ɑɟɪɟɡ ɥɟɝɤɢɟ ɋɈ ɩɪɨɧɢɤɚɟɬ ɜ ɤɪɨɜɶ. ȼɫɬɭɩɚɹ ɜ ɫɨɟɞɢɧɟɧɢɟ ɫ ɝɟɦɨɝɥɨɛɢɧɨɦ, ɨɛɪɚɡɭɟɬ ɤɚɪɛɨɤɫɢɝɟɦɨɝɥɨɛɢɧ. ɉɪɢ ɷɬɨɦ ɧɚɪɭɲɚɟɬɫɹ ɫɧɚɛɠɟɧɢɟ ɨɪɝɚɧɢɡɦɚ ɤɢɫɥɨɪɨɞɨɦ. ȼ ɬɹɠɟɥɵɯ ɫɥɭɱɚɹɯ ɧɚɫɬɭɩɚɟɬ ɭɞɭɲɶɟ. ɐɢɚɧɢɞɵ. Ʉ ɰɢɚɧɢɞɚɦ ɨɬɧɨɫɹɬɫɹ: ɰɢɚɧɢɫɬɚɹ (ɫɢɧɢɥɶɧɚɹ) ɤɢɫɥɨɬɚ (HCN), ɟɟ ɫɨɥɢ (KCN, NaCN, CH3CN) ɢ ɞɪ. HCN - ɛɟɫɰɜɟɬɧɚɹ ɠɢɞɤɨɫɬɶ ɫ ɡɚɩɚɯɨɦ ɝɨɪɶɤɨɝɨ ɦɢɧɞɚɥɹ. ɐɢɚɧɢɞɵ ɧɚɬɪɢɹ ɢ ɤɚɥɢɹ - ɛɟɫɰɜɟɬɧɵɟ ɤɪɢɫɬɚɥɥɵ, ɫɥɚɛɨ ɩɚɯɧɭɬ ɫɢɧɢɥɶɧɨɣ ɤɢɫɥɨɬɨɣ. ɋɢɧɢɥɶɧɚɹ ɤɢɫɥɨɬɚ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟ ɧɢɬɪɢɥɶɧɨɝɨ ɤɚɭɱɭɤɚ, ɫɢɧɬɟɬɢɱɟɫɤɨɝɨ ɜɨɥɨɤɧɚ ɢ ɨɪɝɚɧɢɱɟɫɤɨɝɨ ɫɬɟɤɥɚ, ɩɪɢ ɢɡɜɥɟɱɟɧɢɢ ɛɥɚɝɨɪɨɞɧɵɯ ɦɟɬɚɥɥɨɜ ɢɡ ɪɭɞ ɢ ɞɪ. ɐɢɚɧɢɞɵ ɧɚɬɪɢɹ ɢ ɤɚɥɢɹ ɩɪɢɦɟɧɹɸɬ ɜ ɝɚɥɶɜɚɧɢɱɟɫɤɢɯ ɰɟɯɚɯ ɩɪɢ ɩɨɤɪɵɬɢɢ ɦɟɬɚɥɥɨɜ ɦɟɞɶɸ, ɥɚɬɭɧɶɸ, ɡɨɥɨɬɨɦ, ɜ ɮɚɪɦɚɤɨɥɨɝɢɱɟɫɤɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ. ɋɢɧɢɥɶɧɚɹ ɤɢɫɥɨɬɚ ɦɨɠɟɬ ɩɨɫɬɭɩɚɬɶ ɜ ɨɪɝɚɧɢɡɦ ɱɟɪɟɡ ɫɥɢɡɢɫɬɵɟ ɨɛɨɥɨɱɤɢ ɞɵɯɚɬɟɥɶɧɵɯ ɩɭɬɟɣ ɢ ɩɢɳɟɜɚɪɢɬɟɥɶɧɨɝɨ ɬɪɚɤɬɚ, ɜ ɧɟɡɧɚɱɢɬɟɥɶɧɨɦ ɤɨɥɢɱɟɫɬɜɟ ɱɟɪɟɡ ɤɨɠɭ. ɋɨɥɢ ɫɢɧɢɥɶɧɨɣ ɤɢɫɥɨɬɵ ɜ ɨɪɝɚɧɢɡɦ ɩɪɨɧɢɤɚɸɬ ɜ ɜɢɞɟ ɩɵɥɢ ɱɟɪɟɡ ɪɨɬɨɜɭɸ ɩɨɥɨɫɬɶ. ɋɢɧɢɥɶɧɚɹ ɤɢɫɥɨɬɚ ɢ ɟɟ ɫɨɟɞɢɧɟɧɢɹ ɜɵɫɨɤɨɬɨɤɫɢɱɧɵ. ɐɢɚɧɢɞɵ, ɩɨɫɬɭɩɢɜɲɢɟ ɜ ɨɪɝɚɧɢɡɦ, ɧɚɪɭɲɚɸɬ ɤɪɨɜɨɨɛɪɚɳɟɧɢɟ ɢ ɫɧɚɛɠɟɧɢɟ ɨɪɝɚɧɢɡɦɚ ɤɢɫɥɨɪɨɞɨɦ. ɋɟɪɨɜɨɞɨɪɨɞ (H2S) — ɛɟɫɰɜɟɬɧɵɣ ɝɚɡ ɫ ɡɚɩɚɯɨɦ ɬɭɯɥɵɯ ɹɢɰ. Ɍɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ 60,9°ɋ, ɩɥɨɬɧɨɫɬɶ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɜɨɡɞɭɯɭ 1,19. Ƚɨɪɢɬ ɫɢɧɢɦ ɩɥɚɦɟɧɟɦ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɜɨɞɵ ɢ ɞɢɨɤɫɢɞɚ ɫɟɪɵ. ȼɫɬɪɟɱɚɟɬɫɹ ɩɪɢ ɩɟɪɟɪɚɛɨɬɤɟ, ɩɨɥɭɱɟɧɢɢ ɢɥɢ ɩɪɢɦɟɧɟɧɢɢ ɫɟɪɧɢɫɬɨɝɨ ɛɚɪɢɹ, ɫɟɪɧɢɫɬɨɝɨ ɧɚɬɪɢɹ, ɫɭɪɶɦɵ, ɜ ɤɨɠɟɜɟɧɧɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɜ ɫɜɟɤɥɨɫɚɯɚɪɧɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ, ɧɚ ɮɚɛɪɢɤɚɯ ɢɫɤɭɫɫɬɜɟɧɧɨɝɨ ɲɟɥɤɚ, ɩɪɢ ɞɨɛɵɱɟ ɧɟɮɬɢ ɢ ɟɟ ɩɟɪɟɪɚɛɨɬɤɟ ɢ ɞɪɭɝɢɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ. ɉɨɫɬɭɩɚɟɬ ɜ ɨɪɝɚɧɢɡɦ ɱɟɪɟɡ ɥɟɝɤɢɟ, ɜ ɧɟɛɨɥɶɲɢɯ ɤɨɥɢɱɟɫɬɜɚɯ ɱɟɪɟɡ ɤɨɠɭ. Ɉɛɥɚɞɚɟɬ ɜɵɫɨɤɨɣ ɬɨɤɫɢɱɧɨɫɬɶɸ. ɉɨɪɨɝ ɨɳɭɳɟɧɢɹ ɡɚɩɚɯɚ 0,012 — 0,03 ɦɝ/ɦ3, ɤɨɧɰɟɧɬɪɚɰɢɹ ɨɤɨɥɨ 11 ɦɝ/ɦ3 ɬɹɠɟɥɨ ɩɟɪɟɧɨɫɢɦɚ ɞɚɠɟ ɞɥɹ ɩɪɢɜɵɱɧɵɯ ɤ ɧɟɦɭ. ɉɨɪɚɠɚɟɬ ɰɟɧɬɪɚɥɶɧɭɸ ɧɟɪɜɧɭɸ ɫɢɫɬɟɦɭ, ɧɚɪɭɲɚɟɬ ɤɪɨɜɨɫɧɚɛɠɟɧɢɟ ɨɪɝɚɧɢɡɦɚ. ɉɪɢ ɧɢɡɤɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɨɛɥɚɞɚɟɬ ɪɚɡɞɪɚɠɚɸɳɢɦ ɞɟɣɫɬɜɢɟɦ ɜ ɨɬɧɨɲɟɧɢɢ ɫɥɢɡɢɫɬɨɣ ɨɛɨɥɨɱɤɢ ɝɥɚɡ ɢ ɜɟɪɯɧɢɯ ɞɵɯɚɬɟɥɶɧɵɯ ɩɭɬɟɣ. Ⱦɢɨɤɫɢɞ ɫɟɪɵ (ɫɟɪɧɢɫɬɵɣ ɝɚɡ SO2) — ɛɟɫɰɜɟɬɧɵɣ ɝɚɡ ɫ ɨɫɬɪɵɦ ɡɚɩɚɯɨɦ. ɉɥɨɬɧɨɫɬɶ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɜɨɡɞɭɯɭ 2,213. ȼɫɬɪɟɱɚɟɬɫɹ ɩɪɢ ɫɠɢɝɚɧɢɢ ɬɨɩɥɢɜɚ, ɫɨɞɟɪɠɚɳɟɝɨ ɫɟɪɭ, ɜ ɤɨɬɟɥɶɧɵɯ, ɤɭɡɧɢɰɚɯ, ɥɢɬɟɣɧɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ, ɩɪɢ ɩɪɨɢɡɜɨɞɫɬɜɟ ɫɟɪɧɨɣ ɤɢɫɥɨɬɵ, ɧɚ ɦɟɞɟɩɥɚɜɢɥɶɧɵɯ ɡɚɜɨɞɚɯ, ɜ ɤɨɠɟɜɟɧɧɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ ɢ ɪɹɞɟ ɞɪɭɝɢɯ. ȼɟɫɶɦɚ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɨɟ ɜɪɟɞɧɨɟ ɜɟɳɟɫɬɜɨ. ȼ ɨɪɝɚɧɢɡɦ ɩɨɫɬɭɩɚɟɬ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ. Ɉɤɚɡɵɜɚɟɬ ɫɢɥɶɧɨɟ ɪɚɡɞɪɚɠɚɸɳɟɟ ɞɟɣɫɬɜɢɟ ɧɚ ɫɥɢɡɢɫɬɵɟ ɨɛɨɥɨɱɤɢ ɝɥɚɡ, ɜɟɪɯɧɢɯ ɞɵɯɚɬɟɥɶɧɵɯ ɩɭ- ɬɟɣ. ɉɪɢ ɛɨɥɶɲɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɦɨɝɭɬ ɛɵɬɶ ɛɨɥɟɟ ɬɹɠɟɥɵɟ ɩɨɫɥɟɞɫɬɜɢɹ ɜɩɥɨɬɶ ɞɨ ɩɨɬɟɪɢ ɫɨɡɧɚɧɢɹ, ɨɬɟɤɚ ɥɟɝɤɢɯ. Ɉɤɢɫɥɵ ɚɡɨɬɚ ɹɜɥɹɸɬɫɹ ɫɦɟɫɶɸ ɫɨɟɞɢɧɟɧɢɣ ɚɡɨɬɚ ɩɪɢ ɢɯ ɪɚɡɥɢɱɧɨɦ ɫɨɨɬɧɨɲɟɧɢɢ. ȼɟɫɶɦɚ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɟ ɜɪɟɞɧɵɟ ɜɟɳɟɫɬɜɚ, ɜɵɞɟɥɹɸɬɫɹ ɩɪɢ ɩɪɨɢɡɜɨɞɫɬɜɟ ɚɡɨɬɧɨɣ ɤɢɫɥɨɬɵ, ɩɪɢ ɩɪɨɢɡɜɨɞɫɬɜɟ ɭɞɨɛɪɟɧɢɣ, ɩɪɢ ɜɡɪɵɜɧɵɯ ɪɚɛɨɬɚɯ ɢ ɞɪ. ɉɨɫɬɭɩɚɸɬ ɜ ɨɪɝɚɧɢɡɦ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ. ɉɪɢ ɧɟɛɨɥɶɲɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɢ ɦɚɥɨɦ ɫɨɞɟɪɠɚɧɢɢ ɜ ɫɦɟɫɢ ɞɢɨɤɫɢɞɚ ɚɡɨɬɚ ɩɪɨɢɫɯɨɞɢɬ ɪɚɡɞɪɚɠɟɧɢɟ ɫɥɢɡɢɫɬɵɯ ɨɛɨɥɨɱɟɤ ɜɟɪɯɧɢɯ ɞɵɯɚɬɟɥɶɧɵɯ ɩɭɬɟɣ. ɉɪɢ ɛɨɥɶɲɨɦ ɫɨɞɟɪɠɚɧɢɢ ɜ ɫɦɟɫɢ ɞɢɨɤɫɢɞɚ ɚɡɨɬɚ ɢ ɛɨɥɶɲɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫɦɟɫɢ ɜ ɜɨɡɞɭɯɟ ɧɚɫɬɭɩɚɸɬ ɹɜɥɟɧɢɹ ɭɞɭɲɶɹ. ɍɝɥɟɜɨɞɨɪɨɞɵ ɚɪɨɦɚɬɢɱɟɫɤɨɝɨ ɪɹɞɚ. ȼ ɩɪɨɢɡɜɨɞɫɬɜɟ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɸɬ ɛɟɧɡɨɥ, ɬɨɥɭɨɥ, ɤɫɢɥɨɥ. ɂɯ ɩɨɥɭɱɚɸɬ ɩɪɢ ɩɟɪɟɝɨɧɤɟ ɤɚɦɟɧɧɨɝɨ ɭɝɥɹ ɧɚ ɤɨɤɫɨɯɢɦɢɱɟɫɤɢɯ ɡɚɜɨɞɚɯ ɢ ɩɟɪɟɝɨɧɤɟ ɧɟɮɬɢ. ȼ ɨɛɵɱɧɵɯ ɭɫɥɨɜɢɹɯ ɨɧɢ ɧɚɯɨɞɹɬɫɹ ɜ ɠɢɞɤɨɦ ɫɨɫɬɨɹɧɢɢ. Ɍɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ ɛɟɧɡɨɥɚ (ɋ6ɇ6) 80,1°ɋ; ɬɨɥɭɨɥɚ (ɋ6ɇ5ɋɇ3) 110,8°ɋ; ɤɫɢɥɨɥɚ ((ɋɇ3)2ɋ6ɇ4) 144°ɋ. ɉɨɫɬɭɩɚɸɬ ɜ ɨɪɝɚɧɢɡɦ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ ɢ ɤɨɠɭ. ɇɚɢɛɨɥɟɟ ɨɩɚɫɧɵɦ ɹɜɥɹɟɬɫɹ ɛɟɧɡɨɥ. Ⱥɪɨɦɚɬɢɱɟɫɤɢɟ ɭɝɥɟɜɨɞɨɪɨɞɵ ɞɟɣɫɬɜɭɸɬ ɧɚ ɤɪɨɜɟɬɜɨɪɧɵɟ ɨɪɝɚɧɵ ɢ ɧɚ ɰɟɧɬɪɚɥɶɧɭɸ ɧɟɪɜɧɭɸ ɫɢɫɬɟɦɭ. Ɇɟɬɚɥɥɵ. ɋɟɣɱɚɫ ɧɚɪɹɞɭ ɫ ɲɢɪɨɤɨ ɢɡɜɟɫɬɧɵɦɢ ɦɟɬɚɥɥɚɦɢ (ɫɜɢɧɟɰ, ɪɬɭɬɶ, ɰɢɧɤ, ɦɚɪɝɚɧɟɰ, ɯɪɨɦ, ɧɢɤɟɥɶ ɢ ɞɪ.) ɜɫɟ ɲɢɪɟ ɩɪɢɦɟɧɹɸɬɫɹ ɞɥɹ ɩɨɥɭɱɟɧɢɹ ɫɩɥɚɜɨɜ ɫɨ ɫɩɟɰɢɚɥɶɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ, ɜ ɤɚɱɟɫɬɜɟ ɤɚɬɚɥɢɡɚɬɨɪɨɜ, ɞɥɹ ɢɡɝɨɬɨɜɥɟɧɢɹ ɨɬɞɟɥɶɧɵɯ ɞɟɬɚɥɟɣ, ɤɨɧɫɬɪɭɤɰɢɣ ɢ ɬ. ɞ. ɪɟɞɤɢɟ ɪɚɫɫɟɹɧɧɵɟ ɦɟɬɚɥɥɵ (ɛɟɪɢɥɥɢɣ, ɥɢɬɢɣ, ɜɚɧɚɞɢɣ, ɬɢɬɚɧ, ɰɢɪɤɨɧɢɣ, ɜɨɥɶɮɪɚɦ, ɬɚɥɥɢɣ, ɫɟɥɟɧ ɢ ɞɪ.). ȼ ɤɚɱɟɫɬɜɟ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɦɟɬɚɥɥɵ ɦɨɝɭɬ ɛɵɬɶ ɜ ɜɢɞɟ ɚɷɪɨɡɨɥɟɣ ɞɟɡɢɧɬɟɝɪɚɰɢɢ ɢ ɤɨɧɞɟɧɫɚɰɢɢ, ɚ ɬɚɤɠɟ ɜ ɜɢɞɟ ɩɚɪɨɜ. ɋɜɢɧɟɰ (Ɋb). Ɍɹɠɟɥɵɣ ɦɟɬɚɥɥ. Ɍɟɦɩɟɪɚɬɭɪɚ ɩɥɚɜɥɟɧɢɹ 327°ɋ, ɬɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ 1525°ɋ. ɉɪɢ ɬɟɦɩɟɪɚɬɭɪɟ 400-500°ɋ ɧɚɱɢɧɚɟɬ ɢɧɬɟɧɫɢɜɧɨ ɜɵɞɟɥɹɬɶ ɩɚɪɵ. ɋɜɢɧɟɰ ɢ ɟɝɨ ɫɨɟɞɢɧɟɧɢɹ ɩɨɫɬɭɩɚɸɬ ɜ ɜɨɡɞɭɯ ɧɚ ɩɪɟɞɩɪɢɹɬɢɹɯ ɩɨ ɜɵɩɥɚɜɤɟ ɫɜɢɧɰɚ, ɩɨ ɩɪɨɢɡɜɨɞɫɬɜɭ ɚɤɤɭɦɭɥɹɬɨɪɨɜ, ɫɜɢɧɰɨɜɵɯ ɤɪɚɫɨɤ, ɩɨ ɩɪɨɢɡɜɨɞɫɬɜɭ ɞɪɨɛɢ ɢ ɞɪ. ȼ ɩɪɨɦɵɲɥɟɧɧɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ ɩɪɢɦɟɧɹɸɬɫɹ ɫɨɟɞɢɧɟɧɢɹ ɫɜɢɧɰɚ: ɫɟɪɧɢɫɬɵɣ ɫɜɢɧɟɰ, ɨɤɫɢɞ ɫɜɢɧɰɚ, ɫɜɢɧɰɨɜɵɣ ɫɭɪɢɤ, ɫɟɪɧɨɤɢɫɥɵɣ ɫɜɢɧɟɰ ɢ ɞɪ. ɋɜɢɧɟɰ ɩɨɫɬɭɩɚɟɬ ɜ ɨɪɝɚɧɢɡɦ ɛɨɥɶɲɟɣ ɱɚɫɬɶɸ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ, ɚ ɬɚɤɠɟ ɱɟɪɟɡ ɩɢɳɟɜɚɪɢɬɟɥɶɧɵɣ ɬɪɚɤɬ. ɋɜɢɧɟɰ ɧɚɪɭɲɚɟɬ ɪɚɛɨɬɭ ɨɪɝɚɧɨɜ ɤɪɨɜɨɨɛɪɚɳɟɧɢɹ ɢ ɰɟɧɬɪɚɥɶɧɨɣ ɧɟɪɜɧɨɣ ɫɢɫɬɟɦɵ, ɫɢɫɬɟɦɵ ɩɢɳɟɜɚɪɟɧɢɹ, ɨɛɦɟɧɧɵɟ ɩɪɨɰɟɫɫɵ ɜ ɨɪɝɚɧɢɡɦɟ. Ɇɨɠɟɬ ɧɚɤɚɩɥɢɜɚɬɶɫɹ ɜ ɪɚɡɥɢɱɧɵɯ ɨɪɝɚɧɚɯ (ɤɨɫɬɢ, ɦɨɡɝ, ɩɟɱɟɧɶ, ɦɵɲɰɵ). ȼɵɞɟɥɟɧɢɟ ɫɜɢɧɰɚ ɢɡ ɨɪɝɚɧɢɡɦɚ ɩɪɨɢɫɯɨɞɢɬ ɜ ɬɟɱɟɧɢɟ ɞɥɢɬɟɥɶɧɨɝɨ ɜɪɟɦɟɧɢ (ɦɟɫɹɰɟɜ, ɥɟɬ). Ɋɬɭɬɶ (Hg). ɀɢɞɤɢɣ ɦɟɬɚɥɥ. Ɍɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ 357,2°ɋ, ɬɟɦɩɟɪɚɬɭɪɚ ɬɜɟɪɞɟɧɢɹ (- 38.9°ɋ). ɂɫɩɚɪɹɟɬɫɹ ɩɪɢ ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ. ȼ ɩɪɨɢɡɜɨɞ- ɫɬɜɟ ɪɬɭɬɶ ɩɪɢɦɟɧɹɸɬ ɜ ɱɢɫɬɨɦ ɜɢɞɟ ɢ ɜɢɞɟ ɫɨɟɞɢɧɟɧɢɣ (ɯɥɨɪɧɵɯ, ɰɢɚɧɢɫɬɵɯ, ɫɟɪɧɢɫɬɵɯ, ɚɡɨɬɧɨɤɢɫɥɵɯ ɢ ɞɪ.). ɉɨɱɬɢ ɜɫɟ ɨɧɢ ɹɞɨɜɢɬɵ. Ɋɬɭɬɶ ɩɪɢɦɟɧɹɸɬ ɩɪɢ ɩɪɨɢɡɜɨɞɫɬɜɟ ɢɡɦɟɪɢɬɟɥɶɧɵɯ ɩɪɢɛɨɪɨɜ (ɬɟɪɦɨɦɟɬɪɨɜ, ɛɚɪɨɦɟɬɪɨɜ), ɝɪɟɦɭɱɟɣ ɪɬɭɬɢ, ɪɬɭɬɧɵɯ ɜɵɩɪɹɦɢɬɟɥɟɣ, ɩɨɥɭɱɟɧɢɢ ɡɨɥɨɬɚ ɢɡ ɪɭɞ ɢ ɬ. ɞ. ȼ ɨɪɝɚɧɢɡɦ ɜ ɭɫɥɨɜɢɹɯ ɩɪɨɢɡɜɨɞɫɬɜɚ ɩɚɪɵ ɪɬɭɬɢ ɩɨɫɬɭɩɚɸɬ ɱɟɪɟɡ ɨɪɝɚɧɵ ɞɵɯɚɧɢɹ. ɉɪɢ ɩɨɩɚɞɚɧɢɢ ɪɬɭɬɢ ɜ ɨɪɝɚɧɢɡɦ ɩɨɪɚɠɚɸɬɫɹ ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ ɧɟɪɜɧɚɹ ɫɢɫɬɟɦɚ ɢ ɠɟɥɭɞɨɱɧɨ-ɤɢɲɟɱɧɵɣ ɬɪɚɤɬ, ɩɨɱɤɢ. Ɋɬɭɬɶ ɫɩɨɫɨɛɧɚ ɧɚɤɚɩɥɢɜɚɬɶɫɹ ɜ ɨɪɝɚɧɢɡɦɟ, ɜ ɨɫɧɨɜɧɨɦ, ɜ ɩɟɱɟɧɢ ɢ ɩɨɱɤɚɯ. Ɇɟɥɤɨɞɢɫɩɟɪɝɢɪɨɜɚɧɧɚɹ ɪɬɭɬɶ ɦɨɠɟɬ ɩɨɩɚɞɚɬɶ ɜ ɩɨɪɵ ɦɚɬɟɪɢɚɥɨɜ (ɲɬɭɤɚɬɭɪɤɢ, ɞɟɪɟɜɚ ɢ ɞɪ.) ɢ ɞɥɢɬɟɥɶɧɨɟ ɜɪɟɦɹ ɜɵɞɟɥɹɬɶ ɩɚɪɵ ɪɬɭɬɢ. Ɇɚɪɝɚɧɟɰ (Ɇn) — ɫɟɪɟɛɪɢɫɬɵɣ ɦɟɬɚɥɥ ɫ ɤɪɚɫɧɵɦ ɨɬɬɟɧɤɨɦ. Ɍɟɦɩɟɪɚɬɭɪɚ ɩɥɚɜɥɟɧɢɹ 1210-1260°ɋ, ɬɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ 1900°ɋ. Ɋɚɫɩɪɨɫɬɪɚɧɟɧɵ ɫɨɟɞɢɧɟɧɢɹ ɦɚɪɝɚɧɰɚ: ɨɤɫɢɞ ɦɚɪɝɚɧɰɚ, ɞɢɨɤɫɢɞ ɦɚɪɝɚɧɰɚ, ɯɥɨɪɢɫɬɵɣ ɦɚɪɝɚɧɟɰ. ɋ ɦɚɪɝɚɧɰɟɦ ɩɪɢɯɨɞɢɬɫɹ ɫɬɚɥɤɢɜɚɬɶɫɹ ɜ ɦɟɬɚɥɥɭɪɝɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ (ɩɪɨɢɡɜɨɞɫɬɜɨ ɤɚɱɟɫɬɜɟɧɧɵɯ ɫɬɚɥɟɣ), ɫɬɟɤɨɥɶɧɨɣ ɢ ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɩɪɢ ɫɜɚɪɤɟ, ɞɨɛɵɱɟ ɢ ɩɟɪɟɪɚɛɨɬɤɟ ɦɚɪɝɚɧɰɟɜɵɯ ɪɭɞ ɢ ɬ. ɞ. Ɇɚɪɝɚɧɟɰ ɢ ɟɝɨ ɫɨɟɞɢɧɟɧɢɹ ɩɨɫɬɭɩɚɸɬ ɜ ɨɪɝɚɧɢɡɦ ɱɟɪɟɡ ɠɟɥɭɞɨɱɧɨɤɢɲɟɱɧɵɣ ɬɪɚɤɬ ɜ ɜɢɞɟ ɩɵɥɢ. Ɉɧɢ ɜɨɡɞɟɣɫɬɜɭɸɬ ɧɚ ɰɟɧɬɪɚɥɶɧɭɸ ɧɟɪɜɧɭɸ ɫɢɫɬɟɦɭ. ɐɢɧɤ (Zn). ȼɪɟɞɧɵɦ ɜɟɳɟɫɬɜɨɦ ɹɜɥɹɟɬɫɹ ɨɤɫɢɞ ɰɢɧɤɚ - ɛɟɥɵɣ ɪɵɯɥɵɣ ɩɨɪɨɲɨɤ. Ɉɤɫɢɞ ɰɢɧɤɚ ɦɨɠɟɬ ɛɵɬɶ ɩɨɥɭɱɟɧ ɩɪɢ ɨɤɢɫɥɟɧɢɢ ɰɢɧɤɚ ɩɪɢ ɟɝɨ ɧɚɝɪɟɜɚɧɢɢ ɜɵɲɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɥɚɜɥɟɧɢɹ (939°ɋ). ɉɪɢ ɧɚɝɪɟɜɚɧɢɢ ɰɢɧɤɚ ɜɵɲɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɥɚɜɥɟɧɢɹ (939°ɋ) ɨɛɪɚɡɭɸɬɫɹ ɩɚɪɵ ɰɢɧɤɚ, ɤɨɬɨɪɵɟ, ɫɨɟɞɢɧɹɹɫɶ ɫ ɤɢɫɥɨɪɨɞɨɦ, ɨɛɪɚɡɭɸɬ ɨɤɫɢɞ ɰɢɧɤɚ (ZnO). Ʉɨɧɬɚɤɬ ɫ ɨɤɫɢɞɨɦ ɰɢɧɤɚ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɩɪɢ ɢɡɝɨɬɨɜɥɟɧɢɢ ɰɢɧɤɨɜɵɯ ɛɟɥɢɥ, ɥɢɬɶɟ ɥɚɬɭɧɢ, ɟɟ ɪɟɡɤɟ ɢ ɬ. ɞ. Ɉɤɫɢɞ ɰɢɧɤɚ ɜ ɜɢɞɟ ɩɵɥɢ ɩɨɫɬɭɩɚɟɬ ɜ ɨɪɝɚɧɢɡɦ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ. ɉɨɫɥɟɞɫɬɜɢɹ ɜɨɡɞɟɣɫɬɜɢɹ ɨɤɫɢɞɚ ɰɢɧɤɚ ɧɚ ɨɪɝɚɧɢɡɦ - ɹɜɥɟɧɢɹ ɥɢɯɨɪɚɞɤɢ. ɐɢɧɤ ɜ ɨɫɧɨɜɧɨɦ ɨɬɤɥɚɞɵɜɚɟɬɫɹ ɜ ɩɟɱɟɧɢ, ɩɨɞɠɟɥɭɞɨɱɧɨɣ ɠɟɥɟɡɟ. ɏɪɨɦ (ɋr). ɏɪɨɦ — ɬɜɟɪɞɵɣ ɛɥɟɫɬɹɳɢɣ ɦɟɬɚɥɥ. Ɍɟɦɩɟɪɚɬɭɪɚ ɩɥɚɜɥɟɧɢɹ 1615°ɋ, ɬɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ 2200°ɋ. ɉɪɢɦɟɧɹɸɬɫɹ ɫɨɟɞɢɧɟɧɢɹ ɯɪɨɦɚ: ɨɤɫɢɞ ɯɪɨɦɚ, ɞɢɨɤɫɢɞ ɯɪɨɦɚ, ɯɪɨɦɨɜɵɟ ɤɜɚɫɰɵ ɤɚɥɢɣɧɵɟ ɢ ɧɚɬɪɢɟɜɵɟ ɢ ɞɪ. ɏɪɨɦ ɢ ɟɝɨ ɫɨɟɞɢɧɟɧɢɹ ɩɪɢɦɟɧɹɸɬ ɜ ɦɟɬɚɥɥɭɪɝɢɢ, ɯɢɦɢɱɟɫɤɨɣ, ɤɨɠɟɜɟɧɧɨɣ, ɬɟɤɫɬɢɥɶɧɨɣ, ɥɚɤɨɤɪɚɫɨɱɧɨɣ, ɫɩɢɱɟɱɧɨɣ ɢ ɞɪ. ɨɬɪɚɫɥɹɯ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. Ɉɧɢ ɩɨɫɬɭɩɚɸɬ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ ɜ ɜɢɞɟ ɩɵɥɢ, ɩɚɪɨɜ ɬɭɦɚɧɚ, ɱɟɪɟɡ ɠɟɥɭɞɨɱɧɨ-ɤɢɲɟɱɧɵɣ ɬɪɚɤɬ, ɜɫɚɫɵɜɚɸɬɫɹ ɱɟɪɟɡ ɤɨɠɭ ɜ ɜɢɞɟ ɪɚɫɬɜɨɪɨɜ. Ɇɨɝɭɬ ɨɬɤɥɚɞɵɜɚɬɶɫɹ ɜ ɩɟɱɟɧɢ, ɩɨɱɤɚɯ, ɷɧɞɨɤɪɢɧɧɨɣ ɫɢɫɬɟɦɟ, ɥɟɝɤɢɯ, ɜɨɥɨɫɚɯ ɢ ɞɪ. ɏɪɨɦ ɢ ɟɝɨ ɫɨɟɞɢɧɟɧɢɹ ɩɨɪɚɠɚɸɬ ɫɥɢɡɢɫɬɭɸ ɨɛɨɥɨɱɤɭ ɨɪɝɚɧɨɜ ɞɵɯɚɧɢɹ, ɠɟɥɭɞɨɱɧɨ-ɤɢɲɟɱɧɵɣ ɬɪɚɤɬ, ɜɵɡɵɜɚɸɬ ɹɡɜɵ ɧɚ ɤɨɠɧɵɯ ɩɨɤɪɨɜɚɯ. Ʉɚɤ ɚɥɥɟɪɝɟɧɵ, ɨɧɢ ɜɵɡɵɜɚɸɬ ɡɚɛɨɥɟɜɚɧɢɟ ɬɢɩɚ ɛɪɨɧɯɢɚɥɶɧɨɣ ɚɫɬɦɵ. ɇɢɤɟɥɶ (Ni) - ɫɟɪɟɛɪɢɫɬɵɣ ɛɟɥɵɣ ɦɟɬɚɥɥ ɫ ɤɨɪɢɱɧɟɜɵɦ ɨɬɬɟɧɤɨɦ. Ɍɟɦɩɟɪɚɬɭɪɚ ɩɥɚɜɥɟɧɢɹ 1425°ɋ, ɬɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ 2900°ɋ. ɇɚɯɨɞɢɬ ɩɪɢɦɟɧɟɧɢɟ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟ ɧɢɤɟɥɟɜɨɣ ɢ ɯɪɨɦɨɧɢɤɟɥɟɜɨɣ ɫɬɚɥɢ, ɫɩɥɚɜɨɜ ɫ ɦɟɞɶɸ, ɠɟɥɟɡɨɦ, ɜ ɤɚɱɟɫɬɜɟ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɩɪɢ ɧɢɤɟɥɢɪɨɜɚɧɢɢ ɦɟɬɚɥɥɢɱɟɫɤɢɯ ɢɡɞɟɥɢɣ ɜ ɝɚɥɶɜɚɧɢɱɟɫɤɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ ɢ ɞɪ. ȼ ɨɪɝɚɧɢɡɦ ɧɢɤɟɥɶ ɢ ɟɝɨ ɫɨɟɞɢɧɟɧɢɹ ɩɨɫɬɭɩɚɸɬ ɱɟɪɟɡ ɞɵɯɚɬɟɥɶɧɵɟ ɩɭɬɢ ɜ ɜɢɞɟ ɩɵɥɢ. ɇɢɤɟɥɶ ɢ ɟɝɨ ɫɨɟɞɢɧɟɧɢɹ ɜɵɡɵɜɚɸɬ ɩɨɪɚɠɟɧɢɟ ɨɪɝɚɧɨɜ ɞɵɯɚɧɢɹ, ɤɨɠɧɨɝɨ ɩɨɤɪɨɜɚ. Ʉɚɧɰɟɪɨɝɟɧɧɵɟ ɜɟɳɟɫɬɜɚ. Ɋɹɞ ɜɟɳɟɫɬɜ, ɩɪɢɦɟɧɹɟɦɵɯ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɫɩɨɫɨɛɟɧ ɜɵɡɜɚɬɶ ɡɥɨɤɚɱɟɫɬɜɟɧɧɵɟ ɨɩɭɯɨɥɢ ɜ ɪɚɡɥɢɱɧɵɯ ɱɚɫɬɹɯ ɬɟɥɚ. Ɍɚɤɢɦɢ ɜɟɳɟɫɬɜɚɦɢ ɹɜɥɹɸɬɫɹ ɯɪɨɦ, ɦɵɲɶɹɤ, ɧɢɤɟɥɶ, ɚɫɛɟɫɬ, ɛɟɪɢɥɥɢɣ, ɫɚɠɚ, ɫɦɨɥɚ, ɩɟɤ, ɦɢɧɟɪɚɥɶɧɵɟ ɦɚɫɥɚ ɢ ɪɹɞ ɞɪɭɝɢɯ. ɗɬɢ ɧɨɜɨɨɛɪɚɡɨɜɚɧɢɹ ɦɨɝɭɬ ɜɨɡɧɢɤɚɬɶ ɢ ɱɟɪɟɡ ɡɧɚɱɢɬɟɥɶɧɵɣ ɩɟɪɢɨɞ (ɧɟɫɤɨɥɶɤɨ ɥɟɬ) ɩɨɫɥɟ ɩɪɟɤɪɚɳɟɧɢɹ ɪɚɛɨɬɵ ɫ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦɢ ɜɟɳɟɫɬɜɚɦɢ. ȼɟɫɶɦɚ ɫɩɟɰɢɮɢɱɟɫɤɭɸ ɜɪɟɞɧɨɫɬɶ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɧɟɩɪɢɹɬɧɵɟ ɡɚɩɚɯɢ, ɢɫɬɨɱɧɢɤɚɦɢ ɤɨɬɨɪɵɯ ɹɜɥɹɸɬɫɹ ɝɚɡɵ ɢ ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ, ɨɛɵɱɧɨ ɜ ɧɟɛɨɥɶɲɢɯ ɤɨɥɢɱɟɫɬɜɚɯ ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɟ. Ɂɚɩɚɯɢ ɧɟɛɥɚɝɨɩɪɢɹɬɧɨ ɜɨɡɞɟɣɫɬɜɭɸɬ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ, ɜɵɡɵɜɚɹ ɩɨɜɵɲɟɧɧɭɸ ɭɬɨɦɥɹɟɦɨɫɬɶ, ɧɟɪɜɧɨɟ ɜɨɡɛɭɠɞɟɧɢɟ ɢɥɢ, ɧɚɨɛɨɪɨɬ, ɞɟɩɪɟɫɫɢɸ. ɋ ɧɟɩɪɢɹɬɧɵɦɢ ɡɚɩɚɯɚɦɢ ɩɪɢɯɨɞɢɬɫɹ ɜɫɬɪɟɱɚɬɶɫɹ ɜ ɪɚɣɨɧɚɯ ɪɚɫɩɨɥɨɠɟɧɢɹ ɯɢɦɢɱɟɫɤɢɯ ɩɪɟɞɩɪɢɹɬɢɣ, ɚ ɬɚɤɠɟ ɩɪɟɞɩɪɢɹɬɢɣ, ɝɞɟ ɩɪɨɢɫɯɨɞɢɬ ɩɟɪɟɪɚɛɨɬɤɚ ɫɟɥɶɫɤɨɯɨɡɹɣɫɬɜɟɧɧɨɝɨ ɨɪɝɚɧɢɱɟɫɤɨɝɨ ɫɵɪɶɹ, ɧɚɩɪɢɦɟɪ, ɜɛɥɢɡɢ ɦɹɫɨɤɨɦɛɢɧɚɬɨɜ, ɬɚɛɚɱɧɵɯ ɮɚɛɪɢɤ ɢ ɞɪ. ȼ ɩɨɫɥɟɞɧɢɟ ɞɟɫɹɬɢɥɟɬɢɹ ɩɨɹɜɢɥɫɹ ɧɨɜɵɣ ɜɢɞ ɡɚɝɪɹɡɧɟɧɢɹ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɵ - ɪɚɞɢɨɚɤɬɢɜɧɵɟ ɜɟɳɟɫɬɜɚ. Ɋɚɡɜɢɬɢɟ ɚɬɨɦɧɨɣ ɷɧɟɪɝɟɬɢɤɢ ɢ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɩɨ ɞɨɛɵɱɟ ɢ ɩɟɪɟɪɚɛɨɬɤɟ ɧɨɫɢɬɟɥɟɣ ɚɬɨɦɧɨɣ ɷɧɟɪɝɢɢ ɫɜɹɡɚɧɨ ɫ ɩɨɫɬɭɩɥɟɧɢɟɦ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ ɪɚɞɢɨɧɭɤɥɢɞɨɜ. ɗɬɢ ɜɟɳɟɫɬɜɚ ɨɬɥɢɱɚɸɬɫɹ ɛɨɥɶɲɢɦ ɪɚɡɧɨɨɛɪɚɡɢɟɦ ɜ ɨɬɧɨɲɟɧɢɢ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ ɢ ɠɢɜɨɬɧɵɯ, ɧɚ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ, ɚ ɬɚɤɠɟ ɜɪɟɦɟɧɢ ɫɜɨɟɝɨ ɫɭɳɟɫɬɜɨɜɚɧɢɹ — ɨɬ ɞɨɥɟɣ ɫɟɤɭɧɞɵ ɞɨ ɬɵɫɹɱɟɥɟɬɢɣ. ȼ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɟ ɧɚɯɨɞɹɬɫɹ ɬɚɤɠɟ ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ - ɛɚɤɬɟɪɢɢ ɢ ɜɢɪɭɫɵ. ɉɢɬɚɬɟɥɶɧɨɣ ɫɪɟɞɨɣ ɞɥɹ ɢɯ ɪɚɡɦɧɨɠɟɧɢɹ ɢ ɪɚɡɜɢɬɢɹ ɹɜɥɹɸɬɫɹ ɛɢɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ, ɩɪɨɢɫɯɨɞɹɳɢɟ ɤɚɤ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɬɚɤ ɢ ɜ ɫɟɥɶɫɤɨɦ ɯɨɡɹɣɫɬɜɟ. 1.4. Ɉɫɧɨɜɧɵɟ ɫɜɨɣɫɬɜɚ ɚɷɪɨɡɨɥɟɣ Ⱥɷɪɨɡɨɥɶ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɞɢɫɩɟɪɫɧɭɸ ɫɢɫɬɟɦɭ, ɜ ɤɨɬɨɪɨɣ ɞɢɫɩɟɪɫɧɨɣ ɫɪɟɞɨɣ ɹɜɥɹɟɬɫɹ ɝɚɡ, ɜ ɱɚɫɬɧɨɫɬɢ, ɜɨɡɞɭɯ, ɚ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɨɣ — ɬɜɟɪɞɵɟ ɢɥɢ ɠɢɞɤɢɟ ɱɚɫɬɢɰɵ. ɇɚɢɛɨɥɟɟ ɦɟɥɤɢɟ (ɬɨɧɤɢɟ) ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ ɩɨ ɪɚɡɦɟɪɚɦ ɛɥɢɡɤɢ ɤ ɤɪɭɩɧɵɦ ɦɨɥɟɤɭɥɚɦ, ɚ ɞɥɹ ɧɚɢɛɨɥɟɟ ɤɪɭɩɧɵɯ ɧɚɢɛɨɥɶɲɢɣ ɪɚɡɦɟɪ ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɯ ɫɩɨɫɨɛɧɨɫɬɶɸ ɛɨɥɟɟ ɢɥɢ ɦɟɧɟɟ ɞɥɢɬɟɥɶɧɨɟ ɜɪɟɦɹ ɧɚ- ɯɨɞɢɬɶɫɹ ɜɨ ɜɡɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ. Ɉɛɵɱɧɨ ɪɟɱɶ ɢɞɟɬ ɨ ɱɚɫɬɢɰɚɯ ɪɚɡɦɟɪɨɦ ɞɨ 100…200 ɦɤɦ, ɚ ɩɨ ɧɟɤɨɬɨɪɵɦ ɩɪɟɞɫɬɚɜɥɟɧɢɹɦ ɞɨ 500 ɦɤɦ. Ɋɚɡɥɢɱɚɸɬ ɞɢɫɩɟɪɫɢɨɧɧɵɟ ɢ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɟ ɚɷɪɨɡɨɥɢ. Ⱦɢɫɩɟɪɫɢɨɧɧɵɟ ɚɷɪɨɡɨɥɢ ɨɛɪɚɡɭɸɬɫɹ ɩɪɢ ɢɡɦɟɥɶɱɟɧɢɢ (ɞɢɫɩɟɪɝɢɪɨɜɚɧɢɢ) ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɜɟɳɟɫɬɜ. Ʉɨɧɞɟɧɫɚɰɢɨɧɧɵɟ ɚɷɪɨɡɨɥɢ ɨɛɪɚɡɭɸɬɫɹ ɩɪɢ ɤɨɧɞɟɧɫɚɰɢɢ ɧɚɫɵɳɟɧɧɵɯ ɩɚɪɨɜ, ɚ ɬɚɤɠɟ ɜ ɪɟɡɭɥɶɬɚɬɟ ɝɚɡɨɜɵɯ ɪɟɚɤɰɢɣ. Ⱦɢɫɩɟɪɫɢɨɧɧɵɟ ɱɚɫɬɢɰɵ ɨɛɵɱɧɨ ɡɧɚɱɢɬɟɥɶɧɨ ɝɪɭɛɟɟ, ɱɟɦ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɟ, ɨɛɥɚɞɚɸɬ ɛɨɥɶɲɟɣ ɩɨɥɢɞɢɫɩɟɪɫɧɨɫɬɶɸ, ɢɦɟɸɬ ɧɟɩɪɚɜɢɥɶɧɭɸ ɮɨɪɦɭ. Ʉɨɧɞɟɧɫɚɰɢɨɧɧɵɟ ɚɷɪɨɡɨɥɢ ɢɦɟɸɬ ɱɚɫɬɨ ɩɪɚɜɢɥɶɧɭɸ ɲɚɪɨɨɛɪɚɡɧɭɸ ɢɥɢ ɤɪɢɫɬɚɥɥɢɱɟɫɤɭɸ ɮɨɪɦɭ ɢ ɩɪɢ ɤɨɚɝɭɥɹɰɢɢ, ɫɥɢɜɚɹɫɶ, ɫɧɨɜɚ ɩɨɥɭɱɚɸɬ ɲɚɪɨɨɛɪɚɡɧɭɸ ɮɨɪɦɭ. Ʉ ɚɷɪɨɡɨɥɹɦ ɨɬɧɨɫɹɬɫɹ ɩɵɥɢ, ɬɭɦɚɧɵ ɢ ɞɵɦɵ. ɉɵɥɹɦɢ ɧɚɡɵɜɚɸɬ ɞɢɫɩɟɪɫɢɨɧɧɵɟ ɚɷɪɨɡɨɥɢ ɫ ɬɜɟɪɞɵɦɢ ɱɚɫɬɢɰɚɦɢ, ɧɟɡɚɜɢɫɢɦɨ ɨɬ ɞɢɫɩɟɪɫɧɨɫɬɢ. ɉɵɥɶɸ ɨɛɵɱɧɨ ɬɚɤɠɟ ɧɚɡɵɜɚɸɬ ɫɨɜɨɤɭɩɧɨɫɬɶ ɨɫɟɜɲɢɯ ɱɚɫɬɢɰ (ɝɟɥɶ ɢɥɢ ɚɷɪɨɝɟɥɶ). ɉɨɞ ɬɭɦɚɧɚɦɢ ɩɨɧɢɦɚɸɬ ɝɚɡɨɨɛɪɚɡɧɭɸ ɫɪɟɞɭ ɫ ɠɢɞɤɢɦɢ ɱɚɫɬɢɰɚɦɢ ɤɚɤ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɦɢ, ɬɚɤ ɢ ɞɢɫɩɟɪɫɢɨɧɧɵɦɢ, ɧɟɡɚɜɢɫɢɦɨ ɨɬ ɢɯ ɞɢɫɩɟɪɫɧɨɫɬɢ. Ⱦɵɦɚɦɢ ɧɚɡɵɜɚɸɬ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɟ ɚɷɪɨɡɨɥɢ ɫ ɬɜɟɪɞɨɣ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɨɣ ɢɥɢ ɜɤɥɸɱɚɸɳɢɟ ɱɚɫɬɢɰɵ ɢ ɬɜɟɪɞɵɟ, ɢ ɠɢɞɤɢɟ. ɇɚ ɩɪɚɤɬɢɤɟ ɱɚɫɬɨ ɩɪɢɯɨɞɢɬɫɹ ɜɫɬɪɟɱɚɬɶɫɹ ɫ ɚɷɪɨɡɨɥɹɦɢ, ɜɤɥɸɱɚɸɳɢɦɢ ɱɚɫɬɢɰɵ ɤɚɤ ɞɢɫɩɟɪɫɢɨɧɧɨɝɨ, ɬɚɤ ɢ ɤɨɧɞɟɧɫɚɰɢɨɧɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ, ɨɛɵɱɧɨ ɭɥɶɬɪɚɦɢɤɪɨɫɤɨɩɢɱɟɫɤɨɝɨ ɪɚɡɦɟɪɚ. ɑɚɫɬɨ ɛɵɜɚɟɬ ɡɚɬɪɭɞɧɢɬɟɥɶɧɨ ɩɪɨɜɟɫɬɢ ɱɟɬɤɭɸ ɝɪɚɧɢɰɭ ɦɟɠɞɭ ɪɚɡɥɢɱɧɵɦɢ ɜɢɞɚɦɢ ɚɷɪɨɡɨɥɟɣ. Ɉɛɴɹɫɧɹɟɬɫɹ ɷɬɨ ɬɟɦ, ɱɬɨ ɚɷɪɨɡɨɥɶɧɵɟ ɫɢɫɬɟɦɵ ɫɨɫɬɨɹɬ ɢɡ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ. ɉɪɨɢɫɯɨɞɢɬ ɤ ɬɨɦɭ ɠɟ ɧɟɩɪɟɪɵɜɧɨɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɷɬɢɯ ɱɚɫɬɢɰ, ɨɫɚɠɞɟɧɢɟ ɦɚɥɵɯ ɱɚɫɬɢɰ ɧɚ ɛɨɥɟɟ ɤɪɭɩɧɵɟ ɢ ɬ. ɞ. Ⱥɷɪɨɡɨɥɶɧɚɹ ɫɢɫɬɟɦɚ ɧɟ ɧɚɯɨɞɢɬɫɹ ɜ ɧɟɢɡɦɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɱɚɫɬɢɰ ɩɪɨɢɫɯɨɞɢɬ ɢɯ ɭɤɪɭɩɧɟɧɢɟ, ɪɚɡɪɭɲɟɧɢɟ ɤɨɧɝɥɨɦɟɪɚɬɨɜ, ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɢ ɬ. ɞ. Ⱥɷɪɨɡɨɥɢ ɨɛɵɱɧɨ ɩɨɥɢɞɢɫɩɟɪɫɧɵ, ɬ. ɟ. ɫɨɞɟɪɠɚɬ ɱɚɫɬɢɰɵ ɪɚɡɥɢɱɧɵɯ ɪɚɡɦɟɪɨɜ. Ɇɨɧɨɞɢɫɩɟɪɫɧɵɟ ɱɚɫɬɢɰɵ ɜɫɬɪɟɱɚɸɬɫɹ ɤɚɤ ɢɫɤɥɸɱɟɧɢɟ. ɂɯ ɜ ɧɟɤɨɬɨɪɵɯ ɤɨɥɢɱɟɫɬɜɚɯ ɜ ɜɢɞɟ ɩɨɪɨɲɤɨɜ ɢɡɝɨɬɨɜɥɹɸɬ ɞɥɹ ɤɚɥɢɛɪɨɜɤɢ ɩɵɥɟɢɡɦɟɪɢɬɟɥɶɧɵɯ ɩɪɢɛɨɪɨɜ. ȼ ɬɟɯɧɢɤɟ ɢ ɜ ɩɨɜɫɟɞɧɟɜɧɨɣ ɠɢɡɧɢ ɩɨɫɬɨɹɧɧɨ ɩɪɢɯɨɞɢɬɫɹ ɫɬɚɥɤɢɜɚɬɶɫɹ ɫ ɜɟɳɟɫɬɜɚɦɢ, ɧɚɯɨɞɹɳɢɦɢɫɹ ɜ ɢɡɦɟɥɶɱɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ. Ɇɧɨɝɢɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚɩɪɚɜɥɟɧɵ ɧɚ ɩɪɢɜɟɞɟɧɢɟ ɢɯ ɜ ɬɚɤɨɟ ɫɨɫɬɨɹɧɢɟ, ɧɚɩɪɢɦɟɪ, ɩɨɦɨɥ ɡɟɪɧɚ ɞɥɹ ɩɨɥɭɱɟɧɢɹ ɦɭɤɢ. Ɉɫɧɨɜɧɨɟ ɜɧɢɦɚɧɢɟ ɭɞɟɥɟɧɨ ɪɚɫɫɦɨɬɪɟɧɢɸ ɩɵɥɢ, ɬɚɤ ɤɚɤ ɜ ɛɨɥɶɲɢɧɫɬɜɟ ɫɥɭɱɚɟɜ ɜɨɡɞɭɯ ɩɪɢɯɨɞɢɬɫɹ ɨɱɢɳɚɬɶ ɨɬ ɞɚɧɧɨɝɨ ɜɢɞɚ ɚɷɪɨɡɨɥɹ. Ȼɨɥɶɲɢɧɫɬɜɨ ɫɢɫɬɟɦ ɨɱɢɫɬɤɢ ɩɪɟɞɧɚɡɧɚɱɟɧɨ ɞɥɹ ɭɥɚɜɥɢɜɚɧɢɹ ɩɵɥɢ. Ɋɚɫɫɦɚɬɪɢɜɚɸɬɫɹ ɬɚɤɠɟ ɞɪɭɝɢɟ ɜɢɞɵ ɚɷɪɨɡɨɥɟɣ. ɉɵɥɶ ɦɨɠɟɬ ɛɵɬɶ ɤɥɚɫɫɢɮɢɰɢɪɨɜɚɧɚ ɩɨ ɧɟɫɤɨɥɶɤɢɦ ɩɪɢɡɧɚɤɚɦ, ɜ ɬɨɦ ɱɢɫɥɟ ɩɨ ɫɜɨɟɦɭ ɩɪɨɢɫɯɨɠɞɟɧɢɸ, ɬ. ɟ. ɩɨ ɦɚɬɟɪɢɚɥɭ, ɢɡ ɤɨɬɨɪɨɝɨ ɨɧɚ ɨɛɪɚɡɨɜɚɧɚ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɩɪɨɢɫɯɨɠɞɟɧɢɹ ɪɚɡɥɢɱɚɸɬ ɩɵɥɶ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ ɢ ɩɪɨɦɵɲɥɟɧɧɭɸ. ɉɟɪɜɚɹ ɨɛɪɚɡɭɟɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɰɟɫɫɨɜ, ɧɟ ɫɜɹɡɚɧɧɵɯ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɫ ɩɪɨɰɟɫɫɨɦ ɩɪɨɢɡɜɨɞɫɬɜɚ, ɯɨɬɹ ɜɨ ɦɧɨɝɢɯ ɫɥɭɱɚɹɯ ɢɦɟɟɬɫɹ ɜɡɚɢɦɨɫɜɹɡɶ ɦɟɠɞɭ ɷɬɢɦ ɜɢɞɨɦ ɩɵɥɟɨɛɪɚɡɨɜɚɧɢɹ ɢ ɯɨɡɹɣɫɬɜɟɧɧɨɣ ɞɟɹɬɟɥɶɧɨɫɬɶɸ ɱɟɥɨɜɟɤɚ. Ʉ ɩɵɥɢ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ ɨɬɧɨɫɹɬ ɩɵɥɶ, ɨɛɪɚɡɭɸɳɭɸɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɷɪɨɡɢɢ ɩɨɱɜɵ (ɧɚ ɷɬɨɬ ɩɪɨɰɟɫɫ, ɤɨɧɟɱɧɨ, ɜɥɢɹɟɬ ɞɟɹɬɟɥɶɧɨɫɬɶ ɱɟɥɨɜɟɤɚ), ɚ ɬɚɤɠɟ ɩɵɥɶ, ɜɨɡɧɢɤɚɸɳɭɸ ɩɪɢ ɜɵɜɟɬɪɢɜɚɧɢɢ ɝɨɪɧɵɯ ɩɨɪɨɞ, ɩɵɥɶ ɤɨɫɦɢɱɟɫɤɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ ɢ ɬ. ɞ. ȿɫɬɟɫɬɜɟɧɧɨɟ ɩɪɨɢɫɯɨɠɞɟɧɢɟ ɢɦɟɸɬ ɬɚɤɠɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɩɵɥɟɜɢɞɧɵɟ ɱɚɫɬɢɰɵ - ɩɵɥɶɰɚ, ɫɩɨɪɵ ɪɚɫɬɟɧɢɣ. Ʉ ɨɛɪɚɡɭɸɳɟɣɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɷɪɨɡɢɢ ɩɨɱɜɵ, ɨɛɜɟɬɪɢɜɚɧɢɹ ɝɨɪɧɵɯ ɩɨɪɨɞ ɢ ɬ. ɩ. ɛɥɢɡɤɚ ɩɨ ɫɨɫɬɚɜɭ ɩɵɥɶ, ɜɨɡɧɢɤɚɸɳɚɹ ɩɪɢ ɜɵɜɟɬɪɢɜɚɧɢɢ ɫɬɪɨɢɬɟɥɶɧɵɯ ɤɨɧɫɬɪɭɤɰɢɣ, ɞɨɪɨɝ ɢ ɞɪɭɝɢɯ ɫɨɨɪɭɠɟɧɢɣ. ɋ ɩɵɥɶɸ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ ɩɪɢɯɨɞɢɬɫɹ ɫɬɚɥɤɢɜɚɬɶɫɹ, ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ, ɩɪɢ ɪɟɲɟɧɢɢ ɜɨɩɪɨɫɨɜ ɨɱɢɫɬɤɢ ɩɪɢɬɨɱɧɨɝɨ ɜɨɡɞɭɯɚ ɩɟɪɟɞ ɩɨɫɬɭɩɥɟɧɢɟɦ ɟɝɨ ɜ ɜɟɧɬɢɥɢɪɭɟɦɵɟ ɩɨɦɟɳɟɧɢɹ. ɉɪɨɦɵɲɥɟɧɧɚɹ ɩɵɥɶ ɜɨɡɧɢɤɚɟɬ ɜ ɩɪɨɰɟɫɫɟ ɩɪɨɢɡɜɨɞɫɬɜɚ. ɉɨɱɬɢ ɤɚɠɞɨɦɭ ɜɢɞɭ ɩɪɨɢɡɜɨɞɫɬɜɚ, ɤɚɠɞɨɦɭ ɦɚɬɟɪɢɚɥɭ ɢɥɢ ɜɢɞɭ ɫɵɪɶɹ ɫɨɩɭɬɫɬɜɭɟɬ ɨɩɪɟɞɟɥɟɧɧɵɣ ɜɢɞ ɩɵɥɢ. Ɇɧɨɝɢɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚɩɪɚɜɥɟɧɵ ɧɚ ɩɨɥɭɱɟɧɢɟ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ, ɫɨɫɬɨɹɳɢɯ ɢɡ ɦɟɥɤɢɯ ɱɚɫɬɢɰ, ɧɚɩɪɢɦɟɪ, ɰɟɦɟɧɬɚ, ɫɬɪɨɢɬɟɥɶɧɨɝɨ ɝɢɩɫɚ, ɦɭɤɢ ɢ ɬ. ɞ. ɋɨɜɨɤɭɩɧɨɫɬɶ ɷɬɢɯ ɱɚɫɬɢɰ ɩɪɚɜɢɥɶɧɨ ɧɚɡɵɜɚɬɶ ɩɵɥɟɜɢɞɧɵɦ ɦɚɬɟɪɢɚɥɨɦ. ɋɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɩɵɥɶɸ (ɧɚɩɪɢɦɟɪ, ɰɟɦɟɧɬɧɨɣ, ɦɭɱɧɨɣ ɢ ɬ. ɞ.) ɨɛɵɱɧɨ ɧɚɡɵɜɚɸɬ ɧɚɢɛɨɥɟɟ ɦɟɥɤɢɟ ɱɚɫɬɢɰɵ ɷɬɢɯ ɦɚɬɟɪɢɚɥɨɜ, ɪɚɡɧɨɫɢɦɵɟ ɩɨɬɨɤɚɦɢ ɜɨɡɞɭɯɚ. Ȼɨɥɶɲɚɹ ɱɚɫɬɶ ɜɢɞɨɜ ɩɵɥɢ ɜɨɡɧɢɤɚɟɬ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɰɟɫɫɨɜ, ɫɜɹɡɚɧɧɵɯ ɫ ɨɛɪɚɛɨɬɤɨɣ ɦɚɬɟɪɢɚɥɨɜ (ɪɟɡɚɧɢɟ, ɲɥɢɮɨɜɚɧɢɟ ɢ ɬ. ɩ.), ɢɯ ɫɨɪɬɢɪɨɜɤɨɣ ɢ ɬɪɚɧɫɩɨɪɬɢɪɨɜɚɧɢɟɦ (ɩɨɝɪɭɡɤɚ, ɪɚɡɝɪɭɡɤɚ ɢ ɬ. ɩ.). ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɦɚɬɟɪɢɚɥɚ, ɢɡ ɤɨɬɨɪɨɝɨ ɩɵɥɶ ɨɛɪɚɡɨɜɚɧɚ, ɨɧɚ ɦɨɠɟɬ ɛɵɬɶ ɨɪɝɚɧɢɱɟɫɤɨɣ ɢ ɧɟɨɪɝɚɧɢɱɟɫɤɨɣ. ȼ ɫɜɨɸ ɨɱɟɪɟɞɶ ɨɪɝɚɧɢɱɟɫɤɚɹ ɩɵɥɶ ɛɵɜɚɟɬ ɪɚɫɬɢɬɟɥɶɧɨɝɨ (ɞɪɟɜɟɫɧɚɹ, ɯɥɨɩɤɨɜɚɹ, ɦɭɱɧɚɹ, ɬɚɛɚɱɧɚɹ, ɱɚɣɧɚɹ ɢ ɬ. ɞ.) ɢ ɠɢɜɨɬɧɨɝɨ (ɲɟɪɫɬɹɧɚɹ, ɤɨɫɬɹɧɚɹ ɢ ɞɪ.) ɩɪɨɢɫɯɨɠɞɟɧɢɹ. ɇɟɨɪɝɚɧɢɱɟɫɤɚɹ ɩɵɥɶ ɩɨɞɪɚɡɞɟɥɹɟɬɫɹ ɧɚ ɦɢɧɟɪɚɥɶɧɭɸ (ɤɜɚɪɰɟɜɚɹ, ɰɟɦɟɧɬɧɚɹ ɢ ɞɪ.) ɢ ɦɟɬɚɥɥɢɱɟɫɤɭɸ (ɫɬɚɥɶɧɚɹ, ɱɭɝɭɧɧɚɹ, ɦɟɞɧɚɹ, ɚɥɸɦɢɧɢɟɜɚɹ ɢ ɞɪ.). Ɂɧɚɱɢɬɟɥɶɧɚɹ ɱɚɫɬɶ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɵɥɟɣ - ɫɦɟɲɚɧɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ, ɬ. ɟ. ɫɨɫɬɨɢɬ ɢɡ ɱɚɫɬɢɰ ɧɟɨɪɝɚɧɢɱɟɫɤɢɯ ɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɢɥɢ, ɛɭɞɭɱɢ ɨɪɝɚɧɢɱɟɫɤɨɣ, ɜɤɥɸɱɚɟɬ ɜ ɫɟɛɹ ɱɚɫɬɢɰɵ ɦɢɧɟɪɚɥɶɧɨɣ ɢ ɦɟɬɚɥɥɢɱɟɫɤɨɣ ɩɵɥɢ. ɇɚɩɪɢɦɟɪ, ɡɟɪɧɨɜɚɹ ɩɵɥɶ, ɤɪɨɦɟ ɱɚɫɬɢɰ, ɨɛɪɚɡɭɸɳɢɯɫɹ ɩɪɢ ɢɡɦɟɥɶɱɟɧɢɢ ɡɟɪɧɚ, ɫɨɞɟɪɠɢɬ ɬɚɤɠɟ ɦɢɧɟɪɚɥɶɧɵɟ ɱɚɫɬɢɰɵ, ɩɨɩɚɜɲɢɟ ɜ ɦɚɫɫɭ ɡɟɪɧɚ ɩɪɢ ɜɵɪɚɳɢɜɚɧɢɢ ɢ ɫɛɨɪɟ ɭɪɨɠɚɹ. ɉɵɥɶ, ɜɵɞɟɥɹɸɳɚɹɫɹ ɩɪɢ ɲɥɢɮɨɜɚɧɢɢ ɦɟɬɚɥɥɢɱɟɫɤɢɯ ɢɡɞɟɥɢɣ, ɤɪɨɦɟ ɦɟɬɚɥɥɢɱɟɫɤɢɯ ɱɚɫɬɢɰ, ɫɨɞɟɪɠɢɬ ɦɢɧɟɪɚɥɶɧɵɟ ɱɚɫɬɢɰɵ, ɨɛɪɚɡɭɸɳɢɟɫɹ ɩɪɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɨɛɪɚɛɚɬɵɜɚɟɦɨɝɨ ɦɟɬɚɥɥɚ ɢ ɨɪɭɞɢɣ ɟɝɨ ɨɛɪɚɛɨɬɤɢ (ɚɛɪɚɡɢɜɧɨɝɨ ɤɪɭɝɚ ɢ ɬ. ɞ.). ɗɬɨ ɧɭɠɧɨ ɭɱɢɬɵɜɚɬɶ ɩɪɢ ɜɵɛɨɪɟ ɦɟɬɨɞɨɜ ɨɱɢɫɬɤɢ ɢ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɟɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ. Ⱦɢɫɩɟɪɫɧɨɫɬɶ - ɫɬɟɩɟɧɶ ɢɡɦɟɥɶɱɟɧɢɹ ɜɟɳɟɫɬɜɚ. ɉɨɞ ɞɢɫɩɟɪɫɧɵɦ (ɡɟɪɧɨɜɵɦ, ɝɪɚɧɭɥɨɦɟɬɪɢɱɟɫɤɢɦ) ɫɨɫɬɚɜɨɦ ɩɨɧɢɦɚɸɬ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɟɣ ɩɨ ɪɚɡɦɟɪɚɦ. Ɉɧ ɩɨɤɚɡɵɜɚɟɬ, ɢɡ ɱɚɫɬɢɰ ɤɚɤɨɝɨ ɪɚɡɦɟɪɚ ɫɨɫɬɨɢɬ ɞɚɧɧɵɣ ɚɷɪɨɡɨɥɶ, ɢ ɦɚɫɫɭ ɢɥɢ ɤɨɥɢɱɟɫɬɜɨ ɱɚɫɬɢɰ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɝɨ ɪɚɡɦɟɪɚ. Ⱦɢɫɩɟɪɫɧɨɫɬɶ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɦɟɪɟ ɨɩɪɟɞɟɥɹɟɬ ɫɜɨɣɫɬɜɚ ɚɷɪɨɡɨɥɟɣ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɢɡɦɟɥɶɱɟɧɢɹ ɢɡɦɟɧɹɸɬɫɹ ɧɟɤɨɬɨɪɵɟ ɫɜɨɣɫɬɜɚ ɜɟɳɟɫɬɜɚ ɢ ɩɪɢɨɛɪɟɬɚɸɬɫɹ ɧɨɜɵɟ. ɗɬɨ ɜɵɡɜɚɧɨ, ɜ ɨɫɧɨɜɧɨɦ, ɬɟɦ, ɱɬɨ ɩɪɢ ɞɢɫɩɟɪɝɢɪɨɜɚɧɢɢ ɜɟɳɟɫɬɜɚ ɦɧɨɝɨɤɪɚɬɧɨ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɟɝɨ ɫɭɦɦɚɪɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ. ɇɚɩɪɢɦɟɪ, ɩɪɢ ɢɡɦɟɥɶɱɟɧɢɢ ɬɟɥɚ, ɢɦɟɸɳɟɝɨ ɮɨɪɦɭ ɤɭɛɚ ɢ ɪɚɡɦɟɪɵ 20u10u10 ɦɦ, ɢ ɩɪɟɜɪɚɳɟɧɢɢ ɟɝɨ ɜ ɱɚɫɬɢɰɵ ɤɭɛɢɱɟɫɤɨɣ ɮɨɪɦɵ ɫ ɪɚɡɦɟɪɨɦ 1 ɦɤɦ, ɫɭɦɦɚɪɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɦɚɬɟɪɢɚɥɚ ɜɨɡɪɚɫɬɟɬ ɜ 10000 ɪɚɡ ɢ ɫɬɚɧɟɬ ɪɚɜɧɨɣ 6 ɦ2 (ɜɦɟɫɬɨ 600 ɦɦ2). ȼ ɪɟɡɭɥɶɬɚɬɟ ɪɟɡɤɨɝɨ ɭɜɟɥɢɱɟɧɢɹ ɫɭɦɦɚɪɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɜɟɳɟɫɬɜɚ ɩɨɜɵɲɚɟɬɫɹ ɩɨɜɟɪɯɧɨɫɬɧɚɹ ɷɧɟɪɝɢɹ, ɱɬɨ ɜɥɟɱɟɬ ɡɚ ɫɨɛɨɣ ɭɜɟɥɢɱɟɧɢɟ ɮɢɡɢɱɟɫɤɨɣ ɢ ɯɢɦɢɱɟɫɤɨɣ ɚɤɬɢɜɧɨɫɬɢ. Ɉɱɟɧɶ ɛɵɫɬɪɨ ɢ ɢɧɬɟɧɫɢɜɧɨ ɩɪɨɬɟɤɚɸɬ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɷɬɢɯ ɜɟɳɟɫɬɜ. Ɉ ɩɨɜɵɲɟɧɢɢ ɮɢɡɢɱɟɫɤɨɣ ɚɤɬɢɜɧɨɫɬɢ ɝɨɜɨɪɢɬ, ɧɚɩɪɢɦɟɪ, ɬɨ, ɱɬɨ ɢɡɦɟɥɶɱɟɧɧɵɟ ɜɟɳɟɫɬɜɚ ɪɚɫɬɜɨɪɹɸɬɫɹ ɜɨ ɦɧɨɝɨ ɪɚɡ ɛɵɫɬɪɟɟ, ɱɟɦ ɢɫɯɨɞɧɵɣ ɦɚɬɟɪɢɚɥ. ȼɨ ɜɡɜɟɲɢɜɚɸɳɟɣ ɝɚɡɨɨɛɪɚɡɧɨɣ ɫɪɟɞɟ ɩɪɢɫɭɬɫɬɜɭɟɬ ɜɥɚɝɚ, ɩɚɪɵ ɤɢɫɥɨɬ, ɳɟɥɨɱɟɣ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɢɯ ɩɨɝɥɨɳɟɧɢɹ ɫɜɨɣɫɬɜɚ ɱɚɫɬɢɰ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɫɜɨɣɫɬɜ ɢɫɯɨɞɧɨɝɨ ɦɚɬɟɪɢɚɥɚ. Ⱦɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɚɷɪɨɡɨɥɶ ɫ ɪɚɡɥɢɱɧɵɯ ɫɬɨɪɨɧ. Ʉɪɨɦɟ ɮɢɡɢɱɟɫɤɢɯ ɢ ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ, ɞɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɨɩɪɟɞɟɥɹɟɬ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɦɟɪɟ ɯɚɪɚɤɬɟɪ ɢ ɭɫɥɨɜɢɹ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɚɷɪɨɡɨɥɟɣ ɜ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɟ. Ɇɟɥɤɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ ɨɫɚɠɞɚɟɬɫɹ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɞɥɟɧɧɟɟ, ɚ ɨɫɨɛɨ ɦɟɥɤɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ ɩɪɚɤɬɢɱɟɫɤɢ ɜɨɜɫɟ ɧɟ ɨɫɚɠɞɚɟɬɫɹ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɪɚɫɫɟɢɜɚɧɢɟ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɜ ɜɨɡɞɭɯɟ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɦɟɪɟ ɨɩɪɟɞɟɥɹɟɬɫɹ ɞɢɫɩɟɪɫɧɵɦ ɫɨɫɬɚɜɨɦ ɩɵɥɢ. ȼɚɠɧɟɣɲɢɣ ɜɨɩɪɨɫ ɩɵɥɟɭɥɚɜɥɢɜɚɧɢɹ - ɜɵɛɨɪ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɟɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ - ɪɟɲɚɟɬɫɹ ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ ɧɚ ɨɫɧɨɜɚɧɢɢ ɞɢɫɩɟɪɫɧɨɝɨ ɫɨɫɬɚɜɚ ɩɵɥɢ. Ⱦɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɩɵɥɢ ɢɦɟɟɬ ɩɟɪɜɨɫɬɟɩɟɧɧɨɟ ɡɧɚɱɟɧɢɟ ɞɥɹ ɪɚɡɪɚɛɨɬɤɢ ɢ ɫɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɹ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɢɯ ɚɩɩɚɪɚɬɨɜ ɢ ɫɢɫɬɟɦ, ɚ ɬɚɤɠɟ ɞɥɹ ɨɫɭɳɟɫɬɜɥɟɧɢɹ ɦɟɪɨɩɪɢɹɬɢɣ ɩɨ ɩɪɟɞɨɬɜɪɚɳɟɧɢɸ ɜɵɞɟɥɟɧɢɹ ɩɵɥɢ ɢ ɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɸ. Ⱦɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɚɷɪɨɡɨɥɟɣ ɨɩɪɟɞɟɥɹɸɬ ɥɚɛɨɪɚɬɨɪɧɵɦɢ ɢɫɫɥɟɞɨɜɚɧɢɹɦɢ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɪɚɡɥɢɱɧɵɯ ɦɟɬɨɞɨɜ. ɂɦɟɟɬɫɹ ɧɟɫɤɨɥɶɤɨ ɫɩɨɫɨɛɨɜ ɜɵɪɚɠɟɧɢɹ ɪɚɡɦɟɪɨɜ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ: ɩɨ ɞɢɚɦɟɬɪɭ ɱɚɫɬɢɰɵ; ɩɨ ɪɚɡɦɟɪɭ ɜ ɫɜɟɬɭ ɧɚɢɦɟɧɶɲɢɯ ɪɚɡɦɟɪɨɜ ɹɱɟɟɤ ɫɢɬɚ, ɱɟɪɟɡ ɤɨɬɨɪɵɟ ɩɪɨɯɨɞɹɬ ɞɚɧɧɵɟ ɱɚɫɬɢɰɵ; ɩɨ ɞɢɚɦɟɬɪɭ ɲɚɪɨɨɛɪɚɡɧɵɯ ɱɚɫɬɢɰ, ɢɦɟɸɳɢɯ ɬɚɤɭɸ ɠɟ ɦɚɫɫɭ; ɩɨ ɧɚɢɛɨɥɶɲɟɦɭ ɥɢɧɟɣɧɨɦɭ ɪɚɡɦɟɪɭ ɱɚɫɬɢɰ ɧɟɩɪɚɜɢɥɶɧɨɣ ɮɨɪɦɵ; ɩɨ ɞɢɚɦɟɬɪɭ ɭɫɥɨɜɧɵɯ ɲɚɪɨɨɛɪɚɡɧɵɯ ɱɚɫɬɢɰ, ɨɛɥɚɞɚɸɳɢɯ ɩɪɢ ɨɞɢɧɚɤɨɜɨɣ ɩɥɨɬɧɨɫɬɢ ɫɤɨɪɨɫɬɶɸ ɜɢɬɚɧɢɹ, ɪɚɜɧɨɣ ɫɤɨɪɨɫɬɢ ɜɢɬɚɧɢɹ ɞɚɧɧɨɣ ɩɵɥɟɜɨɣ ɱɚɫɬɢɰɵ. Ɍɨɱɧɨ ɪɚɡɦɟɪ ɱɚɫɬɢɰɵ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧ ɞɢɚɦɟɬɪɨɦ ɲɚɪɨɨɛɪɚɡɧɨɣ ɱɚɫɬɢɰɵ. Ɉɞɧɚɤɨ ɱɚɫɬɢɰɵ ɬɚɤɨɣ ɮɨɪɦɵ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɜɫɬɪɟɱɚɸɬɫɹ. ɉɨɷɬɨɦɭ ɞɥɹ ɜɵɪɚɠɟɧɢɹ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰɵ ɩɨɥɶɡɭɸɬɫɹ ɩɨɧɹɬɢɹɦɢ ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ, ɫɟɞɢɦɟɧɬɚɰɢɨɧɧɵɣ ɞɢɚɦɟɬɪ ɢ ɞɪ. ɗɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ ɧɟɩɪɚɜɢɥɶɧɨɣ ɮɨɪɦɵ - ɞɢɚɦɟɬɪ ɲɚɪɚ, ɨɛɴɟɦ ɤɨɬɨɪɨɝɨ ɪɚɜɟɧ ɨɛɴɟɦɭ ɱɚɫɬɢɰɵ, ɢɥɢ ɞɢɚɦɟɬɪ ɤɪɭɝɚ, ɩɥɨɳɚɞɶ ɤɨɬɨɪɨɝɨ ɨɞɢɧɚɤɨɜɚ ɫ ɩɥɨɳɚɞɶɸ ɩɪɨɟɤɰɢɢ ɱɚɫɬɢɰɵ. ɋɟɞɢɦɟɧɬɚɰɢɨɧɧɵɣ ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ - ɞɢɚɦɟɬɪ ɲɚɪɚ, ɫɤɨɪɨɫɬɶ ɨɫɟɞɚɧɢɹ ɢ ɩɥɨɬɧɨɫɬɶ ɤɨɬɨɪɨɝɨ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɪɚɜɧɵ ɫɤɨɪɨɫɬɢ ɨɫɟɞɚɧɢɹ ɢ ɩɥɨɬɧɨɫɬɢ ɱɚɫɬɢɰɵ ɧɟɩɪɚɜɢɥɶɧɨɣ ɮɨɪɦɵ. ɂɧɬɟɪɜɚɥ ɞɢɫɩɟɪɫɧɨɫɬɢ ɚɷɪɨɡɨɥɶɧɵɯ ɱɚɫɬɢɰ ɜɟɫɶɦɚ ɜɟɥɢɤ: ɨɬ 10-7 ɞɨ 1 ɫɦ. ɇɢɠɧɢɣ ɩɪɟɞɟɥ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜɨɡɦɨɠɧɨɫɬɶɸ ɞɥɢɬɟɥɶɧɨɝɨ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨɝɨ ɫɭɳɟɫɬɜɨɜɚɧɢɹ ɜɟɫɶɦɚ ɦɚɥɵɯ ɱɚɫɬɢɰ; ɜɟɪɯɧɢɣ ɩɪɟɞɟɥ ɨɝɪɚɧɢɱɟɧ ɬɟɦ, ɱɬɨ ɤɪɭɩɧɵɟ ɱɚɫɬɢɰɵ ɜɟɫɶɦɚ ɛɵɫɬɪɨ ɨɫɚɠɞɚɸɬɫɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥ ɬɹɠɟɫɬɢ ɢ ɜɨ ɜɡɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɧɚɛɥɸɞɚɸɬɫɹ. ȼɟɫɶ ɞɢɚɩɚɡɨɧ ɪɚɡɦɟɪɨɜ ɱɚɫɬɢɰ ɪɚɡɛɢɜɚɸɬ ɧɚ ɮɪɚɤɰɢɢ. Ɏɪɚɤɰɢɹ ɨɛɴɟɞɢɧɹɟɬ ɱɚɫɬɢɰɵ, ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɩɪɟɞɟɥɚɯ ɨɞɧɨɝɨ ɢɧɬɟɪɜɚɥɚ ɪɚɡɦɟɪɨɜ ɪɟɤɨɦɟɧɞɭɟɦɨɣ ɲɤɚɥɵ. ɇɚɩɪɢɦɟɪ, ɩɪɢɦɟɧɹɸɬ ɫɥɟɞɭɸɳɭɸ ɲɤɚɥɭ ɪɚɡɦɟɪɨɜ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ: 1 — 1,3 — 1,6 — 2,0 — 2,5 — 3,2 — 4,0 — 5,0 — 6,3 — 8,0 — 13 — 16 — 20 — 25 — 32 — 40 — 50 — 63 ɦɤɦ. Ⱦɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɩɵɥɢ ɩɪɟɞɫɬɚɜɥɹɸɬ ɜ ɜɢɞɟ ɬɚɛɥɢɰɵ ɢɥɢ ɝɪɚɮɢɤɚ. ȼ ɬɚɛɥɢɰɟ ɞɚɟɬɫɹ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɵɥɢ ɩɨ ɮɪɚɤɰɢɹɦ ɜ ɩɪɨɰɟɧɬɚɯ ɨɬ ɨɛɳɟɣ ɦɚɫɫɵ. ɉɪɢɦɟɪ ɩɪɢɜɟɞɟɧ ɜ ɬɚɛɥɢɰɟ 1.3. Ɍɚɛɥɢɰɚ 1.3 Ⱦɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɩɵɥɢ Ɋɚɡɦɟɪ <1,5 1,5- 2,5-5 5-7,5 7,5-10 I0-15 15-25 25-35 35-50 >50 ɱɚɫɬɢɰ ɧɚ 2,5 ɝɪɚɧɢɰɚɯ ɮɪɚɤɰɢɣ, ɦɤɦ Ɏɪɚɤɰɢɢ, 2,19 3,73 7,89 13,16 15,45 21,13 18,63 6,06 5,1 6,66 % ɨɬ ɨɛɳɟɣ ɦɚɫɫɵ ɱɚɫɬɢɰ Ɋɟɡɭɥɶɬɚɬɵ ɨɩɪɟɞɟɥɟɧɢɹ ɞɢɫɩɟɪɫɧɨɝɨ ɫɨɫɬɚɜɚ ɦɨɝɭɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɜɢɞɟ ɬɚɛɥɢɰɵ, ɜ ɤɨɬɨɪɨɣ ɩɪɢɜɟɞɟɧɵ ɩɪɨɰɟɧɬɵ ɦɚɫɫɵ ɢɥɢ ɱɢɫɥɚ ɱɚɫɬɢɰ, ɫ ɪɚɡɦɟɪɚɦɢ ɦɟɧɶɲɟ ɢɥɢ ɛɨɥɶɲɟ ɡɚɞɚɧɧɨɝɨ. ɉɪɢɦɟɪ - ɬɚɛɥɢɰɚ 1.4. Ɍɚɛɥɢɰɚ 1.4 Ɏɪɚɤɰɢɢ ɩɵɥɢ ɫ ɱɚɫɬɢɰɚɦɢ ɦɟɧɶɲɟ ɢɥɢ ɛɨɥɶɲɟ ɡɚɞɚɧɧɨɝɨ ɪɚɡɦɟɪɚ Ɋɚɡɦɟɪ ɱɚɫ- 1,5 2,5 4 7 10 15 25 50 ɬɢɰ d, ɦɤɦ Ɇɚɫɫɚ ɱɚɫ- 97,81 94,08 86,19 70,74 49,61 30,98 17,82 6,66 ɬɢɰ ɛɨɥɶɲɟ d, % Ɇɚɫɫɚ ɱɚɫ2,19 5,92 13,81 29,26 50,39 69,02 82,18 93,34 ɬɢɰ ɦɟɧɶɲɟ d, % ɋɨɜɨɤɭɩɧɨɫɬɶ ɜɫɟɯ ɮɪɚɤɰɢɣ ɚɷɪɨɡɨɥɹ ɧɚɡɵɜɚɸɬ ɮɪɚɤɰɢɨɧɧɵɦ ɫɨɫɬɚɜɨɦ ɟɝɨ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɵ, ɤɨɬɨɪɭɸ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɥɹɬɶ ɝɪɚɮɢɱɟɫɤɢ. Ɉɬɤɥɚɞɵɜɚɹ ɩɨ ɨɫɢ ɚɛɫɰɢɫɫ ɡɧɚɱɟɧɢɹ ɢɧɬɟɪɜɚɥɨɜ, ɫɨɫɬɚɜɥɹɸɳɢɯ ɮɪɚɤɰɢɢ, ɚ ɩɨ ɨɫɢ ɨɪɞɢɧɚɬ - ɞɨɥɢ ɢɥɢ ɩɪɨɰɟɧɬɧɵɟ ɫɨɞɟɪɠɚɧɢɹ ɱɚɫɬɢɰ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɮɪɚɤɰɢɣ, ɩɨɥɭɱɚɸɬ ɝɢɫɬɨɝɪɚɦɦɵ - ɫɬɭɩɟɧɱɚɬɵɟ ɝɪɚɮɢɤɢ ɮɪɚɤɰɢɨɧɧɨɝɨ ɫɨɫɬɚɜɚ. ɋ ɭɦɟɧɶɲɟɧɢɟɦ ɢɧɬɟɪɜɚɥɨɜ ɮɪɚɤɰɢɣ ɝɢɫɬɨɝɪɚɦɦɵ ɩɪɢɛɥɢɠɚɸɬɫɹ ɤ ɩɥɚɜɧɵɦ ɤɪɢɜɵɦ. ɂɧɨɝɞɚ ɬɚɤɢɟ ɤɪɢɜɵɟ ɛɵɜɚɸɬ ɛɥɢɡɤɢ ɩɨ ɮɨɪɦɟ ɤ ɤɪɢɜɨɣ ɧɨɪɦɚɥɶɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɫɥɭɱɚɣɧɵɯ ɜɟɥɢɱɢɧ, ɤɨɬɨɪɚɹ ɨɩɢɫɵɜɚɟɬɫɹ ɞɜɭɦɹ ɩɚɪɚɦɟɬɪɚɦɢ - ɫɪɟɞɧɢɦ ɞɢɚɦɟɬɪɨɦ ɱɚɫɬɢɰ Dm ɢ ɫɬɚɧɞɚɪɬɧɵɦ ɨɬɤɥɨɧɟɧɢɟɦ V ɨɬ ɧɟɝɨ: Dm N N i 1 i 1 ¦ M i Di ¦ M i ; V ªN «¦ M i Dm  Di ¬i 1 2 N ¦ i 1 12 º M i » , (1.1) ¼ ɝɞɟ Ɇi - ɱɢɫɥɨ ɱɚɫɬɢɰ ɜ i-ɬɨɣ ɮɪɚɤɰɢɢ. Ɍɟɨɪɟɬɢɱɟɫɤɢ ɨɛɨɫɧɨɜɚɧɨ, ɱɬɨ ɞɢɫɩɟɪɫɧɨɫɬɶ ɩɵɥɢ, ɨɛɪɚɡɭɸɳɟɣɫɹ ɩɪɢ ɢɡɦɟɥɶɱɟɧɢɢ ɦɚɬɟɪɢɚɥɚ ɜ ɬɟɱɟɧɢɟ ɞɨɫɬɚɬɨɱɧɨ ɞɥɢɬɟɥɶɧɨɝɨ ɜɪɟɦɟɧɢ, ɩɨɞɱɢɧɹɟɬɫɹ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢ ɧɨɪɦɚɥɶɧɨɦɭ ɡɚɤɨɧɭ ɪɚɫɩɪɟɞɟɥɟɧɢɹ. Ɋɚɫɩɪɟɞɟɥɟɧɢɟ ɱɚɫɬɢɰ ɜ ɪɟɚɥɶɧɵɯ ɚɷɪɨɡɨɥɹɯ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɧɨɪɦɚɥɶɧɨɝɨ, ɧɨ ɞɥɹ ɦɧɨɝɢɯ ɢɡ ɧɢɯ ɜɫɟ ɠɟ ɦɨɠɟɬ ɛɵɬɶ ɩɪɢɜɟɞɟɧɨ ɩɨ ɮɨɪɦɟ ɤ ɧɨɪɦɚɥɶɧɨɦɭ, ɟɫɥɢ ɧɚ ɝɪɚɮɢɤɚɯ ɩɨ ɨɫɢ ɚɛɫɰɢɫɫ ɜɦɟɫɬɨ ɪɚɡɦɟɪɨɜ ɱɚɫɬɢɰ ɨɬɤɥɚɞɵɜɚɸɬ ɡɧɚɱɟɧɢɹ ɢɯ ɥɨɝɚɪɢɮɦɨɜ. ȼ ɬɚɤɢɯ ɫɥɭɱɚɹɯ ɫɱɢɬɚɸɬ, ɱɬɨ ɪɚɡɦɟɪɵ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɹ ɪɚɫɩɪɟɞɟɥɟɧɵ ɩɨ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢ ɧɨɪɦɚɥɶɧɨɦɭ ɡɚɤɨɧɭ. Ʉɪɢɜɭɸ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢ ɧɨɪɦɚɥɶɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɬɚɤɠɟ ɦɨɠɧɨ ɡɚɞɚɬɶ ɞɜɭɦɹ ɩɚɪɚɦɟɬɪɚɦɢ ɥɨɝɚɪɢɮɦɚɦɢ ɫɪɟɞɧɟɝɨ ɞɢɚɦɟɬɪɚ ɢ ɫɬɚɧɞɚɪɬɧɨɝɨ ɨɬɤɥɨɧɟɧɢɹ ɨɬ ɧɟɝɨ: lg Dm N N i 1 i 1 ¦ M i lg Di ¦ M i ; lg V ªN «¦ M i lg Dm  lg Di ¬i 1 2 N ¦ i 1 12 º M i » , (1.2) ¼ ɂɧɬɟɝɪɚɥɶɧɵɟ ɤɪɢɜɵɟ ɧɨɪɦɚɥɶɧɨɝɨ ɢ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢ ɧɨɪɦɚɥɶɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɢɦɟɸɬ ɮɨɪɦɭ ɢɧɬɟɝɪɚɥɚ ɜɟɪɨɹɬɧɨɫɬɟɣ, ɱɬɨ ɩɨɡɜɨɥɹɟɬ ɢɫɩɨɥɶɡɨɜɚɬɶ ɬɚɛɥɢɰɵ ɟɝɨ ɡɧɚɱɟɧɢɣ ɜɨ ɜɫɟɯ ɪɚɫɱɟɬɚɯ, ɫɜɹɡɚɧɧɵɯ ɫ ɪɚɫɩɪɟɞɟɥɟɧɢɟɦ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɹ ɩɨ ɪɚɡɦɟɪɚɦ. ɍɞɨɛɧɨ ɩɨɫɬɪɨɢɬɶ ɫɩɟɰɢɚɥɶɧɭɸ ɤɨɨɪɞɢɧɚɬɧɭɸ ɫɟɬɤɭ, ɜ ɤɨɬɨɪɨɣ ɢɧɬɟɝɪɚɥɶɧɚɹ ɤɪɢɜɚɹ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢ ɧɨɪɦɚɥɶɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɪɟɨɛɪɚɡɭɟɬɫɹ ɜ ɩɪɹɦɭɸ ɥɢɧɢɸ. Ƚɪɚɮɢɤ ɞɢɫɩɟɪɫɧɨɝɨ ɫɨɫɬɚɜɚ ɩɵɥɢ ɨɛɵɱɧɨ ɜɵɩɨɥɧɹɸɬ ɜ ɜɟɪɨɹɬɧɨɫɬɧɨ-ɥɨɝɚɪɢɮɦɢɱɟɫɤɨɣ ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ. ɉɨ ɨɫɢ ɚɛɫɰɢɫɫ ɬɚɤɨɣ ɫɢɫɬɟɦɵ ɤɨɨɪɞɢɧɚɬ ɨɬɤɥɚɞɵɜɚɸɬ ɡɧɚɱɟɧɢɹ ɪɚɡɦɟɪɨɜ ɱɚɫɬɢɰ ɜ ɥɨɝɚɪɢɮɦɢɱɟɫɤɨɦ ɦɚɫɲɬɚɛɟ, ɚ ɩɨ ɨɫɢ ɨɪɞɢɧɚɬ - ɞɨɥɢ ɢɥɢ ɩɪɨɰɟɧɬɧɨɟ ɫɨɞɟɪɠɚɧɢɟ ɱɚɫɬɢɰ ɜ ɜɟɪɨɹɬɧɨɫɬɧɨɦ ɦɚɫɲɬɚɛɟ, ɬ.ɟ. ɡɧɚɱɟɧɢɹ ɢɧɬɟɝɪɚɥɚ ɜɟɪɨɹɬɧɨɫɬɟɣ ɞɥɹ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɞɨɥɟɣ ɢɥɢ ɩɪɨɰɟɧɬɧɵɯ ɫɨɞɟɪɠɚɧɢɣ ɱɚɫɬɢɰ. ɋɬɚɧɞɚɪɬɧɨɟ ɨɬɤɥɨɧɟɧɢɟ lg V ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɡ ɫɜɨɣɫɬɜɚ ɢɧɬɟɝɪɚɥɚ ɜɟɪɨɹɬɧɨɫɬɟɣ ɫɨɨɬɧɨɲɟɧɢɟɦ: lgV = lgD84,1 – lgDm = lgDm – lgD15,9, (1.3) ɝɞɟ D84,1 ɢ D15,9 - ɚɛɫɰɢɫɫɵ ɬɨɱɟɤ ɜ ɜɟɪɨɹɬɧɨɫɬɧɨ-ɥɨɝɚɪɢɮɦɢɱɟɫɤɨɣ ɫɢɫɬɟɦɟ ɤɨɨɪɞɢɧɚɬ (ɪɢɫ. 1.1), ɨɪɞɢɧɚɬɵ ɤɨɬɨɪɵɯ ɢɦɟɸɬ ɡɧɚɱɟɧɢɹ 84,1 % ɢ 15,9%. Ɋɚɫɩɪɟɞɟɥɟɧɢɹ, ɛɥɢɡɤɢɟ ɤ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢ ɧɨɪɦɚɥɶɧɵɦ, ɚɩɩɪɨɤɫɢɦɢɪɭɸɬ ɩɪɹɦɵɦɢ ɢ ɫɱɢɬɚɸɬ, ɱɬɨ ɨɧɢ ɨɞɧɨɡɧɚɱɧɨ ɨɩɪɟɞɟɥɹɸɬɫɹ ɩɚɪɚɦɟɬɪɚɦɢ V ɢ Dm. Ɋɢɫ. 1.1. ȼɟɪɨɹɬɧɨɫɬɧɨ-ɥɨɝɚɪɢɮɦɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ ɤɨɨɪɞɢɧɚɬ Mi - Di ȽɈɋɌ 12.2.043-80 ɩɨɞɪɚɡɞɟɥɹɟɬ ɜɫɟ ɩɵɥɢ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɞɢɫɩɟɪɫɧɨɫɬɢ ɧɚ ɩɹɬɶ ɝɪɭɩɩ: I — ɧɚɢɛɨɥɟɟ ɤɪɭɩɧɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ; II — ɤɪɭɩɧɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ; III — ɫɪɟɞɧɟɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ; IV — ɦɟɥɤɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ; V — ɧɚɢɛɨɥɟɟ ɦɟɥɤɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ. ɇɨɦɨɝɪɚɦɦɚ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɝɪɭɩɩɵ ɞɢɫɩɟɪɫɧɨɫɬɢ ɩɵɥɢ ɩɨɤɚɡɚɧɚ ɧɚ ɪɢɫ. 1.2. Ɋɢɫ. 1.2. ɇɨɦɨɝɪɚɦɦɚ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɝɪɭɩɩɵ ɞɢɫɩɟɪɫɧɨɫɬɢ ɩɵɥɢ: G — ɪɚɡɦɟɪ ɱɚɫɬɢɰ ɩɵɥɢ, ɦɤɦ; D - ɫɭɦɦɚɪɧɚɹ ɦɚɫɫɚ ɜɫɟɯ ɱɚɫɬɢɰ ɩɵɥɢ, ɢɦɟɸɳɢɯ ɪɚɡɦɟɪ ɦɟɧɟɟ ɞɚɧɧɨɝɨ G, % (ɨɬ ɨɛɳɟɣ ɦɚɫɫɵ ɱɚɫɬɢɰ ɩɵɥɢ); (I-V) - ɡɨɧɵ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɟ ɝɪɭɩɩɵ ɞɢɫɩɟɪɫɧɨɫɬɢ ɩɵɥɢ. ȿɫɥɢ ɥɢɧɢɹ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɚɹ ɞɢɫɩɟɪɫɧɵɣ ɫɨɫɬɚɜ ɩɵɥɢ, ɩɪɨɯɨɞɢɬ ɩɨ ɧɟɫɤɨɥɶɤɢɦ ɭɱɚɫɬɤɚɦ ɧɨɦɨɝɪɚɦɦɵ, ɩɵɥɶ ɨɬɧɨɫɹɬ ɤ ɝɪɭɩɩɟ, ɛɨɥɟɟ ɜɵɫɨɤɨɣ ɩɨ ɞɢɫɩɟɪɫɧɨɫɬɢ. Ⱦɢɫɩɟɪɫɧɨɫɬɶ ɚɷɪɨɡɨɥɟɣ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɬɚɤɠɟ ɦɟɞɢɚɧɧɵɣ ɞɢɚɦɟɬɪ. Ɇɟɞɢɚɧɧɵɦ (ɫɪɟɞɧɢɦ) ɞɢɚɦɟɬɪɨɦ d50 ɧɚɡɵɜɚɸɬ ɬɚɤɨɣ ɪɚɡɦɟɪ ɱɚɫɬɢɰ, ɩɨ ɤɨɬɨɪɨɦɭ ɦɚɫɫɭ ɚɷɪɨɡɨɥɹ ɦɨɠɧɨ ɪɚɡɞɟɥɢɬɶ ɧɚ ɞɜɟ ɪɚɜɧɵɟ ɱɚɫɬɢ: ɦɚɫɫɚ ɱɚɫɬɢɰ ɦɟɥɶɱɟ d50 ɫɨɫɬɚɜɥɹɟɬ 50 % ɜɫɟɣ ɦɚɫɫɵ ɩɵɥɢ, ɬɚɤ ɠɟ ɤɚɤ ɢ ɦɚɫɫɚ ɱɚɫɬɢɰ ɤɪɭɩɧɟɟ d50. ɉɥɨɬɧɨɫɬɶ — ɦɚɫɫɚ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ, ɤɝ/ɦ3. Ɋɚɡɥɢɱɚɸɬ ɢɫɬɢɧɧɭɸ, ɤɚɠɭɳɭɸɫɹ ɢ ɧɚɫɵɩɧɭɸ ɩɥɨɬɧɨɫɬɶ ɱɚɫɬɢɰ ɩɵɥɢ. ɂɫɬɢɧɧɚɹ ɩɥɨɬɧɨɫɬɶ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɦɚɫɫɭ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɜɟɳɟɫɬɜɚ, ɢɡ ɤɨɬɨɪɨɝɨ ɨɛɪɚɡɨɜɚɧɚ ɩɵɥɶ. Ʉɚɠɭɳɚɹɫɹ ɩɥɨɬɧɨɫɬɶ — ɷɬɨ ɦɚɫɫɚ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɱɚɫɬɢɰ, ɜɤɥɸɱɚɹ ɨɛɴɟɦ ɡɚɤɪɵɬɵɯ ɩɨɪ. Ʉɚɠɭɳɚɹɫɹ ɩɥɨɬɧɨɫɬɶ ɦɨɧɨɥɢɬɧɨɣ ɱɚɫɬɢɰɵ ɪɚɜɧɚ ɢɫɬɢɧɧɨɣ ɩɥɨɬɧɨɫɬɢ ɞɚɧɧɨɣ ɱɚɫɬɢɰɵ. ɇɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ — ɦɚɫɫɚ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɭɥɨɜɥɟɧɧɨɣ ɩɵɥɢ, ɫɜɨɛɨɞɧɨ ɧɚɫɵɩɚɧɧɨɣ ɜ ɟɦɤɨɫɬɶ. ȼ ɨɛɴɟɦ, ɡɚɧɢɦɚɟɦɵɣ ɩɵɥɶɸ, ɜɯɨɞɹɬ ɜɧɭɬɪɟɧɧɢɟ ɩɨɪɵ ɱɚɫɬɢɰ ɢ ɩɪɨɦɟɠɭɬɨɱɧɨɟ ɩɪɨɫɬɪɚɧɫɬɜɨ ɦɟɠɞɭ ɧɢɦɢ. ɍɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɚɷɪɨɡɨɥɹ  ɨɬɧɨɲɟɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɜɫɟɯ ɱɚɫɬɢɰ ɤ ɢɯ ɦɚɫɫɟ ɢɥɢ ɨɛɴɟɦɭ. Ɂɧɚɱɟɧɢɟ ɭɞɟɥɶɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɩɨɡɜɨɥɹɟɬ ɫɭɞɢɬɶ ɨ ɞɢɫɩɟɪɫɧɨɫɬɢ ɩɵɥɢ. ɋɥɢɩɚɟɦɨɫɬɶ ɩɵɥɢ. ɋɤɥɨɧɧɨɫɬɶ ɱɚɫɬɢɰ ɤ ɫɰɟɩɥɟɧɢɸ ɞɪɭɝ ɫ ɞɪɭɝɨɦ ɨɩɪɟɞɟɥɹɟɬɫɹ ɚɭɬɨɝɟɡɢɨɧɧɵɦɢ (ɤɨɝɟɡɢɨɧɧɵɦɢ) ɫɜɨɣɫɬɜɚɦɢ ɢ ɜ ɬɟɯɧɢɤɟ ɩɵɥɟɨɱɢɫɬɤɢ ɩɨɥɭɱɢɥɚ ɧɚɡɜɚɧɢɟ "ɫɥɢɩɚɟɦɨɫɬɶ". ȼɡɚɢɦɨɞɟɣɫɬɜɢɟ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɦɟɠɞɭ ɫɨɛɨɣ ɧɚɡɵɜɚɟɬɫɹ ɚɭɬɨɝɟɡɢɟɣ. Ⱥɭɬɨɝɟɧɧɵɦ ɜɨɡɞɟɣɫɬɜɢɟɦ ɜɵɡɵɜɚɟɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟ ɤɨɧɝɥɨɦɟɪɚɬɨɜ ɩɵɥɢ. ȼɡɚɢɦɨɞɟɣɫɬɜɢɟ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɫ ɩɨɜɟɪɯɧɨɫɬɹɦɢ ɧɚɡɵɜɚɟɬɫɹ ɚɞɝɟɡɢɟɣ. Ɉɛɵɱɧɨ, ɤɨɝɞɚ ɪɟɱɶ ɢɞɟɬ ɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɦɟɠɞɭ ɫɨɛɨɣ, ɹɜɥɟɧɢɹ ɚɭɬɨɝɟɡɢɢ ɢɦɟɧɭɸɬ ɫɥɢɩɚɟɦɨɫɬɶɸ. Ɉɧɚ ɨɛɭɫɥɨɜɥɟɧɚ ɫɢɥɚɦɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ, ɦɨɥɟɤɭɥɹɪɧɨɝɨ ɢ ɤɚɩɢɥɥɹɪɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ. ɍɫɬɨɣɱɢɜɚɹ ɪɚɛɨɬɚ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɟɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ ɜɨ ɦɧɨɝɨɦ ɡɚɜɢɫɢɬ ɨɬ ɫɥɢɩɚɟɦɨɫɬɢ ɩɵɥɢ. ȼ ɤɚɱɟɫɬɜɟ ɩɨɤɚɡɚɬɟɥɹ ɫɥɢɩɚɟɦɨɫɬɢ ɩɪɢɧɢɦɚɸɬ ɩɪɨɱɧɨɫɬɶ ɩɵɥɟɜɨɝɨ ɫɥɨɹ ɧɚ ɪɚɡɪɵɜ, ɉɚ. ɉɨ ɫɬɟɩɟɧɢ ɫɥɢɩɚɟɦɨɫɬɢ ɩɵɥɢ ɦɨɝɭɬ ɛɵɬɶ ɪɚɡɞɟɥɟɧɵ ɧɚ ɱɟɬɵɪɟ ɝɪɭɩɩɵ (ɬɚɛɥ. 1.5.). Ɍɚɛɥɢɰɚ 1.5 ɋɥɢɩɚɟɦɨɫɬɴ ɩɵɥɢ Ƚɪɭɩɩɚ ɫɥɢɩɚɟɦɨɫɬɢ Ɋɚɡɪɵɜɧɚɹ ɩɪɨɱɧɨɫɬɶ ɇɟɤɨɬɨɪɵɟ ɩɵɥɢ ɞɚɧɧɨɣ ɫɥɨɹ ɩɵɥɢ, Ɋ, ɉɚ ɝɪɭɩɩɵ 1 ɇɟɫɥɢɩɚɸɳɢɟɫɹ, Ⱦɨɥɨɦɢɬɨɜɚɹ, ɝɥɢɧɨɡɟɦɧɚɹ, Ɋ < 60 ɲɥɚɤɨɜɚɹ II ɋɥɚɛɨɫɥɢɩɚɸɳɢɟɫɹ, Ʉɨɤɫɨɜɚɹ, ɞɨɦɟɧɧɚɹ, ɚɩɚɬɢɊ = 60-300 ɬɨɜɚɹ III ɋɪɟɞɧɟɫɥɢɩɚɸɳɢɟɫɹ, ɇɟɫɯɜɚɬɵɜɚɸɳɢɟɫɹ ɜɥɚɠP = 300-600 ɧɵɟ ɩɵɥɢ, ɰɟɦɟɧɬɧɚɹ, ɬɨɪɮɹɧɚɹ, ɦɟɬɚɥɥɢɱɟɫɤɚɹ, ɦɭɱɧɚɹ, ɩɵɥɶ ɫ ɦɚɤɫɢɦɚɥɶɧɵɦ ɪɚɡɦɟɪɨɦ ɱɚɫɬɢɰ 25 ɦɤɦ IV ɋɢɥɶɧɨɫɥɢɩɚɸɳɢɟɫɹ, ȼɥɚɠɧɵɟ ɫɯɜɚɬɵɜɚɸɳɢɟɫɹ Ɋ>600 ɩɵɥɢ, ɰɟɦɟɧɬɧɚɹ, ɝɢɩɫɨɜɚɹ, ɜɨɥɨɤɧɢɫɬɵɟ ɩɵɥɢ (ɚɫɛɟɫɬɨɜɚɹ, ɯɥɨɩɤɨɜɚɹ, ɲɟɪɫɬɹɧɚɹ); ɜɫɟ ɩɵɥɢ ɫ ɱɚɫɬɢɰɚɦɢ ɧɟ ɛɨɥɟɟ 10 ɦɤɦ ɇɚɥɢɱɢɟ ɫɯɜɚɬɵɜɚɸɳɢɯɫɹ ɩɵɥɟɣ ɜ ɫɨɫɬɚɜɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɭɤɚɡɵɜɚɟɬ ɧɚ ɜɨɡɦɨɠɧɨɫɬɶ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɣ ɦɟɠɞɭ ɤɨɦɩɨɧɟɧɬɚɦɢ ɜɵɛɪɨɫɨɜ. ɋɱɢɬɚɸɬ, ɱɬɨ ɞɥɹ ɜɥɚɠɧɨɣ ɩɵɥɢ ɫɬɟɩɟɧɶ ɟɟ ɫɥɢɩɚɟɦɨɫɬɢ ɞɨɥɠɧɚ ɛɵɬɶ ɭɜɟɥɢɱɟɧɚ ɧɚ ɨɞɢɧ ɭɪɨɜɟɧɶ. ɋɥɢɩɚɟɦɨɫɬɶ ɜɨɡɪɚɫɬɚɟɬ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ. ɋɵɩɭɱɟɫɬɶ ɩɵɥɢ. ɋɵɩɭɱɟɫɬɶ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɩɨɞɜɢɠɧɨɫɬɶ ɱɚɫɬɢɰ ɩɵɥɢ ɨɬɧɨɫɢɬɟɥɶɧɨ ɞɪɭɝ ɞɪɭɝɚ ɢ ɢɯ ɫɩɨɫɨɛɧɨɫɬɶ ɩɟɪɟɦɟɳɚɬɶɫɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɜɧɟɲɧɟɣ ɫɢɥɵ. ɋɵɩɭɱɟɫɬɶ ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ, ɢɯ ɜɥɚɠɧɨɫɬɢ ɢ ɫɬɟɩɟɧɢ ɭɩɥɨɬɧɟɧɢɹ. ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ ɫɵɩɭɱɟɫɬɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɩɪɢ ɨɩɪɟɞɟɥɟɧɢɢ ɭɝɥɚ ɧɚɤɥɨɧɚ ɫɬɟɧɨɤ ɛɭɧɤɟɪɨɜ, ɬɟɱɟɤ ɢ ɞɪ. ɭɫɬɪɨɣɫɬɜ, ɫɜɹɡɚɧɧɵɯ ɫ ɧɚɤɨɩɥɟɧɢɟɦ ɢ ɩɟɪɟɦɟɳɟɧɢɟɦ ɩɵɥɢ ɢ ɩɵɥɟɜɢɞɧɵɯ ɦɚɬɟɪɢɚɥɨɜ. Ɋɚɡɥɢɱɚɸɬ ɫɬɚɬɢɱɟɫɤɢɣ ɢ ɞɢɧɚɦɢɱɟɫɤɢɣ ɭɝɨɥ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɨɬɤɨɫɚ. Ⱦɢɧɚɦɢɱɟɫɤɢɣ ɭɝɨɥ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɨɬɤɨɫɚ ɨɬɧɨɫɢɬɫɹ ɤ ɫɥɭɱɚɸ, ɤɨɝɞɚ ɩɪɨɢɫɯɨɞɢɬ ɩɚɞɟɧɢɟ ɱɚɫɬɢɰ ɧɚ ɩɥɨɫɤɨɫɬɶ. ɉɨɞ ɫɬɚɬɢɱɟɫɤɢɦ ɭɝɥɨɦ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɨɬɤɨɫɚ (ɟɝɨ ɧɚɡɵɜɚɸɬ ɬɚɤɠɟ ɭɝɥɨɦ ɨɛɪɭɲɟɧɢɹ) ɩɨɧɢɦɚɸɬ ɭɝɨɥ, ɤɨɬɨɪɵɣ ɨɛɪɚɡɭɟɬɫɹ ɩɪɢ ɨɛɪɭɲɟɧɢɢ ɫɥɨɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɭɞɚɥɟɧɢɹ ɩɨɞɩɨɪɧɨɣ ɫɬɟɧɤɢ. ɋɬɚɬɢɱɟɫɤɢɣ ɭɝɨɥ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɨɬɤɨɫɚ ɜɫɟɝɞɚ ɛɨɥɶɲɟ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɭɝɥɚ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɨɬɤɨɫɚ. Ƚɢɝɪɨɫɤɨɩɢɱɧɨɫɬɶɸ ɩɵɥɢ ɧɚɡɵɜɚɟɬɫɹ ɟɟ ɫɩɨɫɨɛɧɨɫɬɶ ɩɨɝɥɨɳɚɬɶ ɜɥɚɝɭ ɢɡ ɜɨɡɞɭɯɚ. ɉɨɝɥɨɳɟɧɢɟ ɜɥɚɝɢ ɨɤɚɡɵɜɚɟɬ ɜɥɢɹɧɢɟ ɧɚ ɬɚɤɢɟ ɫɜɨɣɫɬɜɚ ɩɵɥɢ, ɤɚɤ ɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɜɨɞɢɦɨɫɬɶ, ɫɥɢɩɚɟɦɨɫɬɶ, ɫɵɩɭɱɟɫɬɶ ɢ ɞɪ. Ɋɚɜɧɨɜɟɫɢɟ ɦɟɠɞɭ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɜɥɚɠɧɨɫɬɶɸ ɜɨɡɞɭɯɚ ɢ ɜɥɚɠɧɨɫɬɶɸ ɦɚɬɟɪɢɚɥɚ ɜɵɪɚɠɚɟɬ ɢɡɨɬɟɪɦɚ ɫɨɪɛɰɢɢ. ɉɨɥɶɡɭɹɫɶ ɢɡɨɬɟɪɦɨɣ ɫɨɪɛɰɢɢ, ɦɨɠɧɨ ɫɭɞɢɬɶ ɨ ɩɨɜɟɞɟɧɢɢ ɩɵɥɢ ɜ ɚɩɩɚɪɚɬɚɯ, ɟɦɤɨɫɬɹɯ ɞɥɹ ɩɵɥɢ, ɩɵɥɟɩɪɨɜɨɞɚɯ. ɋɨɞɟɪɠɚɧɢɟ ɜɥɚɝɢ ɜ ɩɵɥɢ ɜɵɪɚɠɚɟɬ ɜɥɚɝɨɫɨɞɟɪɠɚɧɢɟ ɢɥɢ ɜɥɚɠɧɨɫɬɶ. ȼɥɚɝɨɫɨɞɟɪɠɚɧɢɟ — ɨɬɧɨɲɟɧɢɟ ɤɨɥɢɱɟɫɬɜɚ ɜɥɚɝɢ ɜ ɩɵɥɢ ɤ ɤɨɥɢɱɟɫɬɜɭ ɚɛɫɨɥɸɬɧɨ ɫɭɯɨɣ ɩɵɥɢ. ȼɥɚɠɧɨɫɬɶ — ɨɬɧɨɲɟɧɢɟ ɤɨɥɢɱɟɫɬɜɚ ɜɥɚɝɢ ɜ ɩɵɥɢ ɤɨ ɜɫɟɦɭ ɤɨɥɢɱɟɫɬɜɭ ɩɵɥɢ. Ƚɢɝɪɨɫɤɨɩɢɱɟɫɤɚɹ ɜɥɚɝɚ ɩɵɥɢ, ɬ. ɟ. ɜɥɚɝɚ, ɤɨɬɨɪɚɹ ɭɞɟɪɠɢɜɚɟɬɫɹ ɧɚ ɟɟ ɩɨɜɟɪɯɧɨɫɬɢ, ɜ ɩɨɪɚɯ ɢ ɤɚɩɢɥɥɹɪɚɯ, ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɪɢ ɜɵɫɭɲɢɜɚɧɢɢ ɩɪɨɛɵ ɩɵɥɢ ɞɨ ɩɨɫɬɨɹɧɧɨɣ ɦɚɫɫɵ ɜ ɫɭɲɢɥɶɧɨɦ ɲɤɚɮɭ. Ɋɚɜɧɨɜɟɫɧɭɸ ɜɥɚɠɧɨɫɬɶ ɩɵɥɢ (ɢɡɨɬɟɪɦɭ ɫɨɪɛɰɢɢ) ɨɩɪɟɞɟɥɹɸɬ, ɜɵɞɟɪɠɢɜɚɹ ɟɟ ɞɨ ɩɨɫɬɨɹɧɧɨɣ ɦɚɫɫɵ ɜ ɜɨɡɞɭɲɧɨɣ ɫɪɟɞɟ ɫ ɢɡɜɟɫɬɧɨɣ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɜɥɚɠɧɨɫɬɶɸ. ɋɦɚɱɢɜɚɟɦɨɫɬɶ ɩɵɥɢ. ɇɚ ɫɦɚɱɢɜɚɧɢɢ ɩɵɥɢ ɪɚɫɩɵɥɟɧɧɨɣ ɜɨɞɨɣ ɨɫɧɨɜɚɧɨ ɦɨɤɪɨɟ ɩɵɥɟɭɥɚɜɥɢɜɚɧɢɟ. ɋɦɚɱɢɜɚɟɦɨɫɬɶ ɩɵɥɢ ɨɩɪɟɞɟɥɹɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɟɟ ɝɢɞɪɨɭɞɚɥɟɧɢɹ, ɩɪɢɦɟɧɟɧɢɟ ɦɨɤɪɨɣ ɩɵɥɟɭɛɨɪɤɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɩɨɦɟɳɟɧɢɣ. ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɩɵɥɢ. ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɨɤɚɡɵɜɚɸɬ ɡɧɚɱɢɬɟɥɶɧɨɟ ɜɥɢɹɧɢɟ ɧɚ ɩɨɜɟɞɟɧɢɟ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ. ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɫɢɥɵ ɜɨ ɦɧɨɝɨɦ ɨɩɪɟɞɟɥɹɸɬ ɩɪɨɰɟɫɫ ɤɨɚɝɭɥɹɰɢɢ, ɭɫɬɨɣɱɢɜɨɫɬɶ ɩɵɥɟɜɵɯ ɚɝɪɟɝɚɬɨɜ, ɜɡɪɵɜɨɨɩɚɫɧɨɫɬɶ ɩɵɥɢ, ɟɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɠɢɜɵɟ ɨɪɝɚɧɢɡɦɵ. ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɩɵɥɢ ɞɨɥɠɧɵ ɛɵɬɶ ɭɱɬɟɧɵ ɩɪɢ ɪɟɲɟɧɢɢ ɜɨɩɪɨɫɨɜ, ɫɜɹɡɚɧɧɵɯ ɫ ɨɱɢɫɬɤɨɣ ɝɚɡɨɜ (ɜɨɡɞɭɯɚ) ɨɬ ɩɵɥɢ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɫ ɪɚɛɨɬɨɣ ɷɥɟɤɬɪɨɮɢɥɶɬɪɨɜ. Ⱦɚɧɧɵɟ ɨɛ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜɚɯ ɭɥɚɜɥɢɜɚɟɦɨɣ ɩɵɥɢ ɦɨɝɭɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ ɞɥɹ ɨɩɬɢɦɢɡɚɰɢɢ ɪɚɛɨɬɵ ɷɥɟɤɬɪɨɮɢɥɶɬɪɨɜ, ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɢ ɭɫɬɨɣɱɢɜɨɫɬɶ ɤɨɬɨɪɵɯ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɡɚɜɢɫɢɬ ɨɬ ɷɬɢɯ ɫɜɨɣɫɬɜ. Ɉɫɧɨɜɧɵɟ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɩɵɥɢ — ɭɞɟɥɶɧɨɟ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɢ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ ɩɵɥɢ. ɍɞɟɥɶɧɨɟ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ (ɍɗɋ) ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɷɥɟɤɬɪɢɱɟɫɤɭɸ ɩɪɨɜɨɞɢɦɨɫɬɶ ɫɥɨɹ ɩɵɥɢ. ɍɗɋ ɪɚɜɧɨ ɫɨɩɪɨɬɢɜɥɟɧɢɸ ɩɪɨɯɨɠɞɟɧɢɹ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɬɨɤɚ ɱɟɪɟɡ ɤɭɛ ɩɵɥɢ ɫɨ ɫɬɨɪɨɧɨɣ, ɪɚɜɧɨɣ 1 ɦ (Ɉɦ.ɦ). ɉɨ ɡɧɚɱɟɧɢɸ ɍɗɋ ɩɵɥɶ ɦɨɠɧɨ ɪɚɡɞɟɥɢɬɶ ɧɚ ɬɪɢ ɝɪɭɩɩɵ: ɯɨɪɨɲɨ ɩɪɨɜɨɞɹɳɚɹ < 102 Ɉɦ.ɦ, ɫɨ ɫɪɟɞɧɟɣ ɩɪɨɜɨɞɢɦɨɫɬɶɸ 102…108-9 Ɉɦ.ɦ, ɜɵɫɨɤɨɨɦɧɚɹ >108-9 Ɉɦ.ɦ. ɗɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɵɥɢ ɨɛɭɫɥɨɜɥɟɧɨ ɩɨɜɟɪɯɧɨɫɬɧɨɣ ɢ ɨɛɴɟɦɧɨɣ ɩɪɨɜɨɞɢɦɨɫɬɶɸ. ɉɨɜɟɪɯɧɨɫɬɧɵɣ ɫɥɨɣ ɩɵɥɢɧɨɤ ɩɨ ɫɜɨɢɦ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɫɜɨɣɫɬɜɚɦ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɨɫɧɨɜɧɨɣ ɦɚɫɫɵ ɜɫɥɟɞɫɬɜɢɟ ɬɨɝɨ, ɱɬɨ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɚɞɫɨɪɛɢɪɭɸɬɫɹ ɜɥɚɝɚ ɢ ɝɚɡɵ. Ɉɛɴɟɦɧɚɹ (ɜɧɭɬɪɟɧɧɹɹ) ɩɪɨɜɨɞɢɦɨɫɬɶ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɪɨɜɨɞɢɦɨɫɬɶɸ ɦɚɬɟɪɢɚɥɚ ɱɚɫɬɢɰɵ. Ɉɧɚ ɜɨɡɪɚɫɬɚɟɬ ɫ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɨɜɵɲɟɧɢɹ ɷɧɟɪɝɢɢ ɷɥɟɤɬɪɨɧɨɜ. ɇɚ ɪɢɫ. 1.3. ɞɚɧɚ ɡɚɜɢɫɢɦɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɥɨɹ ɩɵɥɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. Ɋɢɫ. 1.3. Ɂɚɜɢɫɢɦɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɥɨɹ ɩɵɥɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɉɪɢ ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɩɵɥɶ ɚɞɫɨɪɛɢɪɭɟɬ ɢɡ ɜɨɡɞɭɯɚ ɜɥɚɝɭ. ɉɨɜɟɪɯɧɨɫɬɧɚɹ ɩɪɨɜɨɞɢɦɨɫɬɶ ɩɨɜɵɲɚɟɬɫɹ, ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɨɧɢɠɚɟɬɫɹ. ɉɨ ɦɟɪɟ ɩɨɜɵɲɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ ɩɪɨɢɫɯɨɞɢɬ ɢɫɩɚɪɟɧɢɟ ɜɥɚɝɢ ɢ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɜɨɡɪɚɫɬɚɟɬ. Ɂɚɬɟɦ, ɩɪɢ ɞɚɥɶɧɟɣɲɟɦ ɩɨɜɵɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɞɨ 90- 180°ɋ, ɛɥɚɝɨɞɚɪɹ ɬɟɩɥɨɜɨɦɭ ɜɨɡɛɭɠɞɟɧɢɸ ɷɥɟɤɬɪɨɧɨɜ ɜɟɳɟɫɬɜɚ, ɩɪɨɢɫɯɨɞɢɬ ɭɦɟɧɶɲɟɧɢɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ. Ɋɚɫɫɦɚɬɪɢɜɚɟɦɚɹ ɤɪɢɜɚɹ ɨɬɪɚɠɚɟɬ ɞɜɚ ɜɢɞɚ ɷɥɟɤɬɪɨɩɪɨɜɨɞɢɦɨɫɬɢ - ɩɨɜɟɪɯɧɨɫɬɧɭɸ ɢ ɨɛɴɟɦɧɭɸ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɡɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɬɟɦɩɟɪɚɬɭɪɨɣ ɢ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ, ɦɨɠɧɨ ɜ ɨɩɪɟɞɟɥɟɧɧɵɯ ɩɪɟɞɟɥɚɯ ɜɨɡɞɟɣɫɬɜɨɜɚɬɶ ɧɚ ɩɪɨɜɨɞɢɦɨɫɬɶ ɩɵɥɢ. ɍɗɋ ɩɵɥɢ ɡɚɜɢɫɢɬ ɬɚɤɠɟ ɨɬ ɯɢɦɢɱɟɫɤɨɝɨ ɫɨɫɬɚɜɚ, ɪɚɡɦɟɪɚ ɢ ɭɩɚɤɨɜɤɢ ɱɚɫɬɢɰ. ɗɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ ɩɵɥɢ. ɉɵɥɟɜɚɹ, ɤɚɤ ɢ ɞɪɭɝɚɹ ɚɷɪɨɡɨɥɶɧɚɹ ɱɚɫɬɢɰɚ, ɦɨɠɟɬ ɢɦɟɬɶ ɨɞɢɧ ɢɥɢ ɧɟɫɤɨɥɶɤɨ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɡɚɪɹɞɨɜ ɢɥɢ ɛɵɬɶ ɧɟɣɬɪɚɥɶɧɨɣ. Ⱥɷɪɨɡɨɥɶɧɚɹ ɫɢɫɬɟɦɚ ɦɨɠɟɬ ɢɦɟɬɶ ɜ ɫɜɨɟɦ ɫɨɫɬɚɜɟ ɱɚɫɬɢɰɵ, ɡɚɪɹɠɟɧɧɵɟ ɩɨɥɨɠɢɬɟɥɶɧɨ, ɨɬɪɢɰɚɬɟɥɶɧɨ, ɧɟɣɬɪɚɥɶɧɵɟ. ɋɨɨɬɧɨɲɟɧɢɟ ɷɬɢɯ ɱɚɫɬɢɰ ɨɩɪɟɞɟɥɹɟɬ ɫɭɦɦɚɪɧɵɣ ɡɚɪɹɞ ɫɢɫɬɟɦɵ. ɉɵɥɟɜɵɟ ɱɚɫɬɢɰɵ ɩɨɥɭɱɚɸɬ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ ɤɚɤ ɜ ɩɪɨɰɟɫɫɟ ɨɛɪɚɡɨɜɚɧɢɹ, ɬɚɤ ɢ ɩɨɫɥɟ ɨɛɪɚɡɨɜɚɧɢɹ, ɧɚɯɨɞɹɫɶ ɜɨ ɜɡɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ, ɜ ɪɟ- ɡɭɥɶɬɚɬɟ ɜɡɪɵɜɚ, ɞɢɫɩɟɪɝɢɪɨɜɚɧɢɹ, ɜɡɚɢɦɧɨɝɨ ɬɪɟɧɢɹ, ɬɪɟɧɢɹ ɨ ɜɨɡɞɭɯ, ɚ ɬɚɤɠɟ ɜɫɥɟɞɫɬɜɢɟ ɚɞɫɨɪɛɰɢɢ ɢɨɧɨɜ ɩɪɢ ɢɨɧɢɡɚɰɢɢ ɫɪɟɞɵ. ɉɨɫɥɟɞɧɢɣ ɫɩɨɫɨɛ ɷɥɟɤɬɪɢɡɚɰɢɢ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɵɦ ɞɥɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ. ɗɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɫɬɨɹɧɢɟ ɚɷɪɨɡɨɥɶɧɨɣ ɫɢɫɬɟɦɵ ɧɟ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɵɦ ɜɨ ɜɪɟɦɟɧɢ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɞɪɭɝ ɫ ɞɪɭɝɨɦ ɢ ɫ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɨɣ ɜɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɩɨɥɭɱɚɸɬ ɡɚɪɹɞ, ɨɬɞɚɸɬ ɟɝɨ, ɧɟɣɬɪɚɥɢɡɭɸɬɫɹ. ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɩɵɥɢ ɨɤɚɡɵɜɚɸɬ ɨɩɪɟɞɟɥɟɧɧɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɭɫɬɨɣɱɢɜɨɫɬɶ ɚɷɪɨɡɨɥɹ, ɚ ɬɚɤɠɟ ɧɚ ɯɚɪɚɤɬɟɪ ɜɨɡɞɟɣɫɬɜɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɧɚ ɠɢɜɨɣ ɨɪɝɚɧɢɡɦ. ɂɡɜɟɫɬɧɨ ɬɚɤɠɟ, ɱɬɨ ɢɦɩɭɥɶɫɨɦ ɜ ɩɪɨɰɟɫɫɟ ɨɛɪɚɡɨɜɚɧɢɹ ɜɡɪɵɜɚ ɦɨɠɟɬ ɛɵɬɶ ɡɚɪɹɞ ɫɬɚɬɢɱɟɫɤɨɝɨ ɷɥɟɤɬɪɢɱɟɫɬɜɚ. ɉɨ ɞɚɧɧɵɦ ɧɟɤɨɬɨɪɵɯ ɝɢɝɢɟɧɢɫɬɨɜ, ɩɵɥɟɜɵɟ ɱɚɫɬɢɰɵ, ɢɦɟɸɳɢɟ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ, ɜ ɞɜɚ ɪɚɡɚ ɢɧɬɟɧɫɢɜɧɟɟ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɜ ɞɵɯɚɬɟɥɶɧɵɯ ɩɭɬɹɯ, ɱɟɦ ɧɟɣɬɪɚɥɶɧɵɟ. Ɉɛɵɱɧɨ ɧɟɦɟɬɚɥɥɢɱɟɫɤɢɟ ɱɚɫɬɢɰɵ ɡɚɪɹɠɚɸɬɫɹ ɩɨɥɨɠɢɬɟɥɶɧɨ, ɚ ɦɟɬɚɥɥɢɱɟɫɤɢɟ - ɨɬɪɢɰɚɬɟɥɶɧɨ. ɋɨɥɢ NaCl, ɋɚɋ1 ɡɚɪɹɠɚɸɬɫɹ ɩɨɥɨɠɢɬɟɥɶɧɨ, ɚ ɋaɋɈ3; Al2O3; Fe2O3; MgCO3 - ɨɬɪɢɰɚɬɟɥɶɧɨ. ɑɚɫɬɢɰɵ, ɢɦɟɸɳɢɟ ɨɞɧɨɢɦɟɧɧɵɟ ɡɚɪɹɞɵ, ɩɪɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɨɬɬɚɥɤɢɜɚɸɬɫɹ, ɪɚɡɧɨɢɦɟɧɧɵɟ - ɩɪɢɬɹɝɢɜɚɸɬɫɹ. ȼɡɚɢɦɨɞɟɣɫɬɜɢɟ ɞɜɭɯ ɬɟɥ, ɪɚɡɦɟɪɚɦɢ ɤɨɬɨɪɵɯ ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ, ɨɩɢɫɵɜɚɟɬɫɹ ɡɚɤɨɧɨɦ Ʉɭɥɨɧɚ. ɉɪɢ ɜɵɫɨɤɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɱɚɫɬɢɰ ɜɨ ɜɡɜɟɲɢɜɚɸɳɟɣ ɫɪɟɞɟ ɤɭɥɨɧɨɜɫɤɢɟ ɫɢɥɵ ɫɩɨɫɨɛɫɬɜɭɸɬ ɩɪɨɰɟɫɫɚɦ ɤɨɚɝɭɥɹɰɢɢ. Ƚɨɪɸɱɟɫɬɶ ɢ ɜɡɪɵɜɚɟɦɨɫɬɶ ɩɵɥɢ. ɋɩɨɫɨɛɧɨɫɬɶ ɨɛɪɚɡɨɜɵɜɚɬɶ ɫ ɜɨɡɞɭɯɨɦ ɜɡɪɵɜɨɨɩɚɫɧɭɸ ɫɦɟɫɶ ɢ ɫɩɨɫɨɛɧɨɫɬɶ ɤ ɜɨɫɩɥɚɦɟɧɟɧɢɸ ɹɜɥɹɸɬɫɹ ɜɚɠɧɟɣɲɢɦɢ ɨɬɪɢɰɚɬɟɥɶɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ ɦɧɨɝɢɯ ɜɢɞɨɜ ɩɵɥɢ. Ɍɚɤɢɟ ɜɟɳɟɫɬɜɚ, ɤɚɤ ɡɟɪɧɨ ɢ ɫɚɯɚɪ, ɯɨɬɹ ɢ ɫɩɨɫɨɛɧɵ ɫɝɨɪɚɬɶ ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɭɫɥɨɜɢɹɯ, ɧɟ ɹɜɥɹɸɬɫɹ ɜɡɪɵɜɨɨɩɚɫɧɵɦɢ ɜɟɳɟɫɬɜɚɦɢ. Ȼɭɞɭɱɢ ɠɟ ɩɪɢɜɟɞɟɧɧɵɦɢ ɜ ɩɵɥɟɜɢɞɧɨɟ ɫɨɫɬɨɹɧɢɟ, ɨɧɢ ɫɬɚɧɨɜɹɬɫɹ ɧɟ ɬɨɥɶɤɨ ɩɨɠɚɪɨɨɩɚɫɧɵɦɢ, ɧɨ ɢ ɜɡɪɵɜɨɨɩɚɫɧɵɦɢ. Ɇɧɨɝɢɟ ɜɢɞɵ ɩɵɥɢ ɨɛɪɚɡɭɸɬ ɫ ɜɨɡɞɭɯɨɦ ɜɡɪɵɜɨɨɩɚɫɧɵɟ ɫɦɟɫɢ, ɤɨɬɨɪɵɟ ɫɩɨɫɨɛɧɵ ɜɡɪɵɜɚɬɶɫɹ. ɉɵɥɶ, ɧɚɯɨɞɹɳɚɹɫɹ ɜɨ ɜɡɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ ɜ ɜɨɡɞɭɯɟ ɩɨɦɟɳɟɧɢɣ, ɜɡɪɵɜɨɨɩɚɫɧɚ. Ɉɫɟɜɲɚɹ ɩɵɥɶ (ɝɟɥɶ) ɩɨɠɚɪɨɨɩɚɫɧɚ. Ɉɞɧɚɤɨ ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɨɫɟɜɲɚɹ ɩɵɥɶ ɫɩɨɫɨɛɧɚ ɩɟɪɟɯɨɞɢɬɶ ɜɨ ɜɡɜɟɲɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ, ɨɛɪɚɡɭɹ ɜɡɪɵɜɨɨɩɚɫɧɵɟ ɫɦɟɫɢ. Ɇɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɤɚɤ ɜɡɪɵɜ, ɬɚɤ ɢ ɝɨɪɟɧɢɟ ɩɵɥɢ, ɧɚɯɨɞɹɳɟɣɫɹ ɜɨ ɜɡɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ. Ʉɨɚɝɭɥɹɰɢɹ ɚɷɪɨɡɨɥɟɣ. ɑɚɫɬɢɰɵ ɚɷɪɨɡɨɥɟɣ ɫɨ ɫɪɟɞɧɟɣ ɢ ɯɨɪɨɲɟɣ ɫɦɚɱɢɜɚɟɦɨɫɬɶɸ, ɧɟ ɪɟɚɝɢɪɭɸɳɢɟ ɫɨ ɫɦɚɱɢɜɚɸɳɢɦɢ ɠɢɞɤɨɫɬɹɦɢ, ɦɨɝɭɬ ɨɛɪɚɡɨɜɵɜɚɬɶ ɫ ɧɢɦɢ ɩɪɢ ɩɟɪɟɦɟɲɢɜɚɧɢɢ ɦɟɯɚɧɢɱɟɫɤɢɟ ɫɦɟɫɢ, ɤɨɥɥɨɢɞɧɵɟ ɪɚɫɬɜɨɪɵ ɢ ɢɫɬɢɧɧɵɟ ɪɚɫɬɜɨɪɵ. ɂɫɬɢɧɧɵɟ ɪɚɫɬɜɨɪɵ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɜɡɜɟɫɟɣ - ɤɨɥɥɨɢɞɨɜ ɢ ɦɟɯɚɧɢɱɟɫɤɢɯ ɫɦɟɫɟɣ ɪɚɡɦɟɪɚɦɢ ɱɚɫɬɢɰ, ɧɚ ɤɨɬɨɪɵɟ ɪɚɫɩɚɞɚɟɬɫɹ ɜɟɳɟɫɬɜɨ ɩɪɢ ɩɟɪɟɦɟɲɢɜɚɧɢɢ. ɂɫɬɢɧɧɵɟ ɪɚɫɬɜɨɪɵ ɫɨɞɟɪɠɚɬ ɜɟɳɟɫɬɜɚ ɜ ɜɢɞɟ ɦɨɥɟɤɭɥ, ɚɬɨɦɨɜ, ɢɨɧɨɜ ɢ ɞɪɭɝɢɯ ɱɚɫɬɢɰ ɫ ɯɚɪɚɤɬɟɪɧɵɦɢ ɪɚɡɦɟɪɚɦɢ 10-9 ɦ ɢ ɦɟɧɟɟ. Ʉ ɠɢɞɤɢɦ ɤɨɥɥɨɢɞɧɵɦ ɪɚɫɬɜɨɪɚɦ ɨɬɧɨɫɹɬ ɜɵɫɨɤɨɞɢɫɩɟɪɫɧɵɟ ɢ ɝɪɭɛɨɞɢɫɩɟɪɫɧɵɟ ɫɦɟɫɢ ɫ ɪɚɡɦɟɪɚɦɢ ɱɚɫɬɢɰ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɨɬ 10-9 ɞɨ 10-7 ɦ ɢ ɨɬ 10-7 ɞɨ 10-5 ɦ. Ƚɪɭɛɨɞɢɫɩɟɪɫɧɵɟ ɠɢɞɤɢɟ ɤɨɥɥɨɢɞɵ ɫ ɬɜɟɪɞɨɣ ɞɢɫɩɟɪɫɧɨɣ ɱɚɫɬɶɸ ɧɚɡɵɜɚɸɬ ɫɭɫɩɟɧɡɢɹɦɢ, ɫ ɠɢɞɤɨɣ - ɷɦɭɥɶɫɢɹɦɢ. Ⱦɢɫɩɟɪɝɢɪɨɜɚɧɧɵɟ ɜɟɳɟɫɬɜɚ ɦɨɝɭɬ ɨɛɪɚɡɨɜɵɜɚɬɶ ɜɡɜɟɫɢ ɢ ɢɫɬɢɧɧɵɟ ɪɚɫɬɜɨɪɵ ɧɟ ɬɨɥɶɤɨ ɜ ɠɢɞɤɨɣ, ɧɨ ɢ ɜ ɝɚɡɨɨɛɪɚɡɧɨɣ ɫɪɟɞɟ. ȼɡɜɟɫɢ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɱɚɫɬɢɰ ɜ ɝɚɡɚɯ ɧɚɡɵɜɚɸɬ ɡɨɥɹɦɢ, ɜ ɜɨɡɞɭɯɟ - ɚɷɪɨɡɨɥɹɦɢ. Ɍɨɧɤɨɞɢɫɩɟɪɫɧɵɟ ɜɡɜɟɫɢ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɱɚɫɬɢɰ ɧɚɡɵɜɚɸɬ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɞɵɦɚɦɢ ɢ ɬɭɦɚɧɚɦɢ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɬɚɤɢɟ ɧɚɡɜɚɧɢɹ ɨɬɧɨɫɹɬɫɹ ɤ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɦ ɚɷɪɨɡɨɥɹɦ, ɤɨɬɨɪɵɟ ɦɨɠɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɤɨɥɥɨɢɞɧɵɟ ɪɚɫɬɜɨɪɵ ɜ ɝɚɡɨɜɨɣ ɫɪɟɞɟ. ɉɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɚɝɪɟɝɢɪɨɜɚɧɧɵɟ ɱɚɫɬɢɰɵ ɞɵɦɨɜ ɢ ɬɭɦɚɧɨɜ ɦɨɝɭɬ ɪɚɫɩɚɞɚɬɶɫɹ ɞɨ ɦɨɥɟɤɭɥ ɢ ɪɚɫɬɜɨɪɹɬɶɫɹ ɜ ɝɚɡɟ-ɧɨɫɢɬɟɥɟ. ɉɪɢɦɟɪɨɦ ɢɫɬɢɧɧɨɝɨ ɝɚɡɨɜɨɝɨ ɪɚɫɬɜɨɪɚ ɦɨɠɟɬ ɫɥɭɠɢɬɶ ɨɱɢɳɟɧɧɵɣ ɨɬ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɩɪɢɦɟɫɟɣ ɜɨɡɞɭɯ. Ɉɛɳɟɣ ɱɟɪɬɨɣ ɢɫɬɢɧɧɵɯ ɪɚɫɬɜɨɪɨɜ ɹɜɥɹɟɬɫɹ ɢɯ ɭɫɬɨɣɱɢɜɨɫɬɶ. Ʉɨɥɥɨɢɞɧɵɟ ɪɚɫɬɜɨɪɵ, ɤɚɤ ɠɢɞɤɢɟ, ɬɚɤ ɢ ɝɚɡɨɨɛɪɚɡɧɵɟ, ɧɟɭɫɬɨɣɱɢɜɵ, ɬ.ɟ. ɧɟ ɦɨɝɭɬ ɫɨɯɪɚɧɹɬɶɫɹ ɞɥɢɬɟɥɶɧɨɟ ɜɪɟɦɹ ɜ ɩɟɪɜɨɧɚɱɚɥɶɧɨɦ ɫɨɫɬɨɹɧɢɢ. ȼɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɫɨ ɜɪɟɦɟɧɟɦ ɤɨɚɝɭɥɢɪɭɸɬɫɹ (ɫɰɟɩɥɹɸɬɫɹ ɞɪɭɝ ɫ ɞɪɭɝɨɦ) ɢ ɨɫɟɞɚɸɬ. Ⱥɷɪɨɡɨɥɶ — ɧɟɭɫɬɨɣɱɢɜɚɹ ɫɢɫɬɟɦɚ. Ɉɧ ɩɨɞɜɟɪɠɟɧ ɩɨɫɬɨɹɧɧɵɦ ɢɡɦɟɧɟɧɢɹɦ. ɋ ɬɟɱɟɧɢɟɦ ɜɪɟɦɟɧɢ ɜ ɚɷɪɨɡɨɥɟ ɩɪɨɢɫɯɨɞɢɬ ɭɤɪɭɩɧɟɧɢɟ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ. ɗɬɨɬ ɩɪɨɰɟɫɫ ɧɨɫɢɬ ɧɚɡɜɚɧɢɟ ɤɨɚɝɭɥɹɰɢɢ (ɚɝɪɟɝɢɪɨɜɚɧɢɹ, ɚɝɥɨɦɟɪɚɰɢɢ); ɨɧ ɩɪɨɢɫɯɨɞɢɬ ɜ ɪɟɡɭɥɶɬɚɬɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɱɚɫɬɢɰ ɩɨɞ ɜɥɢɹɧɢɟɦ ɪɚɡɥɢɱɧɨɝɨ ɪɨɞɚ ɮɢɡɢɱɟɫɤɢɯ ɮɚɤɬɨɪɨɜ. ɇɚɢɛɨɥɶɲɚɹ ɪɨɥɶ ɜ ɤɨɚɝɭɥɹɰɢɢ ɩɪɢɧɚɞɥɟɠɢɬ ɦɨɥɟɤɭɥɹɪɧɵɦ ɫɢɥɚɦ ɢ ɫɢɥɚɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɪɢɬɹɠɟɧɢɹ. Ʉɨɚɝɭɥɹɰɢɹ ɜɡɜɟɲɟɧɧɵɯ ɜ ɝɚɡɚɯ ɱɚɫɬɢɰ ɫɭɳɟɫɬɜɟɧɧɨ ɜɥɢɹɟɬ ɧɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɞɟɣɫɬɜɢɹ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɢɯ ɭɫɬɪɨɣɫɬɜ. ɋ ɬɨɱɤɢ ɡɪɟɧɢɹ ɨɛɟɫɩɵɥɢɜɚɧɢɹ ɜɨɡɞɭɯɚ (ɝɚɡɨɜ) ɤɨɚɝɭɥɹɰɢɹ ɜɟɫɶɦɚ ɩɨɥɟɡɧɨɟ ɹɜɥɟɧɢɟ, ɬɚɤ ɤɚɤ ɛɥɚɝɨɞɚɪɹ ɭɤɪɭɩɧɟɧɢɸ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɩɨɜɵɲɚɟɬɫɹ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɢɯ ɭɥɚɜɥɢɜɚɧɢɹ. Ɇɟɥɤɨɞɢɫɩɟɪɫɧɚɹ ɩɵɥɶ, ɩɥɨɯɨ ɢɥɢ ɫɨɜɫɟɦ ɧɟ ɭɥɚɜɥɢɜɚɟɦɚɹ ɜ ɛɨɥɟɟ ɩɪɨɫɬɵɯ ɚɩɩɚɪɚɬɚɯ, ɦɨɠɟɬ ɛɵɬɶ ɡɚɞɟɪɠɚɧɚ ɢɦɢ ɩɨɫɥɟ ɤɨɚɝɭɥɹɰɢɢ. ɋɨɟɞɢɧɟɧɢɟ ɢ ɭɤɪɭɩɧɟɧɢɟ ɱɚɫɬɢɰ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɫɥɢɩɚɧɢɢ ɢɯ ɜɫɥɟɞɫɬɜɢɟ ɫɬɨɥɤɧɨɜɟɧɢɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɵɯ ɫɢɥ, ɫɢɥ ɢɧɟɪɰɢɢ, ɛɪɨɭɧɨɜɫɤɨɝɨ ɞɜɢɠɟɧɢɹ, ɜɡɚɢɦɧɨɝɨ ɩɪɢɬɹɠɟɧɢɹ ɢ ɬ. ɞ. ɉɚɪɚɥɥɟɥɶɧɨ ɫ ɩɪɨɰɟɫɫɨɦ ɨɛɪɚɡɨɜɚɧɢɹ ɚɝɥɨɦɟɪɚɬɨɜ ɩɪɨɢɫɯɨɞɢɬ ɩɪɨɰɟɫɫ ɪɚɡɪɭɲɟɧɢɹ ɨɛɪɚɡɨɜɚɜɲɢɯɫɹ ɭɤɪɭɩɧɟɧɧɵɯ ɱɚɫɬɢɰ. Ʉɨɚɝɭɥɹɰɢɹ ɛɭɞɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɬɟɦ ɢɧɬɟɧɫɢɜɧɟɟ, ɱɟɦ ɛɨɥɶɲɟ ɜɟɪɨɹɬɧɨɫɬɶ ɫɬɨɥɤɧɨɜɟɧɢɹ ɚɷɪɨɡɨɥɶɧɵɯ ɱɚɫɬɢɰ. ɗɬɚ ɜɟɪɨɹɬɧɨɫɬɶ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɭɤɚɡɚɧɧɵɯ ɜɵɲɟ ɮɚɤɬɨɪɨɜ. Ɇɟɥɤɢɟ ɱɚɫɬɢɰɵ ɜ ɛɨɥɶɲɟɣ ɫɬɟɩɟɧɢ ɩɨɞɜɟɪɠɟɧɵ ɤɨɚɝɭɥɹɰɢɢ, ɱɟɦ ɤɪɭɩɧɵɟ. ɍɫɤɨɪɹɟɬɫɹ ɬɚɤɠɟ ɤɨɚɝɭɥɹɰɢɹ ɩɪɢ ɩɨɜɵɲɟɧɢɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɜ ɝɚɡɨɜɨɣ ɫɪɟɞɟ. ɂɦɟɟɬ ɦɟɫɬɨ ɟɫɬɟɫɬɜɟɧɧɚɹ ɤɨɚɝɭɥɹɰɢɹ, ɤɨɝɞɚ ɷɬɨɬ ɩɪɨɰɟɫɫ ɩɪɨɢɫɯɨɞɢɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɟɫɬɟɫɬɜɟɧɧɵɯ ɫɢɥ, ɬ. ɟ. ɜ ɨɫɧɨɜɧɨɦ ɡɚ ɫɱɟɬ ɛɪɨɭɧɨɜɫɤɨɝɨ ɞɜɢɠɟɧɢɹ ɢ ɝɪɚɜɢɬɚɰɢɨɧɧɵɯ ɫɢɥ, ɢ ɢɫɤɭɫɫɬɜɟɧɧɚɹ ɤɨɚɝɭɥɹɰɢɹ, ɤɨɝɞɚ ɷɬɨɬ ɩɪɨɰɟɫɫ ɢɧɬɟɧɫɢɮɢɰɢɪɭɸɬ, ɩɪɢɦɟɧɹɹ ɞɨɩɨɥɧɢɬɟɥɶɧɵɟ ɮɚɤɬɨɪɵ, ɧɚɩɪɢɦɟɪ, ɬɭɪɛɭɥɢɡɚɰɢɸ ɡɚɩɵɥɟɧɧɨɝɨ ɩɨɬɨɤɚ, ɟɝɨ ɢɫɤɭɫɫɬɜɟɧɧɭɸ ɢɨɧɢɡɚɰɢɸ ɢ ɚɤɭɫɬɢɱɟɫɤɭɸ ɨɛɪɚɛɨɬɤɭ. ɉɪɨɰɟɫɫ ɤɨɚɝɭɥɹɰɢɢ ɜ ɪɟɡɭɥɶɬɚɬɟ ɭɫɤɨɪɹɟɬɫɹ ɜɨ ɦɧɨɝɨ ɪɚɡ, ɬ. ɤ. ɜɟɪɨɹɬɧɨɫɬɶ ɫɬɨɥɤɧɨɜɟɧɢɹ ɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɱɚɫɬɢɰ ɜɨ ɦɧɨɝɨ ɪɚɡ ɭɜɟɥɢɱɢɜɚɟɬɫɹ. ɋɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ ɚɷɪɨɡɨɥɶɧɵɯ ɱɚɫɬɢɰ ɩɨɞɱɢɧɹɟɬɫɹ ɡɚɤɨɧɭ (1.4) 1/n – 1/n0 = Kɤ.W, ɝɞɟ n - ɤɨɧɰɟɧɬɪɚɰɢɹ ɱɚɫɬɢɰ ɜ ɧɟɤɨɬɨɪɵɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ W (ɜ ɫ), 1/ɦ3; n0 ɧɚɱɚɥɶɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɱɚɫɬɢɰ, 1/ɦ3; Kɤ - ɤɨɧɫɬɚɧɬɚ ɤɨɚɝɭɥɹɰɢɢ, ɦ3/ɫ. ɋɤɨɪɨɫɬɶ ɭɛɵɜɚɧɢɹ ɫɱɟɬɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɱɚɫɬɢɰ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɰɟɫɫɚ ɤɨɚɝɭɥɹɰɢɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɡ ɜɵɪɚɠɟɧɢɹ (1.5) N = - dn/dW = - Kɤ.n2, ɝɞɟ N - ɫɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ, ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɱɢɫɥɭ ɜɫɬɪɟɱ ɱɚɫɬɢɰ ɜ ɟɞɢɧɢɰɟ ɨɛɴɟɦɚ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ, 1/ɫ. ɂɡ ɜɵɪɚɠɟɧɢɹ (1.4.) ɫɥɟɞɭɟɬ, ɱɬɨ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ ɱɚɫɬɢɰ ɜɟɥɢɤɚ, ɤɨɚɝɭɥɹɰɢɹ ɩɪɨɢɫɯɨɞɹɬ ɫ ɛɨɥɶɲɟɣ ɫɤɨɪɨɫɬɶɸ, ɧɨ ɡɚɬɟɦ ɟɟ ɫɤɨɪɨɫɬɶ ɛɵɫɬɪɨ ɩɚɞɚɟɬ. Ɍɟɩɥɨɜɚɹ (ɛɪɨɭɧɨɜɫɤɚɹ) ɤɨɚɝɭɥɹɰɢɹ. ȼ ɨɫɧɨɜɟ ɛɪɨɭɧɨɜɫɤɨɣ ɤɨɚɝɭɥɹɰɢɢ ɥɟɠɢɬ ɛɪɨɭɧɨɜɫɤɨɟ (ɯɚɨɬɢɱɟɫɤɨɟ, ɛɟɫɩɨɪɹɞɨɱɧɨɟ) ɞɜɢɠɟɧɢɟ ɜɟɫɶɦɚ ɦɚɥɵɯ ɱɚɫɬɢɰ - ɞɨ 0,1 ɦɤɦ. ɉɪɨɰɟɫɫ ɬɟɩɥɨɜɨɣ (ɛɪɨɭɧɨɜɫɤɨɣ) ɤɨɚɝɭɥɹɰɢɢ ɦɚɥɨ ɡɚɜɢɫɢɬ ɨɬ ɩɪɢɪɨɞɵ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ. Ʉɨɚɝɭɥɹɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɬɟɦ ɛɵɫɬɪɟɟ, ɱɟɦ ɛɨɥɶɲɟ ɞɢɚɩɚɡɨɧ ɪɚɡɦɟɪɨɜ ɱɚɫɬɢɰ, ɬɚɤ ɤɚɤ ɢɦɟɟɬ ɦɟɫɬɨ ɩɪɨɰɟɫɫ ɩɨɝɥɨɳɟɧɢɹ ɤɪɭɩɧɵɦɢ ɱɚɫɬɢɰɚɦɢ ɦɟɥɤɢɯ. ɍɜɟɥɢɱɟɧɢɟ ɫɤɨɪɨɫɬɢ ɤɨɚɝɭɥɹɰɢɢ ɡɚ ɫɱɟɬ ɩɨɥɢɞɢɫɩɟɪɫɧɨɫɬɢ, ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɤɨɚɝɭɥɹɰɢɟɣ ɦɨɧɨɞɢɫɩɟɪɫɧɨɣ ɩɵɥɢ, ɧɟ ɩɪɟɜɵɲɚɟɬ 10 %. ɋɤɨɪɨɫɬɶ ɬɟɩɥɨɜɨɣ ɤɨɚɝɭɥɹɰɢɢ ɩɨɜɵɲɚɟɬɫɹ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɚɛɫɨɥɸɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ ɞɢɫɩɟɪɫɧɨɣ ɫɪɟɞɵ. ɋɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ ɦɚɥɵɯ ɱɚɫɬɢɰ ɬɚɤɠɟ ɜɵɪɚɫɬɚɟɬ ɫ ɩɨɜɵɲɟɧɢɟɦ ɞɚɜɥɟɧɢɹ. Ɂɚɦɟɱɟɧɨ, ɱɬɨ ɞɢɫɩɟɪɫɧɨɫɬɶ ɩɵɥɢ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɝɚɡɚɯ, ɩɨɫɬɭɩɚɸɳɢɯ ɧɚ ɨɱɢɫɬɤɭ, ɨɛɵɱɧɨ ɜɵɲɟ, ɱɟɦ ɜ ɢɫɬɨɱɧɢɤɟ ɩɵɥɟɨɛɪɚɡɨɜɚɧɢɹ. ɗɬɨ ɦɨɠɧɨ ɨɛɴɹɫɧɢɬɶ ɬɟɦ, ɱɬɨ ɛɪɨɭɧɨɜɫɤɚɹ ɤɨɚɝɭɥɹɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɩɨɱɬɢ ɦɝɧɨɜɟɧɧɨ. Ƚɪɚɞɢɟɧɬɧɚɹ ɤɨɚɝɭɥɹɰɢɹ. Ƚɪɚɞɢɟɧɬɧɚɹ ɤɨɚɝɭɥɹɰɢɹ ɨɛɭɫɥɨɜɥɟɧɚ ɧɚɥɢɱɢɟɦ ɝɪɚɞɢɟɧɬɚ ɫɤɨɪɨɫɬɢ ɜ ɩɨɬɨɤɟ ɡɚɩɵɥɟɧɧɵɯ ɝɚɡɨɜ. ɇɚɢɛɨɥɟɟ ɯɚɪɚɤɬɟɪɧɵɦ ɩɪɢɦɟɪɨɦ ɹɜɥɹɟɬɫɹ ɬɟɱɟɧɢɟ ɝɚɡɨɜ ɨɤɨɥɨ ɬɜɟɪɞɨɣ ɫɬɟɧɤɢ ɤɚɧɚɥɚ. ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɡɚɤɨɧɚɦɢ ɝɢɞɪɚɜɥɢɤɢ, ɱɚɫɬɢɰɚ ɜɛɥɢɡɢ ɫɬɟɧɤɢ ɞɜɢɠɟɬɫɹ ɫ ɦɟɧɶɲɟɣ ɫɤɨɪɨɫɬɶɸ, ɱɟɦ ɱɚɫɬɢɰɚ, ɧɚɯɨɞɹɳɚɹɫɹ ɛɥɢɠɟ ɤ ɩɪɨɞɨɥɶɧɨɣ ɨɫɢ ɤɚɧɚɥɚ. Ʉɨɧɬɚɤɬ ɱɚɫɬɢɰ ɜɨɡɦɨɠɟɧ, ɟɫɥɢ ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɧɢɦɢ ɦɟɧɶɲɟ ɫɭɦɦɵ ɢɯ ɪɚɡɦɟɪɨɜ Ⱦɟɣɫɬɜɢɟ ɝɪɚɞɢɟɧɬɧɨɣ ɤɨɚɝɭɥɹɰɢɢ ɨɝɪɚɧɢɱɢɜɚɟɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɩɪɢɫɬɟɧɧɵɦ ɫɥɨɟɦ. ɉɨɷɬɨɦɭ ɨɧɚ ɢɝɪɚɟɬ ɫɭɳɟɫɬɜɟɧɧɭɸ ɪɨɥɶ ɩɪɢ ɡɧɚɱɢɬɟɥɶɧɨɣ ɞɥɢɧɟ ɤɚɧɚɥɨɜ ɢ ɛɨɥɶɲɨɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɩɨ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɤɨɧɬɚɤɬ. Ɍɭɪɛɭɥɟɧɬɧɚɹ ɤɨɚɝɭɥɹɰɢɹ. ɋɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ ɱɚɫɬɢɰ ɜ ɞɢɫɩɟɪɫɧɨɣ ɫɪɟɞɟ ɦɨɠɟɬ ɛɵɬɶ ɢɫɤɭɫɫɬɜɟɧɧɨ ɩɨɜɵɲɟɧɚ ɩɭɬɟɦ ɬɭɪɛɭɥɢɡɚɰɢɢ ɚɷɪɨɡɨɥɹ. ȼɢɯɪɟɜɨɟ ɞɜɢɠɟɧɢɟ ɫɪɟɞɵ, ɜɨɡɧɢɤɚɸɳɟɟ ɜɫɥɟɞɫɬɜɢɟ ɬɭɪɛɭɥɢɡɚɰɢɢ, ɭɜɟɥɢɱɢɜɚɟɬ ɜɟɪɨɹɬɧɨɫɬɶ ɫɬɨɥɤɧɨɜɟɧɢɹ ɱɚɫɬɢɰ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɩɨɜɵɲɚɟɬ ɫɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ. Ɍɭɪɛɭɥɢɡɚɰɢɸ ɩɵɥɟɝɚɡɨɜɵɯ ɩɨɬɨɤɨɜ ɨɫɭɳɟɫɬɜɥɹɸɬ ɞɥɹ ɭɤɪɭɩɧɟɧɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɢ ɩɨɜɵɲɟɧɢɹ, ɛɥɚɝɨɞɚɪɹ ɷɬɨɦɭ, ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɨɱɢɫɬɤɢ. ȼɢɯɪɟɜɨɟ ɞɜɢɠɟɧɢɟ, ɜɨɡɧɢɤɚɸɳɟɟ ɜɫɥɟɞɫɬɜɢɟ ɬɭɪɛɭɥɢɡɚɰɢɢ, ɭɜɟɥɢɱɢɜɚɟɬ ɜɟɪɨɹɬɧɨɫɬɶ ɫɬɨɥɤɧɨɜɟɧɢɹ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɭɤɪɭɩɧɟɧɢɹ ɱɚɫɬɢɰ. Ʉɢɧɟɦɚɬɢɱɟɫɤɚɹ ɤɨɚɝɭɥɹɰɢɹ. ɉɪɨɰɟɫɫ ɤɢɧɟɦɚɬɢɱɟɫɤɨɣ ɤɨɚɝɭɥɹɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɨɬɧɨɫɢɬɟɥɶɧɨɦ ɞɜɢɠɟɧɢɢ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɜɧɟɲɧɢɯ ɫɢɥ — ɫɢɥɵ ɝɪɚɜɢɬɚɰɢɢ, ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ ɢ ɞɪ. ɑɚɫɬɢɰɵ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ ɞɜɢɠɭɬɫɹ ɫ ɪɚɡɥɢɱɧɵɦɢ ɫɤɨɪɨɫɬɹɦɢ. ȼɫɥɟɞɫɬɜɢɟ ɷɬɨɝɨ ɩɪɨɢɫɯɨɞɢɬ ɢɯ ɫɬɨɥɤɧɨɜɟɧɢɟ ɢ ɭɤɪɭɩɧɟɧɢɟ. ɉɪɢɦɟɪɨɦ ɤɢɧɟɦɚɬɢɱɟɫɤɨɣ ɤɨɚɝɭɥɹɰɢɢ ɹɜɥɹɟɬɫɹ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɧɚ ɤɚɩɥɹɯ, ɧɚɯɨɞɹɳɢɯɫɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ (ɷɬɨɬ ɩɪɨɰɟɫɫ ɧɚɡɵɜɚɟɬɫɹ ɬɚɤɠɟ ɝɪɚɜɢɬɚɰɢɨɧɧɨɣ ɤɨɚɝɭɥɹɰɢɟɣ). Ʉɢɧɟɦɚɬɢɱɟɫɤɚɹ ɤɨɚɝɭɥɹɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɬɚɤɠɟ ɩɪɢ ɜɫɬɪɟɱɧɨɦ ɞɜɢɠɟɧɢɢ ɪɚɫɩɵɥɟɧɧɨɣ ɜɨɞɵ ɢ ɚɷɪɨɡɨɥɹ ɜ ɦɨɤɪɵɯ ɩɵɥɟɭɥɨɜɢɬɟɥɹɯ. ɗɥɟɤɬɪɢɱɟɫɤɚɹ ɤɨɚɝɭɥɹɰɢɹ. Ɇɟɠɞɭ ɡɚɪɹɠɟɧɧɵɦɢ ɱɚɫɬɢɰɚɦɢ, ɚ ɬɚɤɠɟ ɦɟɠɞɭ ɡɚɪɹɠɟɧɧɵɦɢ ɢ ɧɟɡɚɪɹɠɟɧɧɵɦɢ ɱɚɫɬɢɰɚɦɢ ɜɨɡɧɢɤɚɸɬ ɫɢɥɵ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ. ɗɬɨ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɦɟɪɟ ɨɩɪɟɞɟɥɹɟɬ ɩɨɜɟɞɟɧɢɟ ɱɚɫɬɢɰ. ɑɚɫɬɢɰɵ ɫɬɚɥɤɢɜɚɸɬɫɹ, ɫɥɢɩɚɸɬɫɹ, ɨɛɪɚɡɭɹ ɚɝɪɟɝɚɬɵ. Ɇɟɠɞɭ ɱɚɫɬɢɰɚɦɢ ɞɟɣɫɬɜɭɸɬ ɫɥɟɞɭɸɳɢɟ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɫɢɥɵ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ: ɤɭɥɨɧɨɜɫɤɚɹ ɫɢɥɚ ɩɪɢɬɹɠɟɧɢɹ ɢɥɢ ɨɬɬɚɥɤɢɜɚɧɢɹ, ɜɨɡɧɢɤɚɸɳɚɹ ɦɟɠɞɭ ɞɜɭɦɹ ɡɚɪɹɠɟɧɧɵɦɢ ɱɚɫɬɢɰɚɦɢ, ɧɚɯɨɞɹɳɢɦɢɫɹ ɧɚ ɨɩɪɟɞɟɥɟɧɧɨɦ ɪɚɫɫɬɨɹɧɢɢ ɞɪɭɝ ɨɬ ɞɪɭɝɚ; ɫɢɥɚ ɢɧɞɭɤɰɢɢ ɦɟɠɞɭ ɡɚɪɹɠɟɧɧɨɣ ɱɚɫɬɢɰɟɣ ɢ ɫɨɫɟɞɧɟɣ ɧɟɡɚɪɹɠɟɧɧɨɣ; ɫɢɥɚ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɟɠɞɭ ɡɚɪɹɠɟɧɧɨɣ ɱɚɫɬɢɰɟɣ ɢ ɞɪɭɝɢɦɢ ɱɚɫɬɢɰɚɦɢ ɫ ɬɟɦ ɠɟ ɡɧɚɤɨɦ; ɫɢɥɚ ɜɧɟɲɧɟɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ (ɟɫɥɢ ɨɧɨ ɢɦɟɟɬɫɹ). ɗɥɟɤɬɪɢɱɟɫɤɚɹ ɤɨɚɝɭɥɹɰɢɹ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɬɟɯɧɢɤɟ ɩɵɥɟɭɥɚɜɥɢɜɚɧɢɹ. ɉɪɢɧɰɢɩɵ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɤɨɚɝɭɥɹɰɢɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɬɚɤɠɟ ɩɪɢ ɢɫɤɭɫɫɬɜɟɧɧɨɣ ɢɨɧɢɡɚɰɢɢ ɝɚɡɨɩɵɥɟɜɵɯ ɩɨɬɨɤɨɜ ɫ ɰɟɥɶɸ ɭɤɪɭɩɧɟɧɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ. Ⱥɤɭɫɬɢɱɟɫɤɚɹ ɤɨɚɝɭɥɹɰɢɹ. ɉɵɥɟɝɚɡɨɜɵɣ ɩɨɬɨɤ ɩɪɨɯɨɞɢɬ ɱɟɪɟɡ ɚɤɭɫɬɢɱɟɫɤɨɟ ɩɨɥɟ, ɫɨɡɞɚɜɚɟɦɨɟ ɢɫɬɨɱɧɢɤɨɦ ɡɜɭɤɚ ɢ ɭɥɶɬɪɚɡɜɭɤɚ. ɉɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɩɚɪɚɦɟɬɪɚɯ ɩɨɥɹ ɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɯ ɩɵɥɟɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ɜɫɥɟɞɫɬɜɢɟ ɤɨɥɟɛɚɧɢɹ ɫɪɟɞɵ ɡɧɚɱɢɬɟɥɶɧɨ ɜɨɡɪɚɫɬɚɟɬ ɱɢɫɥɨ ɫɬɨɥɤɧɨɜɟɧɢɣ ɦɟɠɞɭ ɩɵɥɟɜɵɦɢ ɱɚɫɬɢɰɚɦɢ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɢɯ ɫɥɢɩɚɧɢɸ, ɬ. ɟ. ɤ ɭɤɪɭɩɧɟɧɢɸ ɩɵɥɢ. Ⱥɤɭɫɬɢɱɟɫɤɚɹ ɨɛɪɚɛɨɬɤɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫ ɰɟɥɶɸ ɩɨɜɵɲɟɧɢɹ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɩɵɥɟɭɥɚɜɥɢɜɚɧɢɹ. ɋɩɟɰɢɮɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɩɵɥɟɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ. ȼɫɟ ɪɟɚɥɶɧɵɟ ɝɚɡɨɜɵɟ ɜɵɛɪɨɫɵ ɫɨɞɟɪɠɚɬ ɜɨɞɭ ɜ ɫɨɫɬɨɹɧɢɢ ɩɟɪɟɝɪɟɬɨɝɨ, ɧɚɫɵɳɟɧɧɨɝɨ ɢɥɢ ɜɥɚɠɧɨɝɨ ɩɚɪɚ. Ɇɨɥɟɤɭɥɵ ɢ ɚɝɪɟɝɢɪɨɜɚɧɧɵɟ ɱɚɫɬɢɰɵ ɜɨɞɵ ɞɢɮɮɭɧɞɢɪɭɸɬ ɜ ɨɬɛɪɨɫɧɵɟ ɝɚɡɵ, ɢɫɩɚɪɹɹɫɶ ɢ ɜɨɡɝɨɧɹɹɫɶ ɫ ɠɢɞɤɢɯ ɢ ɬɜɟɪɞɵɯ ɩɨɜɟɪɯɧɨɫɬɟɣ, ɭɧɨɫɹɬɫɹ ɝɚɡɨɜɵɦ ɩɨɬɨɤɨɦ ɩɪɢ ɪɚɡɛɪɵɡɝɢɜɚɧɢɢ ɢ ɪɚɫɩɵɥɟɧɢɢ ɠɢɞɤɨɫɬɢ, ɨɛɪɚɡɭɸɬɫɹ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɩɪɢ ɩɪɨɬɟɤɚɧɢɢ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɣ (ɧɚɩɪɢɦɟɪ, ɩɪɢ ɝɨɪɟɧɢɢ ɬɨɩɥɢɜɚ), ɩɨɩɚɞɚɸɬ ɜ ɜɵɛɪɨɫɵ ɜɦɟɫɬɟ ɫ ɜɨɡɞɭɯɨɦ, ɭɱɚɫɬɜɭɸɳɢɦ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɦ ɩɪɨɰɟɫɫɟ. Ɇɚɤɫɢɦɚɥɶɧɨ ɜɨɡɦɨɠɧɨɟ ɫɨɞɟɪɠɚɧɢɟ ɜɨɞɹɧɨɝɨ ɩɚɪɚ ɜ ɧɟɩɨɞɜɢɠɧɨɦ ɝɚɡɨɜɨɦ ɨɛɴɟɦɟ ɨɞɧɨɡɧɚɱɧɨ ɫɜɹɡɚɧɨ ɫ ɩɚɪɚɦɟɬɪɚɦɢ ɟɝɨ ɫɨɫɬɨɹɧɢɹ. Ʉɨɥɢɱɟɫɬɜɟɧɧɨ ɫɨɞɟɪɠɚɧɢɟ ɜɥɚɝɢ ɜ ɝɚɡɚɯ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɚɛɫɨɥɸɬɧɨɣ ɢ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɜɥɚɠɧɨɫɬɶɸ. Ⱥɛɫɨɥɸɬɧɨɣ ɜɥɚɠɧɨɫɬɶɸ ɢɥɢ ɜɥɚɝɨɫɨɞɟɪɠɚɧɢɟɦ d ɧɚɡɵɜɚɸɬ ɦɚɫɫɭ ɜɨɞɹɧɵɯ ɩɚɪɨɜ, ɩɪɢɯɨɞɹɳɭɸɫɹ ɧɚ ɟɞɢɧɢɰɭ ɨɛɴɟɦɚ ɢɥɢ ɦɚɫɫɵ ɝɚɡɚ. Ɉɬɧɨɫɢɬɟɥɶɧɚɹ ɜɥɚɠɧɨɫɬɶ ɩɨɤɚɡɵɜɚɟɬ ɫɬɟɩɟɧɶ ɧɚɫɵɳɟɧɢɹ ɝɚɡɚ ɜɨɞɹɧɵɦ ɩɚɪɨɦ ɢ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɨɬɧɨɲɟɧɢɟ ɢɦɟɸɳɟɝɨɫɹ ɤɨɥɢɱɟɫɬɜɚ ɜɨɞɹɧɨɝɨ ɩɚɪɚ ɜ ɝɚɡɟ ɤ ɦɚɤɫɢɦɚɥɶɧɨ ɜɨɡɦɨɠɧɨɦɭ ɜ ɞɚɧɧɵɯ ɭɫɥɨɜɢɹɯ. Ɉɬɧɨɫɢɬɟɥɶɧɭɸ ɜɥɚɠɧɨɫɬɶ ɭɞɨɛɧɨ ɜɵɪɚɠɚɬɶ ɱɟɪɟɡ ɨɬɧɨɲɟɧɢɟ ɩɚɪɰɢɚɥɶɧɨɝɨ ɞɚɜɥɟɧɢɹ ɜɨɞɹɧɨɝɨ ɩɚɪɚ ɜ ɝɚɡɟ ɤ ɞɚɜɥɟɧɢɸ (ɭɩɪɭɝɨɫɬɢ) ɧɚɫɵɳɟɧɧɨɝɨ ɩɚɪɚ ɩɪɢ ɬɨɣ ɠɟ ɬɟɦɩɟɪɚɬɭɪɟ. ɇɨɫɢɬɟɥɹɦɢ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɵɞɟɥɟɧɢɣ ɛɨɥɶɲɢɧɫɬɜɚ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɜɵɛɪɨɫɨɜ ɫɥɭɠɚɬ ɜɨɡɞɭɯ ɢɥɢ ɞɵɦɨɜɵɟ ɝɚɡɵ. ɍɩɪɭɝɨɫɬɶ ɧɚɫɵɳɟɧɧɵɯ ɩɚɪɨɜ ɢ ɞɪɭɝɢɟ ɩɚɪɚɦɟɬɪɵ ɜɨɡɞɭɯɚ, ɡɚɝɪɹɡɧɟɧɧɨɝɨ ɧɟ ɛɨɥɟɟ ɱɟɦ ɧɚ ɧɟɫɤɨɥɶɤɨ ɩɪɨɰɟɧɬɨɜ, ɦɨɠɧɨ ɫ ɞɨɩɭɫɬɢɦɨɣ ɞɥɹ ɢɧɠɟɧɟɪɧɵɯ ɪɚɫɱɟɬɨɜ ɩɨɝɪɟɲɧɨɫɬɶɸ ɨɩɪɟɞɟɥɹɬɶ ɩɨ ɬɚɛɥɢɰɚɦ ɢ ɞɢɚɝɪɚɦɦɚɦ ɜɥɚɠɧɨɝɨ ɜɨɡɞɭɯɚ. ȼɥɚɠɧɨɫɬɶ ɞɵɦɨɜɵɯ ɝɚɡɨɜ ɡɚɜɢɫɢɬ ɨɬ ɜɢɞɚ, ɫɨɫɬɚɜɚ, ɚ ɢɧɨɝɞɚ ɢ ɫɩɨɫɨɛɚ ɫɠɢɝɚɧɢɹ ɩɨɬɪɟɛɥɹɟɦɨɝɨ ɬɨɩɥɢɜɚ, ɨɬ ɜɥɚɠɧɨɫɬɢ ɜɨɡɞɭɯɚ, ɩɨɫɬɭɩɚɸɳɟɝɨ ɜ ɡɨɧɭ ɝɨɪɟɧɢɹ ɢ ɝɚɡɨɯɨɞɵ ɬɨɩɥɢɜɨɢɫɩɨɥɶɡɭɸɳɟɝɨ ɭɫɬɪɨɣɫɬɜɚ ɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɪɚɫɱɟɬɨɦ ɩɨ ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɢɦ ɢ ɛɚɥɚɧɫɨɜɵɦ ɭɪɚɜɧɟɧɢɹɦ. ȿɫɥɢ ɢɡɜɟɫɬɧɵ ɡɧɚɱɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ t (°C), ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɜɥɚɠɧɨɫɬɢ M (%) ɝɚɡɚ ɩɪɨɢɡɜɨɥɶɧɨɝɨ ɫɨɫɬɚɜɚ ɢ ɟɝɨ ɞɚɜɥɟɧɢɟ (ɞɥɹ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɚɬɦɨɫɮɟɪɧɨɟ ɞɚɜɥɟɧɢɟ) ɪ (ɉɚ), ɬɨ ɨɫɬɚɥɶɧɵɟ ɩɚɪɚɦɟɬɪɵ ɦɨɠɧɨ ɜɵɱɢɫɥɢɬɶ ɩɨ ɫɨɨɬɧɨɲɟɧɢɹɦ: pɩ = M.pɧ ɉɚ, (1.6) Uɩ = M.Uɧ ɤɝ/ɦ3, (1.7) pɝ = p - M.pɧ ɉɚ, (1.8) Uɝ = (p - M. pɧ)/(Rɝ.T) ɤɝ/ɦ3, (1.9) d = M.Uɧ.Rɝ.T/(p - M.pɧ) ɤɝ/ɤɝ, (1.10) -1 gɝ = (1 + d) ɤɝ/ɤɝ, (1.11) gɩ = d/(1 + d) ɤɝ/ɤɝ, (1.12) . . R = (Rɝ + Rɩ d)/(1 + d) ɤȾɠ/(ɤɝ Ʉ), (1.13) . . c = (cɝ + cɩ d)/(1 + d) ɤȾɠ/(ɤɝ Ʉ), (1.14) i = (iɝ + iɩ.d)/(1 + d) ɤȾɠ/ɤɝ, (1.15) ɝɞɟ Uɧ, pɧ - ɩɥɨɬɧɨɫɬɶ (ɤɝ/ɦ3) ɢ ɞɚɜɥɟɧɢɟ (ɉɚ) ɧɚɫɵɳɟɧɧɨɝɨ ɩɚɪɚ ɩɪɢ ɡɚɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ T; Uɩ, pɩ, gɩ - ɩɥɨɬɧɨɫɬɶ, ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɢ ɦɚɫɫɨɜɚɹ ɞɨɥɹ ɩɚɪɚ; Uɝ, pɝ, gɝ - ɬɨ ɠɟ, ɫɭɯɨɝɨ ɝɚɡɚ; Rɩ, cɩ, iɩ - ɝɚɡɨɜɚɹ ɩɨɫɬɨɹɧɧɚɹ (ɤȾɠ/ɤɝ.Ʉ), ɬɟɩɥɨɟɦɤɨɫɬɶ (Ⱦɠ/ɤɝ.Ʉ) ɢ ɷɧɬɚɥɶɩɢɹ (ɤȾɠ/ɤɝ), ɩɚɪɚ; Rɝ, cɝ , iɝ - ɬɨ ɠɟ, ɫɭɯɨɝɨ ɝɚɡɚ; R, ɫ, i - ɬɨ ɠɟ, ɜɥɚɠɧɨɝɨ ɝɚɡɚ. ȼ ɪɟɚɥɶɧɵɯ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɚɯ ɧɚɪɹɞɭ ɫ ɜɥɚɝɨɣ ɜɫɟɝɞɚ ɩɪɢɫɭɬɫɬɜɭɟɬ ɨɩ- ɪɟɞɟɥɟɧɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ, ɤɨɬɨɪɵɟ ɧɚɯɨɞɹɬɫɹ ɜ ɩɨɫɬɨɹɧɧɨɦ ɤɨɧɬɚɤɬɟ ɫ ɠɢɞɤɨɣ ɢ ɝɚɡɨɜɨɣ ɮɚɡɨɣ. ȼ ɤɨɧɤɪɟɬɧɵɯ ɭɫɥɨɜɢɹɯ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɱɚɫɬɢɰ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɪɚɡɥɢɱɧɵɯ ɚɝɪɟɝɚɬɧɵɯ ɫɨɫɬɨɹɧɢɹɯ, ɦɨɠɟɬ ɩɪɨɹɜɢɬɶɫɹ ɜ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɹɯ, ɦɟɯɚɧɢɱɟɫɤɨɦ ɫɦɟɲɢɜɚɧɢɢ ɢɥɢ ɜɡɚɢɦɧɨɦ ɪɚɫɬɜɨɪɟɧɢɢ. Ⱦɥɹ ɩɪɚɜɢɥɶɧɨɝɨ ɜɵɛɨɪɚ ɫɩɨɫɨɛɨɜ ɨɛɪɚɛɨɬɤɢ ɬɜɟɪɞɵɯ ɢ, ɜ ɨɫɨɛɟɧɧɨɫɬɢ, ɠɢɞɤɢɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ ɜɚɠɧɨ ɡɧɚɬɶ ɧɟ ɬɨɥɶɤɨ ɢɯ ɞɢɫɩɟɪɫɧɵɣ, ɧɨ ɢ ɯɢɦɢɱɟɫɤɢɣ ɫɨɫɬɚɜ. ɂɧɝɪɟɞɢɟɧɬɵ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɦɨɝɭɬ ɛɵɬɶ ɢɧɟɪɬɧɵ ɢɥɢ ɯɢɦɢɱɟɫɤɢ ɚɤɬɢɜɧɵ ɤ ɦɚɬɟɪɢɚɥɭ ɨɱɢɫɬɧɨɝɨ ɭɫɬɪɨɣɫɬɜɚ ɢ ɤɨɦɦɭɧɢɤɚɰɢɣ, ɤ ɜɥɚɝɟ, ɫɨɪɛɟɧɬɚɦ, ɦɨɝɭɬ ɢɫɩɚɪɹɬɶɫɹ, ɜɨɡɝɨɧɹɬɶɫɹ, ɪɚɡɥɚɝɚɬɶɫɹ, ɜɨɫɩɥɚɦɟɧɹɬɶɫɹ ɩɪɢ ɨɛɪɚɛɨɬɤɟ. ɑɬɨɛɵ ɢɡɛɟɠɚɬɶ ɧɟɝɚɬɢɜɧɵɯ ɩɨɫɥɟɞɫɬɜɢɣ ɢɥɢ ɧɟɩɪɟɞɜɢɞɟɧɧɵɯ ɪɟɡɭɥɶɬɚɬɨɜ ɪɚɡɪɚɛɚɬɵɜɚɟɦɨɝɨ ɫɩɨɫɨɛɚ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ, ɧɟɨɛɯɨɞɢɦɨ ɢɦɟɬɶ ɢɧɮɨɪɦɚɰɢɸ ɨ ɯɢɦɢɱɟɫɤɨɦ ɫɨɫɬɚɜɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɢ ɫɜɨɣɫɬɜɚɯ ɢɧɝɪɟɞɢɟɧɬɨɜ ɜ ɨɛɥɚɫɬɢ ɩɚɪɚɦɟɬɪɨɜ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɭɫɥɨɜɢɹɦ ɢɯ ɨɛɪɚɛɨɬɤɢ. 1.5. ȼɪɟɞɧɵɟ ɝɚɡɵ ɢ ɩɚɪɵ Ɇɧɨɝɢɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚ ɩɪɟɞɩɪɢɹɬɢɹɯ ɦɟɬɚɥɥɭɪɝɢɱɟɫɤɨɣ, ɯɢɦɢɱɟɫɤɨɣ, ɧɟɮɬɟɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɜ ɪɹɞɟ ɰɟɯɨɜ ɦɚɲɢɧɨɫɬɪɨɢɬɟɥɶɧɵɯ ɡɚɜɨɞɨɜ, ɧɚ ɦɧɨɝɢɯ ɞɪɭɝɢɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɩɨɫɬɭɩɥɟɧɢɟɦ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ ɜ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ. Ⱥɤɬɢɜɧɵɦ ɡɚɝɪɹɡɧɢɬɟɥɟɦ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɹɜɥɹɟɬɫɹ ɬɪɚɧɫɩɨɪɬ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɚɜɬɨɦɨɛɢɥɶɧɵɣ. Ƚɚɡɨɜɵɟ ɡɚɝɪɹɡɧɟɧɢɹ, ɤɚɤ ɢ ɚɷɪɨɡɨɥɶɧɵɟ, ɡɚɝɪɹɡɧɹɹ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ, ɡɧɚɱɢɬɟɥɶɧɨ ɭɯɭɞɲɚɸɬ ɟɝɨ ɤɚɱɟɫɬɜɨ, ɚ ɜ ɪɹɞɟ ɫɥɭɱɚɟɜ ɞɟɥɚɸɬ ɟɝɨ ɧɟɩɪɢɝɨɞɧɵɦ ɞɥɹ ɧɚɯɨɠɞɟɧɢɹ ɜ ɧɟɦ ɥɸɞɟɣ. ɋɚɧɢɬɚɪɧɵɟ ɧɨɪɦɵ ɨɝɪɚɧɢɱɢɜɚɸɬ ɤɨɧɰɟɧɬɪɚɰɢɸ ɜɪɟɞɧɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ ɜ ɜɨɡɞɭɯɟ ɧɚɫɟɥɟɧɧɵɯ ɩɭɧɤɬɨɜ, ɨɞɧɚɤɨ ɷɬɢ ɬɪɟɛɨɜɚɧɢɹ ɧɟ ɜɫɟɝɞɚ ɫɨɛɥɸɞɚɸɬɫɹ. ɗɬɨ ɧɚɧɨɫɢɬ ɡɧɚɱɢɬɟɥɶɧɵɣ ɭɳɟɪɛ ɡɞɨɪɨɜɶɸ ɥɸɞɟɣ, ɩɪɨɠɢɜɚɸɳɢɯ ɜ ɦɟɫɬɧɨɫɬɹɯ, ɩɨɞɜɟɪɠɟɧɧɵɯ ɜɨɡɞɟɣɫɬɜɢɸ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ, ɜɟɞɟɧɢɸ ɫɟɥɶɫɤɨɝɨ ɯɨɡɹɣɫɬɜɚ ɜ ɞɚɧɧɨɦ ɪɚɣɨɧɟ, ɨɪɝɚɧɢɡɚɰɢɢ ɨɬɞɵɯɚ ɥɸɞɟɣ, ɩɪɢɜɨɞɢɬ ɤ ɩɨɜɪɟɠɞɟɧɢɸ ɚɪɯɢɬɟɤɬɭɪɧɵɯ ɫɨɨɪɭɠɟɧɢɣ, ɩɚɦɹɬɧɢɤɨɜ ɢɫɬɨɪɢɢ ɢ ɤɭɥɶɬɭɪɵ ɢ ɬ.ɞ. Ⱦɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɢɡɛɟɠɚɬɶ ɷɬɢɯ ɬɹɠɟɥɵɯ ɩɨɫɥɟɞɫɬɜɢɣ ɢ ɩɨɞɞɟɪɠɢɜɚɬɶ ɤɚɱɟɫɬɜɨ ɜɨɡɞɭɯɚ ɧɚ ɭɪɨɜɧɟ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɦ ɫɚɧɢɬɚɪɧɵɦ ɬɪɟɛɨɜɚɧɢɹɦ, ɜɵɛɪɨɫɵ ɜ ɚɬɦɨɫɮɟɪɭ ɞɨɥɠɧɵ ɨɱɢɳɚɬɶɫɹ ɧɟ ɬɨɥɶɤɨ ɨɬ ɚɷɪɨɡɨɥɶɧɵɯ ɡɚɝɪɹɡɧɟɧɢɣ, ɧɨ ɬɚɤɠɟ ɨɬ ɜɪɟɞɧɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ. ȼɵɛɪɨɫ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ ɜ ɚɬɦɨɫɮɟɪɭ ɦɨɠɧɨ ɡɧɚɱɢɬɟɥɶɧɨ ɭɦɟɧɶɲɢɬɶ ɛɥɚɝɨɞɚɪɹ ɨɫɭɳɟɫɬɜɥɟɧɢɸ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɦɟɪɨɩɪɢɹɬɢɣ. ɉɨ ɦɟɪɟ ɪɚɡɜɢɬɢɹ ɬɟɯɧɢɤɢ ɢ ɫɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɩɨɹɜɥɹɸɬɫɹ ɧɨɜɵɟ ɜɢɞɵ ɜɟɳɟɫɬɜ, ɜɵɛɪɚɫɵɜɚɟɦɵɯ ɜ ɚɬɦɨɫɮɟɪɭ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɩɪɨɢɫɯɨɞɢɬ ɦɨɞɟɪɧɢɡɚɰɢɹ ɫɭɳɟɫɬɜɭɸɳɟɝɨ ɢ ɪɚɡɪɚɛɨɬɤɚ ɧɨɜɵɯ ɜɢɞɨɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ, ɜ ɤɨɬɨɪɨɦ ɨɫɭɳɟɫɬɜɥɟɧɚ ɩɨɥɧɚɹ ɝɟɪɦɟ- ɬɢɡɚɰɢɹ, ɚɜɬɨɦɚɬɢɡɚɰɢɹ, ɞɢɫɬɚɧɰɢɨɧɧɨɟ ɭɩɪɚɜɥɟɧɢɟ. ȼɧɟɞɪɹɟɬɫɹ ɛɟɡɨɬɯɨɞɧɚɹ ɬɟɯɧɨɥɨɝɢɹ, ɩɪɢ ɤɨɬɨɪɨɣ ɢɫɤɥɸɱɚɸɬɫɹ ɜɵɛɪɨɫɵ ɜ ɚɬɦɨɫɮɟɪɭ, ɜɨɡɧɢɤɚɸɬ ɧɨɜɵɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ ɨɬ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ, ɪɚɡɪɚɛɚɬɵɜɚɟɬɫɹ ɢ ɩɪɢɦɟɧɹɟɬɫɹ ɧɨɜɨɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɟ ɨɛɨɪɭɞɨɜɚɧɢɟ, ɜ ɫɨɫɬɚɜ ɤɨɬɨɪɨɝɨ ɜɯɨɞɹɬ ɜɫɬɪɨɟɧɧɵɟ ɚɝɪɟɝɚɬɵ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ. ȼɫɟ ɷɬɨ ɜɫɟɥɹɟɬ ɧɚɞɟɠɞɭ, ɱɬɨ ɧɟɞɚɥɟɤɨ ɬɨ ɜɪɟɦɹ, ɤɨɝɞɚ ɩɪɚɤɬɢɱɟɫɤɢ ɜɫɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɫɬɚɧɭɬ ɛɟɡɨɬɯɨɞɧɵɦɢ ɢ ɜɵɛɪɨɫ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ ɩɪɚɤɬɢɱɟɫɤɢ ɩɪɟɤɪɚɬɢɬɫɹ. ɋɩɟɰɢɚɥɢɫɬ ɩɨ ɢɧɠɟɧɟɪɧɨɣ ɡɚɳɢɬɟ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɨɛɥɚɞɚɹ ɝɥɭɛɨɤɢɦɢ ɡɧɚɧɢɹɦɢ ɜ ɨɛɥɚɫɬɢ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ ɨɬ ɩɵɥɢ, ɞɨɥɠɟɧ ɢɦɟɬɶ ɱɟɬɤɨɟ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɨɛ ɨɱɢɫɬɤɟ ɜɨɡɞɭɯɚ ɨɬ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ. Ɋɟɲɟɧɢɟ ɩɪɨɛɥɟɦɵ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ ɨɬ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɟɧɢɣ ɬɪɟɛɭɟɬ ɫɩɟɰɢɚɥɶɧɵɯ ɡɧɚɧɢɣ ɪɚɡɥɢɱɧɵɯ ɞɢɫɰɢɩɥɢɧ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ. ɂɧɠɟɧɟɪ, ɫɩɟɰɢɚɥɢɡɢɪɭɸɳɢɣɫɹ ɜ ɨɛɥɚɫɬɢ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɞɨɥɠɟɧ ɡɧɚɬɶ ɢɫɬɨɱɧɢɤɢ ɜɵɞɟɥɟɧɢɹ ɩɚɪɨɜ ɢ ɝɚɡɨɜ, ɫɜɨɣɫɬɜɚ ɷɬɢɯ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ, ɯɚɪɚɤɬɟɪ ɢɯ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ, ɩɪɢɪɨɞɧɭɸ ɫɪɟɞɭ, ɞɪɭɝɢɟ ɨɛɴɟɤɬɵ ɢ ɬ. ɞ. Ɉɧ ɞɨɥɠɟɧ ɡɧɚɬɶ ɨɫɧɨɜɧɵɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɯ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɟɧɢɣ, ɢɯ ɬɟɯɧɢɤɨ-ɷɤɨɧɨɦɢɱɟɫɤɢɟ ɩɨɤɚɡɚɬɟɥɢ, ɪɟɚɥɶɧɵɟ ɜɨɡɦɨɠɧɨɫɬɢ ɢ ɩɟɪɫɩɟɤɬɢɜɵ ɜ ɞɚɧɧɨɣ ɨɛɥɚɫɬɢ. ɉɪɢ ɨɱɢɫɬɤɟ ɜɵɛɪɨɫɨɜ ɨɬ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɟɧɢɣ ɩɪɢɯɨɞɢɬɫɹ ɪɟɲɚɬɶ ɨɞɧɨɜɪɟɦɟɧɧɨ ɪɹɞ ɩɪɨɛɥɟɦ, ɫɜɹɡɚɧɧɵɯ ɫ ɬɟɦ, ɱɬɨ ɜ ɜɵɛɪɨɫɚɯ, ɫɨɞɟɪɠɚɳɢɯ ɜɪɟɞɧɵɟ ɩɚɪɵ ɢ ɝɚɡɵ, ɧɚɯɨɞɹɬɫɹ ɬɚɤɠɟ ɚɷɪɨɡɨɥɢ — ɩɵɥɶ, ɫɚɠɚ; ɜɵɛɪɨɫɵ ɜ ɪɹɞɟ ɫɥɭɱɚɟɜ ɧɚɝɪɟɬɵ ɞɨ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪ, ɡɚɝɪɹɡɧɟɧɢɹ, ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɧɢɯ, ɦɧɨɝɨɤɨɦɩɨɧɟɧɬɧɵ, ɢ ɢɯ ɧɟɨɛɯɨɞɢɦɨ ɩɨɞɜɟɪɝɚɬɶ ɪɚɡɥɢɱɧɵɦ ɦɟɬɨɞɚɦ ɨɱɢɫɬɤɢ, ɪɚɫɯɨɞ ɜɵɛɪɨɫɨɜ ɩɨ ɜɪɟɦɟɧɢ ɧɟɩɨɫɬɨɹɧɟɧ, ɢɡɦɟɧɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɧɢɯ ɪɚɡɥɢɱɧɵɯ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɢ ɬ. ɞ. ȼɫɟ ɷɬɨ, ɤɨɧɟɱɧɨ, ɨɫɥɨɠɧɹɟɬ ɨɱɢɫɬɤɭ, ɬɪɟɛɭɟɬ ɩɪɢɧɹɬɢɹ ɜ ɤɚɠɞɨɦ ɨɬɞɟɥɶɧɨɦ ɫɥɭɱɚɟ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɪɟɲɟɧɢɣ. Ɇɟɬɨɞɵ ɨɱɢɫɬɤɢ ɩɪɢɧɢɦɚɸɬ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɡɚɝɪɹɡɧɹɸɳɟɝɨ ɜɟɳɟɫɬɜɚ, ɟɝɨ ɚɝɪɟɝɚɬɧɨɝɨ ɫɨɫɬɨɹɧɢɹ, ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɨɱɢɳɚɟɦɨɣ ɫɪɟɞɟ ɢ ɞɪ. Ɋɚɞɢɤɚɥɶɧɵɦ ɪɟɲɟɧɢɟɦ ɞɥɹ ɡɚɳɢɬɵ ɜɚɠɧɟɣɲɟɝɨ ɷɥɟɦɟɧɬɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ — ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɹɜɥɹɟɬɫɹ ɫɨɡɞɚɧɢɟ ɢ ɜɧɟɞɪɟɧɢɟ ɛɟɡɨɬɯɨɞɧɵɯ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ, ɬ. ɟ. ɬɚɤɢɯ, ɩɪɢ ɤɨɬɨɪɵɯ ɜɫɟ ɨɬɯɨɞɵ ɩɪɨɢɡɜɨɞɫɬɜɚ ɧɟ ɜɵɛɪɚɫɵɜɚɸɬɫɹ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ, ɚ ɢɫɩɨɥɶɡɭɸɬɫɹ ɞɥɹ ɩɨɥɟɡɧɵɯ ɰɟɥɟɣ. ɋɨɨɬɧɨɲɟɧɢɟ ɦɟɠɞɭ ɦɚɫɫɨɣ ɡɚɬɪɚɱɟɧɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɝɨɬɨɜɨɣ ɩɪɨɞɭɤɰɢɢ ɩɨɤɚɡɵɜɚɟɬ ɬ. ɧ. ɦɚɬɟɪɢɚɥɶɧɵɣ ɢɧɞɟɤɫ ɩɪɨɢɡɜɨɞɫɬɜɚ, ɬ. ɟ. ɨɬɧɨɲɟɧɢɟ ɫɭɦɦɚɪɧɨɝɨ ɭɞɟɥɶɧɨɝɨ ɪɚɫɯɨɞɚ ɫɵɪɶɹ ɢ ɜɫɩɨɦɨɝɚɬɟɥɶɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤ ɟɞɢɧɢɰɟ ɦɚɫɫɵ ɝɨɬɨɜɨɣ ɩɪɨɞɭɤɰɢɢ. ȿɫɥɢ ɧɟɬ ɨɬɯɨɞɨɜ, ɷɬɨɬ ɢɧɞɟɤɫ ɪɚɜɟɧ ɟɞɢɧɢɰɟ. ȼ ɪɟɚɥɶɧɵɯ ɫɨɜɪɟɦɟɧɧɵɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ ɨɧ, ɤɚɤ ɩɪɚɜɢɥɨ, ɛɨɥɶɲɟ ɟɞɢɧɢɰɵ, ɱɚɫɬɨ ɜɟɫɶɦɚ ɡɧɚɱɢɬɟɥɶɧɨ. Ɍɚɤ ɧɚɩɪɢɦɟɪ, ɩɪɢ ɩɪɨɢɡɜɨɞɫɬɜɟ ɧɟɤɨɬɨɪɵɯ ɤɪɚɫɢɬɟɥɟɣ ɨɧ ɫɨɫɬɚɜɥɹɟɬ 9—17 ɢ ɬ. ɞ., ɫɥɟɞɨɜɚɬɟɥɶɧɨ ɜ ɨɬɯɨɞɵ ɢɞɟɬ ɨɬ 89 ɞɨ 94 % ɜɟɳɟɫɬɜɚ, ɭɱɚɫɬɜɭɸɳɟɝɨ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟ. ɋɭɞɢɬɶ ɨ ɬɨɦ, ɧɚɫɤɨɥɶɤɨ ɞɚɧɧɚɹ ɬɟɯɧɨɥɨɝɢɹ ɛɥɢɡɤɚ ɤ ɛɟɡɨɬɯɨɞɧɨɣ, ɦɨɠɧɨ ɩɨ ɦɚɬɟɪɢɚɥɶɧɨɦɭ ɢɧɞɟɤɫɭ ɩɪɨɢɡɜɨɞɫɬɜɚ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜɚɠɧɟɣɲɢɦ ɦɟɪɨɩɪɢɹɬɢɟɦ ɩɨ ɭɦɟɧɶɲɟɧɢɸ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɭ ɹɜɥɹɟɬɫɹ ɫɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨ ɩɪɨɰɟɫɫɚ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɭɦɟɧɶɲɟɧɢɹ ɨɬɯɨɞɨɜ, ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɢɯ, ɩɪɢɦɟɧɟɧɢɹ ɩɪɨɰɟɫɫɨɜ, ɧɟ ɫɜɹɡɚɧɧɵɯ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɢ ɜɵɞɟɥɟɧɢɟɦ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ ɜɪɟɞɧɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ. Ⱦɪɭɝɢɦ ɜɚɠɧɵɦ ɦɟɪɨɩɪɢɹɬɢɟɦ ɹɜɥɹɟɬɫɹ ɝɟɪɦɟɬɢɡɚɰɢɹ ɨɛɨɪɭɞɨɜɚɧɢɹ. ɉɨɞ ɝɟɪɦɟɬɢɡɚɰɢɟɣ ɫɥɟɞɭɟɬ ɩɨɧɢɦɚɬɶ ɧɟɩɪɨɧɢɰɚɟɦɨɫɬɶ ɜɧɟɲɧɢɯ ɤɨɧɫɬɪɭɤɰɢɣ (ɫɬɟɧɨɤ) ɢ ɞɪɭɝɢɯ ɤɨɧɫɬɪɭɤɰɢɣ ɚɩɩɚɪɚɬɨɜ ɢ ɤɨɦɦɭɧɢɤɚɰɢɣ, ɜ ɤɨɬɨɪɵɯ ɧɚɯɨɞɹɬɫɹ ɢɥɢ ɩɨ ɤɨɬɨɪɵɦ ɩɟɪɟɦɟɳɚɸɬɫɹ ɠɢɞɤɨɫɬɢ ɢ ɝɚɡɵ. ɉɪɢ ɧɟɞɨɫɬɚɬɨɱɧɨɣ ɝɟɪɦɟɬɢɡɚɰɢɢ ɢɡ ɚɩɩɚɪɚɬɨɜ ɢ ɤɨɦɦɭɧɢɤɚɰɢɣ ɠɢɞɤɨɫɬɢ ɢ ɝɚɡɵ ɩɪɨɧɢɤɚɸɬ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ. ȼɪɟɞ ɨɬ ɷɬɨɝɨ ɫɨɫɬɨɢɬ ɤɚɤ ɜ ɩɨɬɟɪɟ ɩɪɨɞɭɤɬɚ, ɫɵɪɶɹ, ɦɚɬɟɪɢɚɥɚ, ɬɚɤ ɢ ɡɚɝɪɹɡɧɟɧɢɢ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɩɨɱɜɵ, ɚɬɦɨɫɮɟɪɵ, ɜɨɞɨɟɦɨɜ. 1.6. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɜɨɞ ɢ ɫɜɨɣɫɬɜɚ ɜɨɞɧɵɯ ɞɢɫɩɟɪɫɧɵɯ ɫɢɫɬɟɦ ȼ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɜɨɞɭ ɢɫɩɨɥɶɡɭɸɬ ɤɚɤ ɫɵɪɶɟ ɢ ɢɫɬɨɱɧɢɤ ɷɧɟɪɝɢɢ, ɤɚɤ ɯɥɚɞɨɚɝɟɧɬ, ɪɚɫɬɜɨɪɢɬɟɥɶ, ɷɤɫɬɪɚɝɟɧɬ, ɞɥɹ ɬɪɚɧɫɩɨɪɬɢɪɨɜɚɧɢɹ ɫɵɪɶɹ ɢ ɦɚɬɟɪɢɚɥɨɜ. Ɉɛɳɟɟ ɤɨɥɢɱɟɫɬɜɨ ɩɪɢɪɨɞɧɨɣ ɜɨɞɵ ɧɚ Ɂɟɦɥɟ ɫɨɫɬɚɜɥɹɟɬ 1386 ɦɥɧ. ɤɭɛ. ɤɦ., ɢɡ ɧɢɯ ɤɨɥɢɱɟɫɬɜɨ ɩɪɟɫɧɨɣ ɜɨɞɵ - 35 ɦɥɧ.ɤɭɛ.ɤɦ., ɬ.ɟ. ɨɤɨɥɨ 2,5%. Ɉɛɴɟɦ ɩɨɬɪɟɛɥɟɧɢɹ ɩɪɟɫɧɨɣ ɜɨɞɵ ɜ ɦɢɪɟ ɞɨɫɬɢɝɚɟɬ 3900 ɦɥɪɞ.ɤɭɛ. ɦ/ɝɨɞ. Ɉɤɨɥɨ ɩɨɥɨɜɢɧɵ ɷɬɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɩɨɬɪɟɛɥɹɟɬɫɹ ɛɟɡɜɨɡɜɪɚɬɧɨ, ɚ ɞɪɭɝɚɹ ɩɨɥɨɜɢɧɚ ɩɪɟɜɪɚɳɚɟɬɫɹ ɜ ɫɬɨɱɧɵɟ ɜɨɞɵ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɫɬɟɩɟɧɢ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɨɫɬɢ (ɜ ɝ/ɥ) ɜɨɞɵ ɞɟɥɹɬɫɹ: ɧɚ ɩɪɟɫɧɵɟ (ɫ ɫɨɞɟɪɠɚɧɢɟɦ ɫɨɥɟɣ <1); ɫɨɥɨɧɨɜɚɬɵɟ (1…10); ɫɨɥɟɧɵɟ (10…50) ɢ ɪɚɫɫɨɥɵ (>50). ȼ ɫɜɨɸ ɨɱɟɪɟɞɶ ɩɪɟɫɧɵɟ ɜɨɞɵ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɜɨɞɵ ɦɚɥɨɣ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɨɫɬɢ (ɞɨ 200 ɦɝ/ɥ); ɫɪɟɞɧɟɣ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɨɫɬɢ (200…500 ɦɝ/ɥ) ɢ ɩɨɜɵɲɟɧɧɨɣ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɨɫɬɢ (500…1000 ɦɝ/ɥ). ɉɨ ɩɪɟɨɛɥɚɞɚɸɳɟɦɭ ɚɧɢɨɧɭ ɜɫɟ ɜɨɞɵ ɞɟɥɹɬɫɹ ɧɚ ɝɢɞɪɨɤɚɪɛɨɧɚɬɧɵɟ, ɫɭɥɶɮɚɬɧɵɟ ɢ ɯɥɨɪɢɞɧɵɟ. ɀɟɫɬɤɨɫɬɶ ɩɪɢɪɨɞɧɵɯ ɜɨɞ ɨɛɭɫɥɨɜɥɟɧɚ ɩɪɢɫɭɬɫɬɜɢɟɦ ɜ ɧɢɯ ɫɨɥɟɣ ɤɚɥɶɰɢɹ ɢ ɦɚɝɧɢɹ ɢ ɜɵɪɚɠɚɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɢɨɧɨɜ ɋɚ2+ ɢ Mg2+ ɜ ɦɦɨɥɶ ɷɤɜ/ɥ. Ɋɚɡɥɢɱɚɸɬ ɨɛɳɭɸ ɤɚɪɛɨɧɚɬɧɭɸ ɢ ɧɟɤɚɪɛɨɧɚɬɧɭɸ ɠɟɫɬɤɨɫɬɶ. Ɉɛɳɚɹ ɠɟɫɬɤɨɫɬɶ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɭɦɦɭ ɞɜɭɯ ɠɟɫɬɤɨɫɬɟɣ: ɤɚɪɛɨɧɚɬɧɚɹ - ɫɜɹɡɚɧɚ ɫ ɩɪɢɫɭɬɫɬɜɢɟɦ ɜ ɜɨɞɟ ɛɢɤɚɪɛɨɧɚɬɨɜ ɤɚɥɶɰɢɹ ɢ ɦɚɝɧɢɹ, ɚ ɧɟɤɚɪɛɨɧɚɬɧɚɹ - ɫɭɥɶɮɢɬɨɜ, ɯɥɨɪɢɞɨɜ, ɧɢɬɪɚɬɨɜ ɤɚɥɶɰɢɹ ɢ ɦɚɝɧɢɹ. ɉɥɨɬɧɨɫɬɶ ɱɢɫɬɨɣ ɜɨɞɵ ɩɪɢ 15qɋ ɢ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ 999 ɝ/ɦ3. ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢɦɟɫɟɣ ɩɥɨɬɧɨɫɬɶ ɜɨɞɵ ɜɨɡɪɚɫɬɚɟɬ. ɉɨɜɟɪɯɧɨɫɬɧɨɟ ɧɚɬɹɠɟɧɢɟ ɜɨɞɵ ɩɪɢ 18qɋ ɫɨɫɬɚɜɥɹɟɬ 73, ɩɪɢ 100qɋ - 52,5 ɦɇ/ɦ. Ɍɟɩɥɨ- ɟɦɤɨɫɬɶ ɜɨɞɵ ɩɪɢ 0qɋ ɫɨɫɬɚɜɥɹɟɬ 4180 Ⱦɠ/(ɤɝ˜qɋ). Ɍɟɩɥɨɬɚ ɩɚɪɨɨɛɪɚɡɨɜɚɧɢɹ ɩɪɢ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ ɢ ɬɟɦɩɟɪɚɬɭɪɟ 100qɋ ɪɚɜɧɚ 2250 ɤȾɠ/ɤɝ. ȼɨɞɚ - ɫɥɚɛɵɣ ɩɪɨɜɨɞɧɢɤ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɬɨɤɚ: ɭɞɟɥɶɧɚɹ ɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɜɨɞɢɦɨɫɬɶ ɩɪɢ 18qɋ ɪɚɜɧɚ 4,41.10-8 1 Ɉɦ.ɫɦ. ɉɪɢɪɨɞɧɚɹ ɜɨɞɚ, ɩɨɞɜɟɪɝɚɟɦɚɹ ɚɧɬɪɨɩɨɝɟɧɧɨɦɭ ɡɚɝɪɹɡɧɟɧɢɸ, ɧɚɡɵɜɚɟɬɫɹ ɞɟɧɚɬɭɪɢɪɨɜɚɧɧɨɣ ɢɥɢ ɩɪɢɪɨɞɧɨ-ɚɧɬɪɨɩɨɝɟɧɧɨɣ. ȼɨɞɭ, ɢɫɩɨɥɶɡɭɟɦɭɸ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɩɨɞɪɚɡɞɟɥɹɸɬ ɧɚ ɨɯɥɚɠɞɚɸɳɭɸ, ɬɟɯɧɨɥɨɝɢɱɟɫɤɭɸ ɢ ɷɧɟɪɝɟɬɢɱɟɫɤɭɸ. ȼ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ 65…80% ɪɚɫɯɨɞɚ ɜɨɞɵ ɩɨɬɪɟɛɥɹɟɬɫɹ ɞɥɹ ɨɯɥɚɠɞɟɧɢɹ ɠɢɞɤɢɯ ɢ ɝɚɡɨɨɛɪɚɡɧɵɯ ɩɪɨɞɭɤɬɨɜ ɜ ɬɟɩɥɨɨɛɦɟɧɧɵɯ ɚɩɩɚɪɚɬɚɯ. ȼ ɷɬɢɯ ɫɥɭɱɚɹɯ ɜɨɞɚ ɧɟ ɫɨɩɪɢɤɚɫɚɟɬɫɹ ɫ ɦɚɬɟɪɢɚɥɶɧɵɦɢ ɩɨɬɨɤɚɦɢ ɢ ɧɟ ɡɚɝɪɹɡɧɹɟɬɫɹ, ɚ ɥɢɲɶ ɧɚɝɪɟɜɚɟɬɫɹ. Ɍɟɯɧɨɥɨɝɢɱɟɫɤɭɸ ɜɨɞɭ ɩɨɞɪɚɡɞɟɥɹɸɬ ɧɚ ɫɪɟɞɨɨɛɪɚɡɭɸɳɭɸ, ɩɪɨɦɵɜɚɸɳɭɸ ɢ ɪɟɚɤɰɢɨɧɧɭɸ. ɋɪɟɞɨɨɛɪɚɡɭɸɳɭɸ ɜɨɞɭ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɪɚɫɬɜɨɪɟɧɢɹ ɢ ɨɛɪɚɡɨɜɚɧɢɹ ɩɭɥɶɩ, ɩɪɢ ɨɛɨɝɚɳɟɧɢɢ ɢ ɩɟɪɟɪɚɛɨɬɤɟ ɪɭɞ, ɝɢɞɪɨɬɪɚɧɫɩɨɪɬɟ ɩɪɨɞɭɤɬɨɜ ɢ ɨɬɯɨɞɨɜ ɩɪɨɢɡɜɨɞɫɬɜɚ; ɩɪɨɦɵɜɚɸɳɭɸ - ɞɥɹ ɩɪɨɦɵɜɤɢ ɝɚɡɨɨɛɪɚɡɧɵɯ (ɚɛɫɨɪɛɰɢɹ), ɠɢɞɤɢɯ (ɷɤɫɬɪɚɤɰɢɹ) ɢ ɬɜɟɪɞɵɯ ɩɪɨɞɭɤɬɨɜ ɢ ɢɡɞɟɥɢɣ; ɪɟɚɤɰɢɨɧɧɭɸ - ɜ ɫɨɫɬɚɜɟ ɪɟɚɝɟɧɬɨɜ, ɚ ɬɚɤɠɟ ɩɪɢ ɨɬɝɨɧɤɟ ɢ ɞɪɭɝɢɯ ɩɪɨɰɟɫɫɚɯ. Ɍɟɯɧɨɥɨɝɢɱɟɫɤɚɹ ɜɨɞɚ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɤɨɧɬɚɤɬɢɪɭɟɬ ɫɨ ɫɪɟɞɨɣ. ɗɧɟɪɝɟɬɢɱɟɫɤɚɹ ɜɨɞɚ ɩɨɬɪɟɛɥɹɟɬɫɹ ɞɥɹ ɩɨɥɭɱɟɧɢɹ ɩɚɪɚ ɢ ɧɚɝɪɟɜɚɧɢɹ ɨɛɨɪɭɞɨɜɚɧɢɹ, ɩɨɦɟɳɟɧɢɣ, ɩɪɨɞɭɤɬɨɜ. Ⱦɥɹ ɭɦɟɧɶɲɟɧɢɹ ɩɨɬɪɟɛɥɟɧɢɹ ɫɜɟɠɟɣ ɜɨɞɵ ɫɨɡɞɚɸɬ ɨɛɨɪɨɬɧɵɟ ɢ ɡɚɦɤɧɭɬɵɟ ɫɢɫɬɟɦɵ ɜɨɞɨɫɧɚɛɠɟɧɢɹ. ɉɪɢ ɨɛɨɪɨɬɧɨɦ ɜɨɞɨɫɧɚɛɠɟɧɢɢ ɩɪɟɞɭɫɦɚɬɪɢɜɚɸɬ ɧɟɨɛɯɨɞɢɦɭɸ ɨɱɢɫɬɤɭ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɨɯɥɚɠɞɟɧɢɟ ɨɛɨɪɨɬɧɨɣ ɜɨɞɵ, ɨɛɪɚɛɨɬɤɭ ɢ ɩɨɜɬɨɪɧɨɟ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɫɬɨɱɧɨɣ ɜɨɞɵ. ɉɪɢɦɟɧɟɧɢɟ ɨɛɨɪɨɬɧɨɝɨ ɜɨɞɨɫɧɚɛɠɟɧɢɹ ɩɨɡɜɨɥɹɟɬ ɜ 10…15 ɪɚɡ ɭɦɟɧɶɲɢɬɶ ɩɨɬɪɟɛɥɟɧɢɟ ɩɪɢɪɨɞɧɨɣ ɜɨɞɵ. Ɉɛɨɪɨɬɧɚɹ ɜɨɞɚ ɞɨɥɠɧɚ ɫɨɨɬɜɟɬɫɬɜɨɜɚɬɶ ɨɩɪɟɞɟɥɟɧɧɵɦ ɡɧɚɱɟɧɢɹɦ ɩɨɤɚɡɚɬɟɥɟɣ: ɤɚɪɛɨɧɚɬɧɨɣ ɠɟɫɬɤɨɫɬɢ, ɪɇ, ɫɨɞɟɪɠɚɧɢɸ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ ɢ ɛɢɨɝɟɧɧɵɯ ɷɥɟɦɟɧɬɨɜ, ɡɧɚɱɟɧɢɸ ɏɉɄ (ɯɢɦɢɱɟɫɤɚɹ ɩɨɬɪɟɛɧɨɫɬɶ ɜ ɤɢɫɥɨɪɨɞɟ). Ɉɛɨɪɨɬɧɭɸ ɜɨɞɭ ɜ ɨɫɧɨɜɧɨɦ ɢɫɩɨɥɶɡɭɸɬ ɜ ɬɟɩɥɨɨɛɦɟɧɧɨɣ ɚɩɩɚɪɚɬɭɪɟ ɞɥɹ ɨɬɜɟɞɟɧɢɹ ɢɡɛɵɬɨɱɧɨɝɨ ɬɟɩɥɚ. Ɉɧɚ ɦɧɨɝɨɤɪɚɬɧɨ ɧɚɝɪɟɜɚɟɬɫɹ ɞɨ 40…45qɋ ɢ ɨɯɥɚɠɞɚɟɬɫɹ ɜ ɝɪɚɞɢɪɧɹɯ ɢɥɢ ɜ ɛɪɵɡɝɚɥɶɧɵɯ ɛɚɫɫɟɣɧɚɯ. Ɂɧɚɱɢɬɟɥɶɧɚɹ ɱɚɫɬɶ ɟɟ ɬɟɪɹɟɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɛɪɵɡɝɨɭɧɨɫɚ ɢ ɢɫɩɚɪɟɧɢɹ. ɂɡ-ɡɚ ɧɟɢɫɩɪɚɜɧɨɫɬɟɣ ɢ ɧɟɩɥɨɬɧɨɫɬɟɣ ɬɟɩɥɨɨɛɦɟɧɧɢɤɨɜ ɨɧɚ ɡɚɝɪɹɡɧɹɟɬɫɹ ɞɨ ɨɩɪɟɞɟɥɟɧɧɨɝɨ ɩɪɟɞɟɥɚ. Ⱦɥɹ ɩɪɟɞɨɬɜɪɚɳɟɧɢɹ ɤɨɪɪɨɡɢɢ, ɢɧɤɪɭɫɬɚɰɢɢ, ɛɢɨɥɨɝɢɱɟɫɤɨɝɨ ɨɛɪɚɫɬɚɧɢɹ ɱɚɫɬɶ ɨɛɨɪɨɬɧɨɣ ɜɨɞɵ ɜɵɜɨɞɹɬ ɢɡ ɫɢɫɬɟɦɵ (ɩɪɨɞɭɜɨɱɧɚɹ ɜɨɞɚ), ɞɨɛɚɜɥɹɹ ɫɜɟɠɭɸ ɜɨɞɭ ɢɡ ɢɫɬɨɱɧɢɤɚ ɢɥɢ ɨɱɢɳɟɧɧɵɟ ɫɬɨɱɧɵɟ ɜɨɞɵ. Ɉɫɧɨɜɧɵɦ ɬɪɟɛɨɜɚɧɢɟɦ ɤ ɜɨɞɟ, ɪɚɫɯɨɞɭɟɦɨɣ ɧɚ ɩɨɞɩɢɬɤɭ ɨɛɨɪɨɬɧɵɯ ɫɢɫɬɟɦ, ɹɜɥɹɟɬɫɹ ɨɝɪɚɧɢɱɟɧɢɟ ɤɚɪɛɨɧɚɬɧɨɣ ɢ ɫɭɥɶɮɚɬɧɨɣ ɠɟɫɬɤɨɫɬɢ. Ɉɝɪɚɧɢɱɢɜɚɟɬɫɹ ɬɚɤɠɟ ɫɨɞɟɪɠɚɧɢɟ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ. Ⱦɥɹ ɩɪɟɞɨɬɜɪɚɳɟɧɢɹ ɛɢɨɥɨɝɢɱɟɫɤɨɝɨ ɨɛɪɚɫɬɚɧɢɹ ɚɩɩɚɪɚɬɨɜ ɢ ɫɨɨɪɭɠɟɧɢɣ ɜ ɨɛɨɪɨɬɧɨɣ ɜɨɞɟ ɨɝɪɚɧɢɱɢɜɚɟɬɫɹ ɫɨɞɟɪɠɚɧɢɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɢ ɫɨɟɞɢɧɟɧɢɣ ɛɢɨɝɟɧɧɵɯ ɷɥɟɦɟɧɬɨɜ (ɚɡɨɬɚ, ɮɨɫɮɨɪɚ), ɹɜɥɹɸɳɢɯɫɹ ɩɢɬɚɬɟɥɶɧɨɣ ɫɪɟɞɨɣ ɞɥɹ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ. ɉɪɢ ɪɚɛɨɬɟ ɛɟɡ ɫɛɪɨɫɚ ɨɛɨɪɨɬɧɨɣ ɜɨɞɵ ɞɥɹ ɩɪɨɞɭɜɤɢ ɩɪɟɞɴɹɜɥɹɸɬɫɹ ɛɨɥɟɟ ɠɟɫɬɤɢɟ ɬɪɟɛɨɜɚɧɢɹ ɤ ɤɚɱɟɫɬɜɭ ɜɨɞɵ. Ʉɚɱɟɫɬɜɨ ɜɨɞɵ, ɢɫɩɨɥɶɡɭɟɦɨɣ ɞɥɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ, ɞɨɥɠɧɨ ɛɵɬɶ ɜɵɲɟ, ɱɟɦ ɜɨɞɵ, ɧɚɯɨɞɹɳɟɣɫɹ ɜ ɨɛɨɪɨɬɧɵɯ ɫɢɫɬɟɦɚɯ. ɋɬɨɱɧɚɹ ɜɨɞɚ - ɷɬɨ ɜɨɞɚ, ɛɵɜɲɚɹ ɜ ɛɵɬɨɜɨɦ, ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɨɦ ɢɥɢ ɫɟɥɶɫɤɨɯɨɡɹɣɫɬɜɟɧɧɨɦ ɭɩɨɬɪɟɛɥɟɧɢɢ, ɚ ɬɚɤɠɟ ɩɪɨɲɟɞɲɚɹ ɱɟɪɟɡ ɡɚɝɪɹɡɧɟɧɧɭɸ ɬɟɪɪɢɬɨɪɢɸ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɭɫɥɨɜɢɣ ɨɛɪɚɡɨɜɚɧɢɹ ɫɬɨɱɧɵɟ ɜɨɞɵ ɞɟɥɹɬɫɹ ɧɚ ɛɵɬɨɜɵɟ ɢɥɢ ɯɨɡɹɣɫɬɜɟɧɧɨ-ɮɟɤɚɥɶɧɵɟ (Ȼɋȼ), ɚɬɦɨɫɮɟɪɧɵɟ (Ⱥɋȼ) ɢ ɩɪɨɦɵɲɥɟɧɧɵɟ (ɉɋȼ). ɏɨɡɹɣɫɬɜɟɧɧɨ-ɛɵɬɨɜɵɟ ɜɨɞɵ - ɷɬɨ ɫɬɨɤɢ ɞɭɲɟɜɵɯ, ɩɪɚɱɟɱɧɵɯ, ɫɬɨɥɨɜɵɯ, ɬɭɚɥɟɬɨɜ, ɨɬ ɦɵɬɶɹ ɩɨɥɨɜ ɢ ɞɪ. Ɉɧɢ ɫɨɞɟɪɠɚɬ ɩɪɢɦɟɫɢ, ɢɡ ɤɨɬɨɪɵɯ ~ 58% ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɢ 42% ɦɢɧɟɪɚɥɶɧɵɯ. Ⱥɬɦɨɫɮɟɪɧɵɟ ɜɨɞɵ ɨɛɪɚɡɭɸɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɜɵɩɚɞɟɧɢɹ ɚɬɦɨɫɮɟɪɧɵɯ ɨɫɚɞɤɨɜ ɢ ɫɬɟɤɚɸɳɢɟ ɫ ɬɟɪɪɢɬɨɪɢɣ ɩɪɟɞɩɪɢɹɬɢɣ. Ɉɧɢ ɡɚɝɪɹɡɧɹɸɬɫɹ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɢ ɦɢɧɟɪɚɥɶɧɵɦɢ ɜɟɳɟɫɬɜɚɦɢ. ɉɪɨɦɵɲɥɟɧɧɵɟ ɫɬɨɱɧɵɟ ɜɨɞɵ - ɷɬɨ ɠɢɞɤɢɟ ɨɬɯɨɞɵ, ɤɨɬɨɪɵɟ ɜɨɡɧɢɤɚɸɬ ɩɪɢ ɞɨɛɵɱɟ ɢ ɩɟɪɟɪɚɛɨɬɤɟ ɨɪɝɚɧɢɱɟɫɤɨɝɨ ɢ ɧɟɨɪɝɚɧɢɱɟɫɤɨɝɨ ɫɵɪɶɹ. ɋɬɨɱɧɵɟ ɜɨɞɵ ɡɚɝɪɹɡɧɟɧɵ ɪɚɡɥɢɱɧɵɦɢ ɜɟɳɟɫɬɜɚɦɢ: 1) ɛɢɨɥɨɝɢɱɟɫɤɢ ɧɟɫɬɨɣɤɢɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ; 2) ɦɚɥɨɬɨɤɫɢɱɧɵɟ ɧɟɨɪɝɚɧɢɱɟɫɤɢɟ ɫɨɥɢ; 3) ɧɟɮɬɟɩɪɨɞɭɤɬɵ; 4) ɛɢɨɝɟɧɧɵɟ ɫɨɟɞɢɧɟɧɢɹ; 5) ɜɟɳɟɫɬɜɚ ɫɨ ɫɩɟɰɢɮɢɱɧɵɦɢ ɬɨɤɫɢɱɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ, ɜ ɬ.ɱ. ɬɹɠɟɥɵɟ ɦɟɬɚɥɥɵ, ɛɢɨɥɨɝɢɱɟɫɤɢ ɠɟɫɬɤɢɟ ɧɟɪɚɡɥɚɝɚɸɳɢɟɫɹ ɨɪɝɚɧɢɱɟɫɤɢɟ ɫɢɧɬɟɬɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ. ɉɪɨɦɵɲɥɟɧɧɵɟ ɢ ɛɵɬɨɜɵɟ ɫɬɨɱɧɵɟ ɜɨɞɵ ɫɨɞɟɪɠɚɬ ɜɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɪɚɫɬɜɨɪɢɦɵɯ ɢ ɧɟɪɚɫɬɜɨɪɢɦɵɯ ɜɟɳɟɫɬɜ. ȼɡɜɟɲɟɧɧɵɟ ɩɪɢɦɟɫɢ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɬɜɟɪɞɵɟ ɢ ɠɢɞɤɢɟ, ɨɛɪɚɡɭɸɬ ɫ ɜɨɞɨɣ ɞɢɫɩɟɪɫɧɭɸ ɧɟɨɞɧɨɪɨɞɧɭɸ ɫɢɫɬɟɦɭ. ɉɨɞ ɧɟɨɞɧɨɪɨɞɧɨɣ ɫɢɫɬɟɦɨɣ ɩɨɧɢɦɚɸɬ ɫɢɫɬɟɦɭ, ɫɨɫɬɨɹɳɭɸ ɢɡ ɞɜɭɯ ɢɥɢ ɧɟɫɤɨɥɶɤɢɯ ɮɚɡ, ɤɚɠɞɚɹ ɢɡ ɤɨɬɨɪɵɯ ɢɦɟɟɬ ɫɜɨɸ ɩɨɜɟɪɯɧɨɫɬɶ ɪɚɡɞɟɥɚ ɢ ɦɨɠɟɬ ɛɵɬɶ ɦɟɯɚɧɢɱɟɫɤɢ ɨɬɞɟɥɟɧɚ ɨɬ ɞɪɭɝɨɣ ɮɚɡɵ. ɋɢɫɬɟɦɚ, ɜ ɤɨɬɨɪɨɣ ɜɧɟɲɧɟɣ ɮɚɡɨɣ ɹɜɥɹɟɬɫɹ ɠɢɞɤɨɫɬɶ, ɧɚɡɵɜɚɟɬɫɹ ɠɢɞɤɨɣ ɧɟɨɞɧɨɪɨɞɧɨɣ ɫɢɫɬɟɦɨɣ. ɋɬɨɱɧɵɟ ɜɨɞɵ ɦɧɨɝɢɯ ɩɪɨɢɡɜɨɞɫɬɜ ɤɪɨɦɟ ɪɚɫɬɜɨɪɢɦɵɯ ɧɟɨɪɝɚɧɢɱɟɫɤɢɯ ɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɫɨɞɟɪɠɚɬ ɤɨɥɥɨɢɞɧɵɟ ɩɪɢɦɟɫɢ, ɚ ɬɚɤɠɟ ɜɡɜɟɲɟɧɧɵɟ ɝɪɭɛɨɞɢɫɩɟɪɫɧɵɟ ɢ ɦɟɥɤɨɞɢɫɩɟɪɫɧɵɟ ɩɪɢɦɟɫɢ, ɩɥɨɬɧɨɫɬɶ ɤɨɬɨɪɵɯ ɦɨɠɟɬ ɛɵɬɶ ɛɨɥɶɲɟ ɢɥɢ ɦɟɧɶɲɟ ɩɥɨɬɧɨɫɬɢ ɜɨɞɵ. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɩɪɢɦɟɫɟɣ ɩɨ ɢɯ ɮɚɡɨɜɨ-ɞɢɫɩɟɪɫɧɨɦɭ ɫɨɫɬɨɹɧɢɸ: ɚ) ɝɟɬɟɪɨɝɟɧɧɵɟ ɫɢɫɬɟɦɵ: I - ɜɡɜɟɫɢ, ɪɚɡɦɟɪ ɱɚɫɬɢɰ 10-1 ɦɤɦ (ɫɭɫɩɟɧɡɢɢ, ɷɦɭɥɶɫɢɢ, ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ ɢ ɩɥɚɧɤɬɨɧ); II - ɤɨɥɥɨɢɞɧɵɟ ɪɚɫɬɜɨɪɵ, ɪɚɡɦɟɪ ɱɚɫɬɢɰ 10-1…10-2 ɦɤɦ (ɡɨɥɢ ɢ ɪɚɫɬɜɨɪɵ ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɯ ɫɨɟɞɢɧɟɧɢɣ). ɛ) ɝɨɦɨɝɟɧɧɵɟ ɫɢɫɬɟɦɵ: III - ɦɨɥɟɤɭɥɹɪɧɵɟ ɪɚɫɬɜɨɪɵ, ɪɚɡɦɟɪ ɱɚɫɬɢɰ 10-2…10-3 ɦɤɦ (ɝɚɡɵ, ɪɚɫɬɜɨɪɢɦɵɟ ɜ ɜɨɞɟ, ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ); IV - ɢɨɧɧɵɟ ɪɚɫɬɜɨɪɵ, ɪɚɡɦɟɪ ɱɚɫɬɢɰ 10-3 ɦɤɦ (ɫɨɥɢ, ɨɫɧɨɜɚɧɢɹ, ɤɢɫɥɨɬɵ). ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɮɢɡɢɱɟɫɤɨɝɨ ɫɨɫɬɨɹɧɢɹ ɮɚɡ ɪɚɡɥɢɱɚɸɬ ɫɥɟɞɭɸɳɢɟ ɠɢɞɤɢɟ ɧɟɨɞɧɨɪɨɞɧɵɟ ɫɢɫɬɟɦɵ: ɫɭɫɩɟɧɡɢɢ, ɷɦɭɥɶɫɢɢ ɢ ɩɟɧɵ. ɋɭɫɩɟɧɡɢɹ ɫɨɫɬɨɢɬ ɢɡ ɠɢɞɤɨɫɬɢ ɢ ɜɡɜɟɲɟɧɧɵɯ ɜ ɧɟɣ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɪɚɡɦɟɪɨɜ ɱɚɫɬɢɰ ɪɚɡɥɢɱɚɸɬ ɝɪɭɛɵɟ ɫɭɫɩɟɧɡɢɢ ɫ ɱɚɫɬɢɰɚɦɢ ɪɚɡɦɟɪɨɦ ! 100 ɦɤɦ, ɬɨɧɤɢɟ (0,5…100 ɦɤɦ) ɢ ɦɭɬɢ (0,1…0,5 ɦɤɦ). ɉɪɨɦɟɠɭɬɨɱɧɨɟ ɩɨɥɨɠɟɧɢɟ ɦɟɠɞɭ ɫɭɫɩɟɧɡɢɹɦɢ ɢ ɢɫɬɢɧɧɵɦɢ ɪɚɫɬɜɨɪɚɦɢ ɡɚɧɢɦɚɸɬ ɤɨɥɥɨɢɞɧɵɟ ɪɚɫɬɜɨɪɵ ɫ ɪɚɡɦɟɪɚɦɢ ɱɚɫɬɢɰ ɦɟɧɟɟ 0,1 ɦɤɦ. ɗɦɭɥɶɫɢɹ ɫɨɫɬɨɢɬ ɢɡ 2-ɯ ɧɟɫɦɟɲɢɜɚɸɳɢɯɫɹ ɢɥɢ ɱɚɫɬɢɱɧɨ ɫɦɟɲɢɜɚɸɳɢɯɫɹ ɠɢɞɤɨɫɬɟɣ, ɨɞɧɚ ɢɡ ɤɨɬɨɪɵɯ ɪɚɫɩɪɟɞɟɥɟɧɚ ɜ ɞɪɭɝɨɣ ɜ ɜɢɞɟ ɠɢɞɤɢɯ ɤɚɩɟɥɶ. ȼɟɥɢɱɢɧɚ ɱɚɫɬɢɰ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɵ ɜ ɷɦɭɥɶɫɢɹɯ ɤɨɥɟɛɥɟɬɫɹ ɜ ɞɨɜɨɥɶɧɨ ɲɢɪɨɤɢɯ ɩɪɟɞɟɥɚɯ. ɉɟɧɚ - ɫɢɫɬɟɦɚ, ɫɨɫɬɨɹɳɚɹ ɢɡ ɠɢɞɤɨɫɬɢ ɢ ɪɚɫɩɪɟɞɟɥɟɧɧɵɯ ɜ ɧɟɣ ɩɭɡɵɪɶɤɨɜ ɝɚɡɚ. ɇɟɨɞɧɨɪɨɞɧɵɟ ɫɢɫɬɟɦɵ ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɦɚɫɫɨɜɵɦ ɢɥɢ ɨɛɴɟɦɧɵɦ ɫɨɨɬɧɨɲɟɧɢɟɦ ɮɚɡ ɢ ɪɚɡɦɟɪɚɦɢ ɱɚɫɬɢɰ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɵ. Ⱦɢɫɩɟɪɫɧɭɸ ɮɚɡɭ, ɫɨɫɬɨɹɳɭɸ ɢɡ ɱɚɫɬɢɰ ɧɟɨɞɢɧɚɤɨɜɨɝɨ ɪɚɡɦɟɪɚ, ɩɪɢɧɹɬɨ ɯɚɪɚɤɬɟɪɢɡɨɜɚɬɶ ɮɪɚɤɰɢɨɧɧɵɦ ɢɥɢ ɞɢɫɩɟɪɫɧɵɦ ɫɨɫɬɚɜɨɦ, ɬ.ɟ. ɩɪɨɰɟɧɬɧɵɦ ɫɨɞɟɪɠɚɧɢɟɦ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ. ɋɬɨɱɧɵɟ ɜɨɞɵ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɩɨɥɢɞɢɫɩɟɪɫɧɵɟ ɝɟɬɟɪɨɝɟɧɧɵɟ (ɧɟɨɞɧɨɪɨɞɧɵɟ) ɚɝɪɟɚɬɢɜɧɨ-ɧɟɭɫɬɨɣɱɢɜɵɟ ɫɢɫɬɟɦɵ. ȼ ɩɪɨɰɟɫɫɟ ɨɫɚɠɞɟɧɢɹ ɪɚɡɦɟɪ, ɩɥɨɬɧɨɫɬɶ, ɮɨɪɦɚ ɱɚɫɬɢɰ, ɚ ɬɚɤɠɟ ɮɢɡɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɱɚɫɬɢɰ ɫɢɫɬɟɦɵ ɢɡɦɟɧɹɸɬɫɹ. ɋɜɨɣɫɬɜɚ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɫɜɨɣɫɬɜ ɱɢɫɬɨɣ ɜɨɞɵ. Ɉɧɢ ɢɦɟɸɬ ɛɨɥɟɟ ɜɵɫɨɤɭɸ ɩɥɨɬɧɨɫɬɶ ɢ ɜɹɡɤɨɫɬɶ. ɋɪɟɞɧɹɹ ɩɥɨɬɧɨɫɬɶ ɫɭɫɩɟɧɡɢɣ ɢ ɷɦɭɥɶɫɢɣ ɨɩɪɟɞɟɥɹɟɬɫɹ ɨɛɴɟɦɧɵɦ ɫɨɨɬɧɨɲɟɧɢɟɦ ɮɚɡ U c U ɞ ˜ M  U 0 (1  M ) , (1.16) ɝɞɟ Uc, Uɞ - ɩɥɨɬɧɨɫɬɶ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɵ (ɬɜɟɪɞɨɣ ɢɥɢ ɠɢɞɤɨɣ), ɤɝ/ɦ3; U0 - ɩɥɨɬɧɨɫɬɶ ɱɢɫɬɨɣ ɜɨɞɵ; M - ɨɛɴɟɦɧɚɹ ɞɨɥɹ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɵ. ȼɹɡɤɨɫɬɶ ɫɭɫɩɟɧɡɢɢ ɡɚɜɢɫɢɬ ɨɬ ɨɛɴɟɦɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ (ɨɛɴɟɦɧɨɣ ɞɨɥɢ) ɬɜɟɪɞɨɣ ɮɚɡɵ ɢ ɩɪɢ M d 10% ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɡɚɜɢɫɢɦɨɫɬɢ (1.17) P c P 0 (1  2,5M ) , ɝɞɟ P0 - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɱɢɫɬɨɣ ɜɨɞɵ, ɉɚ˜ɫ. 1.7. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɨɬɯɨɞɨɜ Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɨɬɯɨɞɨɜ (ɉɈ), ɨɛɪɚɡɭɸɳɢɯɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɨɣ ɞɟɹɬɟɥɶɧɨɫɬɢ ɱɟɥɨɜɟɤɚ, ɧɟɨɛɯɨɞɢɦɚ ɤɚɤ ɫɪɟɞɫɬɜɨ ɭɫɬɚɧɨɜɥɟɧɢɹ ɨɩɪɟɞɟɥɟɧɧɵɯ ɫɜɹɡɟɣ ɦɟɠɞɭ ɧɢɦɢ ɫ ɰɟɥɶɸ ɨɩɪɟɞɟɥɟɧɢɹ ɨɩɬɢɦɚɥɶɧɵɯ ɩɭɬɟɣ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɢɥɢ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɨɬɯɨɞɨɜ. Ɉɛɨɛɳɟɧɢɟ ɢ ɚɧɚɥɢɡ ɥɢɬɟɪɚɬɭɪɧɵɯ ɞɚɧɧɵɯ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɤɥɚɫɫɢɮɢɤɚɰɢɹ ɉɈ ɨɫɧɨɜɚɧɚ ɧɚ ɫɢɫɬɟɦɚɬɢɡɚɰɢɢ ɢɯ ɩɨ ɨɬɪɚɫɥɹɦ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɜɨɡɦɨɠɧɨɫɬɹɦ ɩɟɪɟɪɚɛɨɬɤɢ, ɚɝɪɟɝɚɬɧɨɦɭ ɫɨɫɬɨɹɧɢɸ, ɬɨɤɫɢɱɧɨɫɬɢ ɢ ɬ.ɞ. ȼ ɤɚɠɞɨɦ ɤɨɧɤɪɟɬɧɨɦ ɫɥɭɱɚɟ ɯɚɪɚɤɬɟɪ ɢɫɩɨɥɶɡɭɟɦɨɣ ɤɥɚɫɫɢɮɢɤɚɰɢɢ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɪɚɫɫɦɚɬɪɢɜɚɟɦɵɦ ɚɫɩɟɤɬɚɦ: ɫɤɥɚɞɢɪɨɜɚɧɢɸ, ɨɱɢɫɬɤɟ, ɩɟɪɟɪɚɛɨɬɤɟ, ɡɚɯɨɪɨɧɟɧɢɸ ɉɈ, ɩɪɟɞɨɬɜɪɚɳɟɧɢɸ ɢɯ ɬɨɤɫɢɱɧɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɢ ɩɪ. Ʉɚɠɞɚɹ ɨɬɪɚɫɥɶ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢɦɟɟɬ ɤɥɚɫɫɢɮɢɤɚɰɢɸ ɫɨɛɫɬɜɟɧɧɵɯ ɨɬɯɨɞɨɜ. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɨɬɯɨɞɨɜ ɜɨɡɦɨɠɧɚ ɩɨ ɪɚɡɧɵɦ ɩɨɤɚɡɚɬɟɥɹɦ, ɧɨ ɫɚɦɵɦ ɝɥɚɜɧɵɦ ɢɡ ɧɢɯ ɹɜɥɹɟɬɫɹ ɫɬɟɩɟɧɶ ɨɩɚɫɧɨɫɬɢ ɞɥɹ ɱɟɥɨɜɟɱɟɫɤɨɝɨ ɡɞɨɪɨɜɶɹ. ȼɪɟɞɧɵɦɢ ɨɬɯɨɞɚɦɢ, ɧɚɩɪɢɦɟɪ, ɫɱɢɬɚɸɬɫɹ ɢɧɮɟɤɰɢɨɧɧɵɟ, ɬɨɤɫɢɱɧɵɟ ɢ ɪɚɞɢɨɚɤɬɢɜɧɵɟ. ɂɯ ɫɛɨɪ ɢ ɥɢɤɜɢɞɚɰɢɹ ɪɟɝɥɚɦɟɧɬɢɪɭɸɬɫɹ ɫɩɟɰɢɚɥɶɧɵɦɢ ɫɚɧɢɬɚɪɧɵɦɢ ɩɪɚɜɢɥɚɦɢ. ɋɨɝɥɚɫɧɨ ȽɈɋɌ "ȼɪɟɞɧɵɟ ɜɟɳɟɫɬɜɚ. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɢ ɨɛɳɢɟ ɬɪɟɛɨɜɚɧɢɹ ɛɟɡɨɩɚɫɧɨɫɬɢ", ɜɫɟ ɉɈ ɞɟɥɹɬɫɹ ɧɚ ɱɟɬɵɪɟ ɤɥɚɫɫɚ ɨɩɚɫɧɨɫɬɢ (ɬɚɛɥ. 1.6): Ɍɚɛɥɢɰɚ 1.6 Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɨɬɯɨɞɨɜ ɩɨ ɢɯ ɨɩɚɫɧɨɫɬɢ Ʉɥɚɫɫ ɨɩɚɫɧɨɫɬɢ ɉɟɪɜɵɣ ȼɬɨɪɨɣ Ɍɪɟɬɢɣ ɑɟɬɜɟɪɬɵɣ ɏɚɪɚɤɬɟɪɢɫɬɢɤɚ ɜɟɳɟɫɬɜɚ (ɨɬɯɨɞɨɜ) ɱɪɟɡɜɵɱɚɣɧɨ ɨɩɚɫɧɵɟ ɜɵɫɨɤɨ ɨɩɚɫɧɵɟ ɭɦɟɪɟɧɧɨ ɨɩɚɫɧɵɟ ɦɚɥɨɨɩɚɫɧɵɟ Ⱦɥɹ ɩɪɢɦɟɪɚ ɦɨɠɧɨ ɩɪɢɜɟɫɬɢ ɤɥɚɫɫ ɨɩɚɫɧɨɫɬɢ ɧɟɤɨɬɨɪɵɯ ɯɢɦɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɨɩɪɟɞɟɥɹɟɦɵɣ ɪɚɫɱɟɬɧɵɦ ɦɟɬɨɞɨɦ: - ɧɚɥɢɱɢɟ ɜ ɨɬɯɨɞɚɯ ɪɬɭɬɢ, ɫɭɥɟɦɵ, ɯɪɨɦɨɜɨɤɢɫɥɨɝɨ ɤɚɥɢɹ, ɬɪɟɯɯɥɨɪɢɫɬɨɣ ɫɭɪɶɦɵ, ɛɟɧɡ(ɚ)ɩɢɪɟɧɚ, ɨɤɫɢɞɚ ɦɵɲɶɹɤɚ ɢ ɞɪɭɝɢɯ ɜɵɫɨɤɨɬɨɤɫɢɱɧɵɯ ɜɟɳɟɫɬɜ ɩɨɡɜɨɥɹɟɬ ɨɬɧɟɫɬɢ ɢɯ ɤ ɩɟɪɜɨɦɭ ɤɥɚɫɫɭ ɨɩɚɫɧɨɫɬɢ; - ɧɚɥɢɱɢɟ ɜ ɨɬɯɨɞɚɯ ɯɥɨɪɢɫɬɨɣ ɦɟɞɢ, ɯɥɨɪɢɫɬɨɝɨ ɧɢɤɟɥɹ, ɬɪɟɯɨɤɢɫɧɨɣ ɫɭɪɶɦɵ, ɚɡɨɬɧɨɤɢɫɥɨɝɨ ɫɜɢɧɰɚ ɢ ɞɪɭɝɢɯ, ɦɟɧɟɟ ɬɨɤɫɢɱɧɵɯ ɜɟɳɟɫɬɜ ɞɚɟɬ ɨɫɧɨɜɚɧɢɟ ɨɬɧɟɫɬɢ ɷɬɢ ɨɬɯɨɞɵ ɤɨ ɜɬɨɪɨɦɭ ɤɥɚɫɫɭ ɨɩɚɫɧɨɫɬɢ; - ɧɚɥɢɱɢɟ ɜ ɨɬɯɨɞɚɯ ɫɟɪɧɨɤɢɫɥɨɣ ɦɟɞɢ, ɳɚɜɟɥɟɜɨɤɢɫɥɨɣ ɦɟɞɢ, ɯɥɨɪɢɫɬɨɝɨ ɧɢɤɟɥɹ, ɨɤɫɢɞɚ ɫɜɢɧɰɚ, ɱɟɬɵɪɟɯɯɥɨɪɢɫɬɨɝɨ ɭɝɥɟɪɨɞɚ ɢ ɞɪɭɝɢɯ ɜɟɳɟɫɬɜ ɩɨɡɜɨɥɹɟɬ ɨɬɧɟɫɬɢ ɢɯ ɤ ɬɪɟɬɶɟɦɭ ɤɥɚɫɫɭ ɨɩɚɫɧɨɫɬɢ; - ɧɚɥɢɱɢɟ ɜ ɨɬɯɨɞɚɯ ɫɟɪɧɨɤɢɫɥɨɝɨ ɦɚɪɝɚɧɰɚ, ɮɨɫɮɚɬɨɜ , ɫɟɪɧɨɤɢɫɥɨɝɨ ɰɢɧɤɚ, ɯɥɨɪɢɫɬɨɝɨ ɰɢɧɤɚ ɞɚɟɬ ɨɫɧɨɜɚɧɢɟ ɨɬɧɟɫɬɢ ɢɯ ɤ ɱɟɬɜɟɪɬɨɦɭ ɤɥɚɫɫɭ ɨɩɚɫɧɨɫɬɢ. ɉɪɢɧɚɞɥɟɠɧɨɫɬɶ ɤ ɤɥɚɫɫɭ ɨɩɚɫɧɨɫɬɢ ɢɧɵɯ ɩɨ ɯɢɦɢɱɟɫɤɨɦɭ ɫɨɫɬɚɜɭ ɨɬɯɨɞɨɜ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɪɚɫɱɟɬɧɵɦ ɦɟɬɨɞɨɦ ɩɨ ɉȾɄ ɞɥɹ ɞɚɧɧɨɝɨ ɯɢɦɢɱɟɫɤɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɩɨɱɜɟ, ɩɨɥɶɡɭɹɫɶ ɦɚɬɟɦɚɬɢɱɟɫɤɨɣ ɮɨɪɦɭɥɨɣ, ɫɩɪɚɜɨɱɧɨɣ ɥɢɬɟɪɚɬɭɪɨɣ (ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɤɨɧɫɬɚɧɬɵ, ɢɯ ɬɨɤɫɢɱɧɨɫɬɶ ɢ ɝɢɝɢɝɢɟɧɢɱɟɫɤɢɦɢ ɧɨɪɦɚɬɢɜɚɦɢ ɞɥɹ ɯɢɦɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɜ ɩɨɱɜɟ). 1.8. ɗɧɟɪɝɟɬɢɱɟɫɤɨɟ ɡɚɝɪɹɡɧɟɧɢɟ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɉɪɨɦɵɲɥɟɧɧɵɟ ɩɪɟɞɩɪɢɹɬɢɹ, ɨɛɴɟɤɬɵ ɷɧɟɪɝɟɬɢɤɢ, ɫɜɹɡɢ ɢ ɬɪɚɧɫɩɨɪɬ ɹɜɥɹɸɬɫɹ ɨɫɧɨɜɧɵɦɢ ɢɫɬɨɱɧɢɤɚɦɢ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɡɚɝɪɹɡɧɟɧɢɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɪɟɝɢɨɧɨɜ, ɝɨɪɨɞɫɤɨɣ ɫɪɟɞɵ, ɠɢɥɢɳ ɢ ɩɪɢɪɨɞɧɵɯ ɡɨɧ. Ʉ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɡɚɝɪɹɡɧɟɧɢɹɦ ɨɬɧɨɫɹɬ ɜɢɛɪɚɰɢɨɧɧɵɟ ɢ ɚɤɭɫɬɢɱɟɫɤɢɟ ɜɨɡɞɟɣɫɬɜɢɹ, ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɟ ɩɨɥɹ ɢ ɢɡɥɭɱɟɧɢɹ, ɜɨɡɞɟɣɫɬɜɢɹ ɪɚɞɢɨɧɭɤɥɢɞɨɜ ɢ ɢɨɧɢɡɢɪɭɸɳɢɯ ɢɡɥɭɱɟɧɢɣ. ȼɢɛɪɚɰɢɢ, ɢɫɬɨɱɧɢɤɨɦ ɤɨɬɨɪɵɯ ɹɜɥɹɟɬɫɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɟ ɨɛɨɪɭɞɨɜɚɧɢɟ, ɪɟɥɶɫɨɜɵɣ ɬɪɚɧɫɩɨɪɬ, ɫɬɪɨɢɬɟɥɶɧɵɟ ɦɚɲɢɧɵ ɢ ɬɹɠɟɥɵɣ ɚɜɬɨɬɪɚɧɫɩɨɪɬ, ɪɚɫɩɪɨɫɬɪɚɧɹɸɬɫɹ ɩɨ ɝɪɭɧɬɭ. ɉɪɨɬɹɠɟɧɧɨɫɬɶ ɡɨɧɵ ɜɨɡɞɟɣɫɬɜɢɹ ɜɢɛɪɚɰɢɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜɟɥɢɱɢɧɨɣ ɢɯ ɡɚɬɭɯɚɧɢɹ ɜ ɝɪɭɧɬɟ, ɤɨɬɨɪɚɹ ɫɨɫɬɚɜɥɹɟɬ 1 ɞȻ/ɦ. ɒɭɦ ɫɨɡɞɚɟɬɫɹ ɬɪɚɧɫɩɨɪɬɧɵɦɢ ɫɪɟɞɫɬɜɚɦɢ, ɩɪɨɦɵɲɥɟɧɧɵɦ ɨɛɨɪɭɞɨɜɚɧɢɟɦ, ɫɚɧɢɬɚɪɧɨ-ɬɟɯɧɢɱɟɫɤɢɦɢ ɭɫɬɚɧɨɜɤɚɦɢ. ɇɚ ɝɨɪɨɞɫɤɢɯ ɦɚɝɢɫɬɪɚɥɹɯ ɢ ɜ ɩɪɢɥɟɝɚɸɳɢɯ ɤ ɧɢɦ ɡɨɧɚɯ ɭɪɨɜɧɢ ɡɜɭɤɚ ɦɨɝɭɬ ɞɨɫɬɢɝɚɬɶ 70…80 ɞȻȺ. Ɉɫɧɨɜɧɵɦɢ ɢɫɬɨɱɧɢɤɚɦɢ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɩɨɥɟɣ (ɗɆɉ) ɪɚɡɧɨɱɚɫɬɨɬ ɹɜɥɹɸɬɫɹ ɪɚɞɢɨɬɟɯɧɢɱɟɫɤɢɟ ɨɛɴɟɤɬɵ, ɬɟɥɟɜɢɡɢɨɧɧɵɟ ɪɚɞɢɨɥɨɤɚɰɢɨɧɧɵɟ ɫɬɚɧɰɢɢ, ɬɟɪɦɢɱɟɫɤɢɟ ɰɟɯɢ ɢ ɭɱɚɫɬɤɢ. ȼɨɡɞɟɣɫɬɜɢɟ ɗɆɉ ɩɪɨɦɵɲɥɟɧɧɨɣ ɱɚɫɬɨɬɵ ɫɜɹɡɚɧɨ ɫ ɜɵɫɨɤɨɜɨɥɶɬɧɵɦɢ ɥɢɧɢɹɦɢ ɷɥɟɤɬɪɨɩɟɪɟɞɚɱ, ɢɫɬɨɱɧɢɤɚɦɢ ɩɨɫɬɨɹɧɧɵɯ ɦɚɝɧɢɬɧɵɯ ɩɨɥɟɣ, ɩɪɢɦɟɧɹɟɦɵɦɢ ɧɚ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɪɟɞɩɪɢɹɬɢɹɯ. Ɂɨɧɵ ɫ ɩɨɜɵɲɟɧɧɵɦɢ ɭɪɨɜɧɹɦɢ ɗɆɉ ɪɚɞɢɨɱɚɫɬɨɬ ɢɦɟɸɬ ɪɚɞɢɭɫ ɞɨ 100..150 ɦ. ȼ ɛɵɬɭ ɢɫɬɨɱɧɢɤɚɦɢ ɗɆɉ ɢ ɢɡɥɭɱɟɧɢɣ ɹɜɥɹɸɬɫɹ ɬɟɥɟɜɢɡɨɪɵ, ɞɢɫɩɥɟɢ, ɩɟɱɢ ɋȼɑ ɢ ɞɪɭɝɢɟ ɭɫɬɪɨɣɫɬɜɚ. ȼɨɡɞɟɣɫɬɜɢɟ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɢɡɥɭɱɟɧɢɹ ɧɚ ɱɟɥɨɜɟɤɚ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɜ ɪɟɡɭɥɶɬɚɬɟ ɜɧɟɲɧɟɝɨ ɢ ɜɧɭɬɪɟɧɧɟɝɨ ɨɛɥɭɱɟɧɢɹ. ȼɧɟɲɧɟɟ ɨɛɥɭɱɟɧɢɟ ɜɵɡɵɜɚɸɬ ɢɫɬɨɱɧɢɤɢ ɪɟɧɬɝɟɧɨɜɫɤɨɝɨ ɢ J-ɢɡɥɭɱɟɧɢɹ, ɩɨɬɨɤɢ ɩɪɨɬɨɧɨɜ ɢ ɧɟɣɬɪɨɧɨɜ. ȼɧɭɬɪɟɧɧɟɟ ɨɛɥɭɱɟɧɢɟ ɜɵɡɵɜɚɸɬ D- ɢ Eɱɚɫɬɢɰɵ, ɤɨɬɨɪɵɟ ɩɨɩɚɞɚɸɬ ɜ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ ɱɟɪɟɡ ɨɪɝɚɧɵ ɞɵɯɚɧɢɹ ɢ ɩɢɳɟɜɚɪɢɬɟɥɶɧɵɣ ɬɪɚɤɬ. Ⱦɨɡɚ ɨɛɥɭɱɟɧɢɹ, ɫɨɡɞɚɜɚɟɦɚɹ ɚɧɬɪɨɩɨɝɟɧɧɵɦɢ ɢɫɬɨɱɧɢɤɚɦɢ, ɧɟɜɟɥɢɤɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɟɫɬɟɫɬɜɟɧɧɵɦ ɮɨɧɨɦ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɨɛɥɭɱɟɧɢɹ, ɱɬɨ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢɦɟɧɟɧɢɟɦ ɫɪɟɞɫɬɜ ɤɨɥɥɟɤɬɢɜɧɨɣ ɡɚɳɢɬɵ ɩɪɨɦɵɲɥɟɧɧɵɯ ɢɫɬɨɱɧɢɤɨɜ ɢɡɥɭɱɟɧɢɹ. ȼ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɧɚ ɨɛɴɟɤɬɚɯ ɷɤɨɧɨɦɢɤɢ ɧɨɪɦɚɬɢɜɧɵɟ ɬɪɟɛɨɜɚɧɢɹ ɢ ɩɪɚɜɢɥɚ ɪɚɞɢɚɰɢɨɧɧɨɣ ɛɟɡɨɩɚɫɧɨɫɬɢ ɧɟ ɫɨɛɥɸɞɚɸɬɫɹ, ɭɪɨɜɧɢ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɪɟɡɤɨ ɜɨɡɪɚɫɬɚɸɬ. 1.9. Ɇɟɬɨɞɵ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɨɬ ɩɪɨɦɵɲɥɟɧɧɵɯ ɡɚɝɪɹɡɧɟɧɢɣ Ɂɚɳɢɬɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɹɜɥɹɟɬɫɹ ɫɨɫɬɚɜɧɨɣ ɱɚɫɬɶɸ ɤɨɧɰɟɩɰɢɢ ɭɫɬɨɣɱɢɜɨɝɨ ɪɚɡɜɢɬɢɹ ɱɟɥɨɜɟɱɟɫɤɨɝɨ ɨɛɳɟɫɬɜɚ, ɨɡɧɚɱɚɸɳɟɣ ɞɥɢɬɟɥɶɧɨɟ ɧɟɩɪɟɪɵɜɧɨɟ ɪɚɡɜɢɬɢɟ, ɨɛɟɫɩɟɱɢɜɚɸɳɟɟ ɩɨɬɪɟɛɧɨɫɬɢ ɧɵɧɟ ɠɢɜɭɳɢɯ ɥɸɞɟɣ ɛɟɡ ɭɳɟɪɛɚ ɭɞɨɜɥɟɬɜɨɪɟɧɢɸ ɩɨɬɪɟɛɧɨɫɬɟɣ ɛɭɞɭɳɢɯ ɩɨɤɨɥɟɧɢɣ. Ʉɨɧɰɟɩɰɢɹ ɭɫɬɨɣɱɢɜɨɝɨ ɪɚɡɜɢɬɢɹ ɧɟ ɫɦɨɠɟɬ ɪɟɚɥɢɡɨɜɚɬɶɫɹ, ɟɫɥɢ ɧɟ ɛɭɞɭɬ ɪɚɡɪɚɛɨɬɚɧɵ ɤɨɧɤɪɟɬɧɵɟ ɩɪɨɝɪɚɦɦɵ ɞɟɣɫɬɜɢɣ ɩɨ ɩɪɟɞɨɬɜɪɚɳɟɧɢɸ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɜɤɥɸɱɚɸɳɢɟ ɜ ɫɟɛɹ ɬɚɤɠɟ ɨɪɝɚɧɢɡɚɰɢɨɧɧɵɟ, ɬɟɯɧɢɱɟɫɤɢɟ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɪɚɡɪɚɛɨɬɤɢ ɩɨ ɪɚɡɜɢɬɢɸ ɪɟɫɭɪɫɨ-, ɷɧɟɪɝɨɫɛɟɪɟɝɚɸɳɢɯ ɢ ɦɚɥɨɨɬɯɨɞɧɵɯ ɬɟɯɧɨɥɨɝɢɣ, ɫɧɢɠɟɧɢɸ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ ɢ ɠɢɞɤɨɫɬɧɵɯ ɫɛɪɨɫɨɜ, ɩɟɪɟɪɚɛɨɬɤɢ ɢ ɭɬɢɥɢɡɚɰɢɢ ɯɨɡɹɣɫɬɜɟɧɧɵɯ ɨɬɯɨɞɨɜ, ɭɦɟɧɶɲɟɧɢɸ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ, ɭɫɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɸ ɢ ɢɫɩɨɥɶɡɨɜɚɧɢɸ ɫɪɟɞɫɬɜ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. Ɉɪɝɚɧɢɡɚɰɢɨɧɧɨ-ɬɟɯɧɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɯɪɚɧɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɦɨɠɧɨ ɭɫɥɨɜɧɨ ɪɚɡɞɟɥɢɬɶ ɧɚ ɚɤɬɢɜɧɵɟ ɢ ɩɚɫɫɢɜɧɵɟ ɦɟɬɨɞɵ. Ⱥɤɬɢɜɧɵɟ ɦɟɬɨɞɵ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɪɟɲɟɧɢɹ ɩɨ ɫɨɡɞɚɧɢɸ ɪɟɫɭɪɫɨɫɛɟɪɟɝɚɸɳɢɯ ɢ ɦɚɥɨɨɬɯɨɞɧɵɯ ɬɟɯɧɨɥɨɝɢɣ. ɉɚɫɫɢɜɧɵɟ ɦɟɬɨɞɵ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɞɟɥɹɬɫɹ ɧɚ ɞɜɟ ɩɨɞɝɪɭɩɩɵ: 1) ɪɚɰɢɨɧɚɥɶɧɨɟ ɪɚɡɦɟɳɟɧɢɟ ɢɫɬɨɱɧɢɤɨɜ ɡɚɝɪɹɡɧɟɧɢɹ; 2) ɥɨɤɚɥɢɡɚɰɢɹ ɢɫɬɨɱɧɢɤɨɜ ɡɚɝɪɹɡɧɟɧɢɹ. Ɋɚɰɢɨɧɚɥɶɧɨɟ ɪɚɡɦɟɳɟɧɢɟ ɩɪɟɞɩɨɥɚɝɚɟɬ ɬɟɪɪɢɬɨɪɢɚɥɶɧɨɟ ɪɚɰɢɨɧɚɥɶɧɨɟ ɪɚɡɦɟɳɟɧɢɟ ɨɛɴɟɤɬɨɜ ɷɤɨɧɨɦɢɤɢ, ɫɧɢɠɚɸɳɟɟ ɧɚɝɪɭɡɤɭ ɧɚ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ, ɚ ɥɨɤɚɥɢɡɚɰɢɹ ɩɨ ɫɭɳɟɫɬɜɭ ɹɜɥɹɟɬɫɹ ɮɥɟɝɦɚɬɢɡɚɰɢɟɣ ɢɫɬɨɱɧɢɤɨɜ ɡɚɝɪɹɡɧɟɧɢɣ ɢ ɫɪɟɞɫɬɜɨɦ ɫɧɢɠɟɧɢɹ ɢɯ ɜɵɛɪɨɫɨɜ. Ʌɨɤɚɥɢɡɚɰɢɹ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢɦɟɧɟɧɢɟɦ ɪɚɡɥɢɱɧɵɯ ɫɪɟɞɨɡɚɳɢɬɧɵɯ ɬɟɯɧɨɥɨɝɢɣ, ɬɟɯɧɢɱɟɫɤɢɯ ɫɢɫɬɟɦ ɢ ɭɫɬɪɨɣɫɬɜ. ȼ ɨɫɧɨɜɟ ɦɧɨɝɢɯ ɫɪɟɞɨɡɚɳɢɬɧɵɯ ɬɟɯɧɨɥɨɝɢɣ ɥɟɠɚɬ ɮɢɡɢɱɟɫɤɢɟ ɢ ɯɢɦɢɱɟɫɤɢɟ ɩɪɟɜɪɚɳɟɧɢɹ. ȼ ɮɢɡɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɢɡɦɟɧɹɸɬɫɹ ɥɢɲɶ ɮɨɪɦɚ, ɪɚɡɦɟɪɵ, ɚɝɪɟɝɚɬɧɨɟ ɫɨɫɬɨɹɧɢɟ ɢ ɞɪɭɝɢɟ ɮɢɡɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɜɟɳɟɫɬɜ. ɂɯ ɫɬɪɨɟɧɢɟ ɢ ɯɢɦɢɱɟɫɤɢɣ ɫɨɫɬɚɜ ɫɨɯɪɚɧɹɸɬɫɹ. Ɏɢɡɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɞɨɦɢɧɢɪɭɸɬ ɩɪɢ ɞɪɨɛɥɟɧɢɢ, ɢɡɦɟɥɶɱɟɧɢɢ ɩɨɥɟɡɧɵɯ ɢɫɤɨɩɚɟɦɵɯ, ɜ ɪɚɡɥɢɱɧɵɯ ɫɩɨɫɨɛɚɯ ɨɛɪɚɛɨɬɤɢ ɦɟɬɚɥɥɨɜ ɞɚɜɥɟɧɢɟɦ, ɩɪɢ ɫɭɲɤɟ ɢ ɜ ɞɪɭɝɢɯ ɚɧɚɥɨɝɢɱɧɵɯ ɫɥɭɱɚɹɯ. ɏɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɢɡɦɟɧɹɸɬ ɮɢɡɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɢɫɯɨɞɧɨɝɨ ɫɵɪɶɹ ɢ ɟɝɨ ɯɢɦɢɱɟɫɤɢɣ ɫɨɫɬɚɜ. ɋ ɢɯ ɩɨɦɨɳɶɸ ɩɨɥɭɱɚɸɬ ɦɟɬɚɥɥɵ, ɫɩɢɪɬɵ, ɭɞɨɛɪɟɧɢɹ, ɫɚɯɚɪɚ ɢ ɬ.ɩ., ɤɨɬɨɪɵɟ ɜ ɱɢɫɬɨɦ ɜɢɞɟ ɜ ɫɵɪɶɟ ɧɟ ɩɪɢɫɭɬɫɬɜɭɸɬ. ɏɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɹɜɥɹɸɬɫɹ ɨɫɧɨɜɨɣ ɩɪɨɢɡɜɨɞɫɬɜɚ ɜ ɦɟɬɚɥɥɭɪɝɢɢ, ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɫɬɪɨɢɬɟɥɶɧɵɯ ɦɚɬɟɪɢɚɥɨɜ, ɰɟɥɥɸɥɨɡɧɨɛɭɦɚɠɧɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢ ɜɨ ɦɧɨɠɟɫɬɜɟ ɞɪɭɝɢɯ ɨɬɪɚɫɥɟɣ ɧɚɪɨɞɧɨɝɨ ɯɨɡɹɣɫɬɜɚ. ɏɢɦɢɱɟɫɤɢɟ ɹɜɥɟɧɢɹ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɡɚɱɚɫɬɭɸ ɩɨɥɭɱɚɸɬ ɪɚɡɜɢɬɢɟ ɩɨɞ ɜɥɢɹɧɢɟɦ ɜɧɟɲɧɢɯ ɭɫɥɨɜɢɣ (ɞɚɜɥɟɧɢɟ, ɨɛɴɟɦ, ɬɟɦɩɟɪɚɬɭɪɚ ɢ ɬ.ɞ.), ɜ ɤɨɬɨɪɵɯ ɪɟɚɥɢɡɭɟɬɫɹ ɩɪɨɰɟɫɫ. ɉɪɢ ɷɬɨɦ ɢɦɟɸɬ ɦɟɫɬɨ ɧɟɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɢɟ ɩɪɟɜɪɚɳɟɧɢɹ ɨɞɧɢɯ ɜɟɳɟɫɬɜ ɜ ɞɪɭɝɢɟ, ɢɡɦɟɧɟɧɢɟ ɢɯ ɩɨɜɟɪɯɧɨɫɬɧɵɯ, ɦɟɠɮɚɡɧɵɯ ɫɜɨɣɫɬɜ ɢ ɪɹɞ ɞɪɭɝɢɯ ɹɜɥɟɧɢɣ ɫɦɟɲɚɧɧɨɝɨ (ɮɢɡɢɱɟɫɤɨɝɨ ɢ ɯɢɦɢɱɟɫɤɨɝɨ) ɯɚɪɚɤɬɟɪɚ. ɋɨɜɨɤɭɩɧɨɫɬɶ ɜɡɚɢɦɨɫɜɹɡɚɧɧɵɯ ɯɢɦɢɱɟɫɤɢɯ ɢ ɮɢɡɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ, ɩɪɨɢɫɯɨɞɹɳɢɯ ɜ ɜɟɳɟɫɬɜɟɧɧɨɣ ɫɭɛɫɬɚɧɰɢɢ, ɩɨɥɭɱɢɥɚ ɧɚɡɜɚɧɢɟ ɮɢɡɢɤɨɯɢɦɢɱɟɫɤɢɯ, ɩɨɝɪɚɧɢɱɧɵɯ ɦɟɠɞɭ ɮɢɡɢɱɟɫɤɢɦɢ ɢ ɯɢɦɢɱɟɫɤɢɦɢ. Ɏɢɡɢɤɨɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɸɬɫɹ ɜ ɨɛɨɝɚɳɟɧɢɢ ɩɨɥɟɡɧɵɯ ɢɫɤɨɩɚɟɦɵɯ, ɦɟɬɚɥɥɭɪɝɢɢ, ɬɟɯɧɨɥɨɝɢɹɯ ɨɫɧɨɜɧɵɯ ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɢɡɜɨɞɫɬɜ, ɨɪɝɚɧɢɱɟɫɤɨɦ ɫɢɧɬɟɡɟ, ɷɧɟɪɝɟɬɢɤɟ, ɧɨ ɨɫɨɛɟɧɧɨ ɜ ɩɪɢɪɨɞɨɨɯɪɚɧɧɵɯ ɬɟɯɧɨɥɨɝɢɹɯ (ɩɵɥɟ- ɢ ɝɚɡɨɭɥɚɜɥɢɜɚɧɢɢ, ɨɱɢɫɬɤɟ ɫɬɨɱɧɵɯ ɜɨɞ ɢ ɞɪ.). ɋɩɟɰɢɮɢɱɟɫɤɭɸ ɝɪɭɩɩɭ ɫɨɫɬɚɜɥɹɸɬ ɛɢɨɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɯɢɦɢɱɟɫɤɢɟ ɩɪɟɜɪɚɳɟɧɢɹ, ɩɪɨɬɟɤɚɸɳɢɟ ɫ ɭɱɚɫɬɢɟɦ ɫɭɛɴɟɤɬɨɜ ɠɢɜɨɣ ɩɪɢɪɨɞɵ. Ȼɢɨɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɫɨɫɬɚɜɥɹɸɬ ɨɫɧɨɜɭ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ ɜɫɟɯ ɠɢɜɵɯ ɨɪɝɚɧɢɡɦɨɜ ɪɚɫɬɢɬɟɥɶɧɨɝɨ ɢ ɠɢɜɨɬɧɨɝɨ ɦɢɪɚ. ɇɚ ɢɯ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɩɨɫɬɪɨɟɧɚ ɡɧɚɱɢɬɟɥɶɧɚɹ ɱɚɫɬɶ ɫɟɥɶɫɤɨɯɨɡɹɣɫɬɜɟɧɧɨɝɨ ɩɪɨɢɡɜɨɞɫɬɜɚ ɢ ɩɢɳɟɜɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɧɚɩɪɢɦɟɪ ɛɢɨɬɟɯɧɨɥɨɝɢɹ. ɉɪɨɞɭɤɬɨɦ ɛɢɨɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɟɜɪɚɳɟɧɢɣ, ɩɪɨɬɟɤɚɸɳɢɯ ɫ ɭɱɚɫɬɢɟɦ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ, ɹɜɥɹɸɬɫɹ ɜɟɳɟɫɬɜɚ ɧɟɠɢɜɨɣ ɩɪɢɪɨɞɵ. ȼ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɨɫɧɨɜɚɯ ɬɟɯɧɨɥɨɝɢɢ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɛɚɡɢɪɭɸɳɢɯɫɹ ɧɚ ɨɛɳɢɯ ɡɚɤɨɧɚɯ ɮɢɡɢɱɟɫɤɨɣ ɢ ɤɨɥɥɨɢɞɧɨɣ ɯɢɦɢɢ, ɬɟɪɦɨɞɢɧɚɦɢɤɢ, ɝɢɞɪɨ- ɢ ɚɷɪɨɞɢɧɚɦɢɤɢ, ɢɡɭɱɚɟɬɫɹ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɚɹ ɫɭɳɧɨɫɬɶ ɨɫɧɨɜɧɵɯ ɩɪɨɰɟɫɫɨɜ ɷɤɨɛɢɨɡɚɳɢɬɧɵɯ ɬɟɯɧɨɥɨɝɢɣ. Ɍɚɤɨɣ ɫɢɫɬɟɦɧɵɣ ɩɨɞɯɨɞ ɤ ɫɪɟɞɨɡɚɳɢɬɧɵɦ ɩɪɨɰɟɫɫɚɦ ɩɨɡɜɨɥɹɟɬ ɫɞɟɥɚɬɶ ɨɛɨɛɳɟɧɢɹ ɩɨ ɬɟɨɪɢɢ ɬɚɤɢɯ ɩɪɨɰɟɫɫɨɜ, ɩɪɢɦɟɧɢɬɶ ɤ ɧɢɦ ɟɞɢɧɵɣ ɦɟɬɨɞɨɥɨɝɢɱɟɫɤɢɣ ɩɨɞɯɨɞ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɨɫɧɨɜɧɵɯ ɡɚɤɨɧɨɦɟɪɧɨɫɬɟɣ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɯ ɩɪɨɬɟɤɚɧɢɟ ɫɪɟɞɨɡɚɳɢɬɧɵɯ ɩɪɨɰɟɫɫɨɜ, ɩɨɫɥɟɞɧɢɟ ɩɨɞɪɚɡɞɟɥɹɸɬ ɧɚ ɫɥɟɞɭɸɳɢɟ ɝɪɭɩɩɵ: - ɦɟɯɚɧɢɱɟɫɤɢɟ; - ɝɢɞɪɨɦɟɯɚɧɢɱɟɫɤɢɟ; - ɦɚɫɫɨɨɛɦɟɧɧɵɟ, - ɯɢɦɢɱɟɫɤɢɟ; - ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ; - ɬɟɩɥɨɜɵɟ ɩɪɨɰɟɫɫɵ; - ɛɢɨɯɢɦɢɱɟɫɤɢɟ; - ɩɪɨɰɟɫɫɵ, ɨɫɥɨɠɧɟɧɧɵɟ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɟɣ. ȼ ɨɬɞɟɥɶɧɭɸ ɝɪɭɩɩɭ ɜɵɞɟɥɟɧɵ ɩɪɨɰɟɫɫɵ ɡɚɳɢɬɵ ɨɬ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ, ɜ ɨɫɧɨɜɧɨɦ ɛɚɡɢɪɭɸɳɢɟɫɹ ɧɚ ɩɪɢɧɰɢɩɚɯ ɨɬɪɚɠɟɧɢɹ ɢ ɩɨɝɥɨɳɟɧɢɹ ɢɡɛɵɬɨɱɧɨɣ ɷɧɟɪɝɢɢ ɨɫɧɨɜɧɵɯ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɩɪɢɪɨɞɨɩɨɥɶɡɨɜɚɧɢɹ. Ʉ ɦɟɯɚɧɢɱɟɫɤɢɦ ɩɪɨɰɟɫɫɚɦ, ɨɫɧɨɜɨɣ ɤɨɬɨɪɵɯ ɹɜɥɹɟɬɫɹ ɦɟɯɚɧɢɱɟɫɤɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɬɜɟɪɞɵɟ ɢ ɚɦɨɪɮɧɵɟ ɦɚɬɟɪɢɚɥɵ, ɨɬɧɨɫɹɬ ɢɡɦɟɥɶɱɟɧɢɟ (ɞɪɨɛɥɟɧɢɟ), ɫɨɪɬɢɪɨɜɚɧɢɟ (ɤɥɚɫɫɢɮɢɤɚɰɢɹ), ɩɪɟɫɫɨɜɚɧɢɟ ɢ ɫɦɟɲɢɜɚɧɢɟ ɫɵɩɭɱɢɯ ɦɚɬɟɪɢɚɥɨɜ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɸɬɫɹ ɫɢɥɵ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɞɚɜɥɟɧɢɹ ɢɥɢ ɰɟɧɬɪɨɛɟɠɧɚɹ ɫɢɥɚ. Ʉ ɝɢɞɪɨɦɟɯɚɧɢɱɟɫɤɢɦ ɩɪɨɰɟɫɫɚɦ, ɨɫɧɨɜɨɣ ɤɨɬɨɪɵɯ ɹɜɥɹɟɬɫɹ ɝɢɞɪɨɫɬɚɬɢɱɟɫɤɨɟ ɢɥɢ ɝɢɞɪɨɦɟɯɚɧɢɱɟɫɤɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɫɪɟɞɵ ɢ ɦɚɬɟɪɢɚɥɵ, ɨɬɧɨɫɹɬ ɩɟɪɟɦɟɲɢɜɚɧɢɟ, ɨɬɫɬɚɢɜɚɧɢɟ (ɨɫɚɠɞɟɧɢɟ), ɮɢɥɶɬɪɨɜɚɧɢɟ, ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɟɬɫɹ ɝɢɞɪɨɫɬɚɬɢɱɟɫɤɨɟ ɞɚɜɥɟɧɢɟ ɢɥɢ ɰɟɧɬɪɨɛɟɠɧɚɹ ɫɢɥɚ. Ʉ ɦɚɫɫɨɨɛɦɟɧɧɵɦ (ɞɢɮɮɭɡɢɨɧɧɵɦ) ɩɪɨɰɟɫɫɚɦ, ɜ ɤɨɬɨɪɵɯ ɛɨɥɶɲɭɸ ɪɨɥɶ ɧɚɪɹɞɭ ɫ ɬɟɩɥɨɩɟɪɟɞɚɱɟɣ ɢɝɪɚɟɬ ɩɟɪɟɯɨɞ ɜɟɳɟɫɬɜɚ ɢɡ ɨɞɧɨɣ ɮɚɡɵ ɜ ɞɪɭɝɭɸ ɡɚ ɫɱɟɬ ɞɢɮɮɭɡɢɢ, ɨɬɧɨɫɹɬ ɚɛɫɨɪɛɰɢɸ, ɚɞɫɨɪɛɰɢɸ, ɞɟɫɨɪɛɰɢɸ, ɷɤɫɬɪɚɝɢɪɨɜɚɧɢɟ, ɪɟɤɬɢɮɢɤɚɰɢɸ, ɫɭɲɤɭ ɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɸ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɟɬɫɹ ɪɚɡɧɨɫɬɶ ɤɨɧɰɟɧɬɪɚɰɢɣ ɩɟɪɟɯɨɞɹɳɟɝɨ ɜɟɳɟɫɬɜɚ ɜɨ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɮɚɡɚɯ. ɏɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ, ɩɪɨɬɟɤɚɸɳɢɟ ɫ ɢɡɦɟɧɟɧɢɟɦ ɮɢɡɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɢ ɯɢɦɢɱɟɫɤɨɝɨ ɫɨɫɬɚɜɚ ɢɫɯɨɞɧɵɯ ɜɟɳɟɫɬɜ, ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɩɪɟɜɪɚɳɟɧɢɟɦ ɨɞɧɢɯ ɜɟɳɟɫɬɜ ɜ ɞɪɭɝɢɟ, ɢɡɦɟɧɟɧɢɟɦ ɢɯ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɢ ɦɟɠɮɚɡɧɵɯ ɫɜɨɣɫɬɜ. Ʉ ɷɬɢɦ ɩɪɨɰɟɫɫɚɦ ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɩɪɨɰɟɫɫɵ ɧɟɣɬɪɚɥɢɡɚɰɢɢ, ɨɤɢɫɥɟɧɢɹ ɢ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɟɬɫɹ ɪɚɡɧɨɫɬɶ ɯɢɦɢɱɟɫɤɢɯ (ɬɟɪɦɨɞɢɧɚɦɢɱɟɫɤɢɯ) ɩɨɬɟɧɰɢɚɥɨɜ. Ɏɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɜɡɚɢɦɨɫɜɹɡɚɧɧɨɣ ɫɨɜɨɤɭɩɧɨɫɬɶɸ ɯɢɦɢɱɟɫɤɢɯ ɢ ɮɢɡɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ. Ʉ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɦ ɩɪɨɰɟɫɫɚɦ ɪɚɡɞɟɥɟɧɢɹ, ɨɫɧɨɜɨɣ ɤɨɬɨɪɵɯ ɹɜɥɹɸɬɫɹ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɩɪɟɜɪɚɳɟɧɢɹ ɜɟɳɟɫɬɜ, ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɤɨɚɝɭɥɹɰɢɸ ɢ ɮɥɨɤɭɥɹɰɢɸ, ɮɥɨɬɚɰɢɸ, ɢɨɧɧɵɣ ɨɛɦɟɧ, ɨɛɪɚɬɧɵɣ ɨɫɦɨɫ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɸ, ɞɟɡɨɞɨɪɚɰɢɸ ɢ ɞɟɝɚɡɚɰɢɸ, ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ, ɜ ɱɚɫɬɧɨɫɬɢ, ɷɥɟɤɬɪɢɱɟɫɤɭɸ ɨɱɢɫɬɤɭ ɝɚɡɨɜ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɟɬɫɹ ɪɚɡɧɨɫɬɶ ɮɢɡɢɱɟɫɤɢɯ ɢ ɬɟɪɦɨɞɢɧɚɦɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ ɪɚɡɞɟɥɹɟɦɵɯ ɤɨɦɩɨɧɟɧɬɨɜ ɧɚ ɝɪɚɧɢɰɚɯ ɮɚɡ. Ʉ ɬɟɩɥɨɜɵɦ ɩɪɨɰɟɫɫɚɦ, ɨɫɧɨɜɨɣ ɤɨɬɨɪɵɯ ɹɜɥɹɟɬɫɹ ɢɡɦɟɧɟɧɢɟ ɬɟɩɥɨɜɨɝɨ ɫɨɫɬɨɹɧɢɹ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɫɪɟɞ, ɨɬɧɨɫɹɬ ɧɚɝɪɟɜɚɧɢɟ, ɨɯɥɚɠɞɟɧɢɟ, ɜɵɩɚɪɢɜɚɧɢɟ ɢ ɤɨɧɞɟɧɫɚɰɢɸ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɟɬɫɹ ɪɚɡɧɨɫɬɶ ɬɟɦɩɟɪɚɬɭɪ (ɬɟɪɦɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ) ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɫɪɟɞ. Ȼɢɨɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ, ɜ ɨɫɧɨɜɟ ɤɨɬɨɪɵɯ ɥɟɠɚɬ ɤɚɬɚɥɢɬɢɱɟɫɤɢɟ ɮɟɪɦɟɧɬɚɬɢɜɧɵɟ ɪɟɚɤɰɢɢ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɩɪɟɜɪɚɳɟɧɢɹ ɜɟɳɟɫɬɜ ɜ ɩɪɨɰɟɫɫɟ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ, ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɩɪɨɬɟɤɚɧɢɟɦ ɛɢɨɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɣ ɢ ɫɢɧɬɟɡɨɦ ɜɟɳɟɫɬɜ ɧɚ ɭɪɨɜɧɟ ɠɢɜɨɣ ɤɥɟɬɤɢ. Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ ɹɜɥɹɟɬɫɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɣ ɭɪɨɜɟɧɶ (ɩɨɬɟɧɰɢɚɥ) ɠɢɜɵɯ ɨɪɝɚɧɢɡɦɨɜ. ɍɤɚɡɚɧɧɚɹ ɤɥɚɫɫɢɮɢɤɚɰɢɹ ɧɟ ɹɜɥɹɟɬɫɹ ɠɟɫɬɤɨɣ ɢ ɧɟɢɡɦɟɧɧɨɣ. ȼ ɪɟɚɥɶɧɨɣ ɞɟɣɫɬɜɢɬɟɥɶɧɨɫɬɢ ɦɧɨɝɢɟ ɩɪɨɰɟɫɫɵ ɨɫɥɨɠɧɟɧɵ ɩɪɨɬɟɤɚɧɢɟɦ ɫɦɟɠɧɨ- ɩɚɪɚɥɥɟɥɶɧɵɯ ɩɪɨɰɟɫɫɨɜ. ɇɚɩɪɢɦɟɪ, ɦɚɫɫɨɨɛɦɟɧɧɵɟ ɢ ɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɱɚɫɬɨ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɬɟɩɥɨɜɵɦɢ ɩɪɨɰɟɫɫɚɦɢ. Ɍɚɤ, ɪɟɤɬɢɮɢɤɚɰɢɸ, ɫɭɲɤɭ ɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɸ ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɤ ɤɨɦɛɢɧɢɪɨɜɚɧɧɵɦ ɬɟɩɥɨɦɚɫɫɨɨɛɦɟɧɧɵɦ ɩɪɨɰɟɫɫɚɦ. ɉɪɨɰɟɫɫɵ ɚɛɫɨɪɛɰɢɢ, ɚɞɫɨɪɛɰɢɢ ɱɚɫɬɨ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɯɢɦɢɱɟɫɤɢɦɢ ɩɪɟɜɪɚɳɟɧɢɹɦɢ. ɏɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɢ ɨɤɢɫɥɟɧɢɹ ɦɨɠɧɨ ɨɞɧɨɜɪɟɦɟɧɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɦɚɫɫɨɨɛɦɟɧɧɵɟ ɩɪɨɰɟɫɫɵ. Ȼɢɨɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɨɞɧɨɜɪɟɦɟɧɧɨ ɬɟɩɥɨ- ɢ ɦɚɫɫɨɨɛɦɟɧɨɦ, ɚ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ - ɦɚɫɫɨɨɛɦɟɧɧɵɦɢ ɩɪɨɰɟɫɫɚɦɢ. 1.10. Ɇɟɬɨɞɵ ɨɱɢɫɬɤɢ ɩɵɥɟɜɨɡɞɭɲɧɵɯ ɜɵɛɪɨɫɨɜ ɉɨɞ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟɦ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ ɩɨɧɢɦɚɸɬ ɨɬɞɟɥɟɧɢɟ ɨɬ ɝɚɡɚ ɢɥɢ ɩɪɟɜɪɚɳɟɧɢɟ ɜ ɛɟɡɜɪɟɞɧɨɟ ɫɨɫɬɨɹɧɢɟ ɡɚɝɪɹɡɧɹɸɳɢɯ ɩɪɢɦɟɫɟɣ. Ⱦɢɫɩɟɪɫɧɵɟ ɡɚɝɪɹɡɧɢɬɟɥɢ ɜ ɨɬɥɢɱɢɟ ɨɬ ɝɚɡɨɨɛɪɚɡɧɵɯ ɮɢɤɫɢɪɭɸɬɫɹ ɜ ɚɬɦɨɫɮɟɪɟ ɜɢɡɭɚɥɶɧɨ ɭɠɟ ɩɪɢ ɧɟɛɨɥɶɲɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ. ɉɨɷɬɨɦɭ ɨɬɫɭɬɫɬɜɢɟ ɲɥɟɣɮɚ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɢ ɩɪɨɡɪɚɱɧɨɫɬɶ ɜɵɛɪɨɫɚ ɹɜɥɹɸɬɫɹ ɩɪɨɫɬɟɣɲɢɦɢ ɤɪɢɬɟɪɢɹɦɢ ɟɝɨ ɱɢɫɬɨɬɵ. ȼɟɪɨɹɬɧɨ, ɩɨ ɬɨɣ ɠɟ ɩɪɢɱɢɧɟ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɨɛ ɨɱɢɫɬɤɟ ɜɵɛɪɨɫɨɜ ɤɚɤ ɢɫɤɥɸɱɢɬɟɥɶɧɨ ɨ ɩɵɥɟ- ɢɥɢ ɡɨɥɨɭɥɚɜɥɢɜɚɧɢɢ, ɛɵɬɭɟɬ ɢɧɨɝɞɚ ɞɚɠɟ ɜ ɤɪɭɝɚɯ ɫɩɟɰɢɚɥɢɫɬɨɜ, ɡɚɧɢɦɚɸɳɢɯɫɹ ɩɪɨɛɥɟɦɚɦɢ ɷɤɨɥɨɝɢɢ. ɉɨɥɜɟɤɚ ɧɚɡɚɞ ɩɨɞɨɛɧɨɟ ɪɟɲɟɧɢɟ ɩɪɨɛɥɟɦɵ ɡɚɳɢɬɵ ɜɨɡɞɭɲɧɨɝɨ ɛɚɫɫɟɣɧɚ ɤɚɡɚɥɨɫɶ ɜɩɨɥɧɟ ɫɨɫɬɨɹɬɟɥɶɧɵɦ. Ɍɪɚɝɢɱɟɫɤɢɣ ɨɩɵɬ ɤɚɬɚɫɬɪɨɮ ɩɨɫɥɟɞɧɢɯ ɞɟɫɹɬɢɥɟɬɢɣ ɧɚ ɯɢɦɢɱɟɫɤɢɯ ɢ ɪɚɞɢɨɧɭɤɥɢɞɧɵɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ ɩɨɤɚɡɚɥ, ɱɬɨ ɜ ɫɚɦɨɦ ɩɪɨɡɪɚɱɧɨɦ ɜɵɛɪɨɫɟ ɦɨɠɟɬ ɬɚɢɬɶɫɹ ɫɦɟɪɬɟɥɶɧɚɹ ɭɝɪɨɡɚ. Ɉɞɧɚɤɨ ɷɬɨɬ ɨɩɵɬ ɩɨɤɚ ɧɟ ɧɚɲɟɥ ɞɨɥɠɧɨɝɨ ɨɬɪɚɠɟɧɢɹ ɜ ɬɟɯɧɢɱɟɫɤɨɣ ɥɢɬɟɪɚɬɭɪɟ ɢ ɩɪɚɤɬɢɤɟ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ. Ɉɛɟɡɜɪɟɠɢɜɚɧɢɟ ɜɵɛɪɨɫɨɜ ɩɪɟɞɩɨɥɚɝɚɟɬ ɥɢɛɨ ɭɞɚɥɟɧɢɟ ɜɪɟɞɧɵɯ ɩɪɢɦɟɫɟɣ ɢɡ ɢɧɟɪɬɧɨɝɨ ɝɚɡɚ-ɧɨɫɢɬɟɥɹ, ɥɢɛɨ ɩɪɟɜɪɚɳɟɧɢɟ ɢɯ ɜ ɛɟɡɜɪɟɞɧɵɟ ɜɟɳɟɫɬɜɚ. Ɉɛɚ ɩɪɢɧɰɢɩɚ ɦɨɝɭɬ ɛɵɬɶ ɪɟɚɥɢɡɨɜɚɧɵ ɱɟɪɟɡ ɪɚɡɥɢɱɧɵɟ ɮɢɡɢɱɟɫɤɢɟ ɢ ɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ, ɞɥɹ ɨɫɭɳɟɫɬɜɥɟɧɢɹ ɤɨɬɨɪɵɯ ɬɪɟɛɭɸɬɫɹ ɨɩɪɟɞɟɥɟɧɧɵɟ ɭɫɥɨɜɢɹ. Ɋɚɫɱɟɬɵ ɩɪɨɰɟɫɫɨɜ ɢ ɚɩɩɚɪɚɬɨɜ ɩɵɥɟɝɚɡɨɨɱɢɫɬɤɢ ɩɪɢ ɢɯ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɞɨɥɠɧɵ ɛɵɬɶ ɧɚɩɪɚɜɥɟɧɵ ɧɚ ɫɨɡɞɚɧɢɟ ɭɫɥɨɜɢɣ, ɨɛɟɫɩɟɱɢɜɚɸɳɢɯ ɦɚɤɫɢɦɚɥɶɧɨ ɩɨɥɧɨɟ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɜɵɛɪɨɫɨɜ. Ⱦɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɚɷɪɨɡɨɥɟɣ (ɩɵɥɟɣ ɢ ɬɭɦɚɧɨɜ) ɢɫɩɨɥɶɡɭɸɬ ɫɭɯɢɟ, ɦɨɤɪɵɟ ɢ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɦɟɬɨɞɵ. ȼ ɨɫɧɨɜɟ ɫɭɯɢɯ ɦɟɬɨɞɨɜ ɥɟɠɚɬ ɝɪɚɜɢɬɚɰɢɨɧɧɵɟ, ɢɧɟɪɰɢɨɧɧɵɟ, ɰɟɧɬɪɨɛɟɠɧɵɟ ɦɟɯɚɧɢɡɦɵ ɨɫɚɠɞɟɧɢɹ ɢɥɢ ɮɢɥɶɬɪɚɰɢɨɧɧɵɟ ɦɟɯɚɧɢɡɦɵ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɦɨɤɪɵɯ ɦɟɬɨɞɨɜ ɨɱɢɫɬɤɚ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɭɬɟɦ ɬɟɫɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɟɠɞɭ ɠɢɞɤɨɫɬɶɸ ɢ ɡɚɩɵɥɟɧɧɵɦ ɝɚɡɨɦ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɝɚɡɨɜɵɯ ɩɭɡɵɪɟɣ, ɤɚɩɟɥɶ ɢɥɢ ɠɢɞɤɨɣ ɩɥɟɧɤɢ. ɗɥɟɤɬɪɢɱɟɫɤɚɹ ɨɱɢɫɬɤɚ ɝɚɡɨɜ ɨɫɧɨɜɚɧɚ ɧɚ ɢɨɧɢɡɚɰɢɢ ɦɨɥɟɤɭɥ ɝɚɡɚ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɪɚɡɪɹɞɨɦ ɢ ɷɥɟɤɬɪɢɡɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɜ ɝɚɡɟ ɱɚɫɬɢɰ. ɉɪɢ ɨɛɪɚɛɨɬɤɟ ɜɵɛɪɨɫɨɜ, ɫɨɞɟɪɠɚɳɢɯ ɬɜɟɪɞɵɟ ɚɷɪɨɡɨɥɶɧɵɟ ɡɚɝɪɹɡɧɢɬɟɥɢ, ɧɢɡɤɢɯ ɜɟɥɢɱɢɧ ɩɪɨɫɤɨɤɚ (1...2% ɢ ɦɟɧɟɟ) ɦɨɠɧɨ ɞɨɫɬɢɱɶ, ɤɚɤ ɩɪɚɜɢɥɨ, ɬɨɥɶɤɨ ɞɜɭɯɫɬɭɩɟɧɱɚɬɨɣ ɨɱɢɫɬɤɨɣ. Ⱦɥɹ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɣ ɨɱɢɫɬɤɢ ɦɨɝɭɬ ɛɵɬɶ ɩɪɢɦɟɧɟɧɵ ɠɚɥɸɡɢɣɧɵɟ ɪɟɲɟɬɤɢ ɢ ɰɢɤɥɨɧɧɵɟ ɚɩɩɚɪɚɬɵ (ɢɧɨɝɞɚ ɞɥɹ ɧɟɛɨɥɶɲɢɯ ɜɵɛɪɨɫɨɜ - ɩɵɥɟɨɫɚɞɢɬɟɥɶɧɵɟ ɤɚɦɟɪɵ), ɚ ɞɥɹ ɨɤɨɧɱɚɬɟɥɶɧɨɣ - ɩɨɪɢɫɬɵɟ ɮɢɥɶɬɪɵ, ɷɥɟɤɬɪɨɮɢɥɶɬɪɵ ɢɥɢ ɦɨɤɪɵɟ ɩɵɥɟɨɫɚɞɢɬɟɥɢ. ɀɢɞɤɢɟ ɚɷɪɨɡɨɥɢ (ɬɭɦɚɧɵ) ɦɨɝɭɬ ɛɵɬɶ ɫɤɨɚɝɭɥɢɪɨɜɚɧɵ ɩɨɫɪɟɞɫɬɜɨɦ ɢɡɦɟɧɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ ɫɨɫɬɨɹɧɢɹ (ɨɯɥɚɠɞɟɧɢɹ ɢ ɩɨɜɵɲɟɧɢɹ ɞɚɜɥɟɧɢɹ) ɫ ɰɟɥɶɸ ɨɫɚɠɞɟɧɢɹ ɜ ɩɨɫɥɟɞɭɸɳɟɦ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɤɚɤ ɩɪɚɜɢɥɨ ɦɨɤɪɵɯ ɫɩɨɫɨɛɨɜ ɭɥɚɜɥɢɜɚɧɢɹ ɜ ɦɨɤɪɵɯ ɫɤɪɭɛɛɟɪɚɯ, ɩɨɪɢɫɬɵɯ ɢ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɮɢɥɶɬɪɚɯ, ɜ ɚɛɫɨɪɛɟɪɚɯ. Ɇɨɤɪɵɟ ɫɩɨɫɨɛɵ ɨɱɢɫɬɤɢ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɚɷɪɨɡɨɥɟɣ ɢɦɟɸɬ ɫɭɳɟɫɬɜɟɧɧɵɣ ɧɟɞɨɫɬɚɬɨɤ - ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɨɬɞɟɥɟɧɢɹ ɭɥɨɜɥɟɧɧɨɝɨ ɡɚɝɪɹɡɧɢɬɟɥɹ ɨɬ ɭɥɚɜɥɢɜɚɸɳɟɣ ɠɢɞɤɨɫɬɢ. ɉɨ ɷɬɨɣ ɩɪɢɱɢɧɟ ɦɨɤɪɵɟ ɫɩɨɫɨɛɵ ɫɥɟɞɭɟɬ ɩɪɢɦɟɧɹɬɶ ɬɨɥɶɤɨ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɞɪɭɝɢɯ ɦɟɬɨɞɨɜ ɨɱɢɫɬɤɢ, ɨɬɞɚɜɚɹ ɩɪɟɞɩɨɱɬɟɧɢɟ ɫɩɨɫɨɛɚɦ ɫ ɦɢɧɢɦɚɥɶɧɵɦ ɪɚɫɯɨɞɨɦ ɠɢɞɤɨɫɬɢ. ɇɟɜɨɡɦɨɠɧɨ ɭɤɚɡɚɬɶ ɬɨɱɧɵɟ ɝɪɚɧɢɰɵ ɩɪɢɦɟɧɢɦɨɫɬɢ ɬɟɯ ɢɥɢ ɢɧɵɯ ɮɢɡɢɱɟɫɤɢɯ ɢ ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɤ ɤɚɤɨɦɭ-ɥɢɛɨ ɢɡ ɩɪɢɧɰɢɩɨɜ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɜɵɛɪɨɫɨɜ ɢɥɢ ɫɬɪɨɝɨ ɫɨɨɬɧɟɫɬɢ ɢɯ ɫ ɨɩɪɟɞɟɥɟɧɧɵɦɢ ɚɝɪɟɝɚɬɧɵɦɢ ɫɨɫɬɨɹɧɢɹɦɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. Ɍɚɤ, ɩɪɨɰɟɫɫɵ ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɢ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɞɢɫɩɟɪɫɧɨɣ ɱɚɫɬɢ ɜɵɛɪɨɫɨɜ ɦɨɝɭɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ ɢ ɞɥɹ ɨɬɞɟɥɟɧɢɹ ɝɚɡɨɜ ɫ ɜɵɫɨɤɨɣ ɩɥɨɬɧɨɫɬɶɸ, ɧɚɩɪɢɦɟɪ, ɝɚɥɨɝɟɧɢɞɨɜ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɩɪɨɰɟɫɫɵ ɨɯɥɚɠɞɟɧɢɹ ɢ ɤɨɧɞɟɧɫɚɰɢɢ, ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɟɦɵɟ ɞɥɹ ɝɚɡɨɪɚɡɞɟɥɟɧɢɹ, ɩɪɢɦɟɧɹɸɬɫɹ ɢ ɞɥɹ ɭɤɪɭɩɧɟɧɢɹ ɫɭɛɦɢɤɪɨɧɧɵɯ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɯ ɚɷɪɨɡɨɥɟɣ ("ɜɵɦɨɪɚɠɢɜɚɧɢɟ" ɩɨɥɢɰɢɤɥɢɱɟɫɤɢɯ ɚɪɨɦɚɬɢɱɟɫɤɢɯ ɭɝɥɟɜɨɞɨɪɨɞɨɜ, ɤɨɚɝɭɥɹɰɢɹ ɬɭɦɚɧɨɜ). ɉɪɨɛɥɟɦɵ, ɜɨɡɧɢɤɚɸɳɢɟ ɩɪɢ ɪɚɡɪɚɛɨɬɤɟ ɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɨɱɢɫɬɧɵɯ ɫɢɫɬɟɦ, ɬɟɫɧɨ ɫɜɹɡɚɧɵ ɢ ɫɨ ɜɫɟɨɛɳɢɦɢ ɡɚɤɨɧɚɦɢ (ɰɢɤɥɢɱɧɨɫɬɶ, ɛɟɡɨɬɯɨɞɧɨɫɬɶ ɢ ɞɪ.), ɢ ɫ ɤɨɧɤɪɟɬɧɵɦɢ ɡɚɤɨɧɨɦɟɪɧɨɫɬɹɦɢ ɩɪɢɪɨɞɧɵɯ ɬɟɯɧɨɥɨɝɢɣ. Ɍɚɤ, ɧɚɩɪɢɦɟɪ, ɜɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɦɨɝɭɬ ɨɫɟɞɚɬɶ ɩɨɞ ɜɥɢɹɧɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɵɯ, ɢɧɟɪɰɢɨɧɧɵɯ, ɤɨɝɟɡɢɨɧɧɵɯ, ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɢɯ ɢ ɞɪɭɝɢɯ ɫɢɥ. ȼɤɥɚɞ ɤɚɠɞɨɣ ɢɡ ɧɢɯ ɜ ɪɟɡɭɥɶɬɢɪɭɸɳɟɟ ɞɟɣɫɬɜɢɟ ɡɚɜɢɫɢɬ ɨɬ ɛɨɥɶɲɨɝɨ ɱɢɫɥɚ ɮɚɤɬɨɪɨɜ, ɫɜɹɡɚɧɧɵɯ ɫ ɩɚɪɚɦɟɬɪɚɦɢ ɱɚɫɬɢɰ, ɫɪɟɞɵ, ɤɨɧɫɬɪɭɤɬɢɜɧɵɦɢ ɨɫɨɛɟɧɧɨɫɬɹɦɢ ɚɩɩɚɪɚɬɨɜ. ȼɨɡɦɨɠɧɨɫɬɢ ɦɚɬɟɦɚɬɢɱɟɫɤɨɝɨ ɚɩɩɚɪɚɬɚ ɧɟɞɨɫɬɚɬɨɱɧɵ ɞɥɹ ɜɫɟɫɬɨɪɨɧɧɟɝɨ ɤɨɥɢɱɟɫɬɜɟɧɧɨɝɨ ɭɱɟɬɚ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɪɟɚɥɶɧɵɯ ɩɪɨɰɟɫɫɨɜ. Ɇɧɨɝɢɟ ɢɡ ɮɚɤɬɨɪɨɜ ɜɡɚɢɦɨɫɜɹɡɚɧɵ, ɚ ɪɟɡɭɥɶɬɢɪɭɸɳɢɟ ɡɚɜɢɫɢɦɨɫɬɢ ɢɦɟɸɬ ɧɚɫɬɨɥɶɤɨ ɫɥɨɠɧɵɣ ɯɚɪɚɤɬɟɪ, ɱɬɨ ɧɟ ɜɫɟɝɞɚ ɭɞɚɟɬɫɹ ɧɚɣɬɢ ɥɨɝɢɱɟɫɤɨɟ ɨɛɴɹɫɧɟɧɢɟ ɩɨɥɭɱɟɧɧɵɦ ɪɟɡɭɥɶɬɚɬɚɦ. ɉɨɷɬɨɦɭ ɞɚɠɟ ɜ ɪɚɫɱɟɬɚɯ ɩɪɨɫɬɟɣɲɢɯ ɨɱɢɫɬɧɵɯ ɭɫɬɪɨɣɫɬɜ - ɩɵɥɟɨɫɚɞɢɬɟɥɶɧɵɯ ɤɚɦɟɪ ɢ ɠɚɥɸɡɢɣɧɵɯ ɪɟɲɟɬɨɤ, ɩɪɢɯɨɞɢɬɫɹ ɨɫɧɨɜɵɜɚɬɶɫɹ ɧɚ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɞɚɧɧɵɟ ɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɣ ɨɩɵɬ. ɇɚɢɛɨɥɟɟ ɫɥɨɠɧɵ ɞɥɹ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɵ, ɡɚɝɪɹɡɧɢɬɟɥɢ ɤɨɬɨɪɵɯ ɩɪɟɞɫɬɚɜɥɹɸɬ ɦɧɨɝɨɮɚɡɧɭɸ ɫɢɫɬɟɦɭ. ɉɨɫɤɨɥɶɤɭ ɛɨɥɶɲɢɧɫɬɜɨ ɫɨɜɪɟɦɟɧɧɵɯ ɨɱɢɫɬɧɵɯ ɚɩɩɚɪɚɬɨɜ ɧɟ ɩɪɢɫɩɨɫɨɛɥɟɧɨ ɞɥɹ ɨɞɧɨɜɪɟɦɟɧɧɨɝɨ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɞɢɫɩɟɪɫɧɵɯ ɢ ɝɨɦɨɝɟɧɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɬɨ ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɩɨɞɨɛɧɵɟ ɜɵɛɪɨɫɵ ɞɨɥɠɧɵ ɩɪɨɣɬɢ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ 4 ɫɬɚɞɢɢ ɨɛɪɚɛɨɬɤɢ: ɩɪɟɞɜɚɪɢɬɟɥɶ- ɧɭɸ ɢ ɬɨɧɤɭɸ ɨɱɢɫɬɤɭ ɨɬ ɚɷɪɨɡɨɥɹ ɢ ɡɚɬɟɦ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɟ ɢ ɨɤɨɧɱɚɬɟɥɶɧɨɟ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɝɚɡɨɨɛɪɚɡɧɨɝɨ ɡɚɝɪɹɡɧɢɬɟɥɹ. ȼ ɱɚɫɬɧɨɫɬɢ, ɟɫɥɢ ɝɚɡɨɨɛɪɚɡɧɵɣ ɡɚɝɪɹɡɧɢɬɟɥɶ ɯɨɪɨɲɨ ɪɚɫɬɜɨɪɹɟɬɫɹ ɜ ɜɨɞɟ, ɦɨɠɟɬ ɛɵɬɶ ɨɪɝɚɧɢɡɨɜɚɧɚ ɩɪɟɞɜɚɪɢɬɟɥɶɧɚɹ ɨɛɪɚɛɨɬɤɚ ɜɵɛɪɨɫɨɜ ɦɨɤɪɵɦɢ ɫɩɨɫɨɛɚɦɢ, ɤɨɬɨɪɚɹ ɩɨɡɜɨɥɢɬ ɩɨɧɢɡɢɬɶ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɚɤ ɞɢɫɩɟɪɫɧɵɯ, ɬɚɤ ɢ ɝɨɦɨɝɟɧɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. ȿɫɥɢ ɬɜɟɪɞɵɟ ɢɥɢ ɠɢɞɤɢɟ ɚɷɪɨɡɨɥɢ ɩɨ ɷɥɟɦɟɧɬɧɨɦɭ ɫɨɫɬɚɜɭ ɧɟ ɫɨɞɟɪɠɚɬ ɞɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ, ɤɪɨɦɟ ɭɝɥɟɪɨɞɚ, ɜɨɞɨɪɨɞɚ ɢ ɤɢɫɥɨɪɨɞɚ (ɩɵɥɶ ɪɚɫɬɢɬɟɥɶɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ, ɲɟɪɫɬɹɧɵɟ ɜɨɥɨɤɧɚ, ɬɭɦɚɧɵ ɦɢɧɟɪɚɥɶɧɵɯ ɦɚɫɟɥ ɢ ɞɪ.), ɬɨ ɨɧɢ ɦɨɝɭɬ ɛɵɬɶ ɨɛɟɡɜɪɟɠɟɧɵ ɜ ɨɞɧɭ ɫɬɚɞɢɸ - ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɵɦ ɫɠɢɝɚɧɢɟɦ ɜ ɬɨɩɤɚɯ ɤɨɬɥɨɜ ɢ ɩɟɱɟɣ. 1.11. ɋɩɨɫɨɛɵ ɨɱɢɫɬɤɢ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ Ⱦɢɫɩɟɪɫɧɵɟ ɢ ɝɚɡɨɜɵɟ ɡɚɝɪɹɡɧɢɬɟɥɢ ɧɟɪɟɞɤɨ ɹɜɥɹɸɬɫɹ ɫɥɟɞɫɬɜɢɟɦ ɨɞɧɢɯ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɩɪɨɰɟɫɫɨɜ, ɜɦɟɫɬɟ ɩɟɪɟɦɟɳɚɸɬɫɹ ɜ ɤɨɦɦɭɧɢɤɚɰɢɹɯ, ɬɟɫɧɨ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɬ ɜ ɨɱɢɫɬɧɵɯ ɚɩɩɚɪɚɬɚɯ ɢ ɚɬɦɨɫɮɟɪɟ, ɫɨɜɦɟɫɬɧɨ ɧɚɧɨɫɹɬ ɭɳɟɪɛ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɟ ɢ ɱɟɥɨɜɟɤɭ. ɉɨɷɬɨɦɭ ɧɟɨɛɯɨɞɢɦɨ ɭɱɢɬɵɜɚɬɶ ɜɟɫɶ ɤɨɦɩɥɟɤɫ ɩɪɢɫɭɬɫɬɜɭɸɳɢɯ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɦ ɜɵɛɪɨɫɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. ɇɟɥɶɡɹ ɩɪɢɧɢɦɚɬɶ ɡɚ ɫɪɟɞɫɬɜɨ ɨɱɢɫɬɤɢ ɡɚɩɵɥɟɧɧɵɯ ɝɚɡɨɜ ɩɵɥɟɨɫɚɞɢɬɟɥɶɧɨɟ ɭɫɬɪɨɣɫɬɜɨ, ɜɵɛɪɚɫɵɜɚɸɳɟɟ ɜ ɚɬɦɨɫɮɟɪɭ ɜɪɟɞɧɵɟ ɝɚɡɨɨɛɪɚɡɧɵɟ ɜɟɳɟɫɬɜɚ. ɇɟɞɨɩɭɫɬɢɦɵ ɢ ɬɚɤɢɟ ɫɪɟɞɫɬɜɚ, ɜ ɤɨɬɨɪɵɯ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɢɫɯɨɞɧɵɯ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟɦ ɢ ɜɵɛɪɨɫɨɦ ɹɞɨɜɢɬɵɯ ɬɭɦɚɧɨɜ ɢ ɞɵɦɨɜ ɞɪɭɝɢɯ ɜɟɳɟɫɬɜ. ɋɭɞɹ ɩɨ ɫɨɫɬɚɜɚɦ ɪɟɚɥɶɧɵɯ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɢ ɦɚɫɲɬɚɛɚɦ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɪɚɡɪɚɛɚɬɵɜɚɬɶ ɭɫɬɪɨɣɫɬɜɚ ɩɵɥɟɨɱɢɫɬɤɢ ɛɟɡ ɭɱɟɬɚ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜɨɡɦɨɠɧɨ ɬɨɥɶɤɨ ɞɥɹ ɜɟɧɬɢɥɹɰɢɨɧɧɵɯ ɜɵɛɪɨɫɨɜ ɦɟɯɚɧɢɱɟɫɤɢɯ ɰɟɯɨɜ. ȼɵɛɪɨɫɵ ɩɪɚɤɬɢɱɟɫɤɢ ɜɫɟɯ ɞɪɭɝɢɯ ɩɪɨɢɡɜɨɞɫɬɜ ɬɪɟɛɭɸɬ ɭɞɚɥɟɧɢɹ ɢ ɞɢɫɩɟɪɫɧɵɯ ɢ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɩɪɢɱɟɦ ɢɧɨɝɞɚ ɷɬɨ ɦɨɠɧɨ ɫɞɟɥɚɬɶ ɜ ɨɞɧɨɦ ɨɱɢɫɬɧɨɦ ɭɫɬɪɨɣɫɬɜɟ. Ⱦɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɜɵɛɪɨɫɨɜ ɩɨ ɩɪɢɧɰɢɩɭ ɭɞɚɥɟɧɢɹ ɬɨɤɫɢɱɧɵɯ ɩɪɢɦɟɫɟɣ ɧɚɪɹɞɭ ɫ ɮɢɡɢɱɟɫɤɢɦɢ ɭɞɚɱɧɨ ɢɫɩɨɥɶɡɭɸɬɫɹ ɢ ɯɢɦɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ. ɉɨɫɪɟɞɫɬɜɨɦ ɩɨɫɥɟɞɧɢɯ ɦɨɠɧɨ ɢɡɦɟɧɹɬɶ ɜ ɲɢɪɨɤɢɯ ɩɪɟɞɟɥɚɯ ɮɢɡɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɩɪɢɦɟɫɟɣ (ɧɚɩɪɢɦɟɪ, ɩɪɟɜɪɚɳɚɹ ɢɫɯɨɞɧɵɟ ɝɚɡɨɨɛɪɚɡɧɵɟ ɡɚɝɪɹɡɧɢɬɟɥɢ ɜ ɫɨɟɞɢɧɟɧɢɹ ɫ ɜɵɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɨɣ ɤɢɩɟɧɢɹ) ɫ ɰɟɥɶɸ ɨɛɥɟɝɱɟɧɢɹ ɢɯ ɞɚɥɶɧɟɣɲɟɝɨ ɭɥɚɜɥɢɜɚɧɢɹ. Ⱦɥɹ ɪɟɚɥɢɡɚɰɢɢ ɜɬɨɪɨɝɨ ɩɪɢɧɰɢɩɚ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ - ɩɪɟɜɪɚɳɟɧɢɹ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜ ɛɟɡɜɪɟɞɧɵɟ ɜɟɳɟɫɬɜɚ ɧɟɨɛɯɨɞɢɦɨ ɫɨɱɟɬɚɧɢɟ ɯɢɦɢɱɟɫɤɢɯ ɢ ɮɢɡɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ. ɋ ɷɬɨɣ ɰɟɥɶɸ ɱɚɳɟ ɜɫɟɝɨ ɢɫɩɨɥɶɡɭɸɬɫɹ ɩɪɨɰɟɫɫɵ ɬɟɪɦɢɱɟɫɤɨɣ ɞɟɫɬɪɭɤɰɢɢ ɢ ɬɟɪɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ. Ɉɧɢ ɩɪɢɦɟɧɢɦɵ ɞɥɹ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜɫɟɯ ɚɝɪɟɝɚɬɧɵɯ ɫɨɫɬɨɹɧɢɣ, ɧɨ ɨɝɪɚɧɢɱɟɧɵ ɫɨɫɬɚɜɨɦ ɨɛɪɚɛɚɬɵɜɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ. Ɍɟɪɦɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɟ ɫ ɰɟɥɶɸ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɦɨɝɭɬ ɛɵɬɶ ɩɨɞɜɟɪɝɧɭɬɵ ɥɢɲɶ ɜɟɳɟɫɬɜɚ, ɦɨɥɟɤɭɥɵ ɤɨɬɨɪɵɯ ɫɨɫɬɨɹɬ ɢɡ ɚɬɨɦɨɜ ɭɝɥɟɪɨɞɚ, ɜɨɞɨɪɨɞɚ ɢ ɤɢɫɥɨɪɨɞɚ. ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɭɫɬɚɧɨɜɤɢ ɬɟɪɦɨɨɛɟɡɜɪɟ- ɠɢɜɚɧɢɹ ɩɟɪɟɯɨɞɹɬ ɜ ɪɚɡɪɹɞ ɢɫɬɨɱɧɢɤɨɜ ɡɚɝɪɹɡɧɟɧɢɹ ɚɬɦɨɫɮɟɪɵ, ɢ ɧɟɪɟɞɤɨ ɤɪɚɣɧɟ ɨɩɚɫɧɵɯ. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɫɪɟɞɫɬɜ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɪɚɡɞɟɥɟɧɢɢ ɩɨ ɩɪɢɦɟɧɹɟɦɵɦ ɩɪɨɰɟɫɫɚɦ. ȼ ɨɫɧɨɜɧɨɦ ɞɥɹ ɝɚɡɨɨɱɢɫɬɤɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɫɪɟɞɫɬɜɚ ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ. ɉɨɷɬɨɦɭ ɤɥɚɫɫɢɮɢɤɚɰɢɹ ɫɪɟɞɫɬɜ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɜɵɛɪɨɫɨɜ ɩɪɚɤɬɢɱɟɫɤɢ ɫɨɜɩɚɞɚɟɬ ɫ ɤɥɚɫɫɢɮɢɤɚɰɢɟɣ ɩɪɨɰɟɫɫɨɜ ɢ ɚɩɩɚɪɚɬɨɜ ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɜɵɪɚɛɚɬɵɜɚɸɳɢɯ ɜɪɟɞɧɵɟ ɜɵɛɪɨɫɵ ɤɚɤ ɨɬɯɨɞɵ ɨɫɧɨɜɧɨɝɨ ɩɪɨɢɡɜɨɞɫɬɜɚ. Ⱦɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ ɨɬ ɝɚɡɨ- ɢ ɩɚɪɨɨɛɪɚɡɧɵɯ ɬɨɤɫɢɱɧɵɯ ɜɟɳɟɫɬɜ ɩɪɢɦɟɧɹɸɬ ɚɛɫɨɪɛɰɢɨɧɧɵɟ, ɚɞɫɨɪɛɰɢɨɧɧɵɟ, ɤɚɬɚɥɢɬɢɱɟɫɤɢɟ, ɬɟɪɦɢɱɟɫɤɢɟ ɢ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɟ ɦɟɬɨɞɵ. Ⱥɛɫɨɪɛɰɢɨɧɧɵɟ ɦɟɬɨɞɵ ɨɫɧɨɜɚɧɵ ɧɚ ɩɨɝɥɨɳɟɧɢɢ ɝɚɡɨɜ ɢɥɢ ɩɚɪɨɜ ɠɢɞɤɢɦɢ ɩɨɝɥɨɬɢɬɟɥɹɦɢ. Ⱥɞɫɨɪɛɰɢɨɧɧɵɟ ɦɟɬɨɞɵ ɨɫɧɨɜɚɧɵ ɧɚ ɩɨɝɥɨɳɟɧɢɢ ɩɪɢɦɟɫɟɣ ɬɜɟɪɞɵɦɢ ɩɨɪɢɫɬɵɦɢ ɬɟɥɚɦɢ. Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɨɫɧɨɜɚɧɵ ɧɚ ɯɢɦɢɱɟɫɤɢɯ ɩɪɟɜɪɚɳɟɧɢɹɯ ɬɨɤɫɢɱɧɵɯ ɩɪɢɦɟɫɟɣ ɜ ɧɟɬɨɤɫɢɱɧɵɟ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɬɜɟɪɞɵɯ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɫɧɨɜɚɧɵ ɧɚ ɫɠɢɝɚɧɢɢ ɝɨɪɸɱɢɯ ɜɪɟɞɧɵɯ ɩɪɢɦɟɫɟɣ. ȼ ɨɫɧɨɜɟ ɤɨɧɞɟɧɫɚɰɢɨɧɧɵɯ ɦɟɬɨɞɨɜ ɥɟɠɢɬ ɹɜɥɟɧɢɟ ɭɦɟɧɶɲɟɧɢɹ ɞɚɜɥɟɧɢɹ ɧɚɫɵɳɟɧɧɨɝɨ ɩɚɪɚ ɪɚɫɬɜɨɪɢɬɟɥɹ ɩɪɢ ɩɨɧɢɠɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ. ɋ ɰɟɥɶɸ ɭɥɚɜɥɢɜɚɧɢɹ ɝɚɡɨɨɛɪɚɡɧɵɯ ɩɪɢɦɟɫɟɣ ɩɪɢɦɟɧɹɸɬ ɩɪɨɰɟɫɫɵ ɤɨɧɞɟɧɫɚɰɢɢ, ɫɨɪɛɰɢɢ (ɚɛɫɨɪɛɰɢɢ ɢ ɚɞɫɨɪɛɰɢɢ), ɯɟɦɨɫɨɪɛɰɢɢ, ɚ ɩɪɟɜɪɚɳɚɸɬ ɡɚɝɪɹɡɧɢɬɟɥɢ ɜ ɛɟɡɜɪɟɞɧɵɟ ɫɨɟɞɢɧɟɧɢɹ ɩɨɫɪɟɞɫɬɜɨɦ ɬɟɪɦɨɯɢɦɢɱɟɫɤɢɯ (ɬɟɪɦɢɱɟɫɤɚɹ ɞɟɫɬɪɭɤɰɢɹ, ɬɟɪɦɢɱɟɫɤɨɟ ɢ ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɨɟ ɨɤɢɫɥɟɧɢɟ) ɢ ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ. ɋɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɚɩɩɚɪɚɬɵ ɧɚɡɵɜɚɸɬɫɹ ɤɨɧɞɟɧɫɚɬɨɪɚɦɢ, ɚɛɫɨɪɛɟɪɚɦɢ, ɚɞɫɨɪɛɟɪɚɦɢ, ɭɫɬɚɧɨɜɤɚɦɢ (ɩɟɱɚɦɢ) ɬɟɪɦɨɞɟɫɬɪɭɤɰɢɢ (ɩɢɪɨɥɢɡɚ, ɤɪɟɤɢɧɝɚ, ɪɢɮɨɪɦɢɧɝɚ), ɬɟɪɦɨɨɤɢɫɥɟɧɢɹ (ɞɨɠɢɝɚɧɢɹ), ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɢɦɢ ɭɫɬɚɧɨɜɤɚɦɢ (ɩɟɱɚɦɢ, ɪɟɚɤɬɨɪɚɦɢ), ɯɢɦɢɱɟɫɤɢɦɢ ɪɟɚɤɬɨɪɚɦɢ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɨɬ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɱɚɳɟ ɜɫɟɝɨ ɩɪɢɦɟɧɹɸɬ ɦɟɬɨɞɵ ɤɨɧɞɟɧɫɚɰɢɢ, ɚɛɫɨɪɛɰɢɢ, ɚɞɫɨɪɛɰɢɢ ɢ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɹ. ȿɫɥɢ ɬɟɦɩɟɪɚɬɭɪɚ ɤɢɩɟɧɢɹ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɪɢ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ ɧɟɜɵɫɨɤɚ (ɨɪɢɟɧɬɢɪɨɜɨɱɧɨ ɧɢɠɟ 100°ɋ), ɬɨ ɝɥɭɛɨɤɚɹ ɨɱɢɫɬɤɚ ɩɨɫɪɟɞɫɬɜɨɦ ɨɯɥɚɠɞɟɧɢɹ ɢ ɩɨɜɵɲɟɧɢɹ ɞɚɜɥɟɧɢɹ ɩɨɬɪɟɛɭɟɬ ɱɪɟɡɦɟɪɧɨ ɜɵɫɨɤɢɯ ɪɚɫɯɨɞɨɜ ɷɧɟɪɝɢɢ, ɢ ɤɨɧɞɟɧɫɚɰɢɨɧɧɭɸ ɨɱɢɫɬɤɭ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɬɨɥɶɤɨ ɤɚɤ ɩɪɟɞɜɚɪɢɬɟɥɶɧɭɸ. Ⱥɛɫɨɪɛɰɢɨɧɧɨɣ ɨɛɪɚɛɨɬɤɟ ɦɨɝɭɬ ɛɵɬɶ ɩɨɞɜɟɪɝɧɭɬɵ ɜɵɛɪɨɫɵ, ɡɚɝɪɹɡɧɢɬɟɥɢ ɤɨɬɨɪɵɯ ɯɨɪɨɲɨ ɪɚɫɬɜɨɪɹɸɬɫɹ ɜ ɚɛɫɨɪɛɟɧɬɟ. ȿɫɥɢ ɩɪɢ ɷɬɨɦ ɤɨɧɰɟɧɬɪɚɰɢɹ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜ ɜɵɛɪɨɫɚɯ ɩɪɟɜɵɲɚɟɬ (1...2) 10-3 ɤɝ/ɦ3, ɬɨ ɬɟɯɧɢɱɟɫɤɢ ɜɨɡɦɨɠɧɨ ɞɨɫɬɢɱɶ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ ɛɨɥɟɟ 90%. ȼ ɤɚɱɟɫɬɜɟ ɚɛɫɨɪɛɟɧɬɚ ɱɚɳɟ ɜɫɟɝɨ ɢɫɩɨɥɶɡɭɸɬɫɹ ɜɨɞɚ ɢɥɢ ɨɪɝɚɧɢɱɟɫɤɢɟ ɠɢɞɤɨɫɬɢ, ɤɢɩɹɳɢɟ ɩɪɢ ɜɵɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɟ. ȼ ɚɩɩɚɪɚɬɚɯ ɫ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɚɛɫɨɪɛɟɧɬɚɦɢ ɦɨɠɧɨ ɨɛɪɚɛɚɬɵɜɚɬɶ ɜɵɛɪɨɫɵ, ɧɟ ɫɨɞɟɪɠɚɳɢɟ ɬɜɟɪɞɵɯ ɩɪɢɦɟɫɟɣ, ɤɨɬɨɪɵɟ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɩɨɞɞɚɸɬɫɹ ɨɬɞɟɥɟɧɢɸ ɨɬ ɩɨɝɥɨɬɢɬɟɥɶɧɨɣ ɠɢɞɤɨɫɬɢ. Ⱦɥɹ ɧɟɤɨɬɨɪɵɯ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɦɨɠɧɨ ɭɫɩɟɲɧɨ ɩɪɢɦɟɧɢɬɶ ɯɢɦɢɱɟɫɤɭɸ ɚɛɫɨɪɛɰɢɸ (ɯɟɦɨɫɨɪɛɰɢɸ) - ɩɪɨɰɟɫɫ, ɜ ɤɨɬɨɪɨɦ ɩɨɞɥɟɠɚɳɢɣ ɭɞɚ- ɥɟɧɢɸ ɡɚɝɪɹɡɧɢɬɟɥɶ ɜɫɬɭɩɚɟɬ ɜ ɯɢɦɢɱɟɫɤɭɸ ɪɟɚɤɰɢɸ ɫ ɩɨɝɥɨɬɢɬɟɥɟɦ ɢ ɨɛɪɚɡɭɟɬ ɧɟɣɬɪɚɥɶɧɨɟ ɢɥɢ ɥɟɝɤɨ ɭɞɚɥɹɟɦɨɟ ɢɡ ɩɪɨɰɟɫɫɚ ɫɨɟɞɢɧɟɧɢɟ. Ɍɚɤɢɟ ɩɪɨɰɟɫɫɵ ɫɩɟɰɢɮɢɱɧɵ ɢ ɪɚɡɪɚɛɚɬɵɜɚɸɬɫɹ ɤɨɧɤɪɟɬɧɨ ɞɥɹ ɤɚɠɞɨɝɨ ɜɢɞɚ ɜɵɛɪɨɫɨɜ ɢ ɧɚɛɨɪɚ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. ɋɚɦɵɦ ɭɧɢɜɟɪɫɚɥɶɧɵɦ ɫɪɟɞɫɬɜɨɦ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɨɬ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɧɚ ɧɚɫɬɨɹɳɟɟ ɜɪɟɦɹ ɨɫɬɚɟɬɫɹ ɚɞɫɨɪɛɰɢɹ, ɚ ɧɚɢɛɨɥɟɟ ɭɧɢɜɟɪɫɚɥɶɧɵɦ ɚɞɫɨɪɛɟɧɬɨɦ - ɚɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ. ɉɨɫɪɟɞɫɬɜɨɦ ɚɞɫɨɪɛɰɢɢ ɩɪɢɧɰɢɩɢɚɥɶɧɨ ɜɨɡɦɨɠɧɨ ɢɡɜɥɟɱɶ ɢɡ ɜɵɛɪɨɫɨɜ ɥɸɛɨɣ ɡɚɝɪɹɡɧɢɬɟɥɶ ɜ ɲɢɪɨɤɨɦ ɞɢɚɩɚɡɨɧɟ ɤɨɧɰɟɧɬɪɚɰɢɣ. Ɉɞɧɚɤɨ ɜɵɫɨɤɨɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɟ ɡɚɝɪɹɡɧɢɬɟɥɢ (ɨɪɢɟɧɬɢɪɨɜɨɱɧɨ ɫ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɛɨɥɟɟ 5.103 ɤɝ/ɦ3) ɭɞɨɛɧɟɟ ɩɨɞɜɟɪɝɚɬɶ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɣ ɨɛɪɚɛɨɬɤɟ (ɤɨɧɞɟɧɫɚɰɢɟɣ, ɚɛɫɨɪɛɰɢɟɣ) ɞɥɹ ɫɧɢɠɟɧɢɹ ɢɯ ɤɨɧɰɟɧɬɪɚɰɢɣ. ɇɟɨɛɯɨɞɢɦɚ ɬɚɤɠɟ ɩɪɟɞɜɚɪɢɬɟɥɶɧɚɹ ɨɛɪɚɛɨɬɤɚ (ɨɫɭɲɤɚ) ɫɢɥɶɧɨ ɭɜɥɚɠɧɟɧɧɵɯ ɝɚɡɨɜ. Ʉ ɫɨɠɚɥɟɧɢɸ, ɱɚɫɬɨ ɜ ɤɚɱɟɫɬɜɟ ɭɧɢɜɟɪɫɚɥɶɧɨɝɨ ɫɪɟɞɫɬɜɚ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɪɚɫɫɦɚɬɪɢɜɚɟɬɫɹ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɟ, ɤɚɤɨɜɵɦ ɨɧɨ ɧɚ ɫɚɦɨɦ ɞɟɥɟ ɧɟ ɹɜɥɹɟɬɫɹ. ȼ ɬɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɵɯ ɩɪɨɰɟɫɫɚɯ ɧɟɨɛɪɚɬɢɦɨ ɬɟɪɹɟɬɫɹ ɤɚɱɟɫɬɜɨ ɜɨɡɞɭɯɚ, ɢɫɩɨɥɶɡɨɜɚɧɧɨɝɨ ɞɥɹ ɝɨɪɟɧɢɹ, ɚ ɩɪɨɞɭɤɬɵ ɨɤɢɫɥɟɧɢɹ, ɜɵɛɪɚɫɵɜɚɟɦɵɟ ɜ ɚɬɦɨɫɮɟɪɭ, ɫɨɞɟɪɠɚɬ ɧɟɤɨɬɨɪɨɟ ɤɨɥɢɱɟɫɬɜɨ ɧɨɜɵɯ ɬɨɤɫɢɱɧɵɯ ɜɟɳɟɫɬɜ - ɨɤɫɢɞɚ ɭɝɥɟɪɨɞɚ ɋɈ ɢ ɨɤɫɢɞɨɜ ɚɡɨɬɚ NOɯ . ȼɨɨɛɳɟ ɨɛɥɚɫɬɶ ɩɪɢɦɟɧɟɧɢɹ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɨɝɪɚɧɢɱɟɧɚ ɬɨɥɶɤɨ ɫɨɟɞɢɧɟɧɢɹɦɢ, ɜ ɦɨɥɟɤɭɥɚɯ ɤɨɬɨɪɵɯ ɧɟɬ ɞɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ, ɤɪɨɦɟ ɭɝɥɟɪɨɞɚ ɋ, ɜɨɞɨɪɨɞɚ ɇ ɢ ɤɢɫɥɨɪɨɞɚ Ɉ. ɉɨɥɭɱɢɬɶ ɧɟɬɨɤɫɢɱɧɵɟ ɩɪɨɞɭɤɬɵ ɪɟɚɤɰɢɢ ɥɸɛɵɯ ɞɪɭɝɢɯ ɫɨɟɞɢɧɟɧɢɣ ɫ ɤɢɫɥɨɪɨɞɨɦ ɩɪɢɧɰɢɩɢɚɥɶɧɨ ɧɟɜɨɡɦɨɠɧɨ. Ɍɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɚɹ ɨɛɪɚɛɨɬɤɚ ɜɵɛɪɨɫɨɜ, ɡɚɝɪɹɡɧɟɧɧɵɯ ɭɝɥɟɜɨɞɨɪɨɞɚɦɢ ɢɥɢ Ʉɉɍ (ɤɢɫɥɨɪɨɞɧɵɦɢ ɩɪɨɢɡɜɨɞɧɵɦɢ ɭɝɥɟɜɨɞɨɪɨɞɨɜ), ɨɝɪɚɧɢɱɢɜɚɟɬɫɹ ɬɚɤɠɟ ɩɨ ɡɚɬɪɚɬɚɦ ɬɨɩɥɢɜɚ ɧɚ ɫɨɡɞɚɧɢɟ ɬɪɟɛɭɟɦɵɯ ɬɟɦɩɟɪɚɬɭɪ ɜ ɡɨɧɟ ɪɟɚɤɰɢɢ (400...550°ɋ ɞɥɹ ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ ɢ 800...1200°ɋ ɞɥɹ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɝɨ ɬɟɪɦɨɨɤɢɫɥɟɧɢɹ, ɬ.ɟ. ɫɠɢɝɚɧɢɹ ɜ ɩɥɚɦɟɧɢ). ɑɬɨɛɵ ɨɛɟɫɩɟɱɢɬɶ ɦɚɤɫɢɦɚɥɶɧɨɟ ɨɤɢɫɥɟɧɢɟ ɢɫɯɨɞɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɞɨ ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɟɣɬɪɚɥɶɧɵɯ ɋɈ2 ɢ ɇ2Ɉ, ɩɪɨɰɟɫɫ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɞɨɥɠɟɧ ɛɵɬɶ ɩɨɥɧɨɫɬɶɸ ɤɨɧɬɪɨɥɢɪɭɟɦɵɦ. ɉɨɷɬɨɦɭ ɨɧ ɞɨɥɠɟɧ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɜ ɬɨɩɨɱɧɵɯ ɭɫɬɪɨɣɫɬɜɚɯ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɩɨ ɩɚɪɚɦɟɬɪɚɦ ɪɚɫɱɟɬɧɵɦ ɭɫɥɨɜɢɹɦ, ɨɛɟɫɩɟɱɢɜɚɸɳɢɦ ɩɨɥɧɨɟ ɨɤɢɫɥɟɧɢɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. ɉɨ ɷɬɨɣ ɠɟ ɩɪɢɱɢɧɟ ɫɠɢɝɚɧɢɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ ɜ ɨɬɤɪɵɬɨɦ ɩɥɚɦɟɧɢ ɧɟ ɦɨɠɟɬ ɛɵɬɶ ɨɬɧɟɫɟɧɨ ɤ ɫɩɨɫɨɛɭ ɬɟɪɦɢɱɟɫɤɨɝɨ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ. Ʉɚɧɰɟɪɨɝɟɧɧɚɹ ɤɨɩɨɬɶ ɮɚɤɟɥɨɜ ɯɢɦɢɱɟɫɤɢɯ ɩɪɟɞɩɪɢɹɬɢɣ, ɫ ɥɟɝɤɨɫɬɶɸ ɩɪɟɨɞɨɥɟɜɚɸɳɚɹ ɫɚɧɢɬɚɪɧɨ-ɡɚɳɢɬɧɭɸ ɡɨɧɭ, ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɷɬɨ ɫɟɪɶɟɡɧɵɣ ɢɫɬɨɱɧɢɤ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɚ ɧɟ ɫɪɟɞɫɬɜɨ ɡɚɳɢɬɵ ɚɬɦɨɫɮɟɪɵ. Ʉ ɩɟɪɫɩɟɤɬɢɜɧɵɦ ɫɩɨɫɨɛɚɦ ɨɛɪɚɛɨɬɤɢ ɛɨɥɶɲɢɯ ɨɛɴɟɦɨɜ ɜɵɛɪɨɫɨɜ ɫ ɧɟɜɵɫɨɤɢɦɢ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɫɯɟɦɭ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫ ɩɪɟɞɜɚɪɢɬɟɥɶɧɵɦ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟɦ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɨɫɪɟɞɫɬɜɨɦ ɚɞɫɨɪɛɰɢɢ. Ɍɚɤɚɹ ɫɯɟɦɚ ɦɨɠɟɬ ɛɵɬɶ ɬɟɯɧɢɱɟɫɤɢ ɢ ɷɤɨɧɨɦɢɱɟɫɤɢ ɩɪɢɟɦɥɟɦɨɣ ɩɪɢ ɧɚɱɚɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜɵɲɟ 50 ɦɝ/ɦ3. Ɍɟɩɥɨɬɭ, ɜɵɞɟɥɹɸɳɭɸɫɹ ɩɪɢ ɫɝɨɪɚɧɢɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɦɨɠɧɨ ɞɨɫɬɚɬɨɱɧɨ ɥɟɝɤɨ ɭɬɢɥɢɡɢɪɨɜɚɬɶ. ȿɫɥɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɝɨɪɸɱɢɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɦɨɠɟɬ ɛɵɬɶ ɞɨɜɟɞɟɧɚ ɨɪɢɟɧɬɢɪɨɜɨɱɧɨ ɞɨ (5...8).10-3 ɤɝ/ɦ3, ɬɨ ɬɟɪɦɨɨɛɪɚɛɨɬɤɭ ɦɨɠɧɨ ɨɪɝɚɧɢɡɨɜɚɬɶ ɫ ɧɟɡɧɚɱɢɬɟɥɶɧɵɦ ɞɨɛɚɜɥɟɧɢɟɦ ɬɨɩɥɢɜɚ, ɚ ɩɪɢ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɦɨɠɧɨ ɨɠɢɞɚɬɶ ɢ ɷɤɨɧɨɦɢɱɟɫɤɨɣ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɪɚɛɨɬɵ ɭɫɬɚɧɨɜɤɢ. ɉɪɟɞɫɬɚɜɥɹɸɬɫɹ ɩɟɪɫɩɟɤɬɢɜɧɵɦɢ ɫɩɨɫɨɛɵ ɨɛɪɚɛɨɬɤɢ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ, ɨɫɧɨɜɚɧɧɵɟ ɧɚ ɩɟɪɟɜɨɞɟ ɩɚɪɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɟ ɫɨɫɬɨɹɧɢɟ ɢ ɩɨɫɥɟɞɭɸɳɟɣ ɮɢɥɶɬɪɚɰɢɢ ɨɛɪɚɡɨɜɚɜɲɟɝɨɫɹ ɚɷɪɨɡɨɥɹ. ȿɫɥɢ ɡɚɝɪɹɡɧɢɬɟɥɢ ɢɦɟɸɬ ɧɟɜɵɫɨɤɨɟ ɞɚɜɥɟɧɢɟ ɧɚɫɵɳɟɧɧɵɯ ɩɚɪɨɜ, ɬɨ ɦɨɠɟɬ ɛɵɬɶ ɩɪɢɟɦɥɟɦɨɣ ɤɨɧɞɟɧɫɚɰɢɹ ɩɨɫɪɟɞɫɬɜɨɦ ɩɨɜɵɲɟɧɢɹ ɞɚɜɥɟɧɢɹ ɢ ɩɨɧɢɠɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ ɜɵɛɪɨɫɨɜ. ɉɚɪɵ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɥɟɝɤɨɤɢɩɹɳɢɯ ɜɟɳɟɫɬɜ ɦɨɝɭɬ ɛɵɬɶ ɩɨɞɜɟɪɝɧɭɬɵ ɨɛɪɚɛɨɬɤɟ ɯɢɦɢɱɟɫɤɢɦɢ ɪɟɚɝɟɧɬɚɦɢ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨɛɵ ɩɪɨɞɭɤɬɵ ɪɟɚɤɰɢɢ ɢɦɟɥɢ ɧɢɡɤɢɟ ɞɚɜɥɟɧɢɹ ɧɚɫɵɳɟɧɧɵɯ ɩɚɪɨɜ. ɉɪɢ ɷɬɨɦ ɫɩɨɫɨɛɵ ɯɢɦɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ ɧɟɨɛɯɨɞɢɦɨ ɩɨɞɛɢɪɚɬɶ ɬɚɤ, ɱɬɨɛɵ ɛɵɥɚ ɜɨɡɦɨɠɧɚ ɭɬɢɥɢɡɚɰɢɹ ɭɥɚɜɥɢɜɚɟɦɨɝɨ ɩɪɨɞɭɤɬɚ. ȼ ɩɪɚɤɬɢɤɟ ɝɚɡɨɨɱɢɫɬɤɢ ɩɪɢɦɟɧɹɸɬ ɬɪɢ ɨɫɧɨɜɧɵɯ ɫɩɨɫɨɛɚ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɭ ɨɬ ɜɪɟɞɧɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ: ɚɛɫɨɪɛɰɢɹ ɠɢɞɤɨɫɬɹɦɢ, ɚɞɫɨɪɛɰɢɹ ɬɜɟɪɞɵɦɢ ɩɨɝɥɨɬɢɬɟɥɹɦɢ, ɤɚɬɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ. Ɉɱɟɜɢɞɧɨ, ɱɬɨ ɜɨɡɦɨɠɧɨɫɬɶ ɞɚɥɶɧɟɣɲɟɣ ɩɟɪɟɪɚɛɨɬɤɢ ɨɬɯɨɞɨɜ ɫɪɟɞɫɬɜɚɦɢ ɨɫɧɨɜɧɨɣ ɬɟɯɧɨɥɨɝɢɢ ɜɟɫɶɦɚ ɨɝɪɚɧɢɱɟɧɚ, ɱɟɦ ɢɡɧɚɱɚɥɶɧɨ ɩɪɟɞɨɩɪɟɞɟɥɹɟɬɫɹ ɧɟɜɵɫɨɤɨɟ ɤɚɱɟɫɬɜɨ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ. Ɍɚɤɨɣ ɩɨɞɯɨɞ ɤ ɩɪɨɛɥɟɦɟ ɬɪɟɛɭɟɬ ɫɭɳɟɫɬɜɟɧɧɨɝɨ ɩɟɪɟɫɦɨɬɪɚ. Ɉɞɧɢɦ ɢɡ ɞɟɣɫɬɜɟɧɧɵɯ ɲɚɝɨɜ ɦɨɝɥɨ ɛɵ ɫɬɚɬɶ ɜɤɥɸɱɟɧɢɟ ɨɩɟɪɚɰɢɣ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɨɬɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɣ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɣ ɩɪɨɰɟɫɫ, ɤɚɤ ɥɢɦɢɬɢɪɭɸɳɢɯ ɤɨɥɢɱɟɫɬɜɨ ɢ ɤɚɱɟɫɬɜɨ ɜɵɩɭɫɤɚɟɦɨɣ ɩɪɨɞɭɤɰɢɢ. ɇɟɨɝɪɚɧɢɱɟɧɧɵɣ ɪɨɫɬ ɚɫɫɨɪɬɢɦɟɧɬɚ ɢ ɨɛɴɟɦɚ ɩɪɨɢɡɜɨɞɢɦɨɣ ɜ ɫɨɜɪɟɦɟɧɧɨɦ ɦɢɪɟ ɩɪɨɞɭɤɰɢɢ ɜɟɞɟɬ ɤ ɭɫɥɨɠɧɟɧɢɸ ɢ ɭɞɨɪɨɠɚɧɢɸ ɬɟɯɧɨɥɨɝɢɣ ɨɛɪɚɛɨɬɤɢ ɨɬɯɨɞɨɜ. Ɇɨɠɧɨ ɩɪɟɞɩɨɥɚɝɚɬɶ, ɱɬɨ ɭɠɟ ɜ ɛɥɢɠɚɣɲɟɦ ɛɭɞɭɳɟɦ ɫɬɚɧɭɬ ɜɩɨɥɧɟ ɩɪɢɟɦɥɟɦɵɦɢ ɩɨ ɡɚɬɪɚɬɚɦ ɦɟɬɨɞɵ, ɢɫɩɨɥɶɡɭɟɦɵɟ ɫɟɝɨɞɧɹ ɜ ɦɚɥɨɬɨɧɧɚɠɧɵɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ - ɝɚɡɨɪɚɡɞɟɥɟɧɢɟ ɩɨɫɪɟɞɫɬɜɨɦ ɯɪɨɦɚɬɨɝɪɚɮɢɪɨɜɚɧɢɹ ɧɚ ɦɨɥɟɤɭɥɹɪɧɵɯ ɫɢɬɚɯ, ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ ɬɹɠɟɥɵɯ ɤɨɦɩɨɧɟɧɬɨɜ, ɬɟɪɦɨɞɢɮɮɭɡɢɢ, ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɥɚɡɦɟɧɧɨɣ ɞɟɫɬɪɭɤɰɢɟɣ. 1.12. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɫɩɨɫɨɛɨɜ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ⱦɥɹ ɫɨɡɞɚɧɢɹ ɡɚɦɤɧɭɬɵɯ ɫɢɫɬɟɦ ɜɨɞɨɫɧɚɛɠɟɧɢɹ ɩɪɨɦɵɲɥɟɧɧɵɟ ɫɬɨɱɧɵɟ ɜɨɞɵ ɩɨɞɜɟɪɝɚɸɬɫɹ ɨɱɢɫɬɤɟ ɞɨ ɧɟɨɛɯɨɞɢɦɨɝɨ ɤɚɱɟɫɬɜɚ ɦɟɯɚɧɢɱɟɫɤɢɦɢ, ɯɢɦɢɱɟɫɤɢɦɢ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɦɢ, ɛɢɨɥɨɝɢɱɟɫɤɢɦɢ ɢ ɬɟɪɦɢɱɟɫɤɢɦɢ ɦɟɬɨɞɚɦɢ. ɍɤɚɡɚɧɧɵɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɪɟɤɭɩɟɪɚɰɢɨɧɧɵɟ ɢ ɞɟɫɬɪɭɤɬɢɜɧɵɟ. Ɋɟɤɭɩɟɪɚɰɢɨɧɧɵɟ ɦɟɬɨɞɵ ɩɪɟɞɭɫɦɚɬɪɢɜɚɸɬ ɢɡɜɥɟɱɟɧɢɟ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɢ ɞɚɥɶɧɟɣɲɭɸ ɩɟɪɟɪɚɛɨɬɤɭ ɜɫɟɯ ɰɟɧɧɵɯ ɜɟɳɟɫɬɜ. ȼ ɞɟɫɬɪɭɤɬɢɜɧɵɯ ɦɟɬɨɞɚɯ ɡɚɝɪɹɡɧɹɸɳɢɟ ɜɟɳɟɫɬɜɚ ɩɨɞɜɟɪɝɚɸɬɫɹ ɪɚɡɪɭɲɟɧɢɸ ɩɭɬɟɦ ɨɤɢɫɥɟɧɢɹ ɢɥɢ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ, ɚ ɩɪɨɞɭɤɬɵ ɪɚɡɪɭɲɟɧɢɹ ɭɞɚɥɹɸɬɫɹ ɢɡ ɜɨɞɵ ɜ ɜɢɞɟ ɝɚɡɨɜ ɢɥɢ ɨɫɚɞɤɨɜ. Ɉɫɧɨɜɧɵɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɪɚɡɥɢɱɧɨɣ ɩɪɢɪɨɞɵ ɢɫɩɨɥɶɡɭɸɬɫɹ ɤɚɤ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɨɣ ɜɨɞɵ ɨɬ ɫɭɫɩɟɧɞɢɪɨɜɚɧɧɵɯ ɢ ɷɦɭɥɶɝɢɪɨɜɚɧɧɵɯ ɩɪɢɦɟɫɟɣ, ɬɚɤ ɢ ɞɥɹ ɨɱɢɫɬɤɢ ɨɬ ɪɚɫɬɜɨɪɟɧɧɵɯ ɩɪɢɦɟɫɟɣ. ȼ ɫɜɨɸ ɨɱɟɪɟɞɶ, ɩɟɪɜɚɹ ɝɪɭɩɩɚ ɨɱɢɫɬɤɢ ɝɟɬɟɪɨɝɟɧɧɵɯ ɫɢɫɬɟɦ ɩɨɞɪɚɡɞɟɥɹɟɬɫɹ ɧɚ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɨɬ ɝɪɭɛɨɞɢɫɩɟɪɫɧɵɯ ɩɪɢɦɟɫɟɣ, ɤɭɞɚ ɜɯɨɞɹɬ ɫɩɨɫɨɛɵ ɨɬɫɬɚɢɜɚɧɢɹ, ɩɪɨɰɟɠɢɜɚɧɢɹ ɢ ɮɢɥɶɬɪɚɰɢɢ, ɮɥɨɬɚɰɢɢ, ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɨɫɚɠɞɟɧɢɹ; ɢ ɧɚ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɨɬ ɦɟɥɤɨɞɢɫɩɟɪɫɧɵɯ ɩɪɢɦɟɫɟɣ ɩɭɬɟɦ ɤɨɚɝɭɥɹɰɢɢ, ɮɥɨɤɭɥɹɰɢɢ ɢ ɷɥɟɤɬɪɨɮɥɨɬɚɰɢɢ. ȼ ɩɟɪɜɭɸ ɝɪɭɩɩɭ ɬɚɤɠɟ ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɦɟɬɨɞɵ ɭɫɬɪɚɧɟɧɢɹ ɢ ɭɧɢɱɬɨɠɟɧɢɹ ɩɪɢɦɟɫɟɣ ɩɭɬɟɦ ɡɚɤɚɱɤɢ ɜ ɫɤɜɚɠɢɧɵ, ɡɚɯɨɪɨɧɟɧɢɹ ɢ ɬɟɪɦɢɱɟɫɤɨɝɨ ɭɧɢɱɬɨɠɟɧɢɹ. ȼɬɨɪɚɹ ɝɪɭɩɩɚ ɜɤɥɸɱɚɟɬ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɜɨɞɵ ɨɬ ɦɢɧɟɪɚɥɶɧɵɯ ɩɪɢɦɟɫɟɣ ɩɭɬɟɦ ɞɢɫɬɢɥɥɹɰɢɢ, ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ, ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ, ɷɥɟɤɬɪɨɥɢɡɚ; ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɨɬ ɨɪɝɚɧɢɱɟɫɤɢɯ ɩɪɢɦɟɫɟɣ, ɜɤɥɸɱɚɸɳɢɟ ɪɟɝɟɧɟɪɚɬɢɜɧɵɟ ɫɩɨɫɨɛɵ ɷɤɫɬɪɚɤɰɢɢ, ɪɟɤɬɢɮɢɤɚɰɢɢ, ɚɞɫɨɪɛɰɢɢ, ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɢ, ɢ ɞɟɫɬɪɭɤɬɢɜɧɵɟ ɫɩɨɫɨɛɵ: ɛɢɨɯɢɦɢɱɟɫɤɢɟ, ɠɢɞɤɨ- ɢ ɩɚɪɨɮɚɡɧɨɝɨ ɨɤɢɫɥɟɧɢɹ, ɪɚɞɢɚɰɢɨɧɧɨɝɨ ɢ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ; ɚ ɬɚɤɠɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɨɬ ɪɚɫɬɜɨɪɟɧɧɵɯ ɝɚɡɨɜ, ɜɤɥɸɱɚɹ ɫɩɨɫɨɛɵ ɨɬɞɭɜɤɢ, ɧɚɝɪɟɜɚ ɢ ɪɟɚɝɟɧɬɧɵɟ. Ɇɟɯɚɧɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɭɞɚɥɟɧɢɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɨɫɧɨɜɚɧɵ ɧɚ ɡɚɤɨɧɚɯ ɝɢɞɪɨɦɟɯɚɧɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ. Ɏɢɡɢɤɨ- ɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɬɨɧɤɨɞɢɫɩɟɪɫɧɵɯ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ, ɪɚɫɬɜɨɪɢɦɵɯ ɝɚɡɨɜ, ɦɢɧɟɪɚɥɶɧɵɯ ɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. Ɇɟɯɚɧɢɡɦɵ ɷɬɢɯ ɦɟɬɨɞɨɜ ɨɫɧɨɜɚɧɵ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɡɚɤɨɧɨɜ ɮɢɡɢɤɨ- ɯɢɦɢɱɟɫɤɨɣ ɝɢɞɪɨɦɟɯɚɧɢɤɢ, ɮɢɡɢɱɟɫɤɨɣ ɢ ɤɨɥɥɨɢɞɧɨɣ ɯɢɦɢɢ, ɷɥɟɤɬɪɨɯɢɦɢɢ, ɩɪɨɰɟɫɫɨɜ ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ. ɏɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɭɞɚɥɟɧɢɹ ɪɚɫɬɜɨɪɢɦɵɯ ɜɟɳɟɫɬɜ ɜ ɡɚɦɤɧɭɬɵɯ ɫɢɫɬɟɦɚɯ ɜɨɞɨɫɧɚɛɠɟɧɢɹ. Ȼɢɨɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɯɨɡɹɣɫɬɜɟɧɧɨ- ɛɵɬɨɜɵɯ ɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɪɚɫɬɜɨɪɟɧɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɢ ɧɟɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. ɉɪɨɰɟɫɫ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɨɫɧɨɜɚɧ ɧɚ ɫɩɨɫɨɛɧɨɫɬɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɢɫɩɨɥɶɡɨɜɚɬɶ ɡɚɝɪɹɡɧɹɸɳɢɟ ɜɟɳɟɫɬɜɚ ɞɥɹ ɫɜɨɟɝɨ ɩɢɬɚɧɢɹ ɜ ɩɪɨɰɟɫɫɟ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɦɢɧɟɪɚɥɶɧɵɟ ɫɨɥɢ. ȼɵɛɨɪ ɦɟɬɨɞɚ ɨɱɢɫɬɤɢ ɩɪɨɢɡɜɨɞɢɬɫɹ ɫ ɭɱɟɬɨɦ ɫɚɧɢɬɚɪɧɵɯ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɬɪɟɛɨɜɚɧɢɣ ɤ ɤɚɱɟɫɬɜɭ ɨɱɢɳɟɧɧɵɯ ɜɨɞ, ɤɨɥɢɱɟɫɬɜɚ ɫɬɨɱɧɵɯ ɜɨɞ, ɧɚɥɢɱɢɹ ɧɟɨɛɯɨɞɢɦɵɯ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɢ ɦɚɬɟɪɢɚɥɶɧɵɯ ɪɟɫɭɪɫɨɜ, ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɩɪɨɰɟɫɫɚ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ. 1.13. Ɇɟɬɨɞɵ ɡɚɳɢɬɵ ɥɢɬɨɫɮɟɪɵ Ɂɚɳɢɬɚ ɥɢɬɨɫɮɟɪɵ ɜɤɥɸɱɚɟɬ ɧɟ ɬɨɥɶɤɨ ɭɬɢɥɢɡɚɰɢɸ ɨɬɯɨɞɨɜ ɩɭɬɟɦ ɢɯ ɪɚɡɦɟɳɟɧɢɹ ɧɚ ɩɨɥɢɝɨɧɚɯ ɢ ɫɜɚɥɤɚɯ, ɧɨ ɢ ɩɟɪɟɪɚɛɨɬɤɭ ɠɢɞɤɢɯ ɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɪɚɡɥɢɱɧɵɯ ɦɟɬɨɞɨɜ. Ɇɟɯɚɧɢɱɟɫɤɨɟ ɨɛɟɡɜɨɠɢɜɚɧɢɟ ɨɫɚɞɤɨɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɤɨɜ ɦɨɠɟɬ ɩɪɨɢɡɜɨɞɢɬɶɫɹ ɷɤɫɬɟɧɫɢɜɧɵɦɢ ɢ ɢɧɬɟɧɫɢɜɧɵɦɢ ɦɟɬɨɞɚɦɢ. ɗɤɫɬɟɧɫɢɜɧɵɟ ɦɟɬɨɞɵ ɨɫɭɳɟɫɬɜɥɹɸɬɫɹ ɜ ɪɚɡɥɢɱɧɨɝɨ ɪɨɞɚ ɭɩɥɨɬɧɢɬɟɥɹɯ, ɢɧɬɟɧɫɢɜɧɨɟ ɨɛɟɡɜɨ- ɠɢɜɚɧɢɟ ɢ ɫɝɭɳɟɧɢɟ ɩɪɨɢɡɜɨɞɢɬɫɹ ɩɪɢ ɩɨɦɨɳɢ ɮɢɥɶɬɪɨɜɚɧɢɹ, ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ, ɝɢɞɪɨɰɢɤɥɨɧɢɪɨɜɚɧɢɹ ɢ ɬ.ɩ. ȼ ɩɪɚɤɬɢɤɟ ɨɛɪɚɛɨɬɤɢ ɨɫɚɞɤɨɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɱɚɳɟ ɜɫɟɝɨ ɩɪɢɦɟɧɹɸɬɫɹ ɯɢɦɢɱɟɫɤɢɟ (ɪɟɚɝɟɧɬɧɵɟ) ɦɟɬɨɞɵ ɨɛɪɚɛɨɬɤɢ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɬɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɨɝɨ ɦɟɬɨɞɚ ɜɫɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɡɚɝɪɹɡɧɹɸɳɢɟ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɩɨɥɧɨɫɬɶɸ ɨɤɢɫɥɹɸɬɫɹ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ ɩɪɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɞɨ ɧɟɬɨɤɫɢɱɧɵɯ ɫɨɟɞɢɧɟɧɢɣ. Ʉ ɷɬɢɦ ɦɟɬɨɞɚɦ ɨɬɧɨɫɹɬ ɦɟɬɨɞ ɠɢɞɤɨɮɚɡɧɨɝɨ ɨɤɢɫɥɟɧɢɹ, ɦɟɬɨɞ ɩɚɪɨɮɚɡɧɨɝɨ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɢ ɩɥɚɦɟɧɧɵɣ ɢɥɢ «ɨɝɧɟɜɨɣ» ɦɟɬɨɞ. Ɉɬɧɨɫɢɬɟɥɶɧɨ ɲɢɪɨɤɨɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɜ ɨɛɥɚɫɬɢ ɨɛɪɚɛɨɬɤɢ ɨɫɚɞɤɨɜ ɝɨɪɨɞɫɤɢɯ ɫɬɨɱɧɵɯ ɜɨɞ ɩɨɥɭɱɢɥɚ ɫɭɲɤɚ (ɛɚɪɚɛɚɧɧɵɟ ɫɭɲɢɥɤɢ, ɫɭɲɤɚ ɜɨ ɜɫɬɪɟɱɧɵɯ ɫɬɪɭɹɯ). Ɇɧɨɝɢɟ ɩɪɨɰɟɫɫɵ ɭɬɢɥɢɡɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɨɫɧɨɜɚɧɵ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɦɟɬɨɞɨɜ ɜɵɳɟɥɚɱɢɜɚɧɢɹ (ɷɤɫɬɪɚɝɢɪɨɜɚɧɢɹ), ɪɚɫɬɜɨɪɟɧɢɹ ɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ. ȼ ɩɪɚɤɬɢɤɟ ɪɟɤɭɩɟɪɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢɫɩɨɥɶɡɭɸɬ ɦɟɬɨɞɵ ɨɛɨɝɚɳɟɧɢɹ ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ: ɝɪɚɜɢɬɚɰɢɨɧɧɵɟ, ɦɚɝɧɢɬɧɵɟ, ɷɥɟɤɬɪɢɱɟɫɤɢɟ, ɮɥɨɬɚɰɢɨɧɧɵɟ, ɢ ɫɩɟɰɢɚɥɶɧɵɟ. ɉɪɢ ɭɬɢɥɢɡɚɰɢɢ ɢ ɩɟɪɟɪɚɛɨɬɤɟ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɢɫɩɨɥɶɡɭɸɬ ɪɚɡɥɢɱɧɵɟ ɦɟɬɨɞɵ ɬɟɪɦɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ ɢɫɯɨɞɧɵɯ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɩɨɥɭɱɟɧɧɵɯ ɩɪɨɞɭɤɬɨɜ: ɷɬɨ ɪɚɡɥɢɱɧɵɟ ɩɪɢɟɦɵ ɩɢɪɨɥɢɡɚ, ɩɟɪɟɩɥɚɜɚ, ɨɛɠɢɝɚ ɢ ɨɝɧɟɜɨɝɨ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ (ɫɠɢɝɚɧɢɹ) ɦɧɨɝɢɯ ɜɢɞɨɜ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɧɚ ɨɪɝɚɧɢɱɟɫɤɨɣ ɨɫɧɨɜɟ. 1.14. Ɇɟɬɨɞɵ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɨɬ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ ȼɵɛɨɪ ɦɟɬɨɞɨɜ ɡɚɳɢɬɵ ɨɬ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ ɡɚɜɢɫɢɬ ɨɬ ɜɢɞɚ ɢ ɮɨɪɦɵ ɩɪɨɹɜɥɟɧɢɹ ɷɧɟɪɝɢɢ. ɉɪɢ ɡɚɳɢɬɟ ɨɬ ɦɟɯɚɧɢɱɟɫɤɢɯ ɢ ɚɤɭɫɬɢɱɟɫɤɢɯ ɦɟɯɚɧɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɨɫɧɨɜɧɵɦɢ ɦɟɬɨɞɚɦɢ ɫɧɢɠɟɧɢɹ ɭɪɨɜɧɹ ɢɯ ɜɨɡɞɟɣɫɬɜɢɹ ɹɜɥɹɟɬɫɹ ɭɦɟɧɶɲɟɧɢɟ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɩɚɪɚɦɟɬɪɨɜ ɜ ɢɫɬɨɱɧɢɤɟ, ɨɩɬɢɦɚɥɶɧɚɹ ɨɪɢɟɧɬɚɰɢɹ ɢɫɬɨɱɧɢɤɚ ɤɨɥɟɛɚɧɢɣ ɨɬɧɨɫɢɬɟɥɶɧɨ ɨɛɴɟɤɬɚ ɜɨɡɞɟɣɫɬɜɢɹ, ɩɨɝɥɨɳɟɧɢɟ ɱɚɫɬɢ ɝɟɧɟɪɢɪɭɟɦɨɣ ɷɧɟɪɝɢɢ ɤɨɥɟɛɚɧɢɣ, ɭɦɟɧɶɲɟɧɢɟ ɷɧɟɪɝɢɢ ɤɨɥɟɛɚɧɢɣ ɧɚ ɩɭɬɢ ɢɯ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɨɬ ɢɫɬɨɱɧɢɤɚ ɩɭɬɟɦ ɢɡɨɥɹɰɢɢ, ɷɤɪɚɧɢɪɨɜɚɧɢɹ ɢ ɞɟɦɩɮɢɪɨɜɚɧɢɹ, ɡɚɳɢɬɚ ɪɚɫɫɬɨɹɧɢɟɦ ɢ ɜɪɟɦɟɧɟɦ, ɩɪɨɜɟɞɟɧɢɟ ɨɪɝɚɧɢɡɚɰɢɨɧɧɨ-ɬɟɯɧɢɱɟɫɤɢɯ ɢ ɫɨɰɢɚɥɶɧɨ-ɪɟɚɛɢɥɢɬɚɰɢɨɧɧɵɯ ɦɟɪɨɩɪɢɹɬɢɣ. ȼɵɛɨɪ ɦɟɬɨɞɨɜ ɢ ɫɪɟɞɫɬɜ ɡɚɳɢɬɵ ɨɬ ɜɨɡɞɟɣɫɬɜɢɹ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɩɨɥɟɣ ɢ ɢɡɥɭɱɟɧɢɣ ɜɨ ɦɧɨɝɨɦ ɨɩɪɟɞɟɥɹɟɬɫɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦɢ ɢɫɬɨɱɧɢɤɨɜ ɩɨ ɱɚɫɬɨɬɟ. ȼ ɱɢɫɥɨ ɦɟɬɨɞɨɜ ɡɚɳɢɬɵ ɨɬ ɗɆɉ ɜ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɟ ɜɯɨɞɢɬ ɡɚɳɢɬɚ ɪɚɫɫɬɨɹɧɢɟɦ, ɷɤɪɚɧɢɪɨɜɚɧɢɟ, ɱɚɫɬɢɱɧɨɟ ɩɨɝɥɨɳɟɧɢɟ ɦɨɳɧɨɫɬɢ ɢɡɥɭɱɟɧɢɹ, ɫɧɢɠɟɧɢɟ ɭɪɨɜɧɹ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɩɭɬɟɦ ɪɚɫɫɟɹɧɢɹ ɢ ɨɬɜɨɞɚ ɱɚɫɬɢ ɷɧɟɪɝɢɢ ɨɬ ɦɟɫɬɚ ɟɟ ɥɨɤɚɥɢɡɚɰɢɢ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ. Ɂɚɳɢɬɚ ɨɬ ɢɨɧɢɡɢɪɭɸɳɢɯ ɢɡɥɭɱɟɧɢɣ ɞɨɫɬɢɝɚɟɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɦɟɬɨɞɨɦ ɡɚɳɢɬɵ ɪɚɫɫɬɨɹɧɢɟɦ, ɦɟɬɨɞɚɦɢ ɷɤɪɚɧɢɪɨɜɚɧɢɹ ɢ ɨɝɪɚɧɢɱɟɧɢɹ ɩɨɫɬɭɩɥɟɧɢɹ ɪɚɞɢɨɧɭɤɥɢɞɨɜ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ, ɩɪɨɜɟɞɟɧɢɟɦ ɤɨɦɩɥɟɤɫɚ ɨɪɝɚɧɢɡɚɰɢɨɧɧɨ-ɬɟɯɧɢɱɟɫɤɢɯ ɢ ɥɟɱɟɛɧɨ-ɩɪɨɮɢɥɚɤɬɢɱɟɫɤɢɯ ɦɟɪɨɩɪɢɹɬɢɣ. 1.15. Ɉɛɳɢɟ ɩɪɢɧɰɢɩɵ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ Ɉɛɳɢɟ ɩɪɢɧɰɢɩɵ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɫɜɨɞɹɬɫɹ ɤ ɢɫɩɨɥɶɡɨɜɚɧɢɸ ɤɢɧɟɬɢɱɟɫɤɢɯ ɢ ɬɟɪɦɨɞɢɧɚɦɢɱɟɫɤɢɯ ɮɚɤɬɨɪɨɜ, ɷɮɮɟɤɬɢɜɧɨ ɜɥɢɹɸɳɢɯ ɧɚ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɢ ɜɵɯɨɞ ɩɪɨɞɭɤɬɨɜ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ. ȼɵɛɨɪ ɮɚɤɬɨɪɨɜ, ɜɨɡɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɤɢɧɟɬɢɤɭ ɩɪɨɰɟɫɫɚ, ɞɨɥɠɟɧ ɡɚɜɢɫɟɬɶ ɨɬ ɬɨɝɨ, ɜ ɤɚɤɨɣ ɨɛɥɚɫɬɢ (ɤɢɧɟɬɢɱɟɫɤɨɣ, ɞɢɮɮɭɡɢɨɧɧɨɣ, ɩɟɪɟɯɨɞɧɨɣ) ɨɧ ɩɪɨɬɟɤɚɟɬ ɢ ɜ ɤɚɤɨɣ ɫɬɟɩɟɧɢ ɭɫɤɨɪɹɟɬ ɥɢɦɢɬɢɪɭɸɳɭɸ ɫɬɚɞɢɸ ɜ ɞɚɧɧɵɯ ɤɨɧɤɪɟɬɧɵɯ ɭɫɥɨɜɢɹɯ ɟɝɨ ɨɫɭɳɟɫɬɜɥɟɧɢɹ. Ɍɚɤ, ɞɥɹ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɩɪɨɰɟɫɫɨɜ ɜ ɤɢɧɟɬɢɱɟɫɤɨɦ ɪɟɠɢɦɟ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɢɡɦɟɧɹɬɶ ɬɟɦɩɟɪɚɬɭɪɭ, ɞɚɜɥɟɧɢɟ, ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɟɚɝɢɪɭɸɳɢɯ ɜɟɳɟɫɬɜ, ɢɫɩɨɥɶɡɨɜɚɬɶ ɤɚɬɚɥɢɡɚɬɨɪɵ, ɭɜɟɥɢɱɢɜɚɬɶ ɩɨɜɟɪɯɧɨɫɬɶ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɜɟɳɟɫɬɜ. ɉɨɜɵɲɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɪɢɜɨɞɢɬ ɤ ɡɧɚɱɢɬɟɥɶɧɨɦɭ ɜɨɡɪɚɫɬɚɧɢɸ ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɤɚɤ ɦɨɳɧɵɣ ɮɚɤɬɨɪ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɦɧɨɝɢɯ ɩɪɨɰɟɫɫɨɜ. ɍɜɟɥɢɱɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɞɨɫɬɢɝɚɟɬɫɹ ɨɛɨɝɚɳɟɧɢɟɦ ɢɫɯɨɞɧɵɯ ɩɪɨɞɭɤɬɨɜ ɩɪɨɰɟɫɫɚ. ɗɬɭ ɠɟ ɪɨɥɶ ɜɵɩɨɥɧɹɟɬ ɩɨɜɵɲɟɧɢɟ ɞɚɜɥɟɧɢɹ ɝɚɡɨɨɛɪɚɡɧɵɯ ɢɫɯɨɞɧɵɯ ɩɪɨɞɭɤɬɨɜ ɪɟɚɤɰɢɢ, ɨɛɨɝɚɳɟɧɢɟ ɞɭɬɶɹ ɤɢɫɥɨɪɨɞɨɦ ɜ ɩɪɨɰɟɫɫɚɯ ɝɨɪɟɧɢɹ. ȿɫɥɢ ɩɪɢ ɷɬɨɦ ɨɞɧɨɜɪɟɦɟɧɧɨ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɨɬɜɨɞ ɩɪɨɞɭɤɬɨɜ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɢɡ ɡɨɧɵ ɪɟɚɤɰɢɢ, ɬɨ ɬɟɦ ɫɚɦɵɦ ɫɧɢɠɚɸɬɫɹ ɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɫɤɨɪɨɫɬɶ ɨɛɪɚɬɧɵɯ ɩɪɨɰɟɫɫɨɜ, ɱɬɨ ɞɨɩɨɥɧɢɬɟɥɶɧɨ ɭɜɟɥɢɱɢɜɚɟɬ ɫɭɦɦɚɪɧɭɸ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ. ɋɢɥɶɧɵɦ ɢɧɬɟɧɫɢɮɢɰɢɪɭɸɳɢɦ ɮɚɤɬɨɪɨɦ ɝɟɬɟɪɨɝɟɧɧɵɯ ɪɟɚɤɰɢɣ, ɩɪɨɬɟɤɚɸɳɢɯ ɜ ɤɢɧɟɬɢɱɟɫɤɨɣ ɨɛɥɚɫɬɢ, ɹɜɥɹɟɬɫɹ ɩɨɜɵɲɟɧɢɟ ɭɞɟɥɶɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ (ɞɢɫɩɟɪɫɧɨɫɬɢ) ɢɫɯɨɞɧɵɯ ɜɟɳɟɫɬɜ. Ɉɛɳɚɹ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɩɥɨɳɚɞɢ ɩɨɜɟɪɯɧɨɫɬɢ, ɧɚ ɤɨɬɨɪɨɣ ɩɪɨɬɟɤɚɟɬ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ. Ɍɚɤɚɹ ɠɟ ɰɟɥɶ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɫɬɟɩɟɧɢ ɨɞɧɨɪɨɞɧɨɫɬɢ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɜɟɳɟɫɬɜ, ɢɯ ɝɨɦɨɝɟɧɢɡɚɰɢɢ, ɱɬɨ ɪɚɫɲɢɪɹɟɬ ɩɥɨɳɚɞɶ ɤɨɧɬɚɤɬɚ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɮɚɡ. Ƚɨɦɨɝɟɧɧɨɫɬɢ ɞɨɛɢɜɚɸɬɫɹ ɦɟɯɚɧɢɱɟɫɤɢɦ ɩɟɪɟɦɟɲɢɜɚɧɢɟɦ, ɜɢɛɪɚɰɢɟɣ, ɭɥɶɬɪɚɡɜɭɤɨɦ, ɜɵɫɨɤɨɜɨɥɶɬɧɵɦɢ ɪɚɡɪɹɞɚɦɢ ɜ ɠɢɞɤɨɣ ɫɪɟɞɟ ɢ ɬ.ɞ. ɍɫɤɨɪɟɧɢɟ ɪɟɚɤɰɢɣ ɡɚ. ɫɱɟɬ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɟɬɫɹ ɜ ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢ ɨɛɭɫɥɨɜɥɟɧɨ ɫɧɢɠɟɧɢɟɦ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ. ɉɪɨɰɟɫɫɵ ɜ ɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ ɢɧɬɟɧɫɢɮɢɰɢɪɭɸɬ ɩɟɪɟɦɟɲɢɜɚɧɢɟɦ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɮɚɡ, ɬɭɪɛɭɥɢɡɚɰɢɟɣ ɢɯ ɩɨɬɨɤɨɜ, ɱɬɨ ɫɩɨɫɨɛɫɬɜɭɟɬ ɭɫɤɨɪɟɧɧɨɦɭ ɩɪɨɬɟɤɚɧɢɸ ɧɚɢɛɨɥɟɟ ɦɟɞɥɟɧɧɵɯ ɜ ɞɚɧɧɨɦ ɫɥɭɱɚɟ ɞɢɮɮɭɡɢɨɧɧɵɯ ɫɬɚɞɢɣ. ɗɬɨɝɨ ɠɟ ɞɨɫɬɢɝɚɸɬ ɫɧɢɠɟɧɢɟɦ ɜɹɡɤɨɫɬɢ ɢ ɩɥɨɬɧɨɫɬɢ ɫɪɟɞɵ, ɜ ɤɨɬɨɪɨɣ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɞɢɮɮɭɡɢɹ. Ⱦɥɹ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɩɪɨɰɟɫɫɨɜ ɜ ɩɟɪɟɯɨɞɧɨɣ ɨɛɥɚɫɬɢ ɧɟɨɛɯɨɞɢɦɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɤɚɤ ɤɢɧɟɬɢɱɟɫɤɢɟ, ɬɚɤ ɢ ɞɢɮɮɭɡɢɨɧɧɵɟ ɮɚɤɬɨɪɵ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɤɢɧɟɬɢɱɟɫɤɢɟ ɫɬɚɞɢɢ ɥɢɦɢɬɢɪɭɸɬ ɩɪɨɰɟɫɫɵ ɩɪɢ ɧɢɡɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ, ɚ ɞɢɮɮɭɡɢɨɧɧɵɟ - ɩɪɢ ɜɵɫɨɤɢɯ. ȼ ɩɨɫɥɟɞɧɟɦ ɫɥɭɱɚɟ ɦɨɠɟɬ ɢɡɦɟɧɹɬɶɫɹ ɮɚɡɨɜɵɣ ɫɨɫɬɚɜ ɜɟɳɟɫɬɜɚ (ɧɚɩɪɢɦɟɪ, ɨɧɨ ɩɥɚɜɢɬɫɹ ɢɥɢ ɜɨɡɝɨɧɹɟɬɫɹ, ɪɟɡɤɨ ɢɧɬɟɧɫɢɮɢɰɢɪɭɹ ɫɤɨɪɨɫɬɶ ɞɢɮɮɭɡɢɢ ɢ ɩɪɨɰɟɫɫɚ ɜ ɰɟɥɨɦ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɨɜɵɲɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɫɥɟɞɭɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɧɟ ɬɨɥɶɤɨ ɤɚɤ ɮɚɤɬɨɪ, ɭɫɤɨɪɹɸɳɢɣ ɩɪɨɰɟɫɫ ɜ ɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ, ɧɨ ɢ ɤɚɤ ɫɪɟɞɫɬɜɨ ɩɟɪɟɜɨɞɚ ɝɟɬɟɪɨɝɟɧɧɨɣ ɫɢɫɬɟɦɵ ɜ ɝɨɦɨɝɟɧɧɭɸ, ɚ ɬɜɟɪɞɵɯ ɮɚɡ ɜ ɠɢɞɤɨ- ɢ ɝɚɡɨɮɚɡɧɵɟ, ɱɬɨ ɞɨɥɠɧɨ ɜɟɫɶɦɚ ɫɭɳɟɫɬɜɟɧɧɨ ɭɜɟɥɢɱɢɬɶ ɫɤɨɪɨɫɬɶ ɩɪɟɜɪɚɳɟɧɢɣ. ȼɵɯɨɞ ɤɨɧɟɱɧɵɯ ɩɪɨɞɭɤɬɨɜ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɜ ɩɪɟɞɟɥɶɧɨɦ ɫɥɭɱɚɟ, ɬ.ɟ. ɜ ɩɨɥɨɠɟɧɢɢ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɨɧɫɬɚɧɬɨɣ ɪɚɜɧɨɜɟɫɢɹ ɢ ɚɤɬɢɜɧɨɫɬɶɸ ɢɫɯɨɞɧɵɯ ɜɟɳɟɫɬɜ, ɫɜɹɡɚɧɧɨɣ ɫ ɢɯ ɤɨɧɰɟɧɬɪɚɰɢɟɣ. ȼ ɫɜɨɸ ɨɱɟɪɟɞɶ, ɤɨɧɫɬɚɧɬɚ ɪɚɜɧɨɜɟɫɢɹ ɤɨɧɤɪɟɬɧɨɣ ɪɟɚɤɰɢɢ ɡɚɜɢɫɢɬ ɬɨɥɶɤɨ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɩɪɢɧɰɢɩɨɦ Ʌɟ ɒɚɬɟɥɶɟ ɜɵɯɨɞ ɩɪɨɞɭɤɬɨɜ ɪɟɚɤɰɢɢ ɜ ɷɧɞɨɬɟɪɦɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɛɭɞɟɬ ɭɜɟɥɢɱɢɜɚɬɶɫɹ ɩɪɢ ɩɨɜɵɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ, ɚ ɬɚɤɠɟ ɩɪɢ ɜɨɡɪɚɫɬɚɧɢɢ ɞɚɜɥɟɧɢɹ, ɟɫɥɢ ɨɛɴɟɦ ɝɚɡɨɨɛɪɚɡɧɵɯ ɩɪɨɞɭɤɬɨɜ ɪɟɚɤɰɢɢ ɦɟɧɶɲɟ, ɱɟɦ ɨɛɴɟɦ ɢɫɯɨɞɧɵɯ, ɢ ɩɪɢ ɩɨɜɵɲɟɧɢɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɨɞɧɨɝɨ ɢɥɢ ɧɟɫɤɨɥɶɤɢɯ ɢɫɯɨɞɧɵɯ ɜɟɳɟɫɬɜ. ȼɨ ɜɫɟɯ ɫɥɭɱɚɹɯ ɜɪɟɦɹ ɞɨɫɬɢɠɟɧɢɹ ɪɚɜɧɨɜɟɫɧɨɝɨ ɫɨɫɬɨɹɧɢɹ (ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɜɵɯɨɞɚ ɩɪɨɞɭɤɬɨɜ ɪɟɚɤɰɢɢ) ɫɨɤɪɚɳɚɟɬɫɹ ɫ ɪɨɫɬɨɦ ɬɟɦɩɟɪɚɬɭɪɵ. ȼ ɩɪɨɦɵɲɥɟɧɧɨɣ ɩɪɚɤɬɢɤɟ ɞɥɹ ɭɜɟɥɢɱɟɧɢɹ ɫɤɨɪɨɫɬɢ ɩɪɨɰɟɫɫɚ ɢ ɜɵɯɨɞɚ ɩɪɨɞɭɤɬɨɜ ɪɟɚɤɰɢɢ ɢɫɩɨɥɶɡɭɸɬ ɨɞɧɨɜɪɟɦɟɧɧɨ ɧɟɫɤɨɥɶɤɨ ɢɥɢ ɛɨɥɶɲɢɧɫɬɜɨ ɢɡ ɩɟɪɟɱɢɫɥɟɧɧɵɯ ɮɚɤɬɨɪɨɜ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ. ɒɢɪɨɤɨɟ ɪɚɡɜɢɬɢɟ ɩɨɥɭɱɢɥɢ ɬɚɤɠɟ ɮɚɤɬɨɪɵ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ, ɨɫɧɨɜɚɧɧɵɟ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɜɵɫɨɤɨɞɢɫɩɟɪɫɧɵɯ ɦɚɬɟɪɢɚɥɨɜ (ɮɚɤɟɥɶɧɚɹ, ɜɡɜɟɲɟɧɧɚɹ ɩɥɚɜɤɢ ɢ ɞɪ.), ɛɚɪɛɨɬɚɠɧɵɟ ɬɟɯɧɨɥɨɝɢɢ, ɦɧɨɝɨɤɪɚɬɧɨ ɭɜɟɥɢɱɢɜɚɸɳɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɦɟɠɮɚɡɨɜɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ, ɩɨɜɵɲɟɧɢɟ ɞɚɜɥɟɧɢɹ ɞɭɬɶɹ ɢ ɨɛɨɝɚɳɟɧɢɟ ɟɝɨ ɤɢɫɥɨɪɨɞɨɦ, ɩɪɨɰɟɫɫɵ ɜɚɤɭɭɦɢɪɨɜɚɧɢɹ, ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɛɨɝɚɬɵɯ ɪɭɞɧɵɯ ɤɨɧɰɟɧɬɪɚɬɨɜ, ɦɟɬɨɞɵ ɜɧɟɩɟɱɧɨɣ ɨɛɪɚɛɨɬɤɢ ɪɚɫɩɥɚɜɨɜ ɦɟɬɚɥɥɨɜ, ɬ.ɟ. ɩɪɚɤɬɢɱɟɫɤɢ ɜɫɟ ɢɡɜɟɫɬɧɵɟ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɮɚɤɬɨɪɵ ɪɟɝɭɥɢɪɨɜɚɧɢɹ ɫɤɨɪɨɫɬɢ ɢ ɩɨɥɧɨɬɵ ɩɪɨɬɟɤɚɧɢɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɟɜɪɚɳɟɧɢɣ. Ɋɚɡɞɟɥ 2. Ɉɱɢɫɬɤɚ ɜɨɡɞɭɯɚ ɨɬ ɚɷɪɨɡɨɥɶɧɵɯ ɩɪɢɦɟɫɟɣ ȼ ɨɫɧɨɜɭ ɞɟɣɫɬɜɢɹ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɢɯ ɢ ɫɟɩɚɪɚɰɢɨɧɧɵɯ ɭɫɬɪɨɣɫɬɜ ɩɨɥɨɠɟɧ ɨɩɪɟɞɟɥɟɧɧɵɣ ɮɢɡɢɱɟɫɤɢɣ ɦɟɯɚɧɢɡɦ. ȼ ɩɵɥɟɭɥɨɜɢɬɟɥɹɯ ɢ ɫɟɩɚɪɚɰɢɨɧɧɵɯ ɭɫɬɪɨɣɫɬɜɚɯ ɧɚɯɨɞɹɬ ɩɪɢɦɟɧɟɧɢɟ ɫɥɟɞɭɸɳɢɟ ɫɩɨɫɨɛɵ ɨɬɞɟɥɟɧɢɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɨɬ ɜɡɜɟɲɢɜɚɸɳɟɣ ɫɪɟɞɵ, ɬ. ɟ. ɜɨɡɞɭɯɚ (ɝɚɡɚ): ɨɫɚɠɞɟɧɢɟ ɜ ɝɪɚɜɢɬɚɰɢɨɧɧɨɦ ɩɨɥɟ, ɨɫɚɠɞɟɧɢɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥ ɢɧɟɪɰɢɢ, ɨɫɚɠɞɟɧɢɟ ɜ ɰɟɧɬɪɨɛɟɠɧɨɦ ɩɨɥɟ, ɮɢɥɶɬɪɨɜɚɧɢɟ, ɨɫɚɠɞɟɧɢɟ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ, ɦɨɤɪɚɹ ɝɚɡɨɨɱɢɫɬɤɚ ɢ ɞɪ. Ƚɪɚɜɢɬɚɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ. ɑɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ ɨɫɚɠɞɚɸɬɫɹ ɢɡ ɩɨɬɨɤɚ ɡɚɝɪɹɡɧɟɧɧɨɝɨ ɝɚɡɚ (ɜɨɡɞɭɯɚ) ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ. Ⱦɥɹ ɷɬɨɝɨ ɧɟɨɛɯɨɞɢɦɨ ɫɨɡɞɚɬɶ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɪɟɠɢɦ ɞɜɢɠɟɧɢɹ ɡɚɝɪɹɡɧɟɧɧɨɝɨ ɝɚɡɚ ɜ ɚɩɩɚɪɚɬɟ ɫ ɭɱɟɬɨɦ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ, ɢɯ ɩɥɨɬɧɨɫɬɢ ɢ ɬ. ɞ. ɂɧɟɪɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ. ɂɧɟɪɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ ɨɫɧɨɜɚɧɨ ɧɚ ɬɨɦ, ɱɬɨ ɱɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ ɢ ɜɡɜɟɲɢɜɚɸɳɚɹ ɫɪɟɞɚ ɜɜɢɞɭ ɡɧɚɱɢɬɟɥɶɧɨɣ ɪɚɡɧɨɫɬɢ ɩɥɨɬɧɨɫɬɟɣ ɨɛɥɚɞɚɸɬ ɪɚɡɥɢɱɧɨɣ ɢɧɟɪɰɢɟɣ. ɑɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ, ɞɜɢɝɚɹɫɶ ɩɨ ɢɧɟɪɰɢɢ, ɨɬɞɟɥɹɸɬɫɹ ɨɬ ɝɚɡɨɜɨɣ ɫɪɟɞɵ. Ɉɫɚɠɞɟɧɢɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ. ɉɪɨɢɫɯɨɞɢɬ ɩɪɢ ɤɪɢɜɨɥɢɧɟɣɧɨɦ ɞɜɢɠɟɧɢɢ ɩɵɥɟɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. ɉɨɞ ɞɟɣɫɬɜɢɟɦ ɜɨɡɧɢɤɚɸɳɢɯ ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ ɱɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ ɨɬɛɪɚɫɵɜɚɸɬɫɹ ɧɚ ɩɟɪɢɮɟɪɢɸ ɚɩɩɚɪɚɬɚ ɢ ɨɫɚɠɞɚɸɬɫɹ. ɗɮɮɟɤɬ ɡɚɰɟɩɥɟɧɢɹ ɩɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ. ɑɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ, ɜɡɜɟɲɟɧɧɵɟ ɜ ɜɨɡɞɭɲɧɨɣ (ɝɚɡɨɜɨɣ) ɫɪɟɞɟ, ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɜ ɭɡɤɢɯ ɢɡɜɢɥɢɫɬɵɯ ɤɚɧɚɥɚɯ ɢ ɩɨɪɚɯ ɩɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɚɷɪɨɡɨɥɶɧɨɝɨ ɩɨɬɨɤɚ ɱɟɪɟɡ ɮɢɥɶɬɪɨɜɚɥɶɧɵɟ ɦɚɬɟɪɢɚɥɵ. Ɉɫɚɠɞɟɧɢɟ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ. ɉɪɨɯɨɞɹ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɩɨɥɟ, ɱɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ ɩɨɥɭɱɚɸɬ ɡɚɪɹɞ. Ⱦɜɢɝɚɹɫɶ ɤ ɷɥɟɤɬɪɨɞɚɦ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨɝɨ ɡɧɚɤɚ, ɨɧɢ ɨɫɚɠɞɚɸɬɫɹ ɧɚ ɧɢɯ. Ɇɨɤɪɚɹ ɝɚɡɨɨɱɢɫɬɤɚ. ɋɦɚɱɢɜɚɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɷɥɟɦɟɧɬɨɜ ɚɩɩɚɪɚɬɨɜ ɜɨɞɨɣ ɢɥɢ ɞɪɭɝɨɣ ɠɢɞɤɨɫɬɶɸ ɫɩɨɫɨɛɫɬɜɭɟɬ ɡɚɞɟɪɠɚɧɢɸ ɱɚɫɬɢɰ ɧɚ ɞɚɧɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ. ȼ ɩɪɚɤɬɢɤɟ ɩɵɥɟɭɥɚɜɥɢɜɚɧɢɹ ɢ ɫɟɩɚɪɚɰɢɢ ɚɷɪɨɡɨɥɶɧɵɯ ɱɚɫɬɢɰ ɧɚɯɨɞɹɬ ɩɪɢɦɟɧɟɧɢɟ ɢ ɞɪɭɝɢɟ ɦɟɬɨɞɵ: ɬɟɪɦɨɮɨɪɟɡ, ɮɨɬɨɮɨɪɟɡ, ɭɤɪɭɩɧɟɧɢɟ ɱɚɫɬɢɰ ɜ ɚɤɭɫɬɢɱɟɫɤɨɦ ɩɨɥɟ, ɜɨɡɞɟɣɫɬɜɢɟ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ, ɛɢɨɥɨɝɢɱɟɫɤɚɹ ɨɱɢɫɬɤɚ ɢ ɞɪ. ȼ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɢɯ ɢ ɫɟɩɚɪɚɰɢɨɧɧɵɯ ɭɫɬɪɨɣɫɬɜɚɯ, ɧɚɪɹɞɭ ɫ ɨɫɧɨɜɧɵɦ ɦɟɯɚɧɢɡɦɨɦ ɭɥɚɜɥɢɜɚɧɢɹ, ɨɛɵɱɧɨ ɢɫɩɨɥɶɡɭɸɬɫɹ ɢ ɞɪɭɝɢɟ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ. Ȼɥɚɝɨɞɚɪɹ ɷɬɨɦɭ ɨɛɳɚɹ ɢ ɮɪɚɤɰɢɨɧɧɚɹ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɚɩɩɚɪɚɬɚ ɞɨɫɬɢɝɚɟɬ ɛɨɥɟɟ ɜɵɫɨɤɨɝɨ ɭɪɨɜɧɹ. 2.1. Ƚɪɚɜɢɬɚɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ Ɋɚɛɨɬɚ ɝɪɚɜɢɬɚɰɢɨɧɧɵɯ ɩɵɥɟɭɥɚɜɥɢɜɚɸɳɢɯ ɭɫɬɪɨɣɫɬɜ ɨɫɧɨɜɚɧɚ ɧɚ ɡɚɤɨɧɚɯ ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ, ɬ. ɟ. ɨɫɚɠɞɟɧɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ. əɜɥɟɧɢɹ ɨɫɚɠɞɟɧɢɹ ɢɦɟɸɬ ɦɟɫɬɨ ɬɚɤɠɟ ɜ ɚɩɩɚɪɚɬɚɯ, ɞɟɣɫɬɜɢɟ ɤɨɬɨɪɵɯ, ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ, ɨɫɧɨɜɚɧɨ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɞɪɭɝɢɯ ɫɢɥ. Ɋɚɫɫɦɨɬɪɢɦ ɩɪɹɦɨɥɢɧɟɣɧɨɟ ɪɚɜɧɨɦɟɪɧɨɟ ɞɜɢɠɟɧɢɟ ɱɚɫɬɢɰɵ, ɩɨɞɱɢɧɹɸɳɟɟɫɹ ɡɚɤɨɧɭ ɇɶɸɬɨɧɚ. ȼɨɡɦɨɠɧɵɟ ɤɨɧɜɟɤɬɢɜɧɵɟ ɬɨɤɢ ɧɟ ɭɱɢɬɵɜɚɸɬɫɹ. ɉɪɢ ɞɜɢɠɟɧɢɢ ɱɚɫɬɢɰɚ ɜɫɬɪɟɱɚɟɬ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɫɪɟɞɵ, ɤɨɬɨɪɨɟ ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɨ Fɫ = ]ɱ Sɱ wɱ2U0/2, (2.1) ɝɞɟ Sɱ - ɩɪɨɟɤɰɢɹ ɩɨɩɟɪɟɱɧɨɝɨ ɫɟɱɟɧɢɹ ɱɚɫɬɢɰɵ ɧɚ ɧɚɩɪɚɜɥɟɧɢɟ ɟɟ ɞɜɢɠɟɧɢɹ (ɩɥɨɳɚɞɶ ɦɢɞɟɥɟɜɚ ɫɟɱɟɧɢɹ), ɦ2; U0 - ɩɥɨɬɧɨɫɬɶ ɫɪɟɞɵ, ɤɝ/ɦ3; wɱ - ɫɤɨɪɨɫɬɶ ɱɚɫɬɢɰɵ, ɦ/ɫ; ]ɱ - ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɢɣ ɤɨɷɮɮɢɰɢɟɧɬ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɱɚɫɬɢɰɵ. Ʉɨɷɮɮɢɰɢɟɧɬ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɱɚɫɬɢɰɵ ]ɱ ɡɚɜɢɫɢɬ ɨɬ ɱɢɫɥɚ Ɋɟɣɧɨɥɶɞɫɚ Reɱ. Ⱦɥɹ ɲɚɪɨɜɨɣ ɱɚɫɬɢɰɵ Reɱ = wɱ dɱ U0/P0, (2.2) . ɡɞɟɫɶ P0 - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɜɨɡɞɭɯɚ (ɝɚɡɚ), ɉɚ ɫ; dɱ, - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ, ɦ. ɋɨɨɬɜɟɬɫɬɜɭɸɳɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɩɪɢɜɟɞɟɧɚ ɧɚ ɝɪɚɮɢɤɟ (ɪɢɫ. 2.1). Ɋɢɫ. 2.1. Ɂɚɜɢɫɢɦɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ ɥɨɛɨɜɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɲɚɪɨɜɨɣ ɱɚɫɬɢɰɵ [ɱ ɨɬ ɤɪɢɬɟɪɢɹ Rɟɱ (ɤɪɢɜɚɹ Ɋɷɥɟɹ) ɋɨɝɥɚɫɧɨ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦ ɞɚɧɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɥɹ ɲɚɪɨɜɨɣ ɩɵɥɟɜɨɣ ɱɚɫɬɢɰɵ ɢɦɟɸɬ ɫɥɟɞɭɸɳɢɟ ɡɧɚɱɟɧɢɹ (ɬɚɛɥ.2.1). Ɍɚɛɥɢɰɚ 2.1 Ɂɚɜɢɫɢɦɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɨɬ ɪɟɠɢɦɚ ɞɜɢɠɟɧɢɹ Reɱ d 2 ]ɱ = 24/Re 2  Reɱ 500 ]ɱ = 18,5/ Re0,5 500  Reɱ 150000 ]ɱ = 0,44 ɉɪɢɧɹɜ ɡɧɚɱɟɧɢɟ ]ɱ, ɞɥɹ ɫɥɭɱɚɹ ɥɚɦɢɧɚɪɧɨɝɨ ɞɜɢɠɟɧɢɹ ɜ ɨɛɥɚɫɬɢ Reɱ < 2, ]ɱ = 24/Reɱ, ɩɨɞɫɬɚɜɢɦ ɡɧɚɱɟɧɢɟ ɟɝɨ ɜ ɮɨɪɦɭɥɭ ɇɶɸɬɨɧɚ (2.1.) Fɫ = (24/Reɱ)(S dɱ2/4)(wɱ2U0/2) = 24 P0 S dɱ2 wɱ2U0/(8 wɱ dɱ U0) (2.3) ɢ ɩɨɥɭɱɢɦ Fɫ = 3 S P0 dɱ wɱ. (2.4) ɗɬɚ ɮɨɪɦɭɥɚ ɜɵɪɚɠɚɟɬ ɡɚɤɨɧ ɋɬɨɤɫɚ: ɫɢɥɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ, ɢɫɩɵɬɵɜɚɟɦɚɹ ɬɜɟɪɞɵɦ ɲɚɪɨɜɵɦ ɬɟɥɨɦ ɩɪɢ ɦɟɞɥɟɧɧɨɦ ɞɜɢɠɟɧɢɢ ɜ ɧɟɨɝɪɚɧɢɱɟɧɧɨɣ ɜɹɡɤɨɣ ɫɪɟɞɟ, ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɫɤɨɪɨɫɬɢ ɩɨɫɬɭɩɚɬɟɥɶɧɨɝɨ ɞɜɢɠɟɧɢɹ, ɞɢɚɦɟɬɪɭ ɬɟɥɚ ɢ ɜɹɡɤɨɫɬɢ ɫɪɟɞɵ. Ɂɚɤɨɧ ɋɬɨɤɫɚ ɩɪɢɦɟɧɢɦ ɩɪɢ ɥɚɦɢɧɚɪɧɨɦ ɞɜɢɠɟɧɢɢ ɱɚɫɬɢɰ, ɤɨɝɞɚ Reɱ <2. Ɉɛɥɚɫɬɶ ɩɪɢɦɟɧɟɧɢɹ ɡɚɤɨɧɚ ɋɬɨɤɫɚ ɩɪɚɤɬɢɱɟɫɤɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɪɚɡɦɟɪɚɦɢ ɱɚɫɬɢɰ ɢ ɬɪɟɛɭɟɦɨɣ ɬɨɱɧɨɫɬɶɸ: ɩɪɢ 16.10-4 < dɱ < 30.10-4 ɫɦ, ɧɟɬɨɱɧɨɫɬɶ ɫɨɫɬɚɜɥɹɟɬ 1 %; ɩɪɢ 1,6.10-4 < dɱ <70.10-4 ɫɦ - 10 %. ȿɫɥɢ ɞɨɩɭɫɬɢɦɚ ɛɨɥɶɲɚɹ ɧɟɬɨɱɧɨɫɬɶ, ɦɨɠɧɨ ɪɚɫɩɪɨɫɬɪɚɧɢɬɶ ɮɨɪɦɭɥɭ (3.4.) ɧɚ ɨɛɥɚɫɬɶ 10-5 < dɱ< 10-2 ɫɦ, ɬ. ɟ. ɩɪɚɤɬɢɱɟɫɤɢ ɧɚ ɜɫɟ ɪɚɡɦɟɪɵ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ, ɩɨɞɜɟɪɝɚɸɳɢɯɫɹ ɭɥɚɜɥɢɜɚɧɢɸ. Ƚɪɚɮɢɤ, ɜɵɪɚɠɚɸɳɢɣ ɡɚɜɢɫɢɦɨɫɬɶ ]ɱ ɨɬ Reɱ (ɪɢɫ.2.1.), ɫɨɫɬɨɢɬ ɢɡ ɬɪɟɯ ɱɚɫɬɟɣ. ɉɪɢ 5.102< Reɱ <5.105 ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɜ ɨɛɥɚɫɬɢ ɪɚɡɜɢɬɨɣ ɬɭɪɛɭɥɟɧɬɧɨɫɬɢ ɡɚɤɨɧɨɦ ɇɶɸɬɨɧɚ. ɇɚ ɷɬɨɦ ɭɱɚɫɬɤɟ ɤɨɷɮɮɢɰɢɟɧɬ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ]ɱ ɚɜɬɨɦɨɞɟɥɟɧ ɨɬɧɨɫɢɬɟɥɶɧɨ ɱɢɫɥɚ Ɋɟɣɧɨɥɶɞɫɚ (]ɱ = 44). ɉɪɢ Reɱ < 1 ɫɢɥɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɡɚɤɨɧɨɦ ɋɬɨɤɫɚ. Ɂɚɜɢɫɢɦɨɫɬɶ ]ɱ ɨɬ Rɟɱ ɜɵɪɚɠɚɟɬɫɹ ɩɪɹɦɵɦ ɭɱɚɫɬɤɨɦ ɜ ɥɨɝɚɪɢɮɦɢɱɟɫɤɢɯ ɤɨɨɪɞɢɧɚɬɚɯ. Ⱦɥɹ ɬɨɱɧɵɯ ɜɵɱɢɫɥɟɧɢɣ ɜ ɡɚɤɨɧ ɋɬɨɤɫɚ ɜɜɨɞɢɬɫɹ ɩɨɩɪɚɜɤɚ Ʉɟɧɢɧɝɟɦɚ ɋɤ ɞɥɹ ɱɚɫɬɢɰ ɪɚɡɦɟɪɨɦ 0,2-2,0 ɦɤɦ: Fɫ = 3 S P0 dɱ wɱ/Cɤ. (2.5) ɇɢɠɟ ɩɪɢɜɟɞɟɧɵ ɡɧɚɱɟɧɢɹ ɩɨɩɪɚɜɨɤ ɋɤ ɞɥɹ ɜɨɡɞɭɯɚ ɩɪɢ t = 20°C ɢ ɧɨɪɦɚɥɶɧɨɦ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ (ɬɚɛɥ. 2.2). Ɍɚɛɥɢɰɚ 2.2 ɉɨɩɪɚɜɤɚ Ʉɟɧɢɧɝɟɦɚ dɱ, ɦɦ ɋɤ 0,003 0,01 90,0 24,3 0,03 7,9 0,1 2,9 0,3 1,57 1,0 1,16 3,0 1,03 10,0 1,0 ɉɵɥɟɜɵɟ ɱɚɫɬɢɰɵ ɦɚɥɵɯ ɪɚɡɦɟɪɨɜ ɭɱɚɫɬɜɭɸɬ ɜ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ ɛɟɫɩɨɪɹɞɨɱɧɨɦ ɯɚɨɬɢɱɟɫɤɨɦ ɩɟɪɟɦɟɳɟɧɢɢ ɱɚɫɬɢɰ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɭɞɚɪɨɜ ɦɨ- ɥɟɤɭɥ. ɑɟɦ ɦɟɧɶɲɟ ɪɚɡɦɟɪ ɱɚɫɬɢɰɵ, ɬɟɦ ɛɨɥɶɲɭɸ ɪɨɥɶ ɜ ɟɟ ɩɟɪɟɦɟɳɟɧɢɢ ɢɝɪɚɟɬ ɛɪɨɭɧɨɜɫɤɨɟ ɞɜɢɠɟɧɢɟ. ɋɨɝɥɚɫɧɨ ɭɪɚɜɧɟɧɢɸ ɗɣɧɲɬɟɣɧɚ ɩɟɪɟɦɟɳɟɧɢɟ ɱɚɫɬɢɰɵ ɜ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ 'ɯ ɪɚɜɧɨ 'x 2 Dɱ T0 (2.6) ɝɞɟ Dɱ - ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰɵ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɣ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɛɪɨɭɧɨɜɫɤɨɝɨ ɞɜɢɠɟɧɢɹ, ɦ2/ɫ; Ɍ0 - ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɜɨɡɞɭɯɚ (ɝɚɡɚ), ɜ ɤɨɬɨɪɨɦ ɩɟɪɟɦɟɳɚɟɬɫɹ ɱɚɫɬɢɰɚ, Ʉ. ɉɨ ɢɦɟɸɳɢɦɫɹ ɡɚɜɢɫɢɦɨɫɬɹɦ ɨɩɪɟɞɟɥɟɧɵ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɵɯ ɪɚɡɦɟɪɨɜ ɢ ɢɯ ɫɦɟɳɟɧɢɟ ɩɪɢ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ ɡɚ 1 ɫ (ɬɚɛɥ. 2.3). Ɍɚɛɥɢɰɚ 2.3 ɋɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɢ ɛɪɨɭɧɨɜɫɤɨɝɨ ɫɦɟɳɟɧɢɹ ɦɚɥɵɯ ɱɚɫɬɢɰ ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ, Ȼɪɨɭɧɨɜɫɤɨɟ Ⱦɢɚɦɟɬɪ ɱɚɫ- Ʉɪɢɬɟɪɢɣ Ɋɟɣɧɨɥɶɞɫɚ ɫɦ/ɫ ɫɦɟɳɟɧɢɟ ɡɚ ɬɢɰ, dɱ, ɦɤɦ 1 ɫ, ɫɦ 20 13,2 1,2 1,54.10-4 6 0,366 0,11 2,84.10-4 2 1,43˜10-2 1,3.10-2 5,07.10-4 0,6 4,62.10-2 1,39.10-3 1,0.10-3 0,2 2,45˜10-5 2,23.10-4 2,1.10-3 0,06 1,37.10-6 4,16.10-5 5.5.10-3 0,02 1,26.10-7 1,14.10-5 1,06.10-2 ɉɥɨɬɧɨɫɬɶ - 1 ɝ/ɫɦ3, ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ - 293 Ʉ, ɜɹɡɤɨɫɬɶ ɜɨɡɞɭɯɚ - 1,82.10-4 ɩɭɚɡ. Ʉɚɤ ɜɢɞɧɨ ɢɡ ɬɚɛɥ. 2.3, ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɢ ɜɟɥɢɱɢɧɚ ɛɪɨɭɧɨɜɫɤɨɝɨ ɫɦɟɳɟɧɢɹ ɫɨɢɡɦɟɪɢɦɵ ɞɥɹ ɱɚɫɬɢɰ, ɧɚɱɢɧɚɹ ɩɪɢɦɟɪɧɨ ɫ 0,5 ɦɤɦ. ɋ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɪɟɡɤɨ ɫɧɢɠɚɟɬɫɹ ɢ ɜɨɡɪɚɫɬɚɟɬ ɛɪɨɭɧɨɜɫɤɨɟ ɫɦɟɳɟɧɢɟ. Ⱦɥɹ ɱɚɫɬɢɰ ɪɚɡɦɟɪɨɦ 0,05…0,02 ɦɤɦ ɨɧɨ ɭɠɟ ɧɚ ɞɜɚ ɬɪɢ ɩɨɪɹɞɤɚ ɩɪɟɜɵɲɚɟɬ ɩɭɬɶ ɱɚɫɬɢɰɵ ɩɪɢ ɫɜɨɛɨɞɧɨɦ ɩɚɞɟɧɢɢ. ɉɨɷɬɨɦɭ ɜɵɫɨɤɨɞɢɫɩɟɪɫɧɵɟ ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɨɫɚɠɞɚɸɬɫɹ, ɚ ɛɥɚɝɨɞɚɪɹ ɛɪɨɭɧɨɜɫɤɨɦɭ ɞɜɢɠɟɧɢɸ ɩɟɪɟɦɟɳɚɸɬɫɹ ɜ ɥɸɛɨɦ ɧɚɩɪɚɜɥɟɧɢɢ. ȿɫɥɢ ɪɚɫɫɦɚɬɪɢɜɚɟɬɫɹ ɞɜɢɠɟɧɢɟ ɧɟɲɚɪɨɨɛɪɚɡɧɨɣ ɱɚɫɬɢɰɵ, ɜ ɪɚɫɱɟɬɧɵɯ ɮɨɪɦɭɥɚɯ ɡɧɚɱɟɧɢɟ ]ɱ ɭɦɧɨɠɚɟɬɫɹ ɧɚ ɞɢɧɚɦɢɱɟɫɤɢɣ ɤɨɷɮɮɢɰɢɟɧɬ ɮɨɪɦɵ F, ɜɦɟɫɬɨ dɱ ɜɜɨɞɹɬ ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ: F d ɷ3 / d ɱ3 , (2.7) ɝɞɟ dɷ - ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ, ɪɚɜɧɵɣ ɞɢɚɦɟɬɪɭ ɲɚɪɚ, ɨɛɴɟɦ ɤɨɬɨɪɨɝɨ ɪɚɜɟɧ ɨɛɴɟɦɭ ɞɚɧɧɨɣ ɱɚɫɬɢɰɵ, ɦ. Ɂɧɚɱɟɧɢɹ F ɞɥɹ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɣ ɮɨɪɦɵ: ɒɚɪɨɜɚɹ .................................................... 1 Ɉɤɪɭɝɥɟɧɧɚɹ ɫ ɧɟɪɨɜɧɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ ...2,4 ɉɪɨɞɨɥɝɨɜɚɬɚɹ ............................................ 3 ɉɥɚɫɬɢɧɱɚɬɚɹ ............................................. 5 Ⱦɥɹ ɫɦɟɲɚɧɧɵɯ ɬɟɥ ................................. 2,9. ȼ ɞɜɢɠɟɧɢɢ ɱɚɫɬɢɰɵ, ɨɫɚɠɞɚɸɳɟɣɫɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ ɜ ɧɟɩɨɞɜɢɠɧɨɣ ɫɪɟɞɟ, ɦɨɠɧɨ ɪɚɡɥɢɱɢɬɶ ɬɪɢ ɫɬɚɞɢɢ: ɧɚɱɚɥɶɧɨɣ ɦɨɦɟɧɬ ɩɚɞɟɧɢɹ; ɞɜɢɠɟɧɢɟ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɫɤɨɪɨɫɬɢ ɞɨ ɬɨɝɨ ɦɨɦɟɧɬɚ, ɩɨɤɚ ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɢ ɫɢɥɵ ɬɹɠɟɫɬɢ ɧɟ ɭɪɚɜɧɨɜɟɫɹɬɫɹ; ɪɚɜɧɨɦɟɪɧɨɟ ɞɜɢɠɟɧɢɟ ɫ ɩɨɫɬɨɹɧɧɨɣ ɫɤɨɪɨɫɬɶɸ. ɉɟɪɜɵɟ ɞɜɟ ɫɬɚɞɢɢ ɢɦɟɸɬ ɦɚɥɭɸ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ. ȼ ɨɛɥɚɫɬɢ ɞɟɣɫɬɜɢɹ ɡɚɤɨɧɚ ɋɬɨɤɫɚ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɲɚɪɨɜɨɣ ɱɚɫɬɢɰɵ ɨɩɪɟɞɟɥɹɟɬɫɹ wɱ d ɱ2 U ɱ g 18P 0 WUg (2.8) ɝɞɟ g = 9,81 ɦ/ɫ2 - ɭɫɤɨɪɟɧɢɟ ɫɜɨɛɨɞɧɨɝɨ ɩɚɞɟɧɢɹ; Uɱ - ɩɥɨɬɧɨɫɬɶ ɱɚɫɬɢɰɵ, ɤɝ/ɦ3; Wɪ = dɱ2.Uɱ.g/(18.Pc) - ɜɪɟɦɹ ɪɟɥɚɤɫɚɰɢɢ ɱɚɫɬɢɰɵ, ɫ. ɉɥɨɬɧɨɫɬɶɸ ɜɨɡɞɭɯɚ (ɝɚɡɚ) ɩɪɟɧɟɛɪɟɝɚɟɦ. Ƚɪɚɮɢɤ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɩɵɥɢ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ ɢ ɩɥɨɬɧɨɫɬɢ ɞɚɧ ɧɚ ɪɢɫ. 2.2. ȿɫɥɢ ɫɤɨɪɨɫɬɶ ɜɨɡɞɭɯɚ ɪɚɜɧɚ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɢ ɧɚɩɪɚɜɥɟɧɚ ɩɪɨɬɢɜ ɧɟɟ, ɬɨ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰɵ ɩɵɥɢ ɜ ɜɨɡɞɭɯɟ ɪɚɜɧɚ ɧɭɥɸ. ɋɤɨɪɨɫɬɶ ɜɨɡɞɭɯɚ ɜ ɜɨɫɯɨɞɹɳɟɦ ɩɨɬɨɤɟ, ɩɪɢ ɤɨɬɨɪɨɣ ɱɚɫɬɢɰɚ ɧɟɩɨɞɜɢɠɧɚ (ɢɥɢ ɫɨɜɟɪɲɚɟɬ ɤɨɥɟɛɚɬɟɥɶɧɵɟ ɞɜɢɠɟɧɢɹ), ɧɚɡɵɜɚɟɬɫɹ ɫɤɨɪɨɫɬɶɸ ɜɢɬɚɧɢɹ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɨɫɬɨɹɧɧɚɹ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰɵ ɩɵɥɢ ɜ ɧɟɩɨɞɜɢɠɧɨɦ ɜɨɡɞɭɯɟ ɪɚɜɧɚ ɫɤɨɪɨɫɬɢ ɟɟ ɜɢɬɚɧɢɹ. ɉɨɧɹɬɢɟ «ɫɤɨɪɨɫɬɶ ɜɢɬɚɧɢɹ» ɜɚɠɧɨ ɞɥɹ ɫɢɫɬɟɦ ɢ ɭɫɬɪɨɣɫɬɜ, ɜ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɩɟɪɟɦɟɳɟɧɢɟ ɝɚɡɨɨɛɪɚɡɧɨɣ ɫɪɟɞɵ ɫɨ ɜɡɜɟɲɟɧɧɵɦɢ ɜ ɧɟɣ ɱɚɫɬɢɰɚɦɢ (ɩɧɟɜɦɨɬɪɚɧɫɩɨɪɬ, ɚɫɩɢɪɚɰɢɹ, ɩɵɥɟɭɥɨɜɢɬɟɥɢ, ɪɚɛɨɬɚɸɳɢɟ ɜ ɨɫɧɨɜɧɨɦ ɧɚ ɩɪɢɧɰɢɩɟ ɝɪɚɜɢɬɚɰɢɢ). ɋɤɨɪɨɫɬɶ ɜɢɬɚɧɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ ɢ ɩɥɨɬɧɨɫɬɢ ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɬɚɤɠɟ ɫ ɩɨɦɨɳɶɸ ɧɨɦɨɝɪɚɦɦɵ (ɪɢɫ. 2.3.). Ɋɢɫ. 2.2. Ƚɪɚɮɢɤ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɩɵɥɢ ɪɚɡɥɢɱɧɵɯ ɪɚɡɦɟɪɨɜ ɢ ɩɥɨɬɧɨɫɬɢ ɜ ɧɟɩɨɞɜɢɠɧɨɦ ɜɨɡɞɭɯɟ. Ɋɢɫ. 2.3. ɇɨɦɨɝɪɚɦɦɚ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɤɨɪɨɫɬɢ ɜɢɬɚɧɢɹ ɱɚɫɬɢɰ ɩɵɥɢ. ɉɚɪɚɦɟɬɪ ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ G ɪɚɜɟɧ ɨɬɧɨɲɟɧɢɸ ɫɢɥɵ ɬɹɠɟɫɬɢ Fɬ ɢ ɫɢɥɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ ɢ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧ ɨɬɧɨɲɟɧɢɟɦ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰɵ wɱ ɤ ɫɤɨɪɨɫɬɢ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ v0: G Fɬ Fc Sd ɱ3 U ɱ g 6 ˜ 3SP 0 d ɱ v 0 d ɱ2 U ɱ g 18P 0 v 0 wɱ . v0 (2.9) ɍɪɚɜɧɟɧɢɟ (2.9) ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧɨ ɬɚɤɠɟ ɜ ɜɢɞɟ ɨɬɧɨɲɟɧɢɹ ɞɜɭɯ ɤɪɢɬɟɪɢɟɜ G Stk Fr , (2.10) d ɱ2 U ɱ v 0 v 02 ɝɞɟ Stk - ɤɪɢɬɟɪɢɣ ɋɬɨɤɫɚ; Fr - ɤɪɢɬɟɪɢɣ Ɏɪɭɞɚ; l - ɨɩɪɟɞɟ18P 0 l gl ɥɹɸɳɢɣ ɥɢɧɟɣɧɵɣ ɩɚɪɚɦɟɬɪ, ɦ. ɋ ɭɱɟɬɨɦ ɭɪɚɜɧɟɧɢɹ (2.9) ɨɩɪɟɞɟɥɹɟɬɫɹ ɢ ɤɨɷɮɮɢɰɢɟɧɬ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɵɯ ɫɢɥ ɜ ɩɨɞɨɛɧɵɯ ɝɟɨɦɟɬɪɢɱɟɫɤɢɯ ɫɢɫɬɟɦɚɯ ɜ ɜɢɞɟ ɡɚɜɢɫɢɦɨɫɬɢ Stk · § K G f ¨ Re; (2.11) ¸. Fr ¹ © 2.2. ɐɟɧɬɪɨɛɟɠɧɨɟ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɗɬɨɬ ɦɟɬɨɞ ɨɬɞɟɥɟɧɢɹ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɟɣ ɨɬ ɜɨɡɞɭɯɚ (ɝɚɡɚ) ɡɧɚɱɢɬɟɥɶɧɨ ɷɮɮɟɤɬɢɜɧɟɟ ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ, ɬɚɤ ɤɚɤ ɜɨɡɧɢɤɚɸɳɚɹ ɰɟɧɬɪɨɛɟɠɧɚɹ ɫɢɥɚ ɜɨ ɦɧɨɝɨ ɪɚɡ ɛɨɥɶɲɟ, ɱɟɦ ɫɢɥɚ ɬɹɠɟɫɬɢ. ɐɟɧɬɪɨɛɟɠɧɚɹ ɫɟɩɚɪɚɰɢɹ ɦɨɠɟɬ ɩɪɢɦɟɧɹɬɶɫɹ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɛɨɥɟɟ ɦɟɥɤɢɦ ɱɚɫɬɢɰɚɦ. ɋɤɨɪɨɫɬɶ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɲɚɪɨɜɨɣ ɱɚɫɬɢɰɵ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ, ɩɪɢɪɚɜɧɹɜ ɰɟɧɬɪɨɛɟɠɧɭɸ ɫɢɥɭ Fɰ, ɜɨɡɧɢɤɚɸɳɭɸ ɩɪɢ ɜɪɚɳɟɧɢɢ ɩɵɥɟɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ, ɫɢɥɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ ɩɨ ɡɚɤɨɧɭ ɋɬɨɤɫɚ (2.12) Fɰ = mɱ wZ2/r, ɝɞɟ mɱ - ɦɚɫɫɚ ɱɚɫɬɢɰɵ, ɤɝ; wZ - ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ ɩɨɬɨɤɚ ɜɨɤɪɭɝ ɧɟɩɨɞɜɢɠɧɨɣ ɨɫɢ, ɦ/ɫ; r - ɪɚɞɢɭɫ ɜɪɚɳɟɧɢɹ ɩɨɬɨɤɚ, ɦ. Ɉɬɫɸɞɚ, ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰɵ ɜ ɰɟɧɬɪɨɛɟɠɧɨɦ ɩɨɥɟ ɫ ɭɱɟɬɨɦ ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ (2.4): (2.13) wɱ = (dɱ2 U0/18 P0)(wZ2/r) = Wɪ(wZ2/r). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɜ ɰɟɧɬɪɨɛɟɠɧɵɯ ɩɵɥɟɭɥɨɜɢɬɟɥɹɯ ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɤɜɚɞɪɚɬɭ ɞɢɚɦɟɬɪɚ ɱɚɫɬɢɰɵ. ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ wɱ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɛɨɥɶɲɟ, ɱɟɦ ɫɤɨɪɨɫɬɶ ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ, ɜ (wZ2/r).g ɪɚɡ. ȿɫɥɢ ɩɨ ɚɧɚɥɨɝɢɢ ɫ ɝɪɚɜɢɬɚɰɢɨɧɧɵɦ ɨɫɚɠɞɟɧɢɟɦ ɜɵɪɚɡɢɬɶ ɩɚɪɚɦɟɬɪ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɤɚɤ ɨɬɧɨɲɟɧɢɟ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ, ɞɟɣɫɬɜɭɸɳɟɣ ɧɚ ɲɚɪɨɜɭɸ ɱɚɫɬɢɰɭ, ɤ ɫɢɥɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ, ɬɨ ɩɨɥɭɱɢɦ: Z Fɰ Fc Sdɱ3 wZ2 Uɱ 3SP0 dɱ wZ r 6 dɱ2 Uɱ wZ . 18P0 r (2.14) Ɉɬɧɨɲɟɧɢɟ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɹ (2.14) ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɧɟ ɱɬɨ ɢɧɨɟ, ɤɚɤ ɤɪɢɬɟɪɢɣ ɰɟɧɬɪɨɛɟɠɧɵɣ ɋɬɨɤɫɚ StkZ , StkȦ = dɱ2 Uɱ wZ/(18 P0 r), (2.15) ɜ ɤɨɬɨɪɨɦ ɥɢɧɟɣɧɵɣ ɩɚɪɚɦɟɬɪ r ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɪɚɞɢɭɫ ɜɪɚɳɟɧɢɹ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. ɗɬɨ ɩɨɡɜɨɥɹɟɬ ɜɵɪɚɡɢɬɶ ɤɨɷɮɮɢɰɢɟɧɬ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɜ ɜɢɞɟ: KZ f (Re; StkZ ) . (2.16) ȼ ɚɩɩɚɪɚɬɚɯ, ɨɫɧɨɜɚɧɧɵɯ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɟɩɚɪɚɰɢɢ, ɦɨɝɭɬ ɩɪɢɦɟɧɹɬɶɫɹ ɞɜɚ ɩɪɢɧɰɢɩɢɚɥɶɧɵɯ ɤɨɧɫɬɪɭɤɬɢɜɧɵɯ ɪɟɲɟɧɢɹ: - ɩɨɬɨɤ ɚɷɪɨɡɨɥɹ ɜɪɚɳɚɟɬɫɹ ɜ ɧɟɩɨɞɜɢɠɧɨɦ ɤɨɪɩɭɫɟ ɚɩɩɚɪɚɬɚ; - ɩɨɬɨɤ ɞɜɢɠɟɬɫɹ ɜɨ ɜɪɚɳɚɸɳɟɦɫɹ ɪɨɬɨɪɟ. ɉɟɪɜɨɟ ɪɟɲɟɧɢɟ ɩɪɢɦɟɧɟɧɨ ɜ ɰɢɤɥɨɧɚɯ (ɪɢɫ.2.4), ɜɬɨɪɨɟ - ɜ ɪɨɬɚɰɢɨɧɧɵɯ ɩɵɥɟɭɥɨɜɢɬɟɥɹɯ. Ɋɢɫ. 2.4. ɋɯɟɦɚ ɰɢɤɥɨɧɚ Ʉɨɪɩɭɫ ɰɢɤɥɨɧɚ ɫɨɫɬɨɢɬ ɢɡ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɢ ɤɨɧɢɱɟɫɤɨɣ ɱɚɫɬɟɣ. ɉɨ ɮɨɪɦɟ ɰɢɤɥɨɧɵ ɪɚɡɞɟɥɹɸɬ ɧɚ ɰɢɥɢɧɞɪɢɱɟɫɤɢɟ (ɇɰ > Hɤ) ɢ ɤɨɧɢɱɟɫɤɢɟ (ɇɤ > ɇɰ), ɝɞɟ ɇɰ ɢ ɇɤ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɜɵɫɨɬɚ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɢ ɤɨɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɰɢɤɥɨɧɚ. ɋɬɪɨɟɧɢɟ ɤɨɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɨɩɪɟɞɟɥɹɟɬ ɨɫɨɛɟɧɧɨɫɬɢ ɞɜɢɠɟɧɢɹ ɩɵɥɟɜɨɡɞɭɲɧɨɝɨ ɩɨɬɨɤɚ ɜ ɷɬɨɣ ɱɚɫɬɢ ɰɢɤɥɨɧɚ ɢ ɨɤɚɡɵɜɚɟɬ ɫɭɳɟɫɬɜɟɧɧɨɟ ɜɥɢɹɧɢɟ ɧɚ ɩɪɨɰɟɫɫ ɫɟɩɚɪɚɰɢɢ, ɚ ɬɚɤɠɟ ɤɨɚɝɭɥɹɰɢɸ ɧɟɤɨɬɨɪɵɯ ɜɢɞɨɜ ɩɵɥɢ ɜ ɚɩɩɚɪɚɬɟ, ɧɚ ɭɫɬɨɣɱɢɜɨɫɬɶ ɟɝɨ ɪɚɛɨɬɵ ɩɪɢ ɭɥɚɜɥɢɜɚɧɢɢ ɞɚɧɧɵɯ ɜɢɞɨɜ ɩɵɥɢ. ɍɥɚɜɥɢɜɚɧɢɟ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɹ ɜ ɰɢɤɥɨɧɧɵɯ ɚɩɩɚɪɚɬɚɯ ɨɫɧɨɜɚɧɨ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ. Ɋɚɫɫɦɨɬɪɢɦ ɨɛɳɟɩɪɢɧɹɬɭɸ ɫɯɟɦɭ ɞɜɢɠɟɧɢɹ ɩɨɬɨɤɚ ɚɷɪɨɡɨɥɹ ɢ ɫɟɩɚɪɚɰɢɢ ɟɝɨ ɱɚɫɬɢɰ ɜ ɰɢɤɥɨɧɟ. ɉɨɬɨɤ ɚɷɪɨɡɨɥɹ ɫ ɛɨɥɶɲɨɣ ɫɤɨɪɨɫɬɶɸ ɩɨ ɤɚɫɚɬɟɥɶɧɨɣ ɩɨɫɬɭɩɚɟɬ ɜ ɰɢɥɢɧɞɪɢɱɟɫɤɭɸ ɱɚɫɬɶ ɤɨɪɩɭɫɚ ɰɢɤɥɨɧɚ ɢ ɫɨɜɟɪɲɚɟɬ ɞɜɢɠɟɧɢɟ ɩɨ ɧɢɫɯɨɞɹɳɟɣ ɫɩɢɪɚɥɢ ɜɧɚɱɚɥɟ ɜ ɤɨɥɶɰɟɜɨɦ ɩɪɨɫɬɪɚɧɫɬɜɟ ɦɟɠɞɭ ɤɨɪɩɭɫɨɦ ɢ ɜɵɯɥɨɩɧɨɣ ɬɪɭɛɨɣ ɢ ɩɪɨɞɨɥɠɚɟɬ ɷɬɨ ɞɜɢɠɟɧɢɟ ɜ ɤɨɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɤɨɪɩɭɫɚ, ɞɟɥɚɹ ɧɟɫɤɨɥɶɤɨ ɜɢɬɤɨɜ (ɪɢɫ. 2.4). ɉɨɞ ɞɟɣ- ɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ, ɜɨɡɧɢɤɚɸɳɟɣ ɩɪɢ ɜɪɚɳɚɬɟɥɶɧɨɦ ɞɜɢɠɟɧɢɢ ɩɨɬɨɤɚ, ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ ɩɟɪɟɦɟɳɚɸɬɫɹ ɪɚɞɢɚɥɶɧɨ ɤ ɫɬɟɧɤɚɦ ɰɢɤɥɨɧɚ. ȼɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɨɬɞɟɥɹɸɬɫɹ ɨɬ ɜɨɡɞɭɯɚ ɜ ɨɫɧɨɜɧɨɦ ɩɪɢ ɩɟɪɟɯɨɞɟ ɩɨɬɨɤɚ ɜ ɜɨɫɯɨɞɹɳɢɣ, ɱɬɨ ɩɪɨɢɫɯɨɞɢɬ ɜ ɤɨɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɤɨɪɩɭɫɚ. ɉɨɬɨɤ, ɩɪɨɞɨɥɠɚɹ ɞɜɢɠɟɧɢɟ ɜ ɤɨɪɩɭɫɟ ɰɢɤɥɨɧɚ, ɩɨɜɨɪɚɱɢɜɚɹ ɧɚ 180°, ɜɯɨɞɢɬ ɜ ɜɵɯɥɨɩɧɭɸ ɬɪɭɛɭ ɢ, ɫɨɜɟɪɲɚɹ ɜ ɧɟɣ ɞɜɢɠɟɧɢɟ ɩɨ ɜɨɫɯɨɞɹɳɟɣ ɫɩɢɪɚɥɢ, ɜɵɯɨɞɢɬ ɢɡ ɰɢɤɥɨɧɚ. ɑɚɫɬɢɰɵ, ɜɵɞɟɥɢɜɲɢɟɫɹ ɢɡ ɩɨɬɨɤɚ, ɩɨɫɬɭɩɚɸɬ ɱɟɪɟɡ ɧɢɠɧɟɟ ɜɵɩɭɫɤɧɨɟ ɨɬɜɟɪɫɬɢɟ ɜ ɛɭɧɤɟɪ. ȼ ɰɢɤɥɨɧɟ ɫɨɡɞɚɸɬɫɹ ɞɜɚ ɜɢɯɪɟɜɵɯ ɩɨɬɨɤɚ: ɜɧɟɲɧɢɣ - ɡɚɝɪɹɡɧɟɧɧɨɝɨ ɜɨɡɞɭɯɚ ɨɬ ɜɯɨɞɧɨɝɨ ɩɚɬɪɭɛɤɚ ɜ ɧɢɠɧɸɸ ɱɚɫɬɶ ɤɨɧɭɫɚ ɢ ɜɧɭɬɪɟɧɧɢɣ - ɨɬɧɨɫɢɬɟɥɶɧɨ ɨɱɢɳɟɧɧɨɝɨ ɜɨɡɞɭɯɚ ɢɡ ɧɢɠɧɟɣ ɱɚɫɬɢ ɤɨɧɭɫɚ ɜɨ ɜɧɭɬɪɟɧɧɸɸ ɬɪɭɛɭ. ɉɪɨɰɟɫɫɵ, ɩɪɨɢɫɯɨɞɹɳɢɟ ɜ ɰɢɤɥɨɧɟ, ɜɟɫɶɦɚ ɫɥɨɠɧɵ ɢ ɡɚɜɢɫɹɬ ɨɬ ɦɧɨɝɢɯ ɮɚɤɬɨɪɨɜ, ɩɨɷɬɨɦɭ ɩɪɢ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɚɯ ɩɪɢɯɨɞɢɬɫɹ ɞɟɥɚɬɶ ɦɧɨɝɨ ɞɨɩɭɳɟɧɢɣ ɢ ɭɩɪɨɳɟɧɢɣ. Ɍɚɤ, ɩɪɢɧɢɦɚɸɬ, ɱɬɨ ɱɚɫɬɢɰɵ ɚɷɪɨɡɨɥɹ, ɩɨɫɬɭɩɚɸɳɢɟ ɫ ɜɨɡɞɭɲɧɵɦ ɩɨɬɨɤɨɦ ɜ ɰɢɤɥɨɧ, ɢɦɟɸɬ ɫɮɟɪɢɱɟɫɤɭɸ ɮɨɪɦɭ, ɩɪɢ ɜɯɨɞɟ ɡɚɝɪɹɡɧɟɧɧɨɝɨ ɩɨɬɨɤɚ ɜ ɚɩɩɚɪɚɬ ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɟɧɵ ɩɨ ɫɟɱɟɧɢɸ, ɱɚɫɬɢɰɵ, ɤɨɬɨɪɵɟ ɩɪɢ ɩɟɪɟɦɟɳɟɧɢɢ ɞɨɫɬɢɝɥɢ ɫɬɟɧɨɤ, ɨɫɚɠɞɚɸɬɫɹ, ɯɨɬɹ ɜ ɞɟɣɫɬɜɢɬɟɥɶɧɨɫɬɢ ɱɚɫɬɶ ɷɬɢɯ ɱɚɫɬɢɰ ɛɭɞɟɬ ɜɵɛɪɨɲɟɧɚ ɜ ɜɵɯɥɨɩɧɭɸ ɬɪɭɛɭ ɜɫɥɟɞɫɬɜɢɟ ɬɭɪɛɭɥɢɡɚɰɢɢ ɩɨɬɨɤɚ ɢ ɬ. ɞ. Ʉɪɨɦɟ ɬɨɝɨ, ɧɟ ɭɱɢɬɵɜɚɟɬɫɹ ɬɚɤɨɣ ɮɚɤɬɨɪ, ɤɚɤ ɤɨɚɝɭɥɹɰɢɹ ɱɚɫɬɢɰ, ɩɪɨɢɫɯɨɞɹɳɚɹ ɜ ɰɢɤɥɨɧɟ. Ɋɚɫɫɦɨɬɪɢɦ ɫɢɥɵ, ɞɟɣɫɬɜɭɸɳɢɟ ɧɚ ɱɚɫɬɢɰɭ, ɞɜɢɠɭɳɭɸɫɹ ɜ ɤɨɥɶɰɟɜɨɦ ɩɪɨɫɬɪɚɧɫɬɜɟ ɦɟɠɞɭ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɱɚɫɬɶɸ ɤɨɪɩɭɫɚ ɰɢɤɥɨɧɚ ɢ ɜɵɯɥɨɩɧɨɣ ɬɪɭɛɨɣ. ɐɟɧɬɪɨɛɟɠɧɚɹ ɫɢɥɚ, ɞɟɣɫɬɜɭɸɳɚɹ ɧɚ ɱɚɫɬɢɰɭ, ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɢɡ ɜɵɪɚɠɟɧɢɹ (2.17) Fɰ = mɱ wɬ2/R, ɋɢɥɭ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ ɨɩɪɟɞɟɥɹɟɦ ɢɡ ɮɨɪɦɭɥɵ ɋɬɨɤɫɚ (2.18) Fɫ = 3 S wɪ dɱ P0, ɝɞɟ wɬ - ɬɚɧɝɟɧɰɢɚɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ɩɵɥɟɜɨɣ ɱɚɫɬɢɰɵ, ɩɪɢɧɢɦɚɟɦɚɹ ɪɚɜɧɨɣ ɫɤɨɪɨɫɬɢ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ɩɪɢ ɜɯɨɞɟ ɜ ɰɢɤɥɨɧ, ɦ/ɫ; wp - ɫɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰɵ ɜ ɪɚɞɢɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ, ɦ/ɫ; R - ɪɚɫɫɬɨɹɧɢɟ ɨɬ ɰɟɧɬɪɚ ɜɪɚɳɟɧɢɹ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ (ɨɫɢ ɰɢɤɥɨɧɚ) ɞɨ ɱɚɫɬɢɰɵ, ɦ; mɱ - ɦɚɫɫɚ ɲɚɪɨɜɨɣ ɱɚɫɬɢɰɵ, ɪɚɜɧɚɹ (S dɱ3Uɱ/6), ɤɝ; dɱ - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ, ɦ; Uɱ - ɩɥɨɬɧɨɫɬɶ ɦɚɬɟɪɢɚɥɚ ɱɚɫɬɢɰɵ, ɤɝ/ɦ3; P0 - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɝɚɡɚ, ɇ.ɫ/ɦ2. ɑɟɪɟɡ ɧɟɫɤɨɥɶɤɨ ɦɝɧɨɜɟɧɢɣ ɩɨɫɥɟ ɜɯɨɞɚ ɡɚɩɵɥɟɧɧɨɝɨ ɩɨɬɨɤɚ ɜ ɰɢɤɥɨɧ ɫɢɥɵ Fɰ ɢ Fɫ ɭɪɚɜɧɨɜɟɲɢɜɚɸɬɫɹ, ɬ. ɟ. mɱ wɬ2/R = 3 S wɪ dɱ P0, (2.19) ɢ ɱɚɫɬɢɰɚ ɞɜɢɠɟɬɫɹ ɜ ɪɚɞɢɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɫ ɩɨɫɬɨɹɧɧɨɣ ɫɤɨɪɨɫɬɶɸ, ɤɨɬɨɪɭɸ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɢɡ ɧɚɩɢɫɚɧɧɨɝɨ ɜɵɲɟ ɪɚɜɟɧɫɬɜɚ (2.20) wɪ = mɱ wɬ2/(R.3 S dɱ P0) = dɱ2 wɬ2 Uɱ/(18 R P0). ɂɡ ɞɜɢɠɭɳɢɯɫɹ ɜ ɩɨɬɨɤɟ ɱɚɫɬɢɰ ɧɚɢɛɨɥɶɲɢɣ ɩɭɬɶ ɩɪɨɣɞɟɬ ɱɚɫɬɢɰɚ, ɤɨɬɨɪɚɹ ɩɪɢ ɜɯɨɞɟ ɜ ɰɢɤɥɨɧ ɧɚɯɨɞɢɥɚɫɶ ɜɛɥɢɡɢ ɜɵɯɥɨɩɧɨɣ ɬɪɭɛɵ. ȿɟ ɩɭɬɶ ɪɚɜɟɧ (R2  R1), ɡɞɟɫɶ R1 - ɪɚɞɢɭɫ ɜɵɯɥɨɩɧɨɣ ɬɪɭɛɵ ɰɢɤɥɨɧɚ, ɦ; R2 - ɪɚɞɢɭɫ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɱɚɫɬɢ ɰɢɤɥɨɧɚ, ɦ. ȼɪɟɦɹ ɞɥɹ ɩɪɨɯɨɠɞɟɧɢɹ ɷɬɨɝɨ ɩɭɬɢ: W = (R2 – R1)/wɪ. (2.21) ȼɟɥɢɱɢɧɚ R ɩɟɪɟɦɟɧɧɚɹ, ɟɟ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɦɨɠɧɨ ɩɪɢɧɹɬɶ (R2 +R1)/2. ɉɨɞɫɬɚɜɢɦ ɜ ɮɨɪɦɭɥɭ (2.17.) ɡɧɚɱɟɧɢɟ wɪ ɢɡ (2.16.), ɧɚɣɞɟɦ W = 18(R2 – R1)( R2 +R1)P0/(2 wɬ2 dɱ2 Uɱ) = 9 P0(R22 – R12)/(wɬ2 dɱ2 Uɱ). (2.22) ɂɡ ɷɬɨɣ ɠɟ ɮɨɪɦɭɥɵ ɦɨɠɧɨ ɧɚɣɬɢ ɪɚɡɦɟɪ ɫɚɦɵɯ ɦɚɥɵɯ ɱɚɫɬɢɰ, ɤɨɬɨɪɵɟ ɭɫɩɟɜɚɸɬ ɩɪɨɣɬɢ ɩɭɬɶ (R2 - RI) ɡɚ ɜɪɟɦɹ ɩɪɨɯɨɠɞɟɧɢɹ ɰɢɤɥɨɧɚ ɝɚɡɨɜɵɦ ɩɨɬɨɤɨɦ, ɬ. ɟ. ɡɚ ɜɪɟɦɹ ɧɚɯɨɠɞɟɧɢɹ ɱɚɫɬɢɰɵ ɜ ɰɢɤɥɨɧɟ dmin = [9 P0( R22 – R12)/Uɱ wɬ2 W]1/2 = [9 P0( R22 – R12)/2 S Uɱ wɬ R n]1/2 = = [9 P0( R2 – R1)/ S Uɱ wɬ n]1/2, (2.23) ɝɞɟ n - ɱɢɫɥɨ ɨɛɨɪɨɬɨɜ, ɤɨɬɨɪɵɟ ɫɨɜɟɪɲɚɟɬ ɝɚɡɨɜɵɣ ɩɨɬɨɤ ɜ ɰɢɤɥɨɧɟ (ɨɛɵɱɧɨ ɩɪɢɧɢɦɚɸɬ 2). Ⱦɚɧɧɵɟ, ɩɨɥɭɱɟɧɧɵɟ ɩɨ ɮɨɪɦɭɥɚɦ (2.22.) ɢ (2.23.), ɡɧɚɱɢɬɟɥɶɧɨ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɪɟɡɭɥɶɬɚɬɨɜ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɢɫɫɥɟɞɨɜɚɧɢɣ. ɗɬɨ ɨɛɴɹɫɧɹɟɬɫɹ ɬɟɦ, ɱɬɨ ɜ ɮɨɪɦɭɥɚɯ ɧɟ ɜ ɩɨɥɧɨɣ ɦɟɪɟ ɭɱɬɟɧɵ ɜɫɟ ɮɚɤɬɨɪɵ, ɜɥɢɹɸɳɢɟ ɧɚ ɰɢɤɥɨɧɧɵɣ ɩɪɨɰɟɫɫ. ȼ ɪɟɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ ɩɵɥɟɜɵɟ ɱɚɫɬɢɰɵ, ɢɦɟɸɳɢɣ ɪɚɡɦɟɪ ɛɨɥɶɲɟ dmin, ɭɥɚɜɥɢɜɚɸɬɫɹ ɜ ɰɢɤɥɨɧɟ ɞɚɥɟɤɨ ɧɟ ɩɨɥɧɨɫɬɶɸ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɱɚɫɬɶ ɱɚɫɬɢɰ, ɢɦɟɸɳɢɯ ɪɚɡɦɟɪ ɦɟɧɶɲɟ dmin, ɨɫɚɠɞɚɟɬɫɹ ɜ ɰɢɤɥɨɧɟ. ɗɬɨ ɦɨɠɧɨ ɨɛɴɹɫɧɢɬɶ ɬɟɦ, ɱɬɨ ɜ ɮɨɪɦɭɥɚɯ ɧɟ ɭɱɢɬɵɜɚɟɬɫɹ ɤɨɚɝɭɥɹɰɢɹ, ɩɪɨɢɫɯɨɞɹɳɚɹ ɜ ɰɢɤɥɨɧɟ. Ʉɪɨɦɟ ɬɨɝɨ, ɱɚɫɬɶ ɦɟɥɤɢɯ ɱɚɫɬɢɰ ɭɜɥɟɤɚɟɬɫɹ ɩɨɬɨɤɨɦ ɢ ɨɫɚɠɞɚɟɬɫɹ ɜɦɟɫɬɟ ɫ ɛɨɥɟɟ ɤɪɭɩɧɵɦɢ ɱɚɫɬɢɰɚɦɢ. 2.3. ɂɧɟɪɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɉɪɢ ɢɧɟɪɰɢɨɧɧɨɦ ɨɫɚɠɞɟɧɢɢ ɩɨɬɨɤ ɚɷɪɨɡɨɥɹ, ɩɟɪɟɦɟɳɚɸɳɢɣɫɹ ɫɨ ɡɧɚɱɢɬɟɥɶɧɨɣ ɫɤɨɪɨɫɬɶɸ, ɢɡɦɟɧɹɟɬ ɧɚɩɪɚɜɥɟɧɢɟ ɞɜɢɠɟɧɢɹ. Ⱦɜɢɠɭɳɢɟɫɹ ɜ ɩɨɬɨɤɟ ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ ɜɫɥɟɞɫɬɜɢɟ ɛɨɥɶɲɨɣ ɢɧɟɪɰɢɢ ɧɟ ɫɥɟɞɭɸɬ ɡɚ ɩɨɬɨɤɨɦ, ɚ ɫɬɪɟɦɹɬɫɹ ɫɨɯɪɚɧɢɬɶ ɩɟɪɜɨɧɚɱɚɥɶɧɨɟ ɧɚɩɪɚɜɥɟɧɢɟ ɞɜɢɠɟɧɢɹ, ɞɜɢɝɚɹɫɶ ɜ ɤɨɬɨɪɨɦ ɨɫɟɞɚɸɬ ɧɚ ɫɬɟɧɤɚɯ, ɩɟɪɟɝɨɪɨɞɤɚɯ, ɫɟɬɤɚɯ ɢ ɞɪ. ɷɥɟɦɟɧɬɚɯ ɚɩɩɚɪɚɬɚ. ɉɪɢ ɨɛɬɟɤɚɧɢɢ ɬɜɟɪɞɨɝɨ ɬɟɥɚ (ɢɥɢ ɤɚɩɥɢ) ɡɚɩɵɥɟɧɧɵɦ ɩɨɬɨɤɨɦ ɱɚɫɬɢɰɵ ɜɫɥɟɞɫɬɜɢɟ ɛɨɥɶɲɟɣ ɢɧɟɪɰɢɢ ɩɪɨɞɨɥɠɚɸɬ ɞɜɢɝɚɬɶɫɹ ɩɨɩɟɪɟɤ ɢɡɨɝɧɭɬɵɯ ɥɢɧɢɣ ɬɨɤɚ ɝɚɡɨɜ (ɪɢɫ. 2.5) ɢ ɨɫɚɠɞɚɸɬɫɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɥɚ. Ɋɢɫ. 2.5. Ɉɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɧɚ ɲɚɪɟ: - ɞɜɢɠɟɧɢɟ ɝɚɡɨɜ; - ɞɜɢɠɟɧɢɟ ɱɚɫɬɢɰ Ʉɨɷɮɮɢɰɢɟɧɬ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɞɨɥɟɣ ɱɚɫɬɢɰ, ɩɨɤɢɧɭɜɲɢɯ ɩɨɬɨɤ ɩɪɢ ɢɡɦɟɧɟɧɢɢ ɢɦ ɧɚɩɪɚɜɥɟɧɢɹ ɜɫɥɟɞɫɬɜɢɟ ɨɛɬɟɤɚɧɢɹ ɢɦ ɪɚɡɥɢɱɧɨɝɨ ɪɨɞɚ ɩɪɟɩɹɬɫɬɜɢɣ. Ɍɪɚɟɤɬɨɪɢɹ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰɵ ɜ ɝɚɡɨɜɨɦ ɩɨɬɨɤɟ ɦɨɠɟɬ ɛɵɬɶ ɨɩɢɫɚɧɚ ɭɪɚɜɧɟɧɢɟɦ: U ɱ Vɱ d wɱ dW d v0  Fc , dW (2.24) ɝɞɟ Vɱ - ɨɛɴɟɦ ɱɚɫɬɢɰɵ, ɦ3; W - ɜɪɟɦɹ ɞɜɢɠɟɧɢɹ, ɫ; wɱ , v 0 - ɜɟɤɬɨɪ ɫɤɨɪɨɫɬɢ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɱɚɫɬɢɰɵ ɢ ɝɚɡɨɜ ɜ ɦɟɫɬɟ ɧɚɯɨɠɞɟɧɢɹ ɱɚɫɬɢɰɵ, ɦ/ɫ. ȿɫɥɢ ɝɚɡɨɜɵɣ ɩɨɬɨɤ ɞɜɢɠɟɬɫɹ ɫɬɚɰɢɨɧɚɪɧɨ, ɚ ɱɚɫɬɢɰɚ ɧɚɫɬɨɥɶɤɨ ɦɚɥɚ, ɱɬɨ ɞɥɹ ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ Fc ɩɪɢɦɟɧɢɦ ɡɚɤɨɧ ɋɬɨɤɫɚ, ɬɨ ɢɡ ɭɪɚɜɧɟɧɢɹ (2.24) ɫ ɭɱɟɬɨɦ ɩɨɩɪɚɜɤɢ Ʉɟɧɢɧɝɟɦɚ ɩɨɫɥɟ ɪɹɞɚ ɭɩɪɨɳɟɧɢɣ ɦɨɠɧɨ ɩɨɥɭɱɢɬɶ ɤɪɢɬɟɪɢɣ ɋɬɨɤɫɚ ɢɥɢ «ɢɧɟɪɰɢɨɧɧɵɣ ɩɚɪɚɦɟɬɪ»: Stk v 0 U ɱ d ɱ2 C ɤ , 18P 0 2 R (2.25 ) ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɣ ɨɬɧɨɲɟɧɢɟ ɢɧɟɪɰɢɨɧɧɨɣ ɫɢɥɵ, ɞɟɣɫɬɜɭɸɳɟɣ ɧɚ ɱɚɫɬɢɰɭ, ɤ ɫɢɥɟ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ. Ʉɪɢɬɟɪɢɣ ɱɢɫɥɟɧɧɨ ɪɚɜɟɧ ɨɬɧɨɲɟɧɢɸ ɪɚɫɫɬɨɹɧɢɹ, ɩɪɨɯɨɞɢɦɨɝɨ ɱɚɫɬɢɰɟɣ ɫ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɶɸ wɱ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɜɧɟɲɧɢɯ ɫɢɥ ɞɨ ɨɫɬɚɧɨɜɤɢ d ɱ2 wɱ U ɱ lɱ , ɤ ɯɚɪɚɤɬɟɪɧɨɦɭ ɪɚɡɦɟɪɭ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ (ɧɚɩɪɢɦɟɪ, ɞɢɚɦɟɬɪɭ 18P 0 ɲɚɪɚ ɢɥɢ ɰɢɥɢɧɞɪɚ). ȿɫɥɢ ɞɜɢɠɟɧɢɟ ɱɚɫɬɢɰɵ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜ ɨɛɥɚɫɬɢ, ɝɞɟ ɡɚɤɨɧ ɋɬɨɤɫɚ ɧɟɩɪɢɦɟɧɢɦ, ɧɟɨɛɯɨɞɢɦɨ ɜɜɟɫɬɢ ɩɨɩɪɚɜɤɭ, ɭɱɢɬɵɜɚɸɳɭɸ ɨɬɧɨɲɟɧɢɟ ɢɫɬɢɧɧɨɣ ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɤ ɫɬɨɤɫɨɜɫɤɨɦɭ ɫɨɩɪɨɬɢɜɥɟɧɢɸ, ɪɚɜɧɭɸ [ ɱ Re ɱ 24 . ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɤɪɢɬɟɪɢɣ Ɋɟɣɧɨɥɶɞɫɚ ɞɥɹ ɱɚɫɬɢɰɵ ɛɭɞɟɬ ɨɩɪɟɞɟɥɹɬɶɫɹ ɜɵɪɚɠɟɧɢɟɦ: Re ɱ d ɱ U 0 ( wɱ  v 0 ) P0 . (2.26 ) Ʉɪɢɬɟɪɢɣ Stk ɹɜɥɹɟɬɫɹ ɟɞɢɧɫɬɜɟɧɧɵɦ ɤɪɢɬɟɪɢɟɦ ɩɨɞɨɛɢɹ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ. ɉɪɢ Stk = 0 (ɭ ɱɚɫɬɢɰ ɫ ɛɟɫɤɨɧɟɱɧɨ ɦɚɥɨɣ ɦɚɫɫɨɣ) ɱɚɫɬɢɰɚ ɬɨɱɧɨ ɫɥɟɞɭɟɬ ɩɨ ɥɢɧɢɢ ɬɨɤɚ, ɧɟ ɫɨɩɪɢɤɚɫɚɹɫɶ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ. Ɉɱɟɜɢɞɧɨ, ɬɚɤɨɟ ɠɟ ɹɜɥɟɧɢɟ ɛɭɞɟɬ ɧɚɛɥɸɞɚɬɶɫɹ ɢ ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɦɚɥɵɯ ɡɧɚɱɟɧɢɹɯ ɤɪɢɬɟɪɢɹ ɋɬɨɤɫɚ. ɋɭɳɟɫɬɜɭɟɬ ɨɩɪɟɞɟɥɟɧɧɨɟ ɦɢɧɢɦɚɥɶɧɨɟ, ɬɚɤ ɧɚɡɵɜɚɟɦɨɟ ɤɪɢɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ ɱɢɫɥɚ ɋɬɨɤɫɚ Stkɤɪ, ɩɪɢ ɤɨɬɨɪɨɦ ɢɧɟɪɰɢɹ ɱɚɫɬɢɰɵ ɨɤɚɡɵɜɚɟɬɫɹ ɞɨɫɬɚɬɨɱɧɨɣ, ɱɬɨɛɵ ɩɪɟɨɞɨɥɟɬɶ ɭɜɥɟɱɟɧɢɟ ɟɟ ɝɚɡɨɜɵɦ ɩɨɬɨɤɨɦ, ɢ ɨɧɚ ɞɨɫɬɢɝɚɟɬ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɥɚ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɡɚɯɜɚɬ ɱɚɫɬɢɰɵ ɬɟɥɨɦ ɜɨɡɦɨɠɟɧ ɩɪɢ ɭɫɥɨɜɢɢ: Stk > Stkɤɪ. (2.27 ) Ɍɟɨɪɢɹ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɪɚɫɫɦɚɬɪɢɜɚɟɬ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɧɚ ɮɪɨɧɬɚɥɶɧɨɣ (ɩɟɪɟɞɧɟɣ) ɱɚɫɬɢ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ ɢ ɧɟ ɭɱɢɬɵɜɚɟɬ ɢɯ ɨɫɚɠɞɟɧɢɟ ɧɚ ɡɚɞɧɟɣ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɥɚ, ɤɨɬɨɪɨɟ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɡɚ ɫɱɟɬ ɬɭɪɛɭɥɟɧɬɧɵɯ ɩɭɥɶɫɚɰɢɣ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. ɗɬɨ ɹɜɥɟɧɢɟ ɫɬɚɧɨɜɢɬɫɹ ɫɭɳɟɫɬɜɟɧɧɵɦ ɩɪɢ ɦɚɥɵɯ ɡɧɚɱɟɧɢɹɯ ɤɪɢɬɟɪɢɹ Stk, ɬ.ɟ. ɩɪɢ ɭɥɚɜɥɢɜɚɧɢɢ ɫɭɛɦɢɤɪɨɧɧɵɯ ɱɚɫɬɢɰ ɩɵɥɢ. ɉɨɷɬɨɦɭ ɞɚɠɟ ɩɪɢ Stk < Stkɤɪ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɧɟ ɪɚɜɧɚ ɧɭɥɸ. ɉɪɢ ɥɚɦɢɧɚɪɧɨɦ ɬɟɱɟɧɢɢ ɩɨɬɨɤɚ, ɤɨɝɞɚ Re ɱ wɱ lU 0 P 0  2 , ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɧɟ ɛɭɞɟɬ ɡɚɜɢɫɟɬɶ ɨɬ ɷɬɨɝɨ ɤɪɢɬɟɪɢɹ, ɩɨɷɬɨɦɭ ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ ɫɭɳɟɫɬɜɨɜɚɧɢɟɦ ɩɨɝɪɚɧɢɱɧɨɝɨ ɫɥɨɹ ɜɨɤɪɭɝ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ (ɜɹɡɤɨɟ ɨɛɬɟɤɚɧɢɟ). ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɡɧɚɱɟɧɢɹ ɤɪɢɬɟɪɢɹ Reɱ ɩɪɢ ɩɟɪɟɯɨɞɟ ɤ ɬɭɪɛɭɥɟɧɬɧɨɦɭ ɞɜɢɠɟɧɢɸ ɩɨɬɨɤɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ ɨɛɪɚɡɭɟɬɫɹ ɩɨɝɪɚɧɢɱɧɵɣ ɫɥɨɣ, ɬɨɥɳɢɧɚ ɤɨɬɨɪɨɝɨ ɭɦɟɧɶɲɚɟɬɫɹ ɩɨ ɦɟɪɟ ɪɨɫɬɚ ɤɪɢɬɟɪɢɹ Re ɱ . ɉɪɢ ɡɧɚɱɟɧɢɹɯ Re ɱ ɛɨɥɶɲɟ ɤɪɢɬɢɱɟɫɤɨɝɨ ( Re ɱ > 500) ɥɢɧɢɢ ɬɨɤɚ ɫɢɥɶɧɟɟ ɢɡɝɢɛɚɸɬɫɹ (ɩɨɬɟɧɰɢɚɥɶɧɨɟ ɨɛɬɟɤɚɧɢɟ) ɢ ɨɛɬɟɤɚɸɬ ɬɟɥɨ ɧɚ ɛɨɥɟɟ ɛɥɢɡɤɨɦ ɨɬ ɧɟɝɨ ɪɚɫɫɬɨɹɧɢɢ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɩɪɢ ɬɨɦ ɠɟ ɡɧɚɱɟɧɢɢ ɤɪɢɬɟɪɢɹ Stk ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɛɭɞɟɬ ɜɵɲɟ. ɗɬɨɬ ɪɨɫɬ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɛɭɞɟɬ ɩɪɨɞɨɥɠɚɬɶɫɹ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɬɨɥɳɢɧɵ ɩɨɝɪɚɧɢɱɧɨɝɨ (ɥɚɦɢɧɚɪɧɨɝɨ) ɫɥɨɹ ɜɨɤɪɭɝ ɬɟɥɚ, ɬ.ɟ. ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɤɪɢɬɟɪɢɹ Re ɱ . Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɢ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɨɛɬɟɤɚɧɢɢ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɡɚɜɢɫɢɬ ɤɚɤ ɨɬ ɤɪɢɬɟɪɢɹ Stk, ɬɚɤ ɢ ɨɬ ɤɪɢɬɟɪɢɹ Re ɱ . ȿɳɟ ɛɨɥɟɟ ɫɥɨɠɧɵɣ ɯɚɪɚɤɬɟɪ ɩɪɢɨɛɪɟɬɚɟɬ ɩɨɝɪɚɧɢɱɧɵɣ ɫɥɨɣ ɩɪɢ ɪɚɡɜɢɬɨɦ ɬɭɪɛɭɥɟɧɬɧɨɦ ɬɟɱɟɧɢɢ ɩɨɬɨɤɚ. ɉɨɷɬɨɦɭ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɬɨɥɶɤɨ ɫɢɫɬɟɦɵ ɫ ɨɞɢɧɚɤɨɜɵɦ ɡɧɚɱɟɧɢɟɦ ɤɪɢɬɟɪɢɹ Re ɱ ɢɥɢ ɫɢɫɬɟɦɵ, ɜ ɤɨɬɨ- ɪɵɯ ɪɟɠɢɦ ɞɜɢɠɟɧɢɹ ɩɨɬɨɤɚ ɩɪɢɛɥɢɠɚɟɬɫɹ ɤ ɚɜɬɨɦɨɞɟɥɶɧɨɦɭ, ɢ ɤɪɢɬɟɪɢɣ Re ɱ ɦɨɠɧɨ ɧɟ ɭɱɢɬɵɜɚɬɶ ɩɪɢ ɪɚɫɱɟɬɚɯ. 2.4. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɚɷɪɨɡɨɥɟɣ Ⱦɥɹ ɬɨɧɤɨɣ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɨɬ ɱɚɫɬɢɰ ɢ ɤɚɩɟɥɶɧɨɣ ɠɢɞɤɨɫɬɢ ɩɪɢɦɟɧɹɸɬ ɩɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɩɪɨɩɭɫɤɚɧɢɢ ɚɷɪɨɡɨɥɹ ɱɟɪɟɡ ɮɢɥɶɬɪɨɜɚɥɶɧɵɟ ɩɟɪɟɝɨɪɨɞɤɢ, ɤɨɬɨɪɵɟ ɞɨɩɭɫɤɚɸɬ ɩɪɨɯɨɠɞɟɧɢɟ ɜɨɡɞɭɯɚ, ɧɨ ɡɚɞɟɪɠɢɜɚɸɬ ɚɷɪɨɡɨɥɶɧɵɟ ɱɚɫɬɢɰɵ. ȼ ɮɢɥɶɬɪ (ɪɢɫ. 2.6) ɩɨɫɬɭɩɚɟɬ ɡɚɝɪɹɡɧɟɧɧɵɣ ɝɚɡ, ɱɚɫɬɢɰɵ ɩɪɢɦɟɫɟɣ ɨɫɟɞɚɸɬ ɧɚ ɜɯɨɞɧɨɣ ɱɚɫɬɢ ɜɨɥɨɤɧɢɫɬɨɣ ɩɟɪɟɝɨɪɨɞɤɢ (ɮɢɥɶɬɪɨɷɥɟɦɟɧɬɚ) ɢ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɜ ɩɨɪɚɯ ɦɟɠɞɭ ɜɨɥɨɤɨɧ, ɨɛɪɚɡɭɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɩɟɪɟɝɨɪɨɞɤɢ ɫɥɨɣ. ɫɥ ɨɣ ɩ ɪ ɢ ɦ ɟɫɟɣ ɤɨɪ ɩ ɭɫ Ɉ ɱ ɢ ɳ ɟɧ . ɝɚ ɡ Ƚɚɡ ɮ ɢ ɥ ɶɬɪ ɨɷɥ ɟɦ ɟɧ ɬ Ɋɢɫ. 2.6. ɋɯɟɦɚ ɮɢɥɶɬɪɚ Ɏɢɥɶɬɪɨɜɚɧɢɟ ɡɚɩɵɥɟɧɧɨɝɨ ɩɨɬɨɤɚ ɱɟɪɟɡ ɫɥɨɣ ɩɨɪɢɫɬɨɝɨ ɦɚɬɟɪɢɚɥɚ ɫɥɨɠɧɵɣ ɩɪɨɰɟɫɫ, ɜɤɥɸɱɚɸɳɢɣ ɞɟɣɫɬɜɢɟ ɫɢɬɨɜɨɝɨ ɷɮɮɟɤɬɚ, ɢɧɟɪɰɢɨɧɧɨɝɨ ɫɬɨɥɤɧɨɜɟɧɢɹ, ɛɪɨɭɧɨɜɫɤɨɣ ɞɢɮɮɭɡɢɢ, ɤɚɫɚɧɢɹ (ɡɚɰɟɩɥɟɧɢɹ), ɞɟɣɫɬɜɢɹ ɝɪɚɜɢɬɚɰɢɨɧɧɵɯ ɢ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɫɢɥ. ɉɪɢ ɩɪɢɛɥɢɠɟɧɢɢ ɱɚɫɬɢɰɵ ɤ ɜɨɥɨɤɧɭ ɞɟɣɫɬɜɭɟɬ ɧɟɫɤɨɥɶɤɨ ɦɟɯɚɧɢɡɦɨɜ, ɤɨɬɨɪɵɟ ɦɨɝɭɬ ɩɪɢɜɟɫɬɢ ɤ ɟɟ ɭɥɚɜɥɢɜɚɧɢɸ: 1) ɤɚɫɚɧɢɟ; 2) ɢɧɟɪɰɢɨɧɧɵɣ ɡɚɯɜɚɬ; 3) ɞɢɮɮɭɡɢɹ; 4) ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɟ ɨɫɚɠɞɟɧɢɟ; 5) ɬɟɪɦɨɮɨɪɟɡ; 6) ɝɪɚɜɢɬɚɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ; 7) ɫɢɬɨɜɨɣ ɷɮɮɟɤɬ. Ɉɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɩɨɪ ɮɢɥɶɬɪɭɸɳɟɝɨ ɷɥɟɦɟɧɬɚ ɩɪɨɢɫɯɨɞɢɬ ɜ ɪɟɡɭɥɶɬɚɬɟ ɫɨɜɨɤɭɩɧɨɝɨ ɞɟɣɫɬɜɢɹ ɷɮɮɟɤɬɚ ɡɚɰɟɩɥɟɧɢɹ, ɚ ɬɚɤɠɟ ɞɢɮɮɭɡɢɨɧɧɨɝɨ, ɢɧɟɪɰɢɨɧɧɨɝɨ ɢ ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɦɟɯɚɧɢɡɦɨɜ. ɉɵɥɶ ɩɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɜ ɨɫɧɨɜɧɨɦ ɡɚɞɟɪɠɢɜɚɟɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɫɬɨɥɤɧɨɜɟɧɢɹ ɱɚɫɬɢɰ ɫ ɜɨɥɨɤɧɚɦɢ ɢ ɧɢɬɹɦɢ ɮɢɥɶɬɪɨɜɚɥɶɧɨɝɨ ɦɚɬɟɪɢɚɥɚ ɢ ɩɪɢɥɢɩɚɧɢɹ ɱɚɫɬɢɰ ɤ ɜɨɥɨɤɧɚɦ. Ʉɚɫɚɧɢɟ. ɑɚɫɬɢɰɚ ɩɟɪɟɧɨɫɢɬɫɹ ɜɞɨɥɶ ɥɢɧɢɢ ɬɨɤɚ ɝɚɡɚ ɤ ɧɢɬɢ ɢɥɢ ɜɨɥɨɤɧɭ (ɩɪɟɩɹɬɫɬɜɢɸ). ȿɫɥɢ ɱɚɫɬɢɰɚ ɞɜɢɠɟɬɫɹ ɦɢɦɨ ɩɪɟɩɹɬɫɬɜɢɹ ɧɚ ɪɚɫɫɬɨɹɧɢɢ ɦɟɧɶɲɟ ɫɜɨɟɝɨ ɪɚɞɢɭɫɚ, ɬɨ ɨɧɚ ɤɚɫɚɟɬɫɹ ɩɪɟɩɹɬɫɬɜɢɹ ɢ ɡɚɯɜɚɬɵɜɚɟɬɫɹ. ɂɧɟɪɰɢɹ. ɑɚɫɬɢɰɚ ɧɚɯɨɞɢɬɫɹ ɧɚ ɥɢɧɢɢ ɬɨɤɚ, ɫɥɟɞɭɹ ɤɨɬɨɪɨɣ ɨɧɚ ɩɪɨɲɥɚ ɛɵ ɦɢɦɨ ɩɪɟɩɹɬɫɬɜɢɹ, ɧɟ ɤɚɫɚɹɫɶ ɟɝɨ, ɧɨ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɢɧɟɪɰɢɢ ɱɚɫɬɢɰɚ ɫɯɨɞɢɬ ɫ ɩɟɪɜɨɧɚɱɚɥɶɧɨɣ ɥɢɧɢɢ ɬɨɤɚ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɨɧɚ ɫɬɚɥɤɢɜɚɟɬɫɹ ɫ ɩɪɟɩɹɬɫɬɜɢɟɦ. ɑɟɦ ɛɨɥɶɲɟ ɱɚɫɬɢɰɚ, ɬɟɦ ɛɨɥɶɲɟ ɟɟ ɢɧɟɪɰɢɹ, ɥɭɱɲɟ ɭɫɥɨɜɢɹ ɞɥɹ ɡɚɯɜɚɬɚ. ɉɪɢ ɨɛɵɱɧɵɯ ɫɤɨɪɨɫɬɹɯ ɬɟɱɟɧɢɹ ɜ ɮɢɥɶɬɪɚɯ ɷɬɨɬ ɦɟɯɚɧɢɡɦ ɦɚɥɨ ɷɮɮɟɤɬɢɜɟɧ ɞɥɹ ɱɚɫɬɢɰ ɞɢɚɦɟɬɪɨɦ ɦɟɧɟɟ ɦɢɤɪɨɦɟɬɪɚ. Ⱦɢɮɮɭɡɢɹ. ɑɚɫɬɢɰɚ ɧɚɫɬɨɥɶɤɨ ɦɚɥɚ, ɱɬɨ ɟɟ ɬɪɚɟɤɬɨɪɢɹ ɫɬɚɧɨɜɢɬɫɹ ɯɚɨɬɢɱɧɨɣ ɢɡ-ɡɚ ɛɪɨɭɧɨɜɫɤɨɝɨ ɞɜɢɠɟɧɢɹ. Ɂɚɯɜɚɬ ɦɨɠɟɬ ɩɪɨɢɡɨɣɬɢ, ɟɫɥɢ ɫɥɭɱɚɣɧɨɟ ɨɬɤɥɨɧɟɧɢɟ ɩɪɢɜɨɞɢɬ ɱɚɫɬɢɰɭ ɤ ɜɨɥɨɤɧɭ. ɗɬɨɬ ɦɟɯɚɧɢɡɦ ɫɬɚɧɨɜɢɬɫɹ ɧɚɢɛɨɥɟɟ ɜɚɠɧɵɦ, ɤɨɝɞɚ ɪɚɡɦɟɪ ɱɚɫɬɢɰ ɦɟɧɶɲɟ 0,1 ɦɤɦ. ɗɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɟ ɨɫɚɠɞɟɧɢɟ. ɑɚɫɬɢɰɚ ɢ ɩɪɟɩɹɬɫɬɜɢɟ ɢɦɟɸɬ ɡɚɪɹɞɵ ɩɪɨɬɢɜɨɩɨɥɨɠɧɵɯ ɡɧɚɤɨɜ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɱɚɫɬɢɰɚ ɩɪɢɬɹɝɢɜɚɟɬɫɹ ɤ ɩɪɟɩɹɬɫɬɜɢɸ. Ɍɟɪɦɨɮɨɪɟɡ. ɑɚɫɬɢɰɚ ɫɦɟɳɚɟɬɫɹ ɤ ɩɪɟɩɹɬɫɬɜɢɸ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɞɢɟɧɬɚ ɬɟɦɩɟɪɚɬɭɪɵ. Ƚɪɚɜɢɬɚɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ. ɑɚɫɬɢɰɚ ɫɦɟɳɚɟɬɫɹ ɫ ɥɢɧɢɢ ɬɨɤɚ, ɩɪɨɯɨɞɹɳɟɣ ɦɢɦɨ ɩɪɟɩɹɬɫɬɜɢɹ, ɤ ɫɚɦɨɦɭ ɩɪɟɩɹɬɫɬɜɢɸ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɩɪɢɬɹɠɟɧɢɹ ɦɟɠɞɭ ɱɚɫɬɢɰɟɣ ɢ ɜɨɥɨɤɧɨɦ ɢɥɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɡɟɦɧɨɝɨ ɬɹɝɨɬɟɧɢɹ. ɗɬɨɬ ɷɮɮɟɤɬ ɨɱɟɧɶ ɦɚɥ. ɋɢɬɨɜɨɣ ɷɮɮɟɤɬ. ɑɚɫɬɢɰɚ ɡɚɞɟɪɠɢɜɚɟɬɫɹ ɢɡ-ɡɚ ɬɨɝɨ, ɱɬɨ ɫɥɢɲɤɨɦ ɜɟɥɢɤɚ, ɱɬɨɛɵ ɩɪɨɣɬɢ ɱɟɪɟɡ ɞɚɧɧɭɸ ɩɨɪɭ ɢɥɢ ɤɚɧɚɥ. ȼɨɡɦɨɠɧɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɡɚ ɫɱɟɬ ɫɢɬɨɜɨɝɨ ɷɮɮɟɤɬɚ, ɨɫɨɛɟɧɧɨ ɩɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɩɨɬɨɤɚ ɱɟɪɟɡ ɱɢɫɬɭɸ ɬɤɚɧɶ, ɨɝɪɚɧɢɱɟɧɵ, ɬ. ɤ. ɜ ɛɨɥɶɲɢɧɫɬɜɟ ɫɥɭɱɚɟɜ ɪɚɡɦɟɪɵ ɱɚɫɬɢɰ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɧɶɲɟ ɪɚɡɦɟɪɨɜ ɩɨɪ. ɉɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ ɜ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɯ ɜɨɥɨɤɧɢɫɬɵɯ ɮɢɥɶɬɪɚɯ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ, ɤɚɤ ɞɜɢɠɟɧɢɟ ɱɚɫɬɢɰ ɜɛɥɢɡɢ ɢɡɨɥɢɪɨɜɚɧɧɨɝɨ ɰɢɥɢɧɞɪɚ (ɢɡ ɜɨɥɨɤɧɢɫɬɨɝɨ ɦɚɬɟɪɢɚɥɚ), ɪɚɫɩɨɥɨɠɟɧɧɨɝɨ ɩɨɩɟɪɟɤ ɩɨɬɨɤɚ (ɪɢɫ.2.7). ȼɥɢɹɧɢɟɦ ɫɨɫɟɞɧɢɯ ɜɨɥɨɤɨɧ ɩɪɟɧɟɛɪɟɝɚɸɬ. ɉɪɨɯɨɞɹ ɱɟɪɟɡ ɮɢɥɶɬɪɭɸɳɭɸ ɩɟɪɟɝɨɪɨɞɤɭ, ɩɨɬɨɤ ɝɚɡɚ ɪɚɡɞɟɥɹɟɬɫɹ ɧɚ ɬɨɧɤɢɟ ɧɟɩɪɟɪɵɜɧɨ ɪɚɡɴɟɞɢɧɹɸɳɢɟɫɹ ɢ ɫɦɵɤɚɸɳɢɟɫɹ ɫɬɪɭɣɤɢ. ɑɚɫɬɢɰɵ, ɨɛɥɚɞɚɹ ɢɧɟɪɰɢɟɣ, ɫɬɪɟɦɹɬɫɹ ɩɟɪɟɦɟɳɚɬɶɫɹ ɩɪɹɦɨɥɢɧɟɣɧɨ, ɫɬɚɥɤɢɜɚɸɬɫɹ ɫ ɜɨɥɨɤɧɚɦɢ, ɡɟɪɧɚɦɢ ɢ ɭɞɟɪɠɢɜɚɸɬɫɹ ɢɦɢ. ɋɱɢɬɚɸɬ, ɱɬɨ ɩɨɬɨɤ ɢɦɟɟɬ ɛɟɡɜɢɯɪɟɜɨɟ ɞɜɢɠɟɧɢɟ, ɚ ɱɚɫɬɢɰɵ - ɫɮɟɪɢɱɟɫɤɭɸ ɮɨɪɦɭ, ɱɚɫɬɢɰɵ ɩɪɢ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɢ ɫ ɰɢɥɢɧɞɪɢɱɟɫɤɢɦɢ ɜɨɥɨɤɧɚɦɢ ɧɚ ɢɯ ɩɨɜɟɪɯɧɨɫɬɢ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɫɢɥɚɦɢ ɦɟɠɦɨɥɟɤɭɥɹɪɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ. Ɋɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɰɢɥɢɧɞɪɢɱɟɫɤɢɦɢ ɜɨɥɨɤɧɚɦɢ ɜɟɫɶɦɚ ɡɧɚɱɢɬɟɥɶɧɵ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɪɚɡɦɟɪɚɦɢ ɱɚɫɬɢɰ (ɜ 5…10 ɪɚɡ ɩɪɟɜɵɲɚɸɬ ɪɚɡɦɟɪɵ ɱɚɫɬɢɰ). Ɋɢɫ. 2.7. ɋɯɟɦɚ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɹ ɩɪɢ ɨɛɬɟɤɚɧɢɢ ɨɞɢɧɨɱɧɨɝɨ ɜɨɥɨɤɧɚ: 1 - ɦɟɯɚɧɢɡɦ ɤɚɫɚɧɢɹ; 2 - ɢɧɟɪɰɢɨɧɧɵɣ ɦɟɯɚɧɢɡɦ; 3 - ɞɢɮɮɭɡɢɨɧɧɵɣ ɦɟɯɚɧɢɡɦ; 4 - ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɢɣ ɦɟɯɚɧɢɡɦ. ɉɪɢ ɞɜɢɠɟɧɢɢ ɩɨɬɨɤɚ ɱɟɪɟɡ ɮɢɥɶɬɪɨɜɚɥɶɧɵɣ ɦɚɬɟɪɢɚɥ ɝɚɡ ɨɝɢɛɚɟɬ ɜɨɥɨɤɧɚ, ɛɨɥɟɟ ɤɪɭɩɧɵɟ ɱɚɫɬɢɰɵ ɩɵɥɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥ ɢɧɟɪɰɢɢ ɫɨɯɪɚɧɹɸɬ ɩɪɟɠɧɟɟ ɩɪɹɦɨɥɢɧɟɣɧɨɟ ɧɚɩɪɚɜɥɟɧɢɟ ɞɜɢɠɟɧɢɹ ɢ, ɫɬɚɥɤɢɜɚɹɫɶ ɫ ɜɨɥɨɤɧɚɦɢ, ɡɚɯɜɚɬɵɜɚɸɬɫɹ ɢ ɩɪɢɥɢɩɚɸɬ ɤ ɧɢɦ. Ɍɚɤɨɣ ɦɟɯɚɧɢɡɦ ɯɚɪɚɤɬɟɪɟɧ ɞɥɹ ɡɚɯɜɚɬɚ ɤɪɭɩɧɵɯ ɱɚɫɬɢɰ ɢ ɩɪɨɹɜɥɹɸɬɫɹ ɫɢɥɶɧɟɟ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɫɤɨɪɨɫɬɢ ɮɢɥɶɬɪɨɜɚɧɢɹ. ɉɪɢ ɨɫɚɠɞɟɧɢɢ ɨɞɢɧɨɱɧɨɣ ɱɚɫɬɢɰɵ ɧɚ ɢɡɨɥɢɪɨɜɚɧɧɨɦ ɜɨɥɨɤɧɟ ɤɚɫɚɧɢɟ, ɢɧɟɪɰɢɹ ɢ ɞɢɮɮɭɡɢɹ, ɜɟɪɨɹɬɧɨ, ɹɜɥɹɸɬɫɹ ɧɚɢɛɨɥɟɟ ɜɚɠɧɵɦɢ ɦɟɯɚɧɢɡɦɚɦɢ. Ƚɪɚɜɢɬɚɰɢɹ ɢ ɬɟɪɦɨɮɨɪɟɡ ɨɛɵɱɧɨ ɧɟɫɭɳɟɫɬɜɟɧɧɵ, ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɫɢɥɵ ɦɨɝɭɬ ɢɝɪɚɬɶ ɢ ɧɟɡɧɚɱɢɬɟɥɶɧɭɸ ɪɨɥɶ ɢ ɨɱɟɧɶ ɜɚɠɧɭɸ. ɋɢɬɨɜɨɣ ɷɮɮɟɤɬ ɧɟ ɢɫɩɨɥɶɡɭɟɬɫɹ. ȼ ɫɥɭɱɚɟ ɬɤɚɧɟɜɵɯ ɮɢɥɶɬɪɨɜ ɡɧɚɱɢɬɟɥɶɧɚɹ ɱɚɫɬɶ ɩɪɨɰɟɫɫɚ ɭɥɚɜɥɢɜɚɧɢɹ ɩɪɨɬɟɤɚɟɬ ɜ ɫɥɨɟ ɨɫɚɞɤɚ ɱɚɫɬɢɰ ɧɚ ɥɨɛɨɜɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɮɢɥɶɬɪɚ. Ɉɛɵɱɧɵɟ ɦɟɯɚɧɢɡɦɵ - ɤɚɫɚɧɢɟ, ɢɧɟɪɰɢɹ ɢ ɞɢɮɮɭɡɢɹ - ɞɟɣɫɬɜɭɸɬ ɥɢɲɶ ɜ ɬɟɱɟɧɢɟ ɧɟɛɨɥɶɲɨɣ ɱɚɫɬɢ ɜɫɟɝɨ ɰɢɤɥɚ ɮɢɥɶɬɪɚɰɢɢ. Ʉɚɤ ɬɨɥɶɤɨ ɩɨɫɥɟ ɨɱɢɫɬɤɢ ɮɢɥɶɬɪɚ ɨɛɪɚɡɭɟɬɫɹ ɧɨɜɨɣ ɫɥɨɣ ɨɫɚɞɤɚ, ɞɨɦɢɧɢɪɭɸɳɢɦ ɦɟɯɚɧɢɡɦɨɦ ɫɬɚɧɨɜɢɬɫɹ ɫɢɬɨɜɨɣ ɷɮɮɟɤɬ. Ɋɚɡɦɟɪ ɱɚɫɬɢɰ ɢɝɪɚɟɬ ɜɚɠɧɨɟ ɡɧɚɱɟɧɢɟ ɩɪɢ ɡɚɰɟɩɥɟɧɢɢ ɢ ɡɚɯɜɚɬɟ ɱɚɫɬɢɰ ɡɚ ɫɱɟɬ ɤɚɫɚɧɢɹ ɢɦɢ ɩɨɜɟɪɯɧɨɫɬɢ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ. ȿɫɥɢ ɩɪɟɧɟɛɪɟɱɶ ɢɧɟɪɰɢɨɧɧɵɦɢ ɷɮɮɟɤɬɚɦɢ ɢ ɫɱɢɬɚɬɶ, ɱɬɨ ɱɚɫɬɢɰɚ ɬɨɱɧɨ ɫɥɟɞɭɟɬ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɥɢɧɢɹɦɢ ɬɨɤɚ, ɬɨ ɱɚɫɬɢɰɚ ɨɫɚɠɞɚɟɬɫɹ ɧɟ ɬɨɥɶɤɨ ɜ ɬɨɦ ɫɥɭɱɚɟ, ɤɨɝɞɚ ɟɟ ɬɪɚɟɤɬɨɪɢɹ ɩɟɪɟɫɟɱɟɬɫɹ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɬɟɥɚ, ɧɨ ɢ ɜ ɫɥɭɱɚɟ ɩɟɪɟɫɟɱɟɧɢɹ ɥɢɧɢɢ ɬɨɤɚ ɧɚ ɪɚɫɫɬɨɹɧɢɢ ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɥɚ, ɪɚɜɧɨɦ ɟɟ ɪɚɞɢɭɫɭ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɡɚɰɟɩɥɟɧɢɹ ɜɵɲɟ ɧɭɥɹ ɢ ɬɨɝɞɚ, ɤɨɝɞɚ ɢɧɟɪɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ ɨɬɫɭɬɫɬɜɭɟɬ. ɗɮɮɟɤɬ ɡɚɰɟɩɥɟɧɢɹ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɩɚɪɚɦɟɬɪɨɦ R, ɤɨɬɨɪɵɣ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɨɬɧɨɲɟɧɢɟ ɞɢɚɦɟɬɪɨɜ ɱɚɫɬɢɰɵ d ɱ ɢ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ d ɬ : R = dɱ/dɬ. (2.28) ɉɪɢ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɨɛɬɟɤɚɧɢɢ ɲɚɪɚ, ɤɨɝɞɚ ɜɟɥɢɱɢɧɚ R ɫɬɨɥɶ ɦɚɥɚ, ɱɬɨ ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ ɢɧɟɪɰɢɨɧɧɵɦɢ ɷɮɮɟɤɬɚɦɢ, ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɡɚɰɟɩɥɟɧɢɹ ɫɨɫɬɚɜɥɹɟɬ: 1 | 3R . K R (1  R 2 )  (2.29) 1 R ȼ ɷɬɨɦ ɠɟ ɫɥɭɱɚɟ ɞɥɹ ɰɢɥɢɧɞɪɚ ɜɟɪɧɨ ɫɨɨɬɧɨɲɟɧɢɟ: 1 (2.30) | 2R . K R (1  R )  1 R ȼ ɞɪɭɝɨɦ ɩɪɟɞɟɥɶɧɨɦ ɫɥɭɱɚɟ, ɤɨɝɞɚ ɡɚ ɫɱɟɬ ɛɨɥɶɲɨɝɨ ɡɧɚɱɟɧɢɹ ɢɧɟɪɰɢɨɧɧɵɯ ɷɮɮɟɤɬɨɜ ɬɪɚɟɤɬɨɪɢɢ ɨɫɟɞɚɸɳɢɯ ɱɚɫɬɢɰ ɩɪɹɦɨɥɢɧɟɣɧɵ, ɢɦɟɟɦ ɫɥɟɞɭɸɳɢɟ ɫɨɨɬɧɨɲɟɧɢɹ: ɞɥɹ ɲɚɪɚ KR ( R  1) 2  1 | 2 R , (2.31) R. (2.32) ɞɥɹ ɰɢɥɢɧɞɪɚ KR Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɢ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɨɛɬɟɤɚɧɢɢ ɲɚɪɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɦɟɯɚɧɢɡɦɚ ɡɚɰɟɩɥɟɧɢɹ ɧɚɯɨɞɢɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 2 R...3R , ɚ ɩɪɢ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɨɛɬɟɤɚɧɢɢ ɰɢɥɢɧɞɪɚ R...2 R . Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɡɚ ɫɱɟɬ ɤɚɫɚɧɢɹ ɩɪɢ ɜɹɡɤɨɦ ɨɛɬɟɤɚɧɢɢ ɰɢɥɢɧɞɪɚ ɫɩɪɚɜɟɞɥɢɜɵ ɫɥɟɞɭɸɳɢɟ ɭɪɚɜɧɟɧɢɹ: ɝɞɟ Re ɬ KR R2 , 1 ln Re ɬ (2.33) KR R 2 Re 0ɬ ,,0625 , (2.34) d ɬ v0 U 0 P0 - ɤɪɢɬɟɪɢɣ Ɋɟɣɧɨɥɶɞɫɚ ɞɥɹ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ. ɂɡ ɩɪɢɜɟɞɟɧɧɵɯ ɜɵɲɟ ɭɪɚɜɧɟɧɢɣ ɫɥɟɞɭɟɬ, ɱɬɨ ɷɮɮɟɤɬ ɡɚɰɟɩɥɟɧɢɹ ɫɬɚɧɨɜɢɬɫɹ ɡɧɚɱɢɬɟɥɶɧɵɦ ɩɪɢ ɨɫɚɠɞɟɧɢɢ ɱɚɫɬɢɰ ɧɚ ɫɮɟɪɚɯ ɫ ɦɚɥɵɦ ɞɢɚɦɟɬɪɨɦ. Ʉɪɨɦɟ ɬɨɝɨ, ɨɧɢ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɡɚ ɫɱɟɬ ɷɮɮɟɤɬɚ ɡɚɰɟɩɥɟɧɢɹ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɫɤɨɪɨɫɬɢ ɝɚɡɨɜ, ɧɨ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɫɬɟɩɟɧɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɪɟɠɢɦɨɦ ɬɟɱɟɧɢɹ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ȼɟɪɨɹɬɧɨɫɬɶ ɫɬɨɥɤɧɨɜɟɧɢɹ ɱɚɫɬɢɰ ɩɵɥɢ ɫ ɜɨɥɨɤɧɚɦɢ ɮɢɥɶɬɪɨɜɚɥɶɧɨɝɨ ɦɚɬɟɪɢɚɥɚ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥ ɢɧɟɪɰɢɢ ɹɜɥɹɟɬɫɹ ɮɭɧɤɰɢɟɣ ɤɪɢɬɟɪɢɹ ɋɬɨɤɫɚ Stk = v0 dɱ Uɱ Cɤ/(18 P0 dɜ), (3.35) 3 ɝɞɟ dɱ - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰ ɩɵɥɢ, ɦ; Uɱ - ɩɥɨɬɧɨɫɬɶ ɱɚɫɬɢɰ, ɤɝ/ɦ ; dɜ - ɞɢɚɦɟɬɪ ɰɢɥɢɧɞɪɚ (ɜɨɥɨɤɧɚ ɮɢɥɶɬɪɭɸɳɟɝɨ ɦɚɬɟɪɢɚɥɚ), ɦ; v0 - ɫɤɨɪɨɫɬɶ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ, ɦ/ɫ; P0 - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɝɚɡɚ, ɉɚ.ɫ; ɋɤ - ɩɨɩɪɚɜɤɚ Ʉɟɧɢɧɝɟɦɚ, ɜɜɨɞɢɬɫɹ ɞɥɹ ɱɚɫɬɢɰ ɞɢɚɦɟɬɪɨɦ ɩɨɪɹɞɤɚ ɞɥɢɧɵ ɫɪɟɞɧɟɝɨ ɫɜɨɛɨɞɧɨɝɨ ɩɪɨɛɟɝɚ ɦɨɥɟɤɭɥ ɝɚɡɚ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɧɚ ɨɛɬɟɤɚɟɦɨɦ ɬɟɥɟ ɡɚɰɟɩɥɟɧɢɟɦ ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧɚ ɢ ɜ ɤɪɢɬɟɪɢɚɥɶɧɨɣ ɮɨɪɦɟ. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɩɨɦɢɦɨ ɤɪɢɬɟɪɢɹ ɋɬɨɤɫɚ ɫɥɟɞɭɟɬ ɭɱɢɬɵɜɚɬɶ ɢ ɞɪɭɝɨɣ ɤɨɦɩɥɟɤɫ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɣ ɫɨɛɨɣ ɨɬɧɨɲɟɧɢɟ ɤɪɢɬɟɪɢɟɜ: Stk Reɬ dɱ2 Uɱ d ɬ2 U0 const, (2.36) Ɍɨɝɞɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɩɪɢ ɡɚɰɟɩɥɟɧɢɢ ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧɚ ɜ ɜɢɞɟ: § Stk · ¸. (2.37) f ¨¨ Stk ; Re ɬ ¸¹ © ɑɟɦ ɛɨɥɶɲɟ Stk, ɬɟɦ ɛɨɥɶɲɟ ɱɢɫɥɨ ɫɬɨɥɤɧɨɜɟɧɢɣ ɱɚɫɬɢɰ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɜɨɥɨɤɧɚ ɮɢɥɶɬɪɨɜɚɥɶɧɨɝɨ ɦɚɬɟɪɢɚɥɚ. ɉɪɢɦɟɪɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɭɥɚɜɥɢɜɚɧɢɹ ɩɵɥɢ, H, ɨɬ ɤɪɢɬɟɪɢɹ ɋɬɨɤɫɚ ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ. 2.8. KR Ɋɢɫ. 2.8. ɉɪɢɦɟɪɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɭɥɚɜɥɢɜɚɧɢɹ ɱɚɫɬɢɰ ɩɵɥɢ ɨɬ ɤɪɢɬɟɪɢɹ ɋɬɨɤɫɚ. Ɇɟɥɤɢɟ ɱɚɫɬɢɰɵ, ɨɛɥɚɞɚɸɳɢɟ ɦɚɥɨɣ ɢɧɟɪɰɢɟɣ, ɦɨɝɭɬ ɜɦɟɫɬɟ ɫ ɝɚɡɨɜɵɦ ɩɨɬɨɤɨɦ ɨɛɨɝɧɭɬɶ ɜɨɥɨɤɧɨ. ɋɚɦɵɟ ɦɟɥɤɢɟ ɱɚɫɬɢɰɵ ɦɨɝɭɬ ɫɬɨɥɤɧɭɬɶɫɹ ɫ ɜɨɥɨɤɧɨɦ, ɭɱɚɫɬɜɭɹ ɜ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ, ɢ ɩɪɢɥɢɩɧɭɬɶ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɜɨɥɨɤɧɚ. Ɇɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɩɪɢ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ ɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɫɢɥ ɤɚɤ ɱɚɫɬɶ ɨɛɳɟɣ ɷɮɮɟɤɬɢɜɧɨɫɬɢ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ, HG, ɱɚɫɬɢɰ ɨɞɢɧɨɱɧɵɦɢ ɜɨɥɨɤɧɚɦɢ ɩɪɢ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ (ɬɟɦɩɟɪɚɬɭɪɚ ɩɨɬɨɤɚ ɧɢɠɟ 100°ɋ) ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɨ ɩɪɢɛɥɢɠɟɧɧɨɣ ɮɨɪɦɭɥɟ: HG = 1,35.10-2/(v0 dɱ dɜ)1/2, (2.38) ɝɞɟ v0 - ɫɤɨɪɨɫɬɶ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ, ɦ/ɫ; dɱ - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰ ɩɵɥɢ, ɦɤɦ; dɜ ɞɢɚɦɟɬɪ ɜɨɥɨɤɧɚ, ɦ. ɇɭɠɧɨ ɭɱɟɫɬɶ, ɱɬɨ ɧɚ ɩɭɬɢ ɞɜɢɠɟɧɢɹ ɡɚɩɵɥɟɧɧɨɝɨ ɩɨɬɨɤɚ ɪɚɫɩɨɥɨɠɟɧɨ ɨɛɵɱɧɨ ɧɟɫɤɨɥɶɤɨ ɪɹɞɨɜ ɜɨɥɨɤɨɧ, ɱɬɨ, ɟɫɬɟɫɬɜɟɧɧɨ, ɡɧɚɱɢɬɟɥɶɧɨ ɩɨɜɵɫɢɬ ɨɛɳɭɸ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ. ɗɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɢɣ ɦɟɯɚɧɢɡɦ ɡɚɯɜɚɬɚ ɩɵɥɢɧɨɤ ɩɪɨɹɜɥɹɟɬɫɹ, ɤɨɝɞɚ ɜɨɥɨɤɧɚ ɧɟɫɭɬ ɡɚɪɹɞɵ ɢɥɢ ɩɨɥɹɪɢɡɨɜɚɧɵ ɜɧɟɲɧɢɦ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɩɨɥɟɦ. Ɉɩɪɟɞɟɥɟɧɧɨɟ ɜɥɢɹɧɢɟ ɧɚ ɩɪɨɰɟɫɫ ɮɢɥɶɬɪɚɰɢɢ ɦɨɝɭɬ ɢɦɟɬɶ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɫɢɥɵ, ɨɫɨɛɟɧɧɨ ɩɪɢ ɩɪɢɦɟɧɟɧɢɢ ɞɢɷɥɟɤɬɪɢɱɟɫɤɢɯ ɮɢɥɶɬɪɨɜɚɥɶɧɵɯ ɜɨɥɨɤɧɢɫɬɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢɡ ɫɦɟɫɢ ɲɟɪɫɬɢ ɢ ɫɢɧɬɟɬɢɱɟɫɤɢɯ ɦɚɬɟɪɢɚɥɨɜ, ɚ ɬɚɤɠɟ ɞɢɷɥɟɤɬɪɢɱɟɫɤɢɯ ɧɚɫɵɩɧɵɯ ɦɚɬɟɪɢɚɥɨɜ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɟɣ ɜ ɮɢɥɶɬɪɚɯ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɫɢɥ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ: H = kɷ E dɱ2/(6 v0 P0 dɜ), (2.39) ɝɞɟ kɷ — ɤɨɷɮɮɢɰɢɟɧɬ, ɭɱɢɬɵɜɚɸɳɢɣ ɞɢɷɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɱɚɫɬɢɰ ɩɵɥɢ; ȿ - ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɜɨɤɪɭɝ ɜɨɥɨɤɧɚ, ȼ/ɦ. ɉɨ ɦɟɪɟ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɧɚ ɮɢɥɶɬɪɨɜɚɥɶɧɨɦ ɦɚɬɟɪɢɚɥɟ ɭɦɟɧɶɲɚɟɬɫɹ ɪɚɡɦɟɪ ɩɨɪ ɢ ɨɛɪɚɡɭɟɬɫɹ ɫɥɨɣ ɩɵɥɢ ɫ ɩɨɪɚɦɢ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɧɶɲɢɦɢ, ɱɟɦ ɜ ɧɟɡɚɩɵɥɟɧɧɨɦ ɮɢɥɶɬɪɨɜɚɥɶɧɨɦ ɦɚɬɟɪɢɚɥɟ. ɋɨɛɫɬɜɟɧɧɨ ɪɚɛɨɱɢɦ ɫɥɨɟɦ ɩɪɢ ɮɢɥɶɬɪɚɰɢɢ ɹɜɥɹɟɬɫɹ ɢɦɟɧɧɨ ɮɢɥɶɬɪɨɜɚɥɶɧɵɣ ɦɚɬɟɪɢɚɥ ɫ ɨɫɚɠɞɟɧɧɵɦɢ ɧɚ ɧɟɦ ɩɵɥɟɜɵɦɢ ɱɚɫɬɢɰɚɦɢ. Ɉɧ ɢ ɨɩɪɟɞɟɥɹɟɬ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɱɢɫɬɤɢ. ɉɪɢ ɨɬɥɨɠɟɧɢɢ ɩɵɥɢ ɜɨɡɪɚɫɬɚɟɬ ɝɢɞɪɚɜɥɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ, ɭɦɟɧɶɲɚɟɬɫɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɚ. ɉɨ ɞɨɫɬɢɠɟɧɢɢ ɧɟɤɨɬɨɪɨɝɨ ɡɧɚɱɟɧɢɹ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɩɵɥɶ ɩɟɪɢɨɞɢɱɟɫɤɢ ɭɞɚɥɹɸɬ. ɗɬɨɬ ɩɪɨɰɟɫɫ ɧɚɡɵɜɚɟɬɫɹ ɪɟɝɟɧɟɪɚɰɢɟɣ ɮɢɥɶɬɪɚ. Ƚɢɞɪɚɜɥɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɫɥɨɹ ɨɫɟɜɲɟɣ ɩɵɥɢ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ ɮɨɪɦɭɥɟ Ʉɨɡɟɧɢ-Ʉɚɪɦɚɧɚ (ɉɚ): 'p = kɫ P0 v0 G(1 – mɩ)/(dɱ2 mɩ3 Uɱ), (2.40) ɝɞɟ kɫ - ɤɨɷɮɮɢɰɢɟɧɬ, ɩɪɢɧɢɦɚɟɦɵɣ ɞɥɹ ɩɵɥɟɣ ɫ ɞɢɚɦɟɬɪɨɦ ɱɚɫɬɢɰ dɱ < 6 ɦɤɦ ɪɚɜɧɵɦ 240; G - ɦɚɫɫɚ ɩɵɥɢ, ɫɨɞɟɪɠɚɳɟɣɫɹ ɜ ɩɨɪɚɯ ɮɢɥɶɬɪɨɜɚɥɶɧɨɝɨ ɦɚɬɟɪɢɚɥɚ, ɨɬɧɟɫɟɧɧɚɹ ɤ ɟɞɢɧɢɰɟ ɩɥɨɳɚɞɢ ɮɢɥɶɬɪɚ, ɤɝ/ɦ2; mɩ - ɩɨɪɢɫɬɨɫɬɶ ɫɥɨɹ ɩɵɥɢ, ɪɚɜɧɚɹ mɩ = (Uɱ - Uɧ)/Uɱ, ɡɞɟɫɶ Uɱ - ɩɥɨɬɧɨɫɬɶ ɱɚɫɬɢɰ, ɤɝ/ɦ3; Uɧ ɩɥɨɬɧɨɫɬɶ ɧɚɫɵɩɧɨɝɨ ɫɥɨɹ, ɤɝ/ɦ3; dɱ - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰ ɩɵɥɢ, ɦ. Ƚɢɞɪɚɜɥɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɫɥɨɹ ɨɫɟɜɲɟɣ ɩɵɥɢ ɬɨɥɳɢɧɨɣ 1 ɦɦ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɞɢɫɩɟɪɫɧɨɝɨ ɫɨɫɬɚɜɚ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ ɝɪɚɮɢɤɭ, ɪɢɫ. 2.9. ɉɪɢ ɨɫɚɠɞɟɧɢɢ ɬɨɧɤɢɯ ɮɪɚɤɰɢɣ, ɤɚɤ ɜɢɞɧɨ ɢɡ ɝɪɚɮɢɤɚ, ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɡɧɚɱɢɬɟɥɶɧɨ ɜɵɲɟ. Ɋɢɫ. 2.9. ɂɡɦɟɧɟɧɢɟ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɥɨɹ ɩɵɥɢ ɬɨɥɳɢɧɨɣ 1 ɦɦ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɞɢɫɩɟɪɫɧɨɫɬɢ. ɋɤɨɪɨɫɬɶ ɮɢɥɶɬɪɚɰɢɢ W = 1 ɦ/ɦɢɧ. ɉɪɢɜɟɞɟɧɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɞɚɸɬ ɜ ɨɫɧɨɜɧɨɦ ɤɚɱɟɫɬɜɟɧɧɭɸ ɤɚɪɬɢɧɭ ɩɪɨɰɟɫɫɚ ɨɫɚɠɞɟɧɢɹ ɜ ɮɢɥɶɬɪɚɯ ɢ ɩɨɡɜɨɥɹɸɬ ɫɭɞɢɬɶ ɨ ɪɨɥɢ ɨɫɧɨɜɧɵɯ ɮɚɤɬɨɪɨɜ, ɜɥɢɹɸɳɢɯ ɧɚ ɩɪɨɰɟɫɫ. ȼ ɪɟɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ ɩɪɨɰɟɫɫ ɨɫɚɠɞɟɧɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɜ ɮɢɥɶɬɪɚɯ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɤɨɚɝɭɥɹɰɢɟɣ ɱɚɫɬɢɰ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦ ɢɡɦɟɧɟɧɢɟɦ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɫɥɨɹ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɮɢɥɶɬɪɚ. ɂɡ-ɡɚ ɫɥɨɠɧɨɫɬɢ ɩɪɨɰɟɫɫɚ ɜ ɮɢɥɶɬɪɚɯ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɜɨɡɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɜɥɢɹɧɢɟ ɜɫɟɯ ɮɚɤɬɨɪɨɜ ɧɚ ɩɚɪɚɦɟɬɪɵ ɮɢɥɶɬɪɚɰɢɢ. Ɉɛɵɱɧɨ ɩɪɢ ɨɩɪɟɞɟɥɟɧɢɢ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɨɱɢɫɬɤɢ ɢ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɮɢɥɶɬɪɚ ɩɨɥɶɡɭɸɬɫɹ ɞɚɧɧɵɦɢ, ɩɨɥɭɱɟɧɧɵɦɢ ɧɚ ɨɫɧɨɜɟ ɨɛɨɛɳɟɧɢɹ ɪɟɡɭɥɶɬɚɬɨɜ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɢɫɫɥɟɞɨɜɚɧɢɣ. 2.5. Ɇɨɤɪɚɹ ɝɚɡɨɨɱɢɫɬɤɚ ɉɪɨɰɟɫɫ ɦɨɤɪɨɝɨ ɩɵɥɟɭɥɚɜɥɢɜɚɧɢɹ ɨɫɧɨɜɚɧ ɧɚ ɤɨɧɬɚɤɬɟ ɡɚɩɵɥɟɧɧɨɝɨ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ɫ ɠɢɞɤɨɫɬɶɸ, ɤɨɬɨɪɚɹ ɡɚɯɜɚɬɵɜɚɟɬ ɜɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɢ ɭɧɨɫɢɬ ɢɯ ɢɡ ɚɩɩɚɪɚɬɚ ɜ ɜɢɞɟ ɲɥɚɦɚ. Ɍɟɯɧɨɥɨɝɢɱɟɫɤɢɣ ɚɧɚɥɢɡ, ɜɟɞɭɳɢɣ ɤ ɪɚɡɪɚɛɨɬɤɟ ɦɨɞɟɥɟɣ ɮɭɧɤɰɢɨɧɢɪɨɜɚɧɢɹ ɝɚɡɨɨɱɢɫɬɧɵɯ ɭɫɬɪɨɣɫɬɜ, ɛɚɡɢɪɭɟɬɫɹ ɧɚ ɩɪɟɞɫɬɚɜɥɟɧɢɹɯ ɨ ɦɟɯɚɧɢɡɦɚɯ ɩɪɨɰɟɫɫɨɜ. Ɇɟɯɚɧɢɡɦɵ ɩɪɨɰɟɫɫɨɜ - ɷɬɨ ɨɫɧɨɜɧɵɟ ɜɚɪɢɚɧɬɵ ɤɨɧɬɚɤɬɨɜ ɝɚɡ ɠɢɞɤɨɫɬɶ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɭɞɚɥɟɧɢɟ ɱɚɫɬɢɰ ɢɡ ɝɚɡɚ. ɋɭɳɟɫɬɜɭɸɬ ɫɥɟɞɭɸɳɢɟ ɦɟɯɚɧɢɡɦɵ ɩɪɨɰɟɫɫɨɜ: 1) ɭɥɚɜɥɢɜɚɧɢɟ ɤɚɩɥɹɦɢ ɠɢɞɤɨɫɬɢ, ɞɜɢɝɚɸɳɢɦɢɫɹ ɱɟɪɟɡ ɝɚɡ; 2) ɭɥɚɜɥɢɜɚɧɢɟ ɰɢɥɢɧɞɪɚɦɢ (ɨɛɵɱɧɨ ɬɜɟɪɞɵɦɢ, ɬɢɩɚ ɩɪɨɜɨɥɨɤ); 3) ɭɥɚɜɥɢɜɚɧɢɟ ɩɥɟɧɤɚɦɢ ɠɢɞɤɨɫɬɢ (ɨɛɵɱɧɨ ɬɟɤɭɳɢɦɢ ɩɨ ɬɜɟɪɞɵɦ ɩɨɜɟɪɯɧɨɫɬɹɦ); 4) ɭɥɚɜɥɢɜɚɧɢɟ ɜ ɩɭɡɵɪɹɯ ɝɚɡɚ (ɨɛɵɱɧɨ ɩɨɞɧɢɦɚɸɳɢɯɫɹ ɜ ɠɢɞɤɨɫɬɢ); 5) ɭɥɚɜɥɢɜɚɧɢɟ ɩɪɢ ɭɞɚɪɟ ɝɚɡɨɜɵɯ ɫɬɪɭɣ ɨ ɠɢɞɤɢɟ ɢɥɢ ɬɜɟɪɞɵɟ ɩɨɜɟɪɯɧɨɫɬɢ. ɉɪɢ ɤɚɠɞɨɦ ɚɩɩɚɪɚɬɧɨɦ ɦɟɯɚɧɢɡɦɟ ɱɚɫɬɢɰɵ ɨɬɞɟɥɹɸɬɫɹ ɨɬ ɝɚɡɚ ɛɥɚɝɨɞɚɪɹ ɨɞɧɨɦɭ ɢɥɢ ɧɟɫɤɨɥɶɤɢɦ ɦɟɯɚɧɢɡɦɚɦ ɭɥɚɜɥɢɜɚɧɢɹ: ɝɪɚɜɢɬɚɰɢɨɧɧɨɣ ɫɟɞɢɦɟɧɬɚɰɢɢ, ɰɟɧɬɪɨɛɟɠɧɨɦɭ ɨɫɚɠɞɟɧɢɸ, ɢɧɟɪɰɢɢ ɢ ɤɚɫɚɧɢɸ, ɛɪɨɭɧɨɜɫɤɨɣ ɞɢɮɮɭɡɢɢ, ɬɟɪɦɨɮɨɪɟɡɭ, ɞɢɮɮɭɡɢɨɮɨɪɟɡɭ, ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦɭ ɨɫɚɠɞɟɧɢɸ. ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɭɜɟɥɢɱɟɧɚ ɛɥɚɝɨɞɚɪɹ ɭɤɪɭɩɧɟɧɢɸ ɱɚɫɬɢɰ ɜɫɥɟɞɫɬɜɢɟ ɚɝɥɨɦɟɪɚɰɢɢ ɢ ɤɨɧɞɟɧɫɚɰɢɨɧɧɨɝɨ ɪɨɫɬɚ. ɉɪɢ ɨɛɬɟɤɚɧɢɢ ɝɚɡɨɩɵɥɟɜɵɦ ɩɨɬɨɤɨɦ ɲɚɪɨɜɨɣ ɤɚɩɥɢ ɠɢɞɤɨɫɬɢ ɬɪɚɟɤɬɨɪɢɢ ɞɜɢɠɟɧɢɹ ɝɚɡɚ ɢ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɪɚɫɯɨɞɹɬɫɹ ɜɫɥɟɞɫɬɜɢɟ ɪɚɡɥɢɱɧɨɣ ɜɟɥɢɱɢɧɵ ɫɢɥ ɢɧɟɪɰɢɢ, ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɝɚɡ ɢ ɧɚ ɱɚɫɬɢɰɵ ɫ ɪɚɡɧɨɣ ɦɚɫɫɨɣ. Ʉɪɭɩɧɵɟ ɱɚɫɬɢɰɵ ɜ ɦɟɧɶɲɟɣ ɦɟɪɟ, ɱɟɦ ɝɚɡ, ɢɡɦɟɧɹɸɬ ɫɜɨɟ ɧɚɩɪɚɜɥɟɧɢɟ ɩɪɢ ɩɨɞɯɨɞɟ ɤ ɤɚɩɥɟ ɢ ɨɫɚɠɞɚɸɬɫɹ ɧɚ ɧɟɣ (ɪɢɫ. 2.10). ɋɯɟɦɚ ɛɥɢɡɤɚ ɤ ɩɪɨɰɟɫɫɭ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɢ ɮɢɥɶɬɪɚɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɧɚ ɷɥɟɦɟɧɬɚɯ ɜɨɥɨɤɧɢɫɬɨɝɨ ɮɢɥɶɬɪɚ, ɢɦɟɸɳɢɯ ɰɢɥɢɧɞɪɢɱɟɫɤɭɸ ɮɨɪɦɭ. Ɉɛɴɹɫɧɹɟɬɫɹ ɷɬɨ ɬɟɦ, ɱɬɨ ɜ ɷɬɢɯ ɫɥɭɱɚɹɯ ɪɚɫɫɦɚɬɪɢɜɚɟɬɫɹ ɞɜɭɯɮɚɡɧɵɣ ɩɨɬɨɤ ɢ ɞɟɣɫɬɜɭɸɬ ɫɢɥɵ ɢɧɟɪɰɢɢ. Ɋɢɫ. 2.10. Ⱦɜɢɠɟɧɢɟ ɡɚɩɵɥɟɧɧɨɝɨ ɝɚɡɚ ɩɪɢ ɨɛɬɟɤɚɧɢɢ ɲɚɪɨɨɛɪɚɡɧɨɣ ɤɚɩɥɢ: ————— ɥɢɧɢɢ ɞɜɢɠɟɧɢɹ ɩɨɬɨɤɚ; — — — ɬɪɚɟɤɬɨɪɢɢ ɰɟɧɬɪɨɜ ɱɚɫɬɢɰ ɩɵɥɢ. Ɇɟɥɤɢɟ ɱɚɫɬɢɰɵ, ɫɥɟɞɭɹ ɜɦɟɫɬɟ ɫ ɝɚɡɨɦ, ɨɝɢɛɚɸɬ ɤɚɩɥɸ ɢ ɭɯɨɞɹɬ ɫ ɩɨɬɨɤɨɦ ɝɚɡɚ. ɍ ɷɬɢɯ ɱɚɫɬɢɰ ɢɧɟɪɰɢɹ ɧɟɞɨɫɬɚɬɨɱɧɚ ɞɥɹ ɩɪɟɨɞɨɥɟɧɢɹ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɝɚɡɚ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ ɧɚ ɤɚɩɥɟ ɠɢɞɤɨɫɬɢ ɡɚɜɢɫɢɬ ɨɬ ɤɪɢɬɟɪɢɹ ɋɬɨɤɫɚ. Ⱦɟɣɫɬɜɢɟ ɫɢɥ ɢɧɟɪɰɢɢ ɪɟɚɥɶɧɨ ɩɪɨɹɜɥɹɟɬɫɹ ɜ ɨɬɧɨɲɟɧɢɢ ɱɚɫɬɢɰ ɞɢɚɦɟɬɪɨɦ ɫɜɵɲɟ 1 ɦɤɦ. Ⱦɥɹ ɲɚɪɨɜɵɯ ɱɚɫɬɢɰ ɩɵɥɢ ɪɚɡɦɟɪɨɦ dɱ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɧɚ ɤɚɩɥɹɯ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧɚ ɡɚɜɢɫɢɦɨɫɬɶɸ Hɢ = f(dɱ2 v0 U0/18 P0 dɤ ), (2.41) ɝɞɟ v0 - ɫɤɨɪɨɫɬɶ ɩɨɬɨɤɚ, ɦ/ɫ; P0 - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɝɚɡɚ, ɉɚ.ɫ; dɤ - ɞɢɚɦɟɬɪ ɤɚɩɟɥɶ, ɦ. ɉɪɢ ɡɧɚɱɟɧɢɢ Stk t 0,1 ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɧɚ ɤɚɩɥɹɯ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ ɷɦɩɢɪɢɱɟɫɤɨɣ ɮɨɪɦɭɥɟ: HSt = Stk2/(Stk + 0,125)2. (2.42) Ʉɪɨɦɟ ɢɧɟɪɰɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ, ɧɚ ɤɚɩɥɹɯ ɢɦɟɟɬ ɦɟɫɬɨ ɨɫɚɠɞɟɧɢɟ ɞɢɮɮɭɡɢɨɧɧɨɟ, ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɢɯ ɫɢɥ. Ɉɞɧɚɤɨ ɪɨɥɶ ɢɯ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɢɧɟɪɰɢɨɧɧɵɦ ɨɫɚɠɞɟɧɢɟɦ ɨɱɟɧɶ ɧɟɡɧɚɱɢɬɟɥɶɧɚ, ɚ ɞɥɹ ɱɚɫɬɢɰ ɛɨɥɟɟ 0,2 ɦɤɦ ɦɨɠɟɬ ɧɟ ɭɱɢɬɵɜɚɬɶɫɹ. ɑɚɫɬɢɰɵ ɦɚɥɵɯ ɪɚɡɦɟɪɨɜ (ɦɟɧɟɟ 0,1 ɦɤɦ) ɩɨɞɜɟɪɠɟɧɵ ɜɨɡɞɟɣɫɬɜɢɸ ɛɪɨɭɧɨɜɫɤɨɝɨ (ɬɟɩɥɨɜɨɝɨ) ɞɜɢɠɟɧɢɹ ɦɨɥɟɤɭɥ. ɉɟɪɟɦɟɳɟɧɢɟ ɱɚɫɬɢɰ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɨɩɢɫɵɜɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ ɗɣɧɲɬɟɣɧɚ (2.6). ɉɪɢ ɫɩɪɚɜɟɞɥɢɜɨɫɬɢ ɡɚɤɨɧɚ ɋɬɨɤɫɚ, ɤɨɝɞɚ ɪɚɡɦɟɪ ɱɚɫɬɢɰ ɛɨɥɶɲɟ ɫɪɟɞɧɟɝɨ ɩɭɬɢ ɩɪɨɛɟɝɚ ɦɨɥɟɤɭɥ, ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰ ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɤɚɤ ɮɭɧɤɰɢɸ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ: Cɤ k ȻɌ ɝ Dɱ , (2.43) 3SP 0 d ɱ ɝɞɟ Tɝ - ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɝɚɡɚ, Ʉ; kȻ - ɩɨɫɬɨɹɧɧɚɹ Ȼɨɥɶɰɦɚɧɚ, ɪɚɜɧɚɹ 1,38˜10-23 Ⱦɠ/Ʉ. ɉɪɢ d ɱ  li ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɦɨɠɟɬ ɛɵɬɶ ɪɚɫɫɱɢɬɚɧ ɩɨ ɭɪɚɜɧɟɧɢɸ, ɩɪɟɞɥɨɠɟɧɧɨɦɭ Ʌɟɧɝɦɸɪɨɦ: 12 4k Ȼ Ɍ ɝ § 8 R ɝ Ɍ ɝ · ¨¨ ¸¸ , (2.44) Dɱ 2 S M 3S d ɱ p ɝ © ɝ ¹ ɝɞɟ pɝ, Rɝ, Mɝ – ɚɛɫɨɥɸɬɧɨɟ ɞɚɜɥɟɧɢɟ (ɉɚ), ɭɧɢɜɟɪɫɚɥɶɧɚɹ ɝɚɡɨɜɚɹ ɩɨɫɬɨɹɧɧɚɹ Ⱦɠ/(ɤɦɨɥɶ.Ʉ); ɦɨɥɟɤɭɥɹɪɧɵɣ ɜɟɫ ɝɚɡɚ, ɤɦɨɥɶ. Ʉɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰ Dɱ ɜɯɨɞɢɬ ɜ ɛɟɡɪɚɡɦɟɪɧɵɣ ɤɨɦɩɥɟɤɫ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɣ ɨɬɧɨɲɟɧɢɟ ɫɢɥ ɜɧɭɬɪɟɧɧɟɝɨ ɬɪɟɧɢɹ ɤ ɞɢɮɮɭɡɢɨɧɧɵɦ ɫɢɥɚɦ. ɗɬɨɬ ɤɨɦɩɥɟɤɫ ɩɨɥɭɱɢɥ ɧɚɡɜɚɧɢɟ ɤɪɢɬɟɪɢɹ ɒɦɢɞɬɚ Sc, ɢɧɨɝɞɚ ɧɚɡɵɜɚɟɦɨɝɨ ɞɢɮɮɭɡɢɨɧɧɵɦ ɤɪɢɬɟɪɢɟɦ PrD: Sc P0 U 0 Dɱ . (2.45) Ⱦɪɭɝɢɦ ɤɪɢɬɟɪɢɟɦ, ɢɫɩɨɥɶɡɭɟɦɵɦ ɜ ɩɪɚɤɬɢɤɟ ɞɢɮɮɭɡɢɨɧɧɵɯ ɪɚɫɱɟɬɨɜ, ɹɜɥɹɟɬɫɹ ɤɪɢɬɟɪɢɣ ɉɟɤɥɟ Ɋɟ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɣ ɫɨɛɨɣ ɨɬɧɨɲɟɧɢɟ ɤɨɧɜɟɤɬɢɜɧɵɯ ɫɢɥ ɤ ɞɢɮɮɭɡɢɨɧɧɵɦ ɫɢɥɚɦ: v0 U 0 l P 0 v0 l ˜ Pe Re˜ Sc , (2. 46) P 0 U 0 Dɱ Dɱ ɝɞɟ l - ɨɩɪɟɞɟɥɹɸɳɢɣ ɥɢɧɟɣɧɵɣ ɩɚɪɚɦɟɬɪ ɨɛɬɟɤɚɟɦɨɝɨ ɬɟɥɚ. ȼɟɥɢɱɢɧɚ, ɨɛɪɚɬɧɚɹ ɤɪɢɬɟɪɢɸ Ɋɟ, ɹɜɥɹɟɬɫɹ ɩɚɪɚɦɟɬɪɨɦ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɢ ɨɛɨɡɧɚɱɚɟɬɫɹ ɱɟɪɟɡ D. ɇɢɠɟ ɩɪɢɜɟɞɟɧɵ (ɬɚɛɥ. 2.4) ɡɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɚ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰ, ɪɚɫɫɱɢɬɚɧɧɵɟ ɩɨ ɮɨɪɦɭɥɟ (2.72) (ɞɥɹ ɜɨɡɞɭɯɚ ɩɪɢ ɧɨɪɦɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ), ɢ ɡɧɚɱɟɧɢɹ ɤɪɢɬɟɪɢɹ Sc: Ɍɚɛɥɢɰɚ 2.4 Ɂɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɚ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰ ɢ ɤɪɢɬɟɪɢɹ ɒɦɢɞɬɚ ɨɬ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɹ 10 1,0 0,1 Ɋɚɡɦɟɪ ɱɚɫɬɢɰ, ɦɤɦ -12 -11 Ʉɨɷɮɮɢɰɢɟɧɬ ɞɢɮ2,4˜10 2,7˜10 61˜10-10 ɮɭɡɢɢ, ɦ2/ɫ Ʉɪɢɬɟɪɢɣ Sc 6,4˜106 5,6˜105 2,5˜104 Ʉɚɤ ɜɢɞɧɨ ɢɡ ɩɪɢɜɟɞɟɧɧɵɯ ɞɚɧɧɵɯ, ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɪɟɡɤɨ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ. Ɉɞɧɚɤɨ ɫɤɨɪɨɫɬɶ ɞɢɮɮɭɡɢɢ ɞɚɠɟ ɫɭɛɦɢɤɪɨɧɧɵɯ ɱɚɫɬɢɰ ɜɟɫɶɦɚ ɦɚɥɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫɨ ɫɤɨɪɨɫɬɶɸ ɞɢɮɮɭɡɢɢ ɦɨɥɟɤɭɥ ɝɚɡɨɜ, ɩɨɫɤɨɥɶɤɭ ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰ ɧɚ ɧɟɫɤɨɥɶɤɨ ɩɨɪɹɞɤɨɜ ɦɟɧɶɲɟ. Ⱦɥɹ ɪɚɫɱɟɬɚ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɩɪɢ ɨɛɬɟɤɚɧɢɢ ɝɚɡɨɜɵɦ ɩɨɬɨɤɨɦ ɲɚɪɚ ɫɩɪɚɜɟɞɥɢɜɨ ɜɵɪɚɠɟɧɢɟ: KD 2 2 ( Pe d ɱ )1 2 . (2.47) ɍɪɚɜɧɟɧɢɟ ɞɥɹ ɪɚɫɱɟɬɚ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɧɚ ɰɢɥɢɧɞɪɟ ɩɪɢ ɜɹɡɤɨɦ ɟɝɨ ɨɛɬɟɤɚɧɢɢ ɢɦɟɟɬ ɜɢɞ: KD 2,92(2  ln Re ɬ ) 1 3 Pe 2 3 , (2.48) ɚ ɩɪɢ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɨɫɚɠɞɟɧɢɢ KD 3,19 Pe 1 2 . (2.49) ɋɨɝɥɚɫɧɨ ɜɵɲɟɩɪɢɜɟɞɟɧɧɵɦ ɭɪɚɜɧɟɧɢɹɦ, ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɪɚɡɦɟɪɚɦ ɱɚɫɬɢɰ ɢ ɫɤɨɪɨɫɬɢ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. 2.6. Ɉɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ Ɉɫɚɠɞɟɧɢɟ ɜɡɜɟɲɟɧɧɵɯ ɜ ɝɚɡɟ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɱɚɫɬɢɰ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɢɦɟɟɬ ɩɪɟɢɦɭɳɟɫɬɜɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɞɪɭɝɢɦɢ ɫɩɨɫɨɛɚɦɢ ɨɫɚɠɞɟɧɢɹ. Ⱦɟɣɫɬɜɢɟ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɧɚ ɡɚɪɹɠɟɧɧɭɸ ɱɚɫɬɢɰɭ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜɟɥɢɱɢɧɨɣ ɟɟ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɡɚɪɹɞɚ. ɉɪɢ ɷɥɟɤɬɪɨɨɫɚɠɞɟɧɢɢ ɱɚɫɬɢɰɚɦ ɧɟɛɨɥɶɲɢɯ ɪɚɡɦɟɪɨɜ ɭɞɚɟɬɫɹ ɫɨɨɛɳɢɬɶ ɡɧɚɱɢɬɟɥɶɧɵɣ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ ɢ, ɛɥɚɝɨɞɚɪɹ ɷɬɨɦɭ, ɨɫɭɳɟɫɬɜɢɬɶ ɩɪɨɰɟɫɫ ɨɫɚɠɞɟɧɢɹ ɨɱɟɧɶ ɦɚɥɵɯ ɱɚɫɬɢɰ, ɤɨɬɨɪɵɣ ɧɟɜɨɡɦɨɠɧɨ ɩɪɨɜɟɫɬɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ ɢɥɢ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ. ɉɪɢɧɰɢɩ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ (ɝɚɡɨɜ) ɨɬ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɡɚɪɹɞɤɟ ɱɚɫɬɢɰ ɫ ɩɨɫɥɟɞɭɸɳɢɦ ɢɯ ɜɵɞɟɥɟɧɢɟɦ ɢɡ ɜɡɜɟɲɢɜɚɸɳɟɣ ɫɪɟɞɵ ɩɨɞ ɜɨɡɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ. Ɏɢɡɢɱɟɫɤɚɹ ɫɭɳɧɨɫɬɶ ɷɥɟɤɬɪɨɨɫɚɠɞɟɧɢɹ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɝɚɡɨɜɵɣ ɩɨɬɨɤ, ɫɨɞɟɪɠɚɳɢɣ ɜɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ, ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ ɢɨɧɢɡɢɪɭɸɬ, ɩɪɢ ɷɬɨɦ ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɝɚɡɟ ɱɚɫɬɢɰɵ ɩɪɢɨɛɪɟɬɚɸɬ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ. Ɂɚɪɹɞɤɚ ɱɚɫɬɢɰ ɜ ɩɨɥɟ ɤɨɪɨɧɧɨɝɨ ɪɚɡɪɹɞɚ ɩɪɨɢɫɯɨɞɢɬ ɩɨɞ ɜɨɡɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɢ ɜɫɥɟɞɫɬɜɢɟ ɞɢɮɮɭɡɢɢ ɢɨɧɨɜ. Ɇɚɤɫɢɦɚɥɶɧɚɹ ɜɟɥɢɱɢɧɚ ɡɚɪɹɞɚ ɱɚɫɬɢɰ ɪɚɡɦɟɪɨɦ ɛɨɥɟɟ 0,5 ɦɤɦ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɤɜɚɞɪɚɬɭ ɞɢɚɦɟɬɪɚ ɱɚɫɬɢɰ, ɚ ɱɚɫɬɢɰ ɪɚɡɦɟɪɨɦ ɦɟɧɶɲɟ 0,2 ɦɤɦ - ɞɢɚɦɟɬɪɭ ɱɚɫɬɢɰ. ɉɪɢ ɨɛɵɱɧɵɯ ɭɫɥɨɜɢɹɯ ɛɨɥɶɲɚɹ ɱɚɫɬɶ ɦɨɥɟɤɭɥ ɝɚɡɚ ɧɟɣɬɪɚɥɶɧɚ, ɬ. ɟ. ɧɟ ɧɟɫɟɬ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɡɚɪɹɞɚ ɬɨɝɨ ɢɥɢ ɢɧɨɝɨ ɡɧɚɤɚ; ɜɫɥɟɞɫɬɜɢɟ ɞɟɣɫɬɜɢɹ ɪɚɡɥɢɱɧɵɯ ɮɢɡɢɱɟɫɤɢɯ ɮɚɤɬɨɪɨɜ ɜ ɝɚɡɟ ɜɫɟɝɞɚ ɢɦɟɟɬɫɹ ɧɟɤɨɬɨɪɨɟ ɤɨɥɢɱɟɫɬɜɨ ɧɨɫɢɬɟɥɟɣ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɡɚɪɹɞɨɜ. Ʉ ɬɚɤɢɦ ɮɚɤɬɨɪɚɦ ɨɬɧɨɫɢɬɫɹ ɫɢɥɶɧɵɣ ɧɚɝɪɟɜ, ɪɚɞɢɨɚɤɬɢɜɧɨɟ ɢɡɥɭɱɟɧɢɟ, ɬɪɟɧɢɟ, ɛɨɦɛɚɪɞɢɪɨɜɤɚ ɝɚɡɚ ɛɵɫɬɪɨɞɜɢɠɭɳɢɦɢɫɹ ɷɥɟɤɬɪɨɧɚɦɢ ɢɥɢ ɢɨɧɚɦɢ ɢ ɞɪ. ɂɨɧɢɡɚɰɢɹ ɝɚɡɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɞɜɭɦɹ ɫɩɨɫɨɛɚɦɢ: 1) ɫɚɦɨɫɬɨɹɬɟɥɶɧɨ, ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵɫɨɤɨɣ ɪɚɡɧɨɫɬɢ ɩɨɬɟɧɰɢɚɥɨɜ ɧɚ ɷɥɟɤɬɪɨɞɚɯ; 2) ɧɟɫɚɦɨɫɬɨɹɬɟɥɶɧɨ - ɜ ɪɟɡɭɥɶɬɚɬɟ ɜɨɡɞɟɣɫɬɜɢɹ ɢɡɥɭɱɟɧɢɹ ɪɚɞɢɨɚɤɬɢɜɧɵɯ ɜɟɳɟɫɬɜ, ɪɟɧɬɝɟɧɨɜɫɤɢɯ ɥɭɱɟɣ. ȼ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɷɥɟɤɬɪɨɨɫɚɠɞɟɧɢɟ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɢɡ ɝɚɡɚ ɩɪɨɜɨɞɢɬɫɹ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨ ɝɚɡɨɜɵɣ ɩɨɬɨɤ ɧɚɩɪɚɜɥɹɟɬɫɹ ɜɧɭɬɪɶ ɬɪɭɛɱɚɬɵɯ (ɢɥɢ ɦɟɠɞɭ ɩɥɚɫɬɢɧɱɚɬɵɦɢ) ɩɨɥɨɠɢɬɟɥɶɧɵɯ ɷɥɟɤɬɪɨɞɨɜ, ɤɨɬɨɪɵɟ ɡɚɡɟɦɥɹ- ɸɬɫɹ (ɪɢɫ. 2.11). ȼɧɭɬɪɢ ɬɪɭɛɱɚɬɵɯ ɷɥɟɤɬɪɨɞɨɜ ɧɚɬɹɝɢɜɚɸɬɫɹ ɬɨɧɤɢɟ ɩɪɨɜɨɥɨɱɧɵɟ ɢɥɢ ɫɬɟɪɠɧɟɜɵɟ ɷɥɟɤɬɪɨɞɵ, ɹɜɥɹɸɳɢɟɫɹ ɤɚɬɨɞɚɦɢ. ȿɫɥɢ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɫɨɡɞɚɬɶ ɨɩɪɟɞɟɥɟɧɧɨɟ ɧɚɩɪɹɠɟɧɢɟ, ɬɨ ɧɨɫɢɬɟɥɢ ɡɚɪɹɞɨɜ, ɬ. ɟ. ɢɨɧɵ ɢ ɷɥɟɤɬɪɨɧɵ, ɩɨɥɭɱɚɸɬ ɡɧɚɱɢɬɟɥɶɧɨɟ ɭɫɤɨɪɟɧɢɟ, ɢ ɩɪɢ ɢɯ ɫɬɨɥɤɧɨɜɟɧɢɢ ɫ ɦɨɥɟɤɭɥɚɦɢ ɩɪɨɢɫɯɨɞɢɬ ɢɨɧɢɡɚɰɢɹ ɩɨɫɥɟɞɧɢɯ. ɂɨɧɢɡɚɰɢɹ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɬɨɦ, ɱɬɨ ɫ ɨɪɛɢɬɵ ɧɟɣɬɪɚɥɶɧɨɣ ɦɨɥɟɤɭɥɵ ɜɵɛɢɜɚɟɬɫɹ ɨɞɢɧ ɢɥɢ ɧɟɫɤɨɥɶɤɨ ɜɧɟɲɧɢɯ ɷɥɟɤɬɪɨɧɨɜ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɢɫɯɨɞɢɬ ɩɪɟɜɪɚɳɟɧɢɟ ɧɟɣɬɪɚɥɶɧɨɣ ɦɨɥɟɤɭɥɵ ɜ ɩɨɥɨɠɢɬɟɥɶɧɵɣ ɢɨɧ ɢ ɫɜɨɛɨɞɧɵɟ ɷɥɟɤɬɪɨɧɵ. ɗɬɨɬ ɩɪɨɰɟɫɫ ɧɚɡɵɜɚɟɬɫɹ ɭɞɚɪɧɨɣ ɢɨɧɢɡɚɰɢɟɣ. - - + Ɍ ɪ ɭɛ ɱ ɚ ɬɵ ɟ ɷɥ ɟ ɤ ɬɪ ɨ ɞ ɵ + ɉ ɥ ɚ ɫɬɢ ɧ ɱ ɚɬɵ ɟ ɷɥ ɟɤ ɬɪ ɨ ɞ ɵ Ɋɢɫ. 2.11. ɋɯɟɦɵ ɷɥɟɤɬɪɨɞɨɜ ɝɚɡɨɨɱɢɫɬɤɢ ɉɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɢɨɧɢɡɢɪɨɜɚɧɧɨɝɨ ɩɨɬɨɤɚ ɝɚɡɚ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ ɦɟɠɞɭ ɞɜɭɦɹ ɷɥɟɤɬɪɨɞɚɦɢ ɡɚɪɹɠɟɧɧɵɟ ɱɚɫɬɢɰɵ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɩɟɪɟɦɟɳɚɸɬɫɹ ɤ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ ɡɚɪɹɠɟɧɧɵɦ ɷɥɟɤɬɪɨɞɚɦ ɢ ɨɫɟɞɚɸɬ ɧɚ ɧɢɯ. ɑɚɫɬɶ ɦɟɠɷɥɟɤɬɪɨɞɧɨɝɨ ɩɪɨɫɬɪɚɧɫɬɜɚ, ɩɪɢɥɟɝɚɸɳɚɹ ɤ ɤɨɪɨɧɢɪɭɸɳɟɦɭ ɷɥɟɤɬɪɨɞɭ, ɜ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɭɞɚɪɧɚɹ ɢɨɧɢɡɚɰɢɹ, ɧɚɡɵɜɚɟɬɫɹ ɤɨɪɨɧɢɪɭɸɳɟɣ ɨɛɥɚɫɬɶɸ. Ɉɫɬɚɥɶɧɚɹ ɱɚɫɬɶ ɦɟɠɷɥɟɤɬɪɨɞɧɨɝɨ ɩɪɨɫɬɪɚɧɫɬɜɚ, ɬ. ɟ. ɦɟɠɞɭ ɤɨɪɨɧɢɪɭɸɳɢɦ ɢ ɨɫɚɞɢɬɟɥɶɧɵɦ ɷɥɟɤɬɪɨɞɚɦɢ - ɧɚɡɵɜɚɟɬɫɹ ɜɧɟɲɧɟɣ ɨɛɥɚɫɬɶɸ. ȼɨɤɪɭɝ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ ɧɚɛɥɸɞɚɟɬɫɹ ɝɨɥɭɛɨɜɚɬɨ-ɮɢɨɥɟɬɨɜɨɟ ɫɜɟɱɟɧɢɟ (ɤɨɪɨɧɚ). Ʉɨɪɨɧɧɵɣ ɪɚɡɪɹɞ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɬɚɤɠɟ ɬɢɯɢɦ ɩɨɬɪɟɫɤɢɜɚɧɢɟɦ. ɉɪɢ ɤɨɪɨɧɧɨɦ ɪɚɡɪɹɞɟ ɩɪɨɢɫɯɨɞɢɬ ɜɵɞɟɥɟɧɢɟ ɨɡɨɧɚ ɢ ɨɤɫɢɞɨɜ ɚɡɨɬɚ. Ɉɛɪɚɡɨɜɚɜɲɢɟɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɭɞɚɪɧɨɣ ɢɨɧɢɡɚɰɢɢ ɢɨɧɵ ɢ ɫɜɨɛɨɞɧɵɟ ɷɥɟɤɬɪɨɧɵ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɩɨɥɹ ɬɚɤɠɟ ɩɨɥɭɱɚɸɬ ɭɫɤɨɪɟɧɢɟ ɢ ɢɨɧɢɡɢɪɭɸɬ ɧɨɜɵɟ ɦɨɥɟɤɭɥɵ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɨɰɟɫɫ ɧɨɫɢɬ ɥɚɜɢɧɨɨɛɪɚɡɧɵɣ ɯɚɪɚɤɬɟɪ. Ɉɞɧɚɤɨ ɩɨ ɦɟɪɟ ɭɞɚɥɟɧɢɹ ɨɬ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɭɠɟ ɧɟɞɨɫɬɚɬɨɱɧɚ ɞɥɹ ɩɨɞɞɟɪɠɚɧɢɹ ɜɵɫɨɤɢɯ ɫɤɨɪɨɫɬɟɣ, ɢ ɩɪɨɰɟɫɫ ɭɞɚɪɧɨɣ ɢɨɧɢɡɚɰɢɢ ɩɨɫɬɟɩɟɧɧɨ ɡɚɬɭɯɚɟɬ. ɇɨɫɢɬɟɥɢ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɡɚɪɹɞɨɜ, ɩɟɪɟɦɟɳɚɹɫɶ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ, ɚ ɬɚɤɠɟ ɜ ɪɟɡɭɥɶɬɚɬɟ ɛɪɨɭɧɨɜɫɤɨɝɨ ɞɜɢɠɟɧɢɹ, ɫɬɚɥɤɢɜɚɸɬɫɹ ɫ ɩɵɥɟɜɵɦɢ ɱɚɫɬɢɰɚɦɢ, ɜɡɜɟɲɟɧɧɵɦɢ ɜ ɝɚɡɨɜɨɦ ɩɨɬɨɤɟ, ɩɪɨɯɨɞɹɳɟɦ ɱɟɪɟɡ ɷɥɟɤɬɪɨɮɢɥɶɬɪ, ɢ ɩɟɪɟɞɚɸɬ ɢɦ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɡɚɪɹɞ. ɉɪɢ ɢɨɧɢɡɚɰɢɢ ɨɛɪɚɡɭɸɬɫɹ ɤɚɤ ɩɨɥɨɠɢɬɟɥɶɧɵɟ, ɬɚɤ ɢ ɨɬɪɢɰɚɬɟɥɶɧɵɟ ɢɨɧɵ: ɩɨɥɨɠɢɬɟɥɶɧɵɟ ɢɨɧɵ ɨɫɬɚɸɬɫɹ ɜɛɥɢɡɢ «ɤɨɪɨɧɵ» ɭ ɤɚɬɨɞɚ, ɚ ɨɬɪɢɰɚɬɟɥɶɧɵɟ ɧɚɩɪɚɜɥɹɸɬɫɹ ɫ ɛɨɥɶɲɨɣ ɫɤɨɪɨɫɬɶɸ ɤ ɚɧɨɞɭ, ɜɫɬɪɟɱɚɹ ɢ ɡɚɪɹɠɚɹ ɧɚ ɫɜɨɟɦ ɩɭɬɢ ɜɡɜɟɲɟɧɧɵɟ ɜ ɝɚɡɟ ɱɚɫɬɢɰɵ. Ȼɨɥɶɲɚɹ ɱɚɫɬɶ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ, ɩɪɨɯɨɞɹɳɢɯ ɜ ɦɟɠɷɥɟɤɬɪɨɞɧɨɦ ɩɪɨɫɬɪɚɧɫɬɜɟ, ɩɨɥɭɱɚɟɬ ɡɚɪɹɞ, ɩɪɨɬɢɜɨɩɨɥɨɠɧɵɣ ɡɧɚɤɭ ɨɫɚɞɢɬɟɥɶɧɵɯ ɷɥɟɤɬɪɨɞɨɜ, ɩɟɪɟɦɟɳɚɟɬɫɹ ɤ ɷɬɢɦ ɷɥɟɤɬɪɨɞɚɦ ɢ ɨɫɚɠɞɚɟɬɫɹ ɧɚ ɧɢɯ. ɇɟɤɨɬɨɪɚɹ ɱɚɫɬɶ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɫɮɟɪɟ ɞɟɣɫɬɜɢɹ ɤɨɪɨɧɵ, ɩɨɥɭɱɚɟɬ ɡɚɪɹɞ, ɩɪɨɬɢɜɨɩɨɥɨɠɧɵɣ ɡɧɚɤɭ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ, ɢ ɨɫɚɠɞɚɟɬɫɹ ɧɚ ɷɬɨɦ ɷɥɟɤɬɪɨɞɟ. ȿɫɥɢ ɫɨɡɞɚɬɶ ɧɚ ɷɥɟɤɬɪɨɞɚɯ ɪɚɡɧɨɫɬɶ ɩɨɬɟɧɰɢɚɥɨɜ (4…6) ɤȼ/ɫɦ, ɢ ɨɛɟɫɩɟɱɢɬɶ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ (0,05…0,5) ɦȺ/ɦ ɞɥɢɧɵ ɤɚɬɨɞɚ, ɬɨ ɡɚɩɵɥɟɧɧɵɣ ɝɚɡ ɩɪɢ ɩɪɨɩɭɫɤɚɧɢɢ ɟɝɨ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɩɨɱɬɢ ɩɨɥɧɨɫɬɶɸ ɨɫɜɨɛɨɠɞɚɟɬɫɹ ɨɬ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ. Ɋɚɫɫɦɨɬɪɢɦ ɨɫɧɨɜɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɟ ɷɥɟɤɬɪɢɱɟɫɤɭɸ ɨɱɢɫɬɤɭ ɝɚɡɨɜ (ɜɨɡɞɭɯɚ) ɨɬ ɩɵɥɟɜɵɯ ɱɚɫɬɢɰ. Ɉɫɧɨɜɧɨɣ ɡɚɤɨɧ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɡɚɪɹɞɨɜ - ɡɚɤɨɧ Ʉɭɥɨɧɚ ɜɵɪɚɠɚɟɬɫɹ ɮɨɪɦɭɥɨɣ (2.50) F = k1 (q1 q2/r2), ɝɞɟ q1, q2 - ɜɟɥɢɱɢɧɵ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɬɨɱɟɱɧɵɯ ɡɚɪɹɞɨɜ; r - ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɧɢɦɢ; k1 - ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ (k1 > 0). ɉɨɞ ɬɨɱɟɱɧɵɦɢ ɡɚɪɹɞɚɦɢ ɩɨɧɢɦɚɸɬ ɡɚɪɹɞɵ, ɧɚɯɨɞɹɳɢɟɫɹ ɧɚ ɬɟɥɚɯ ɥɸɛɨɣ ɮɨɪɦɵ, ɩɪɢɱɟɦ ɪɚɡɦɟɪɵ ɬɟɥ ɦɚɥɵ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɪɚɫɫɬɨɹɧɢɟɦ, ɧɚ ɤɨɬɨɪɨɦ ɫɤɚɡɵɜɚɟɬɫɹ ɢɯ ɞɟɣɫɬɜɢɟ. Ʉɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ k1 ɡɚɜɢɫɢɬ ɨɬ ɫɜɨɣɫɬɜ ɫɪɟɞɵ. ɗɬɨɬ ɤɨɷɮɮɢɰɢɟɧɬ ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧ ɜ ɜɢɞɟ ɨɬɧɨɲɟɧɢɹ ɞɜɭɯ ɤɨɷɮɮɢɰɢɟɧɬɨɜ (2.51) k1 = k/H ɝɞɟ k - ɤɨɷɮɮɢɰɢɟɧɬ; H - ɛɟɡɪɚɡɦɟɪɧɚɹ ɜɟɥɢɱɢɧɚ, ɧɚɡɵɜɚɟɦɚɹ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɞɢɷɥɟɤɬɪɢɱɟɫɤɨɣ ɩɪɨɧɢɰɚɟɦɨɫɬɶɸ ɫɪɟɞɵ. Ⱦɥɹ ɜɚɤɭɭɦɚ H = 1. Ɂɚɤɨɧ Ʉɭɥɨɧɚ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧ ɬɚɤɠɟ qq F k 1 22 (2.52) Hr Ʉɨɷɮɮɢɰɢɟɧɬ k ɜ ɫɢɫɬɟɦɟ ɋɂ ɩɪɢɧɢɦɚɸɬ k = 1/4 S.H0; ɡɞɟɫɶ H0 - ɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɨɫɬɨɹɧɧɚɹ. ɉɨɞɫɬɚɜɢɦ ɷɬɭ ɜɟɥɢɱɢɧɭ ɜ ɮɨɪɦɭɥɭ (2.52.) F = q1.q2/(4 S.H0.H.r2), (2.53) . -12 2 . 2 ɝɞɟ H0 = 8,85 10 Ʉɥ /(ɇ ɦ ). Ⱦɥɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɩɪɢɦɟɧɹɸɬ ɮɢɡɢɱɟɫɤɭɸ ɜɟɥɢɱɢɧɭ ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɩɨɥɹ ȿ. ɇɚɩɪɹɠɟɧɧɨɫɬɶɸ ɜ ɤɚɤɨɣ-ɥɢɛɨ ɬɨɱɤɟ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɧɚɡɵɜɚɸɬ ɫɢɥɭ, ɫ ɤɨɬɨɪɨɣ ɷɬɨ ɩɨɥɟ ɞɟɣɫɬɜɭɟɬ ɧɚ ɨɞɢɧɨɱɧɵɣ ɩɨɥɨɠɢɬɟɥɶɧɵɣ ɡɚɪɹɞ, ɩɨɦɟɳɟɧɧɵɣ ɜ ɷɬɭ ɬɨɱɤɭ. Ʉɨɪɨɧɧɵɣ ɪɚɡɪɹɞ ɜɨɡɧɢɤɚɟɬ ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɨɣ ɧɚɩɪɹɠɟɧɧɨɫɬɢ ɩɨɥɹ. ɗɬɚ ɜɟɥɢɱɢɧɚ ɧɚɡɵɜɚɟɬɫɹ ɤɪɢɬɢɱɟɫɤɨɣ ɧɚɩɪɹɠɟɧɧɨɫɬɶɸ ɢ ɞɥɹ ɨɬɪɢɰɚɬɟɥɶɧɨɣ ɩɨɥɹɪɧɨɫɬɢ ɷɥɟɤɬɪɨɞɚ ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɨ ɷɦɩɢɪɢɱɟɫɤɨɣ ɮɨɪɦɭɥɟ ȿ ɤɪ 3,04( E  0,0311 E / r )10 6 (2.54) , ɝɞɟ r - ɪɚɞɢɭɫ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ, ɦ; E - ɨɬɧɨɲɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɝɚɡɚ ɜ ɪɚɛɨɱɢɯ ɭɫɥɨɜɢɹɯ ɤ ɩɥɨɬɧɨɫɬɢ ɝɚɡɚ ɜ ɫɬɚɧɞɚɪɬɧɵɯ ɭɫɥɨɜɢɹɯ (t = 200ɋ; ɪ = 1,013.105 ɉɚ): E ȼ r p r (273  20) , 1,013 ˜ 10 5 (273  t ) (2.55) Ɂɞɟɫɶ ȼ - ɛɚɪɨɦɟɬɪɢɱɟɫɤɨɟ ɞɚɜɥɟɧɢɟ, ɉɚ; ɪr - ɜɟɥɢɱɢɧɚ ɪɚɡɪɟɠɟɧɢɹ ɢɥɢ ɚɛɫɨɥɸɬɧɨɝɨ ɞɚɜɥɟɧɢɹ ɝɚɡɨɜ, ɉɚ; t - ɬɟɦɩɟɪɚɬɭɪɚ ɝɚɡɨɜ, °ɋ. Ɏɨɪɦɭɥɚ (2.54) ɩɪɟɞɧɚɡɧɚɱɟɧɚ ɞɥɹ ɜɨɡɞɭɯɚ, ɧɨ ɫ ɧɟɤɨɬɨɪɵɦ ɩɪɢɛɥɢɠɟɧɢɟɦ ɦɨɠɟɬ ɩɪɢɦɟɧɹɬɶɫɹ ɢ ɞɥɹ ɞɵɦɨɜɵɯ ɝɚɡɨɜ. ɇɚɩɪɹɠɟɧɢɟ ɩɨɥɹ ɧɚ ɪɚɫɫɬɨɹɧɢɢ x ɨɬ ɨɫɢ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ: U , ln( R 2 / R1 ) Ex (2.56) ɝɞɟ U - ɧɚɩɪɹɠɟɧɢɟ, ɩɪɢɥɨɠɟɧɧɨɟ ɤ ɷɥɟɤɬɪɨɞɚɦ; R1 ɢ R2 - ɪɚɞɢɭɫɵ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɢ ɨɫɚɞɢɬɟɥɶɧɨɝɨ ɷɥɟɤɬɪɨɞɨɜ. ȼɟɥɢɱɢɧɚ ɡɚɪɹɞɚ q (ɤȺ), ɩɪɢɨɛɪɟɬɚɟɦɨɝɨ ɩɪɨɜɨɞɢɦɨɣ ɱɚɫɬɢɰɟɣ ɫɮɟɪɢɱɟɫɤɨɣ ɮɨɪɦɵ ɩɨɞ ɜɨɡɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ, ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɮɨɪɦɭɥɟ: q 3 ˜ S ˜ d ɱ2 ˜ H ˜ E , (2.57) ɝɞɟ H - ɞɢɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɧɢɰɚɟɦɨɫɬɶ ɫɪɟɞɵ; dɱ - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ; ȿ - ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɤɨɪɨɧɧɨɝɨ ɪɚɡɪɹɞɚ. ȼɟɥɢɱɢɧɚ ɡɚɪɹɞɚ, ɩɪɢɨɛɪɟɬɚɟɦɨɝɨ ɷɥɟɤɬɪɨɧɟɩɪɨɜɨɞɹɳɟɣ ɱɚɫɬɢɰɟɣ: q 3H ɱ S ˜ H ˜ d ɱ2 ˜ E , Hɱ  2 (2.58) ɝɞɟ Hɱ - ɨɬɧɨɫɢɬɟɥɶɧɚɹ ɞɢɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɧɢɰɚɟɦɨɫɬɶ ɱɚɫɬɢɰɵ. ɉɪɟɞɟɥɶɧɵɣ ɡɚɪɹɞ ɱɚɫɬɢɰ ɞɢɚɦɟɬɪɨɦ ɛɨɥɟɟ 1 ɦɤɦ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ q ɩɪɟɞ n . e 0,19 ˜ 10 9 r 2 E , (2.59) ɝɞɟ n - ɱɢɫɥɨ ɷɥɟɦɟɧɬɚɪɧɵɯ ɡɚɪɹɞɨɜ; e - ɜɟɥɢɱɢɧɚ ɷɥɟɦɟɧɬɚɪɧɨɝɨ ɡɚɪɹɞɚ, ɪɚɜɧɚɹ 1,6.10-19 Ʉɥ; r - ɪɚɞɢɭɫ ɱɚɫɬɢɰɵ, ɦ; E - ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ, ȼ/ɦ. Ɏɨɪɦɭɥɚ (2.59.) ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɩɪɢɦɟɧɢɦɚ, ɟɫɥɢ ɞɢɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɧɢɰɚɟɦɨɫɬɶ ɜɟɳɟɫɬɜɚ ɩɵɥɢ ɟ ɪɚɜɧɚ 2,5. Ⱦɥɹ ɦɧɨɝɢɯ ɜɟɳɟɫɬɜ ɡɧɚɱɟɧɢɟ ɟ ɡɧɚɱɢɬɟɥɶɧɨ ɨɬɥɢɱɚɟɬɫɹ: ɞɥɹ ɝɚɡɨɜ ɟ = 1; ɞɥɹ ɝɢɩɫɚ ɟ = 4; ɞɥɹ ɨɤɢɫɥɨɜ ɦɟɬɚɥɥɨɜ e = 12. ..18; ɞɥɹ ɦɟɬɚɥɥɨɜ e = f. ȿɫɥɢ ɟ z2,5, ɬɨ ɡɧɚɱɟɧɢɟ qɩɪɟɞ, ɩɨɥɭɱɟɧɧɨɟ ɩɨ ɮɨɪɦɭɥɟ (2.59.), ɭɦɧɨɠɚɸɬ ɧɚ ɩɨɩɪɚɜɤɭ, ɩɪɟɞɫɬɚɜɥɹɸɳɭɸ ɫɨɛɨɣ ɨɬɧɨɲɟɧɢɟ De=m/De=2.5, (2.60) ɝɞɟ De=m - ɡɧɚɱɟɧɢɟ D = 1 + 2(H - 1)/(H + 2) ɩɪɢ e = m; ɩɪɢ H = 2,5, D = 1,66; ɩɪɢ H = 1, D = 1. ɉɵɥɶ ɫ ɦɚɥɨɣ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɩɪɨɜɨɞɢɦɨɫɬɶɸ ɜɵɡɵɜɚɟɬ ɹɜɥɟɧɢɟ ɨɛɪɚɬɧɨɣ «ɤɨɪɨɧɵ», ɤɨɬɨɪɨɟ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟɦ ɩɨɥɨɠɢɬɟɥɶɧɨ ɡɚɪɹɠɟɧɧɵɯ ɢɨɧɨɜ, ɱɚɫɬɢɱɧɨ ɧɟɣɬɪɚɥɢɡɢɪɭɸɳɢɯ ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɚɪɹɞ ɱɚɫɬɢɰ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɨɧɢ ɬɟɪɹɸɬ ɫɩɨɫɨɛɧɨɫɬɶ ɩɟɪɟɦɟɳɚɬɶɫɹ ɤ ɨɫɚɞɢɬɟɥɶɧɨɦɭ ɷɥɟɤɬɪɨɞɭ ɢ ɨɫɚɠɞɚɬɶɫɹ. ɇɚ ɩɪɨɜɨɞɢɦɨɫɬɶ ɩɵɥɢ ɨɤɚɡɵɜɚɟɬ ɜɥɢɹɧɢɟ ɫɨɫɬɚɜ ɝɚɡɚ ɢ ɩɵɥɢ. ɋ ɩɨɜɵɲɟɧɢɟɦ ɜɥɚɠɧɨɫɬɢ ɝɚɡɨɜ ɭɞɟɥɶɧɨɟ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɵɥɢ ɫɧɢɠɚɟɬɫɹ. ɉɪɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɝɚɡɚ ɩɨɧɢɠɚɟɬɫɹ ɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɱɧɨɫɬɶ ɦɟɠɷɥɟɤɬɪɨɞɧɨɝɨ ɩɪɨɫɬɪɚɧɫɬɜɚ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɭɯɭɞɲɟɧɢɸ ɭɥɚɜɥɢɜɚɧɢɹ ɩɵɥɢ. ȼ ɷɥɟɤɬɪɨɮɢɥɶɬɪɟ ɡɚɪɹɞɤɚ ɱɚɫɬɢɰ ɩɪɨɢɫɯɨɞɢɬ ɨɱɟɧɶ ɛɵɫɬɪɨ: ɡɚ ɜɪɟɦɹ ɦɟɧɟɟ ɫɟɤɭɧɞɵ ɡɚɪɹɞ ɱɚɫɬɢɰ ɩɪɢɛɥɢɠɚɟɬɫɹ ɤ ɫɜɨɟɦɭ ɩɪɟɞɟɥɶɧɨɦɭ ɡɧɚɱɟɧɢɸ (ɬɚɛɥ. 2.5). Ɍɚɛɥɢɰɚ 2.5 ɋɨɨɬɧɨɲɟɧɢɟ ɡɚɪɹɞɚ ɱɚɫɬɢɰ ɨɬ ɜɪɟɦɟɧɢ ɡɚɪɹɞɤɢ ȼɪɟɦɹ ɡɚɪɹɞɤɢ, ɫ Ɂɚɪɹɞ, ɜ % ɨɬ ɩɪɟɞɟɥɶɧɨɝɨ 10-3 13,8 10-2 61,0 10-1 94,0 1,0 99,5 ɋɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɩɵɥɢ ɞɢɚɦɟɬɪɨɦ ɛɨɥɟɟ 1 ɦɤɦ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ, ɦ/ɫ, ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ ɮɨɪɦɭɥɟ wɱ = 10-11E2 r/P0, (2.61) ɝɞɟ ȿ - ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ, ȼ/ɦ; r - ɪɚɞɢɭɫ ɱɚɫɬɢɰɵ, ɦ; P0 ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɝɚɡɚ (ɜɨɡɞɭɯɚ), ɉɚ.ɫ. ɋɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɩɵɥɢ ɞɢɚɦɟɬɪɨɦ ɦɟɧɟɟ 1 ɦɤɦ ɜ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦ ɩɨɥɟ, ɦ/ɫ, ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɨ ɮɨɪɦɭɥɟ wɱ = 0,17.10-11E/P0. (2.62) ɋɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ, ɩɨɥɭɱɢɜɲɢɯ ɡɚɪɹɞ, ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ ɢ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɝɚɡɨɜɨɣ ɫɪɟɞɵ. ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰɵ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɦ ɩɨɥɟ ɩɪɢ ɥɚɦɢɧɚɪɧɨɦ ɪɟɠɢɦɟ ɞɜɢɠɟɧɢɹ: wɱ n ˜ e0 ˜ E x /(3S ˜ d ɱ ˜ P 0 ) , (2.63) ɝɞɟ n - ɱɢɫɥɨ ɡɚɪɹɞɨɜ, ɩɨɥɭɱɟɧɧɵɯ ɱɚɫɬɢɰɟɣ; e0 - ɜɟɥɢɱɢɧɚ ɷɥɟɦɟɧɬɚɪɧɨɝɨ ɡɚɪɹɞɚ; P0 - ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɧɚɦɢɱɟɫɤɨɣ ɜɹɡɤɨɫɬɢ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. ȼɪɟɦɹ ɨɫɚɠɞɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɧɚɣɞɟɧɨ ɢɡ ɭɪɚɜɧɟɧɢɹ: wɱ dx dW ; W0 R dx ³ wɱ , R1 (2.64) ɝɞɟ R - ɪɚɫɫɬɨɹɧɢɟ ɨɬ ɨɫɢ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ ɞɨ ɩɨɜɟɪɯɧɨɫɬɢ ɨɫɚɞɢɬɟɥɶɧɨɝɨ ɷɥɟɤɬɪɨɞɚ; R1 – ɪɚɞɢɭɫ ɤɨɪɨɧɢɪɭɸɳɟɝɨ ɷɥɟɤɬɪɨɞɚ. ȼɟɥɢɱɢɧɚ wɱ ɢɡɦɟɧɹɟɬɫɹ ɫ ɢɡɦɟɧɟɧɢɟɦ ɜɟɥɢɱɢɧɵ x. ɋɬɟɩɟɧɶ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɨɱɢɫɬɤɢ ɜ ɷɥɟɤɬɪɨɮɢɥɶɬɪɟ ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɨ ɮɨɪɦɭɥɟ ɩɨɥɭɱɟɧɧɨɣ ɬɟɨɪɟɬɢɱɟɫɤɢɦ ɩɭɬɟɦ K = 1 – exp(- wɞ f), (2.65) ɝɞɟ wɞ - ɫɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ (ɞɪɟɣɮɚ) ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɤ ɨɫɚɞɢɬɟɥɶɧɨɦɭ ɷɥɟɤɬɪɨɞɭ, ɦ/ɫ; f - ɭɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ, ɬ. ɟ. ɩɨɜɟɪɯɧɨɫɬɶ ɨɫɚɞɢɬɟɥɶɧɵɯ ɷɥɟɤɬɪɨɞɨɜ, ɩɪɢɯɨɞɹɳɚɹɫɹ ɧɚ 1 ɦ3/ɫ ɨɱɢɳɚɟɦɨɝɨ ɝɚɡɚ (ɜɨɡɞɭɯɚ), ɦ2. ɉɵɥɶ ɫ ɦɚɥɨɣ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɩɪɨɜɨɞɢɦɨɫɬɶɸ ɜɵɡɵɜɚɟɬ ɹɜɥɟɧɢɟ ɨɛɪɚɬɧɨɣ «ɤɨɪɨɧɵ», ɤɨɬɨɪɨɟ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟɦ ɩɨɥɨɠɢɬɟɥɶɧɨ ɡɚɪɹɠɟɧɧɵɯ ɢɨɧɨɜ, ɱɚɫɬɢɱɧɨ ɧɟɣɬɪɚɥɢɡɢɪɭɸɳɢɯ ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɚɪɹɞ ɱɚɫɬɢɰ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɨɧɢ ɬɟɪɹɸɬ ɫɩɨɫɨɛɧɨɫɬɶ ɩɟɪɟɦɟɳɚɬɶɫɹ ɤ ɨɫɚɞɢɬɟɥɶɧɨɦɭ ɷɥɟɤɬɪɨɞɭ ɢ ɨɫɚɠɞɚɬɶɫɹ. ɇɚ ɩɪɨɜɨɞɢɦɨɫɬɶ ɩɵɥɢ ɨɤɚɡɵɜɚɟɬ ɜɥɢɹɧɢɟ ɫɨɫɬɚɜ ɝɚɡɚ ɢ ɩɵɥɢ. ɋ ɩɨɜɵɲɟɧɢɟɦ ɜɥɚɠɧɨɫɬɢ ɝɚɡɨɜ ɭɞɟɥɶɧɨɟ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɵɥɢ ɫɧɢɠɚɟɬɫɹ. ɉɪɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɝɚɡɚ ɩɨɧɢɠɚɟɬɫɹ ɷɥɟɤɬɪɢɱɟɫɤɚɹ ɩɪɨɱɧɨɫɬɶ ɦɟɠɷɥɟɤɬɪɨɞɧɨɝɨ ɩɪɨɫɬɪɚɧɫɬɜɚ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɭɯɭɞɲɟɧɢɸ ɭɥɚɜɥɢɜɚɧɢɹ ɩɵɥɢ. 2.7. Ɍɟɪɦɨɮɨɪɟɡ ɱɚɫɬɢɰ ɚɷɪɨɡɨɥɟɣ Ɍɟɪɦɨɮɨɪɟɡɨɦ ɧɚɡɵɜɚɸɬ ɹɜɥɟɧɢɟ ɨɬɬɚɥɤɢɜɚɧɢɹ ɱɚɫɬɢɰ ɧɚɝɪɟɬɵɦɢ ɬɟɥɚɦɢ. ɉɪɨɢɫɯɨɞɢɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥ ɫɨ ɫɬɨɪɨɧɵ ɝɚɡɨɨɛɪɚɡɧɨɣ ɮɚɡɵ ɧɚ ɜɡɜɟɲɟɧɧɵɟ ɜ ɧɟɣ ɧɟɪɚɜɧɨɦɟɪɧɨ ɧɚɝɪɟɬɵɟ ɱɚɫɬɢɰɵ. Ⱦɟɣɫɬɜɢɟ ɫɢɥ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɦɟɪɟ ɡɚɜɢɫɢɬ ɨɬ ɨɬɧɨɲɟɧɢɹ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ dɱ ɤ ɫɪɟɞɧɟɣ ɞɥɢɧɟ ɫɜɨɛɨɞɧɨɝɨ ɩɪɨɛɟɝɚ ɦɨɥɟɤɭɥ ɝɚɡɚ, lt. Ɍɟɪɦɨɮɨɪɟɬɢɱɟɫɤɚɹ ɫɢɥɚ ɜɨɡɧɢɤɚɟɬ ɜɫɥɟɞɫɬɜɢɟ ɬɨɝɨ, ɱɬɨ ɨɬ ɛɨɥɟɟ ɧɚɝɪɟɬɨɣ ɫɬɨɪɨɧɵ ɱɚɫɬɢɰɵ ɦɨɥɟɤɭɥɵ ɝɚɡɚ ɨɬɥɟɬɚɸɬ ɫ ɛɨɥɶɲɟɣ ɫɤɨɪɨɫɬɶɸ, ɱɟɦ ɨɬ ɦɟɧɟɟ ɧɚɝɪɟɬɨɣ ɫɬɨɪɨɧɵ, ɢ ɬɚɤɢɦ ɨɛɪɚɡɨɦ ɫɨɨɛɳɚɸɬ ɱɚɫɬɢɰɟ ɢɦɩɭɥɶɫ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɩɨɧɢɠɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ. ȿɫɥɢ dɱ < lt, ɬɟɪɦɨɮɨɪɟɬɢɱɟɫɤɚɹ ɫɢɥɚ Fɬ (ɇ), ɞɟɣɫɬɜɭɸɳɚɹ ɧɚ ɱɚɫɬɢɰɭ, ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɨ ɮɨɪɦɭɥɟ: Fɬ = - dɱ pɝ lt 'Tɝ/Tɝ, (2.66) ɝɞɟ ɪɝ - ɚɛɫɨɥɸɬɧɨɟ ɞɚɜɥɟɧɢɟ ɝɚɡɨɜ, ɉɚ; 'Tɝ - ɝɪɚɞɢɟɧɬ ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɝɚɡɚɯ, Ʉ/ɦ; Tɝ – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɝɚɡɚ, Ʉ. ɉɪɢ ɧɚɡɜɚɧɧɵɯ ɜɵɲɟ ɭɫɥɨɜɢɹɯ ɫɤɨɪɨɫɬɶ ɱɚɫɬɢɰ ɩɪɢ ɬɟɪɦɨɮɨɪɟɡɟ ɪɚɜɧɚ: wɱ = 6 P0 'Tɝ/[(8 + S D)Tɝ U0], (2.67) ɝɞɟ D - ɞɨɥɹ ɪɚɫɫɟɹɧɧɵɯ ɱɚɫɬɢɰɟɣ ɦɨɥɟɤɭɥ ɝɚɡɚ; ɞɥɹ ɱɚɫɬɢɰ ɧɟɩɪɚɜɢɥɶɧɨɣ ɮɨɪɦɵ ɢ ɫ ɨɱɟɧɶ ɝɥɚɞɤɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ (ɚɦɨɪɮɧɵɟ ɢ ɠɢɞɤɢɟ) D | 0,9; ɞɥɹ ɱɚɫɬɢɰ, ɨɛɪɚɡɨɜɚɧɧɵɯ ɦɟɯɚɧɢɱɟɫɤɢɦ ɩɭɬɟɦ ɢ ɫ ɨɫɬɪɵɦɢ ɭɝɥɚɦɢ, D | 1,0. Ʉɚɤ ɜɢɞɧɨ ɢɡ ɮɨɪɦɭɥɵ (2.67.), ɫɤɨɪɨɫɬɶ ɱɚɫɬɢɰ ɩɪɢ ɬɟɪɦɨɮɨɪɟɡɟ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ. Ɍɟɪɦɨɮɨɪɟɡ ɧɟ ɢɦɟɟɬ ɩɪɢɦɟɧɟɧɢɹ ɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɰɟɥɹɯ. Ɉɞɧɚɤɨ ɞɟɣɫɬɜɢɟ ɬɟɪɦɨɮɨɪɟɡɚ ɦɵ ɧɚɛɥɸɞɚɟɦ ɧɚ ɩɪɚɤɬɢɤɟ. Ɍɚɤ, ɩɪɨɢɫɯɨɞɢɬ ɨɫɚɠɞɟɧɢɟ ɩɵɥɢ ɧɚ ɧɚɪɭɠɧɵɯ ɫɬɟɧɚɯ ɩɪɨɬɢɜ ɩɪɢɛɨɪɨɜ ɰɟɧɬɪɚɥɶɧɨɝɨ ɨɬɨɩɥɟɧɢɹ. ɇɟɠɟɥɚɬɟɥɶɧɵɦ ɹɜɥɹɟɬɫɹ ɨɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ, ɜɡɜɟɲɟɧɧɵɯ ɜ ɝɨɪɹɱɢɯ ɝɚɡɚɯ, ɧɚ ɯɨɥɨɞɧɵɯ ɫɬɟɧɤɚɯ ɤɨɬɥɨɜ ɢ ɬɟɩɥɨɨɛɦɟɧɧɢɤɨɜ. Ɉɛɪɚɡɨɜɚɜɲɢɣɫɹ ɫɥɨɣ ɨɛɥɚɞɚɟɬ ɧɢɡɤɨɣ ɬɟɩɥɨɩɪɨɜɨɞɧɨɫɬɶɸ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɭɯɭɞɲɟɧɢɸ ɬɟɩɥɨɬɟɯɧɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɚɩɩɚɪɚɬɨɜ. ɑɚɫɬɧɵɦ ɫɥɭɱɚɟɦ ɬɟɪɦɨɮɨɪɟɡɚ ɹɜɥɹɟɬɫɹ ɮɨɬɨɮɨɪɟɡ, ɤɨɬɨɪɵɣ ɜɨɡɧɢɤɚɟɬ ɜɫɥɟɞɫɬɜɢɟ ɧɟɪɚɜɧɨɦɟɪɧɨɝɨ ɨɫɜɟɳɟɧɢɹ ɫɬɨɪɨɧ ɬɟɥ, ɚ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɢɯ ɧɚɝɪɟɜɚ. Ɋɚɡɞɟɥ 3. Ɉɱɢɫɬɤɚ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ Ɇɧɨɝɢɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɧɚ ɩɪɟɞɩɪɢɹɬɢɹɯ ɦɟɬɚɥɥɭɪɝɢɱɟɫɤɨɣ, ɯɢɦɢɱɟɫɤɨɣ, ɧɟɮɬɟɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɜ ɪɹɞɟ ɰɟɯɨɜ ɦɚɲɢɧɨɫɬɪɨɢɬɟɥɶɧɵɯ ɡɚɜɨɞɨɜ, ɧɚ ɦɧɨɝɢɯ ɞɪɭɝɢɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɩɨɫɬɭɩɥɟɧɢɟɦ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ ɜ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ. Ⱥɤɬɢɜɧɵɦ ɡɚɝɪɹɡɧɢɬɟɥɟɦ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɹɜɥɹɟɬɫɹ ɬɪɚɧɫɩɨɪɬ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɚɜɬɨɦɨɛɢɥɶɧɵɣ. Ƚɚɡɨɜɵɟ ɡɚɝɪɹɡɧɟɧɢɹ, ɤɚɤ ɢ ɚɷɪɨɡɨɥɶɧɵɟ, ɡɚɝɪɹɡɧɹɹ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ, ɡɧɚɱɢɬɟɥɶɧɨ ɭɯɭɞɲɚɸɬ ɟɝɨ ɤɚɱɟɫɬɜɨ, ɚ ɜ ɪɹɞɟ ɫɥɭɱɚɟɜ ɞɟɥɚɸɬ ɟɝɨ ɧɟɩɪɢɝɨɞɧɵɦ ɞɥɹ ɧɚɯɨɠɞɟɧɢɹ ɜ ɧɟɦ ɥɸɞɟɣ. ɋɚɧɢɬɚɪɧɵɟ ɧɨɪɦɵ ɨɝɪɚɧɢɱɢɜɚɸɬ ɤɨɧɰɟɧɬɪɚɰɢɸ ɜɪɟɞɧɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ ɜ ɜɨɡɞɭɯɟ ɧɚɫɟɥɟɧɧɵɯ ɩɭɧɤɬɨɜ, ɨɞɧɚɤɨ ɷɬɢ ɬɪɟɛɨɜɚɧɢɹ ɧɟ ɜɫɟɝɞɚ ɫɨɛɥɸɞɚɸɬɫɹ. ɗɬɨ ɧɚɧɨɫɢɬ ɡɧɚɱɢɬɟɥɶɧɵɣ ɭɳɟɪɛ ɡɞɨɪɨɜɶɸ ɥɸɞɟɣ, ɩɪɨɠɢɜɚɸɳɢɯ ɜ ɦɟɫɬɧɨɫɬɹɯ, ɩɨɞɜɟɪɠɟɧɧɵɯ ɜɨɡɞɟɣɫɬɜɢɸ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ, ɜɟɞɟɧɢɸ ɫɟɥɶɫɤɨɝɨ ɯɨɡɹɣɫɬɜɚ ɜ ɞɚɧɧɨɦ ɪɚɣɨɧɟ, ɨɪɝɚɧɢɡɚɰɢɢ ɨɬɞɵɯɚ ɥɸɞɟɣ, ɩɪɢɜɨɞɢɬ ɤ ɩɨɜɪɟɠɞɟɧɢɸ ɚɪɯɢɬɟɤɬɭɪɧɵɯ ɫɨɨɪɭɠɟɧɢɣ, ɩɚɦɹɬɧɢɤɨɜ ɢɫɬɨɪɢɢ ɢ ɤɭɥɶɬɭɪɵ ɢ ɬ.ɞ. Ⱦɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɢɡɛɟɠɚɬɶ ɷɬɢɯ ɬɹɠɟɥɵɯ ɩɨɫɥɟɞɫɬɜɢɣ ɢ ɩɨɞɞɟɪɠɢɜɚɬɶ ɤɚɱɟɫɬɜɨ ɜɨɡɞɭɯɚ ɧɚ ɭɪɨɜɧɟ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɦ ɫɚɧɢɬɚɪɧɵɦ ɬɪɟɛɨɜɚɧɢɹɦ, ɜɵɛɪɨɫɵ ɜ ɚɬɦɨɫɮɟɪɭ ɞɨɥɠɧɵ ɨɱɢɳɚɬɶɫɹ ɧɟ ɬɨɥɶɤɨ ɨɬ ɚɷɪɨɡɨɥɶɧɵɯ ɡɚɝɪɹɡɧɟɧɢɣ, ɧɨ ɬɚɤɠɟ ɨɬ ɜɪɟɞɧɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ. ȼɵɛɪɨɫ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ ɜ ɚɬɦɨɫɮɟɪɭ ɦɨɠɧɨ ɡɧɚɱɢɬɟɥɶɧɨ ɭɦɟɧɶɲɢɬɶ ɛɥɚɝɨɞɚɪɹ ɨɫɭɳɟɫɬɜɥɟɧɢɸ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɦɟɪɨɩɪɢɹɬɢɣ. ɉɨ ɦɟɪɟ ɪɚɡɜɢɬɢɹ ɬɟɯɧɢɤɢ ɢ ɫɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɩɨɹɜɥɹɸɬɫɹ ɧɨɜɵɟ ɜɢɞɵ ɜɟɳɟɫɬɜ, ɜɵɛɪɚɫɵɜɚɟɦɵɯ ɜ ɚɬɦɨɫɮɟɪɭ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɩɪɨɢɫɯɨɞɢɬ ɦɨɞɟɪɧɢɡɚɰɢɹ ɫɭɳɟɫɬɜɭɸɳɟɝɨ ɢ ɪɚɡɪɚɛɨɬɤɚ ɧɨɜɵɯ ɜɢɞɨɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ, ɜ ɤɨɬɨɪɨɦ ɨɫɭɳɟɫɬɜɥɟɧɚ ɩɨɥɧɚɹ ɝɟɪɦɟɬɢɡɚɰɢɹ, ɚɜɬɨɦɚɬɢɡɚɰɢɹ, ɞɢɫɬɚɧɰɢɨɧɧɨɟ ɭɩɪɚɜɥɟɧɢɟ. ȼɧɟɞɪɹɟɬɫɹ ɛɟɡɨɬɯɨɞɧɚɹ ɬɟɯɧɨɥɨɝɢɹ, ɩɪɢ ɤɨɬɨɪɨɣ ɢɫɤɥɸɱɚɸɬɫɹ ɜɵɛɪɨɫɵ ɜ ɚɬɦɨɫɮɟɪɭ, ɜɨɡɧɢɤɚɸɬ ɧɨɜɵɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ ɨɬ ɜɪɟɞɧɵɯ ɝɚɡɨɜ ɢ ɩɚɪɨɜ, ɪɚɡɪɚɛɚɬɵɜɚɟɬɫɹ ɢ ɩɪɢɦɟɧɹɟɬɫɹ ɧɨɜɨɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɟ ɨɛɨɪɭɞɨɜɚɧɢɟ, ɜ ɫɨɫɬɚɜ ɤɨɬɨɪɨɝɨ ɜɯɨɞɹɬ ɜɫɬɪɨɟɧɧɵɟ ɚɝɪɟɝɚɬɵ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ. ȼɫɟ ɷɬɨ ɜɫɟɥɹɟɬ ɧɚɞɟɠɞɭ, ɱɬɨ ɧɟɞɚɥɟɤɨ ɬɨ ɜɪɟɦɹ, ɤɨɝɞɚ ɩɪɚɤɬɢɱɟɫɤɢ ɜɫɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɫɬɚɧɭɬ ɛɟɡɨɬɯɨɞɧɵɦɢ ɢ ɜɵɛɪɨɫ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ ɩɪɚɤɬɢɱɟɫɤɢ ɩɪɟɤɪɚɬɢɬɫɹ. Ɋɟɲɟɧɢɟ ɩɪɨɛɥɟɦɵ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ ɨɬ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɟɧɢɣ ɬɪɟɛɭɟɬ ɫɩɟɰɢɚɥɶɧɵɯ ɡɧɚɧɢɣ ɪɚɡɥɢɱɧɵɯ ɞɢɫɰɢɩɥɢɧ, ɜ ɩɟɪɜɭɸ ɨɱɟɪɟɞɶ, ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ. ɂɧɠɟɧɟɪ, ɫɩɟɰɢɚɥɢɡɢɪɭɸɳɢɣɫɹ ɜ ɨɛɥɚɫɬɢ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ, ɞɨɥɠɟɧ ɡɧɚɬɶ ɢɫɬɨɱɧɢɤɢ ɜɵɞɟɥɟɧɢɹ ɩɚɪɨɜ ɢ ɝɚɡɨɜ, ɫɜɨɣɫɬɜɚ ɷɬɢɯ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ, ɯɚɪɚɤɬɟɪ ɢɯ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ, ɩɪɢɪɨɞɧɭɸ ɫɪɟɞɭ, ɞɪɭɝɢɟ ɨɛɴɟɤɬɵ ɢ ɬ. ɞ. Ɉɧ ɞɨɥɠɟɧ ɡɧɚɬɶ ɨɫɧɨɜɧɵɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɯ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɟɧɢɣ, ɢɯ ɬɟɯɧɢɤɨ- ɷɤɨɧɨɦɢɱɟɫɤɢɟ ɩɨɤɚɡɚɬɟɥɢ, ɪɟɚɥɶɧɵɟ ɜɨɡɦɨɠɧɨɫɬɢ ɢ ɩɟɪɫɩɟɤɬɢɜɵ ɜ ɞɚɧɧɨɣ ɨɛɥɚɫɬɢ. ɉɪɢ ɨɱɢɫɬɤɟ ɜɵɛɪɨɫɨɜ ɨɬ ɝɚɡɨɜɵɯ ɡɚɝɪɹɡɧɟɧɢɣ ɩɪɢɯɨɞɢɬɫɹ ɪɟɲɚɬɶ ɨɞɧɨɜɪɟɦɟɧɧɨ ɪɹɞ ɩɪɨɛɥɟɦ, ɫɜɹɡɚɧɧɵɯ ɫ ɬɟɦ, ɱɬɨ ɜ ɜɵɛɪɨɫɚɯ, ɫɨɞɟɪɠɚɳɢɯ ɜɪɟɞɧɵɟ ɩɚɪɵ ɢ ɝɚɡɵ, ɧɚɯɨɞɹɬɫɹ ɬɚɤɠɟ ɚɷɪɨɡɨɥɢ — ɩɵɥɶ, ɫɚɠɚ; ɜɵɛɪɨɫɵ ɜ ɪɹɞɟ ɫɥɭɱɚɟɜ ɧɚɝɪɟɬɵ ɞɨ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪ, ɡɚɝɪɹɡɧɟɧɢɹ, ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɧɢɯ, ɦɧɨɝɨɤɨɦɩɨɧɟɧɬɧɵ, ɢ ɢɯ ɧɟɨɛɯɨɞɢɦɨ ɩɨɞɜɟɪɝɚɬɶ ɪɚɡɥɢɱɧɵɦ ɦɟɬɨɞɚɦ ɨɱɢɫɬɤɢ, ɪɚɫɯɨɞ ɜɵɛɪɨɫɨɜ ɩɨ ɜɪɟɦɟɧɢ ɧɟɩɨɫɬɨɹɧɟɧ, ɢɡɦɟɧɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɧɢɯ ɪɚɡɥɢɱɧɵɯ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɢ ɬ. ɞ. ȼɫɟ ɷɬɨ, ɤɨɧɟɱɧɨ, ɨɫɥɨɠɧɹɟɬ ɨɱɢɫɬɤɭ, ɬɪɟɛɭɟɬ ɩɪɢɧɹɬɢɹ ɜ ɤɚɠɞɨɦ ɨɬɞɟɥɶɧɨɦ ɫɥɭɱɚɟ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɪɟɲɟɧɢɣ. 3.1. Ⱥɛɫɨɪɛɰɢɹ ɝɚɡɨɜɵɯ ɩɪɢɦɟɫɟɣ ɇɟɤɨɬɨɪɵɟ ɠɢɞɤɨɫɬɢ ɢ ɬɜɟɪɞɵɟ ɜɟɳɟɫɬɜɚ ɩɪɢ ɤɨɧɬɚɤɬɟ ɫ ɦɧɨɝɨɤɨɦɩɨɧɟɧɬɧɨɣ ɝɚɡɨɜɨɣ ɫɪɟɞɨɣ ɫɩɨɫɨɛɧɵ ɢɡɛɢɪɚɬɟɥɶɧɨ ɢɡɜɥɟɤɚɬɶ ɢɡ ɧɟɟ ɨɬɞɟɥɶɧɵɟ ɢɧɝɪɟɞɢɟɧɬɵ ɢ ɩɨɝɥɨɳɚɬɶ (ɫɨɪɛɢɪɨɜɚɬɶ) ɢɯ. Ⱥɛɫɨɪɛɰɢɟɣ ɧɚɡɵɜɚɟɬɫɹ ɩɟɪɟɧɨɫ ɤɨɦɩɨɧɟɧɬɨɜ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɜ ɨɛɴɟɦ ɫɨɩɪɢɤɚɫɚɸɳɟɣɫɹ ɫ ɧɟɣ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ɮɚɡɵ. ɉɪɢ ɚɛɫɨɪɛɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɢɡɛɢɪɚɬɟɥɶɧɨɟ ɩɨɝɥɨɳɟɧɢɟ ɨɞɧɨɝɨ ɢɥɢ ɧɟɫɤɨɥɶɤɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɢɡ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɠɢɞɤɢɦɢ ɩɨɝɥɨɬɢɬɟɥɹɦɢ. Ɉɛɪɚɬɧɵɣ ɩɪɨɰɟɫɫ, ɬ.ɟ. ɭɞɚɥɟɧɢɟ ɢɡ ɨɛɴɟɦɚ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɩɨɝɥɨɳɟɧɧɵɯ ɦɨɥɟɤɭɥ ɝɚɡɚ, ɧɚɡɵɜɚɟɬɫɹ ɞɟɝɚɡɚɰɢɟɣ ɢɥɢ ɞɟ(ɚɛ)ɫɨɪɛɰɢɟɣ. ȼɟɳɟɫɬɜɨ, ɤɨɬɨɪɨɟ ɫɨɞɟɪɠɢɬɫɹ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɢ ɩɪɢ ɚɛɫɨɪɛɰɢɢ ɧɟ ɩɟɪɟɯɨɞɢɬ ɜ ɠɢɞɤɭɸ ɮɚɡɭ, ɧɚɡɵɜɚɸɬ ɝɚɡɨɦ-ɧɨɫɢɬɟɥɟɦ, ɜɟɳɟɫɬɜɨ, ɜ ɤɨɬɨɪɨɦ ɩɪɨɢɫɯɨɞɢɬ ɪɚɫɬɜɨɪɟɧɢɟ ɚɛɫɨɪɛɢɪɭɟɦɵɯ ɤɨɦɩɨɧɟɧɬɨɜ, ɧɚɡɵɜɚɸɬ ɪɚɫɬɜɨɪɢɬɟɥɟɦ (ɩɨɝɥɨɬɢɬɟɥɟɦ ɢɥɢ ɚɛɫɨɪɛɟɧɬɨɦ), ɜɟɳɟɫɬɜɨ, ɤɨɬɨɪɨɟ ɫɨɞɟɪɠɢɬɫɹ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɢ ɩɪɢ ɚɛɫɨɪɛɰɢɢ ɩɟɪɟɯɨɞɢɬ ɜ ɠɢɞɤɭɸ ɮɚɡɭ, ɬ.ɟ. ɩɨɝɥɨɳɚɟɦɵɣ ɤɨɦɩɨɧɟɧɬ, ɧɚɡɵɜɚɸɬ ɚɛɫɨɪɛɬɢɜɨɦ, ɩɨɝɥɨɳɚɟɦɨɟ ɜɟɳɟɫɬɜɨ ɜ ɨɛɴɟɦɟ ɩɨɝɥɨɬɢɬɟɥɹ – ɚɛɫɨɪɛɚɬɨɦ. Ⱥɛɫɨɪɛɚɬ ɭɞɟɪɠɢɜɚɸɬɫɹ ɜ ɚɛɫɨɪɛɟɧɬɟ, ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɹɹɫɶ ɫɪɟɞɢ ɟɝɨ ɦɨɥɟɤɭɥ, ɜɫɥɟɞɫɬɜɢɟ ɪɚɫɬɜɨɪɟɧɢɹ ɢɥɢ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ. ɉɪɨɰɟɫɫ, ɡɚɜɟɪɲɚɸɳɢɣɫɹ ɪɚɫɬɜɨɪɟɧɢɟɦ ɚɛɫɨɪɛɚɬɚ ɜ ɩɨɝɥɨɬɢɬɟɥɟ, ɧɚɡɵɜɚɸɬ ɮɢɡɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɟɣ. ɉɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɮɢɡɢɱɟɫɤɨɟ ɪɚɫɬɜɨɪɟɧɢɟ ɚɛɫɨɪɛɢɪɭɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɪɚɫɬɜɨɪɢɬɟɥɟ, ɩɪɢ ɷɬɨɦ ɦɨɥɟɤɭɥɵ ɚɛɫɨɪɛɟɧɬɚ ɢ ɦɨɥɟɤɭɥɵ ɚɛɫɨɪɛɬɢɜɚ ɧɟ ɜɫɬɭɩɚɸɬ ɦɟɠɞɭ ɫɨɛɨɣ ɜ ɯɢɦɢɱɟɫɤɨɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ. ɂɧɨɝɞɚ ɪɚɫɬɜɨɪɹɸɳɢɣɫɹ ɝɚɡ ɜɫɬɭɩɚɟɬ ɜ ɯɢɦɢɱɟɫɤɭɸ ɪɟɚɤɰɢɸ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɫ ɫɚɦɢɦ ɪɚɫɬɜɨɪɢɬɟɥɟɦ. ɉɪɨɰɟɫɫ, ɫɨɩɪɨɜɨɠɞɚɸɳɢɣɫɹ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɟɣ ɦɟɠɞɭ ɩɨɝɥɨɳɚɟɦɵɦ ɤɨɦɩɨɧɟɧɬɨɦ ɢ ɚɛɫɨɪɛɟɧɬɨɦ, ɧɚɡɵɜɚɸɬ ɯɢɦɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɟɣ (ɜ ɞɚɥɶɧɟɣɲɟɦ - ɯɟɦɨɫɨɪɛɰɢɹ). ɉɪɢ ɯɟɦɨɫɨɪɛɰɢɢ ɚɛɫɨɪɛɢɪɭɟɦɵɣ ɤɨɦɩɨɧɟɧɬ ɜɫɬɭɩɚɟɬ ɜ ɯɢɦɢɱɟɫɤɭɸ ɪɟɚɤɰɢɸ ɫ ɩɨɝɥɨɬɢɬɟɥɟɦ, ɨɛɪɚɡɭɹ ɧɨɜɵɟ ɯɢɦɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ ɜ ɠɢɞɤɨɣ ɮɚɡɟ. Ⱥɛɫɨɪɛɰɢɹ ɩɪɟɞɫɬɚɜɥɹɟɬ ɩɪɨɰɟɫɫ ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ, ɜɤɥɸɱɚɸɳɟɣ ɦɚɫɫɨɩɟɪɟɧɨɫ ɦɟɠɞɭ ɝɚɡɨɨɛɪɚɡɧɵɦ ɤɨɦɩɨɧɟɧɬɨɦ ɢ ɠɢɞɤɢɦ ɪɚɫɬɜɨɪɢɬɟɥɟɦ, ɨɫɭɳɟɫɬɜɥɹɟɦɵɣ ɜ ɚɩɩɚɪɚɬɟ ɞɥɹ ɤɨɧɬɚɤɬɢɪɨɜɚɧɢɹ ɝɚɡɚ ɫ ɠɢɞɤɨɫɬɶɸ. Ⱥɩɩɚɪɚɬɵ, ɜ ɤɨɬɨɪɵɯ ɨɫɭɳɟɫɬɜɥɹɸɬ ɩɪɨɰɟɫɫ ɚɛɫɨɪɛɰɢɢ, ɧɚɡɵɜɚɸɬ ɚɛɫɨɪɛɟɪɵ. ɋɤɨɪɨɫɬɶ ɚɛɫɨɪɛɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɪɹɞɚ ɮɚɤɬɨɪɨɜ, ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ, ɞɚɜɥɟɧɢɹ ɢ ɬɟɦɩɟɪɚɬɭɪɵ. ɋ ɪɨɫɬɨɦ ɞɚɜɥɟɧɢɹ ɢ ɬɟɦɩɟɪɚɬɭɪɵ ɫɤɨɪɨɫɬɶ ɚɛɫɨɪɛɰɢɢ ɩɨɜɵɲɚɟɬɫɹ. ɉɪɨɰɟɫɫ, ɨɛɪɚɬɧɵɣ ɚɛɫɨɪɛɰɢɢ, ɧɚɡɵɜɚɟɬɫɹ ɞɟɫɨɪɛɰɢɟɣ. ȿɫɥɢ ɢɡɦɟɧɹɸɬɫɹ ɭɫɥɨɜɢɹ, ɧɚɩɪɢɦɟɪ, ɩɪɨɢɫɯɨɞɢɬ ɩɨɧɢɠɟɧɢɟ ɞɚɜɥɟɧɢɹ ɧɚɞ ɠɢɞɤɨɫɬɶɸ ɢɥɢ ɫɧɢɠɚɟɬɫɹ ɬɟɦɩɟɪɚɬɭɪɚ, ɩɪɨɰɟɫɫ ɫɬɚɧɨɜɢɬɫɹ ɨɛɪɚɬɢɦɵɦ ɢ ɩɪɨɢɫɯɨɞɢɬ ɜɵɞɟɥɟɧɢɟ ɝɚɡɚ ɢɡ ɠɢɞɤɨɫɬɢ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɦɨɠɟɬ ɛɵɬɶ ɨɫɭɳɟɫɬɜɥɟɧ ɰɢɤɥɢɱɟɫɤɢɣ ɩɪɨɰɟɫɫ ɚɛɫɨɪɛɰɢɢ-ɞɟɫɨɪɛɰɢɢ. ɗɬɨ ɩɨɡɜɨɥɹɟɬ ɜɵɞɟɥɢɬɶ ɩɨɝɥɨɳɟɧɧɵɣ ɤɨɦɩɨɧɟɧɬ. ɋɨɱɟɬɚɹ ɚɛɫɨɪɛɰɢɸ ɫ ɞɟɫɨɪɛɰɢɟɣ, ɦɨɠɧɨ ɦɧɨɝɨɤɪɚɬɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɩɨɱɬɢ ɛɟɡ ɩɨɬɟɪɶ ɠɢɞɤɢɣ ɩɨɝɥɨɬɢɬɟɥɶ (ɚɛɫɨɪɛɟɧɬ) ɜ ɡɚɦɤɧɭɬɨɦ ɤɨɧɬɭɪɟ ɚɩɩɚɪɚɬɨɜ: ɚɛɫɨɪɛɟɪ-ɞɟɫɨɪɛɟɪ-ɚɛɫɨɪɛɟɪ (ɤɪɭɝɨɜɨɣ ɩɪɨɰɟɫɫ), ɜɵɞɟɥɹɹ ɩɨɝɥɨɳɟɧɧɵɣ ɤɨɦɩɨɧɟɧɬ ɜ ɱɢɫɬɨɦ ɜɢɞɟ. Ⱥɛɫɨɪɛɰɢɨɧɧɭɸ ɨɱɢɫɬɤɭ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɭ ɩɪɢɦɟɧɹɸɬ ɤɚɤ ɞɥɹ ɢɡɜɥɟɱɟɧɢɹ ɰɟɧɧɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɢɡ ɝɚɡɚ, ɬɚɤ ɢ ɞɥɹ ɫɚɧɢɬɚɪɧɨɣ ɨɱɢɫɬɤɢ ɝɚɡɚ. ɋɱɢɬɚɸɬ, ɱɬɨ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɩɪɢɦɟɧɹɬɶ ɚɛɫɨɪɛɰɢɸ, ɟɫɥɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɞɚɧɧɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɦ ɩɨɬɨɤɟ ɫɨɫɬɚɜɥɹɟɬ ɫɜɵɲɟ 1 %. Ⱥɛɫɨɪɛɰɢɹ — ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɣ ɩɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɝɚɡɨɜɵɯ ɫɦɟɫɟɣ ɜɨ ɦɧɨɝɢɯ ɨɬɪɚɫɥɹɯ, ɧɚɩɪɢɦɟɪ, ɜ ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. Ⱥɛɫɨɪɛɰɢɸ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɨɬ ɫɟɪɨɜɨɞɨɪɨɞɚ, ɞɪɭɝɢɯ ɫɟɪɧɢɫɬɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɩɚɪɨɜ ɫɨɥɹɧɨɣ, ɫɟɪɧɨɣ ɤɢɫɥɨɬ, ɰɢɚɧɢɫɬɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ (ɮɟɧɨɥɚ, ɮɨɪɦɚɥɶɞɟɝɢɞɚ ɢ ɞɪ.). Ⱦɥɹ ɛɨɥɟɟ ɩɨɥɧɨɝɨ ɢɡɜɥɟɱɟɧɢɹ ɤɨɦɩɨɧɟɧɬɚ ɢɡ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɩɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɢ ɧɟɨɛɯɨɞɢɦɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɩɪɢɧɰɢɩ ɩɪɨɬɢɜɨɬɨɤɚ ɫ ɧɟɩɪɟɪɵɜɧɨɣ ɩɨɞɚɱɟɣ ɜ ɚɛɫɨɪɛɟɪ ɫɜɟɠɟɝɨ ɪɚɫɬɜɨɪɚ. Ⱦɥɹ ɦɧɨɝɨɤɪɚɬɧɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɩɨɝɥɨɬɢɬɟɥɶ ɩɨɞɜɟɪɝɚɸɬ ɪɟɝɟɧɟɪɚɰɢɢ, ɩɪɢ ɷɬɨɦ ɢɡ ɧɟɝɨ ɢɡɜɥɟɤɚɸɬ ɚɛɫɨɪɛɬɢɜ, ɤɨɬɨɪɵɣ ɪɟɚɥɢɡɭɸɬ ɜ ɜɢɞɟ ɫɵɪɶɹ ɞɥɹ ɞɪɭɝɢɯ ɩɪɨɰɟɫɫɨɜ ɢɥɢ ɰɟɥɟɜɨɝɨ ɬɨɜɚɪɧɨɝɨ ɩɪɨɞɭɤɬɚ. ȿɫɥɢ ɢɡɜɥɟɤɚɟɦɵɣ ɤɨɦɩɨɧɟɧɬ ɧɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɰɟɧɧɨɫɬɢ ɢɥɢ ɩɪɨɰɟɫɫ ɪɟɝɟɧɟɪɚɰɢɢ ɫɜɹɡɚɧ ɫ ɛɨɥɶɲɢɦɢ ɬɪɭɞɧɨɫɬɹɦɢ, ɬɨ ɩɨɝɥɨɬɢɬɟɥɶ ɢɫɩɨɥɶɡɭɸɬ ɨɞɧɨɤɪɚɬɧɨ ɢ ɩɨɫɥɟ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɨɛɪɚɛɨɬɤɢ ɫɥɢɜɚɸɬ ɜ ɤɚɧɚɥɢɡɚɰɢɸ. ɋɯɟɦɚ ɚɛɫɨɪɛɰɢɨɧɧɨɣ ɭɫɬɚɧɨɜɤɢ ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ.3.1. Ɋɢɫ. 3.1. ɋɯɟɦɚ ɚɛɫɨɪɛɰɢɨɧɧɨɣ ɭɫɬɚɧɨɜɤɢ: 1 - ɜɟɧɬɢɥɹɬɨɪ (ɝɚɡɨɞɭɜɤɚ); 2 - ɚɛɫɨɪɛɟɪ; 3 - ɛɪɵɡɝɨɨɬɛɨɣɧɢɤ; 4,6 - ɨɪɨɫɢɬɟɥɢ; 5 - ɯɨɥɨɞɢɥɶɧɢɤ; 7 - ɞɟɫɨɪɛɟɪ; 8 - ɤɭɛ ɞɟɫɨɪɛɟɪɚ; 9,13 - ɺɦɤɨɫɬɶ ɞɥɹ ɚɛɫɨɪɛɟɧɬɚ; 10,12 - ɧɚɫɨɫɵ; 11 - ɬɟɩɥɨɨɛɦɟɧɧɢɤɪɟɤɭɩɟɪɚɬɨɪ Ⱥɛɫɨɪɛɰɢɨɧɧɚɹ ɫɢɫɬɟɦɚ ɦɨɠɟɬ ɛɵɬɶ ɩɪɨɫɬɨɣ, ɜ ɤɨɬɨɪɨɣ ɠɢɞɤɨɫɬɶ ɩɪɢɦɟɧɹɟɬɫɹ ɬɨɥɶɤɨ ɨɞɢɧ ɪɚɡ ɢ ɭɞɚɥɹɟɬɫɹ ɢɡ ɫɢɫɬɟɦɵ ɛɟɡ ɨɬɞɟɥɟɧɢɹ ɚɛɫɨɪɛɢɪɨɜɚɧɧɨɝɨ ɡɚɝɪɹɡɧɟɧɢɹ. ȼ ɞɪɭɝɨɦ ɜɚɪɢɚɧɬɟ ɡɚɝɪɹɡɧɟɧɢɟ ɨɬɞɟɥɹɸɬ ɨɬ ɚɛɫɨɪɛɢɪɭɸɳɟɣ ɠɢɞɤɨɫɬɢ, ɜɵɞɟɥɹɹ ɟɺ ɜ ɱɢɫɬɨɦ ɜɢɞɟ. Ɂɚɬɟɦ ɚɛɫɨɪɛɟɧɬ ɜɧɨɜɶ ɩɨɞɚɸɬ ɧɚ ɫɬɚɞɢɸ ɚɛɫɨɪɛɰɢɢ, ɫɧɨɜɚ ɪɟɝɟɧɟɪɢɪɭɸɬ ɢ ɜɨɡɜɪɚɳɚɸɬ ɜ ɫɢɫɬɟɦɭ. Ɋɟɝɟɧɟɪɚɰɢɸ ɩɨɝɥɨɬɢɬɟɥɟɣ ɩɪɨɜɨɞɹɬ ɮɢɡɢɱɟɫɤɢɦɢ ɦɟɬɨɞɚɦɢ: ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ, ɫɧɢɠɟɧɢɟɦ ɞɚɜɥɟɧɢɹ ɥɢɛɨ ɫɨɱɟɬɚɧɢɟɦ ɭɤɚɡɚɧɧɵɯ ɩɚɪɚɦɟɬɪɨɜ. ɉɨɦɢɦɨ ɪɟɝɟɧɟɪɚɰɢɢ ɚɛɫɨɪɛɟɧɬɚ ɫ ɩɨɦɨɳɶɸ ɜɵɩɚɪɢɜɚɧɢɹ (ɞɟɫɨɪɛɰɢɢ) ɜɨɡɦɨɠɧɨ ɭɞɚɥɟɧɢɟ ɚɛɫɨɪɛɢɪɨɜɚɧɧɵɯ ɡɚɝɪɹɡɧɟɧɢɣ ɩɭɬɺɦ ɨɫɚɠɞɟɧɢɹ ɢ ɨɬɫɬɚɢɜɚɧɢɹ, ɩɭɬɺɦ ɢɯ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɡɪɭɲɟɧɢɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɧɟɣɬɪɚɥɢɡɚɰɢɢ, ɨɤɢɫɥɟɧɢɹ, ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ ɢɥɢ ɝɢɞɪɨɥɢɡɚ, ɚ ɬɚɤɠɟ ɷɤɫɬɪɚɤɰɢɟɣ, ɠɢɞɤɨɫɬɧɨɣ ɚɞɫɨɪɛɰɢɟɣ ɢ ɞɪɭɝɢɦɢ ɦɟɬɨɞɚɦɢ. 3.1.1. Ɋɚɫɬɜɨɪɵ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɹɯ Ɋɚɫɬɜɨɪɟɧɢɟ ɝɚɡɚ ɜ ɠɢɞɤɨɫɬɢ ɧɚɡɵɜɚɸɬ ɚɛɫɨɪɛɰɢɟɣ ɝɚɡɚ ɠɢɞɤɨɫɬɶɸ. ɉɨ ɫɜɨɟɣ ɩɪɢɪɨɞɟ ɢ ɫɜɨɣɫɬɜɚɦ ɪɚɫɬɜɨɪɵ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɢ ɧɢɱɟɦ ɧɟ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɞɪɭɝɢɯ ɠɢɞɤɢɯ ɪɚɫɬɜɨɪɨɜ. Ɉɛɵɱɧɨ ɤɨɧɰɟɧɬɪɚɰɢɢ ɝɚɡɨɜ ɜ ɧɢɯ ɧɟɡɧɚɱɢɬɟɥɶɧɵ, ɢ ɪɚɫɬɜɨɪɵ ɹɜɥɹɸɬɫɹ ɪɚɡɛɚɜɥɟɧɧɵɦɢ. ɂɫɤɥɸɱɟɧɢɟ ɫɨɫɬɚɜɥɹɸɬ ɫɢɫɬɟɦɵ, ɜ ɤɨɬɨɪɵɯ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɨɜ ɜɟɫɶɦɚ ɡɧɚɱɢɬɟɥɶɧɚ ɜɫɥɟɞɫɬɜɢɟ ɢɯ ɯɢɦɢɱɟɫɤɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɫ ɪɚɫɬɜɨɪɢɬɟɥɟɦ, ɧɚɩɪɢɦɟɪ ɚɦɦɢɚɤɚ ɢɥɢ ɯɥɨɪɢɫɬɨɝɨ ɜɨɞɨɪɨɞɚ ɫ ɜɨɞɨɣ. Ɋɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɨɜ, ɩɨɦɢɦɨ ɜɢɞɚ ɝɚɡɚ ɢ ɪɚɫɬɜɨɪɢɬɟɥɹ, ɜ ɛɨɥɶɲɨɣ ɫɬɟɩɟɧɢ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɢ ɞɚɜɥɟɧɢɹ. ȼɥɢɹɧɢɟ ɞɚɜɥɟɧɢɹ ɩɪɢ ɧɟ ɫɥɢɲɤɨɦ ɜɵɫɨɤɢɯ ɟɝɨ ɡɧɚɱɟɧɢɹɯ ɞɨɫɬɚɬɨɱɧɨ ɯɨɪɨɲɨ ɜɵɪɚɠɚɟɬɫɹ ɡɚɤɨɧɨɦ Ƚɟɧɪɢ: ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɚ ɜ ɪɚɫɬɜɨɪɢɬɟɥɟ ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɞɚɜɥɟɧɢɸ ɷɬɨɝɨ ɝɚɡɚ ɧɚɞ ɪɚɫɬɜɨɪɨɦ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɪɚɫɬɜɨɪɟɧɢɟ ɝɚɡɨɜ ɜ ɜɨɞɟ ɩɪɨɢɫɯɨɞɢɬ ɫ ɜɵɞɟɥɟɧɢɟɦ ɬɟɩɥɚ ɢ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɨɛɴɟɦɚ, ɩɨɷɬɨɦɭ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɩɪɢɧɰɢɩɨɦ Ʌɟ ɒɚɬɟɥɶɟ ɩɪɢ ɩɨɜɵɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɢɯ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɫɧɢɠɚɟɬɫɹ. ɗɬɨ ɢɥɥɸɫɬɪɢɪɭɸɬ ɞɚɧɧɵɟ (ɬɚɛɥ. 3.1) ɩɨ ɫɨɞɟɪɠɚɧɢɸ (ɜ ɧɨɪɦɚɥɶɧɵɯ ɥɢɬɪɚɯ) ɧɟɤɨɬɨɪɵɯ ɝɚɡɨɜ ɜ 1 ɥ ɜɨɞɵ ɩɪɢ 760 ɦɦ ɪɬ. ɫɬ.: Ɍɚɛɥɢɰɚ 3.1 ɋɨɞɟɪɠɚɧɢɟ ɝɚɡɨɜ ɜ 1 ɥ ɜɨɞɵ Ƚɚɡ ɇ2 0°C 0,021 20°C 0,018 60°C 0,016 100°C 0,016 ɋɈ2 NH3 1,713 1176 0,88 702 0,36 - - Ɉɞɧɚɤɨ ɜ ɧɟɤɨɬɨɪɵɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɪɚɫɬɜɨɪɟɧɢɟ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɧɟ ɜɵɞɟɥɟɧɢɟɦ, ɚ ɩɨɝɥɨɳɟɧɢɟɦ ɬɟɩɥɚ, ɜɨɡɪɚɫɬɚɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɪɢɜɨɞɢɬ ɤ ɭɜɟɥɢɱɟɧɢɸ ɪɚɫɬɜɨɪɢɦɨɫɬɢ ɝɚɡɚ. əɜɥɟɧɢɟ ɪɚɫɬɜɨɪɟɧɢɹ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɪɚɡɥɢɱɧɵɯ ɩɪɨɰɟɫɫɚɯ, ɜ ɱɚɫɬɧɨɫɬɢ ɜ ɚɛɫɨɪɛɰɢɨɧɧɵɯ ɦɟɬɨɞɚɯ ɨɱɢɫɬɤɢ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɪɨɢɡɜɨɞɫɬɜ, ɩɪɢ ɫɚɬɭɪɚɰɢɢ ɢ ɞɥɹ ɢɡɜɥɟɱɟɧɢɹ ɨɬɞɟɥɶɧɵɯ ɱɚɫɬɟɣ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɠɢɞɤɢɦɢ ɩɨɝɥɨɬɢɬɟɥɹɦɢ (ɠɢɞɤɨɫɬɧɚɹ ɯɪɨɦɚɬɨɝɪɚɮɢɹ). ɉɪɢɦɟɧɟɧɢɟ ɚɛɫɨɪɛɰɢɢ ɨɫɨɛɟɧɧɨ ɷɮɮɟɤɬɢɜɧɨ ɩɪɢ ɡɧɚɱɢɬɟɥɶɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. Ɉɞɧɚɤɨ ɜɨɡɦɨɠɧɨ ɩɪɢɦɟɧɟɧɢɟ ɪɚɫɬɜɨɪɢɬɟɥɟɣ ɢ ɩɪɢ ɜɟɫɶɦɚ ɧɢɡɤɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ, ɤɨɝɞɚ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɚ ɜ ɠɢɞɤɨɫɬɢ ɨɱɟɧɶ ɜɵɫɨɤɚ. ɇɚɢɛɨɥɟɟ ɱɚɫɬɨ ɜ ɤɚɱɟɫɬɜɟ ɪɚɫɬɜɨɪɢɬɟɥɹ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜɨɞɚ. Ⱦɥɹ ɩɨɝɥɨɳɟɧɢɹ ɝɚɡɨɜ, ɩɥɨɯɨ ɪɚɫɬɜɨɪɢɦɵɯ ɜ ɜɨɞɟ, ɦɨɠɧɨ ɩɪɢɦɟɧɹɬɶ ɦɚɥɨɥɟɬɭɱɢɟ ɪɚɫɬɜɨɪɢɬɟɥɢ ɫ ɧɢɡɤɢɦ ɞɚɜɥɟɧɢɟɦ ɩɚɪɚ, ɧɚɩɪɢɦɟɪ, ɭɝɥɟɜɨɞɨɪɨɞɵ. ȼ ɤɚɱɟɫɬɜɟ ɚɛɫɨɪɛɟɧɬɚ ɦɨɠɧɨ ɜ ɩɪɢɧɰɢɩɟ ɢɫɩɨɥɶɡɨɜɚɬɶ ɥɸɛɭɸ ɠɢɞɤɨɫɬɶ, ɤɨɬɨɪɚɹ ɪɚɫɬɜɨɪɹɟɬ ɢɡɜɥɟɤɚɟɦɵɣ ɤɨɦɩɨɧɟɧɬ. ɇɨ ɞɥɹ ɩɪɢɦɟɧɟɧɢɹ ɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɦɚɫɲɬɚɛɚɯ ɚɛɫɨɪɛɟɧɬ ɞɨɥɠɟɧ ɨɬɜɟɱɚɬɶ ɪɹɞɭ ɬɪɟɛɨɜɚɧɢɣ, ɫɪɟɞɢ ɧɢɯ: ɧɟɨɛɯɨɞɢɦɚɹ ɩɨɝɥɨɬɢɬɟɥɶɧɚɹ ɫɩɨɫɨɛɧɨɫɬɶ (ɚɛɫɨɪɛɰɢɨɧɧɚɹ ɺɦɤɨɫɬɶ), ɜɵɫɨɤɚɹ ɫɟɥɟɤɬɢɜɧɨɫɬɶ (ɢɡɛɢɪɚɬɟɥɶɧɨɫɬɶ) ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɩɨɝɥɨɳɚɟɦɨɦɭ ɤɨɦɩɨɧɟɧɬɭ, ɧɟɜɵɫɨɤɚɹ ɥɟɬɭɱɟɫɬɶ, ɧɟɛɨɥɶɲɚɹ ɜɹɡɤɨɫɬɶ, ɫɩɨɫɨɛɧɨɫɬɶ ɤ ɪɟɝɟɧɟɪɚɰɢɢ, ɛɵɬɶ ɬɟɪɦɨɯɢɦɢɱɟɫɤɢ ɭɫɬɨɣɱɢɜɵɦɢ, ɧɟ ɩɪɨɹɜɥɹɬɶ ɤɨɪɪɨɡɢɨɧɧɭɸ ɚɤɬɢɜɧɨɫɬɶ, ɞɨɫɬɭɩɧɨɫɬɶ ɢ ɧɟɜɵɫɨɤɚɹ ɫɬɨɢɦɨɫɬɶ. ɀɟɥɚɬɟɥɶɧɨ, ɱɬɨɛɵ ɩɨɝɥɨɬɢɬɟɥɶɧɵɣ ɪɚɫɬɜɨɪ ɢɦɟɥ ɛɨɥɟɟ ɜɵɫɨɤɭɸ, ɱɟɦ ɜɨɞɚ, ɬɟɦɩɟɪɚɬɭɪɭ ɤɢɩɟɧɢɹ. ɉɨɫɤɨɥɶɤɭ ɚɛɫɨɪɛɟɧɬɚ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɝɨ ɜɫɟɦ ɬɪɟɛɨɜɚɧɢɹɦ, ɧɟɬ, ɨɫɬɚɧɚɜɥɢɜɚɸɬɫɹ ɧɚ ɩɨɝɥɨɬɢɬɟɥɟ, ɭɞɨɜɥɟɬɜɨɪɹɸɳɟɦ ɤɨɧɤɪɟɬɧɵɦ ɭɫɥɨɜɢɹɦ. ɉɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɢ ɨɛɵɱɧɨ ɢɫɩɨɥɶɡɭɸɬ ɜ ɤɚɱɟɫɬɜɟ ɚɛɫɨɪɛɟɧɬɚ ɜɨɞɭ, ɚ ɬɚɤɠɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɪɚɫɬɜɨɪɢɬɟɥɢ ɢ ɧɟɨɪɝɚɧɢɱɟɫɤɢɟ, ɧɟ ɪɟɚɝɢɪɭɸɳɢɟ ɫ ɢɡɜɥɟɤɚɟɦɵɦɢ ɤɨɦɩɨɧɟɧɬɚɦɢ ɢ ɢɯ ɜɨɞɧɵɦɢ ɪɚɫɬɜɨɪɚɦɢ. ȼɨɞɚ — ɞɟɲɟɜɵɣ ɢ ɞɨɫɬɭɩɧɵɣ ɚɛɫɨɪɛɟɧɬ ɞɥɹ ɨɱɢɫɬɤɢ ɛɨɥɶɲɢɯ ɨɛɴɟɦɨɜ ɝɚɡɚ. ȼ ɤɚɱɟɫɬɜɟ ɚɛɫɨɪɛɟɧɬɨɜ ɞɥɹ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɧɚ ɩɪɚɤɬɢɤɟ ɢɫɩɨɥɶɡɭɸɬ ɬɨɥɶɤɨ ɤɚɩɟɥɶɧɵɟ ɠɢɞɤɨɫɬɢ. ȼɵɛɨɪ ɚɛɫɨɪɛɟɧɬɚ ɡɚɜɢɫɢɬ ɨɬ ɪɹɞɚ ɮɚɤɬɨɪɨɜ; ɝɥɚɜɧɵɦ ɫɪɟɞɢ ɧɢɯ ɹɜɥɹɟɬɫɹ ɫɩɨɫɨɛɧɨɫɬɶ ɩɨɝɥɨɳɚɬɶ ɡɚɝɪɹɡɧɢɬɟɥɶ ɢɡ ɝɚɡɨɜɨɣ ɮɚɡɵ. ɉɪɢ ɯɟɦɨɫɨɪɛɰɢɢ ɜ ɤɚɱɟɫɬɜɟ ɚɛɫɨɪɛɟɧɬɚ ɢɫɩɨɥɶɡɭɸɬ ɜɨɞɧɵɟ ɪɚɫɬɜɨɪɵ ɫɨɥɟɣ, ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ ɢ ɜɨɞɧɵɟ ɫɭɫɩɟɧɡɢɢ ɪɚɡɥɢɱɧɵɯ ɜɟɳɟɫɬɜ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɜɨɞɵ ɚɛɫɨɪɛɢɪɭɟɦɵɣ ɝɚɡ ɞɨɥɠɟɧ ɞɨɫɬɚɬɨɱɧɨ ɯɨɪɨɲɨ ɪɚɫɬɜɨɪɹɬɶɫɹ ɜ ɧɟɣ ɩɪɢ ɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɜ ɫɢɫɬɟɦɟ ɝɚɡ-ɠɢɞɤɨɫɬɶ. Ⱦɥɹ ɚɛɫɨɪɛɰɢɢ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɫ ɨɝɪɚɧɢɱɟɧɧɨɣ ɪɚɫɬɜɨɪɢɦɨɫɬɶɸ ɜ ɜɨɞɟ, ɬɚɤɢɯ ɤɚɤ SO2 ɢɥɢ ɛɟɧɡɨɥ, ɧɟɨɛɯɨɞɢɦɵ ɨɱɟɧɶ ɛɨɥɶɲɢɟ ɤɨɥɢɱɟɫɬɜɚ ɜɨɞɵ. ȼɨɞɚ ɨɛɥɚɞɚɟɬ ɜɵɫɨɤɨɣ ɷɮɮɟɤɬɢɜɧɨɫɬɶɸ ɩɪɢ ɭɞɚɥɟɧɢɢ ɤɢɫɥɵɯ ɪɚɫɬɜɨɪɢɦɵɯ ɝɚɡɨɜ, ɬɚɤɢɯ ɤɚɤ HCl, HF ɢ SiF4 ɩɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɫɥɚɛɨɳɟɥɨɱɧɨɣ ɜɨɞɵ, ɞɥɹ ɭɥɚɜɥɢɜɚɧɢɹ NH3 ɩɨɞɤɢɫɥɟɧɧɨɣ ɜɨɞɨɣ. Ƚɚɡɵ ɫ ɦɟɧɶɲɟɣ ɪɚɫɬɜɨɪɢɦɨɫɬɶɸ, ɧɚɩɪɢɦɟɪ SO2, Cl2 ɢ H2S, ɥɟɝɱɟ ɚɛɫɨɪɛɢɪɭɸɬɫɹ ɧɟ ɱɢɫɬɨɣ ɜɨɞɨɣ, ɚ ɳɟɥɨɱɧɵɦɢ ɪɚɫɬɜɨɪɚɦɢ, ɜ ɱɚɫɬɧɨɫɬɢ, ɪɚɡɛɚɜɥɟɧɧɵɦ NaOH ɢɥɢ ɜɨɞɧɵɦ ɪɚɫɬɜɨɪɨɦ (ɫɭɫɩɟɧɡɢɟɣ) ɢɡɜɟɫɬɢ, ɬ.ɟ. ɜ ɩɨɫɥɟɞɧɟɦ ɫɥɭɱɚɟ ɛɨɥɟɟ ɩɪɢɟɦɥɟɦɚ ɯɟɦɨɫɨɪɛɰɢɹ. ɇɟɰɟɥɟɫɨɨɛɪɚɡɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜɨɞɭ ɞɥɹ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ ɫ ɧɟɪɚɫɬɜɨɪɢɦɵɦɢ ɜ ɧɟɣ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɩɪɢɦɟɫɹɦɢ. ɉɨɞɨɛɧɵɟ ɡɚɝɪɹɡɧɢɬɟɥɢ ɤɚɤ ɩɪɚɜɢɥɨ ɯɨɪɨɲɨ ɩɨɝɥɨɳɚɸɬɫɹ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɠɢɞɤɨɫɬɹɦɢ, ɫɪɟɞɢ ɤɨɬɨɪɵɯ ɦɨɝɭɬ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɤɚɤ ɚɛɫɨɪɛɟɧɬɵ ɜɵɫɨɤɨɤɢɩɹɳɢɟ ɜɟɳɟɫɬɜɚ, ɬɚɤɢɟ ɤɚɤ ɷɬɚɧɨɥɚɦɢɧɵ ɢ ɬɹɠɟɥɵɟ ɩɪɟɞɟɥɶɧɵɟ ɭɝɥɟɜɨɞɨɪɨɞɵ (ɦɢɧɟɪɚɥɶɧɵɟ ɦɚɫɥɚ). Ⱥɛɫɨɪɛɰɢɹ ɨɪɝɚɧɢɱɟɫɤɢɦ ɪɚɫɬɜɨɪɢɬɟɥɟɦ ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɚ ɞɥɹ ɭɞɚɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɩɨɫɤɨɥɶɤɭ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɯɨɪɨɲɚɹ ɪɚɫɬɜɨɪɢɦɨɫɬɶ. ȼ ɤɚɱɟɫɬɜɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɠɢɞɤɢɯ ɚɛɫɨɪɛɟɧɬɨɜ ɩɪɢɦɟɧɹɸɬɫɹ ɞɢɦɟɬɢɥɚɧɢɥɢɧ, ɦɨɧɨ-, ɞɢ- ɢ ɬɪɢɷɬɚɧɨɥɚɦɢɧ ɢ ɦɟɬɢɥɞɢɷɬɚɧɨɥɚɦɢɧ. ɂɫɩɨɥɶɡɨɜɚɧɢɟ ɬɚɤɢɯ ɚɛɫɨɪɛɟɧɬɨɜ ɨɝɪɚɧɢɱɟɧɨ ɫɢɫɬɟɦɚɦɢ, ɧɟ ɫɨɞɟɪɠɚɳɢɦɢ ɬɜɺɪɞɵɯ ɱɚɫɬɢɰ, ɩɨɫɤɨɥɶɤɭ ɬɜɟɪɞɵɟ ɜɟɳɟɫɬɜɚ ɡɚɝɪɹɡɧɹɸɬ ɨɪɝɚɧɢɱɟɫɤɢɟ ɠɢɞɤɨɫɬɢ. Ⱦɨ ɨɛɪɚɛɨɬɤɢ ɨɪɝɚɧɢɱɟɫɤɢɦ ɚɛɫɨɪɛɟɧɬɨɦ ɢɡ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɧɟɨɛɯɨɞɢɦɨ ɭɞɚɥɢɬɶ ɞɢɫɩɟɪɫɧɵɟ ɩɪɢɦɟɫɢ, ɢɧɚɱɟ ɚɛɫɨɪɛɟɧɬ ɛɵɫɬɪɨ ɡɚɝɪɹɡɧɹɟɬɫɹ ɢ ɫɬɚɧɨɜɢɬɫɹ ɨɬɯɨɞɨɦ, ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɩɨɞɞɚɸɳɢɦɫɹ ɨɱɢɫɬɤɟ. Ɉɪɝɚɧɢɱɟɫɤɢɟ ɚɛɫɨɪɛɟɧɬɵ ɞɨɥɠɧɵ ɢɦɟɬɶ ɧɢɡɤɨɟ ɞɚɜɥɟɧɢɟ ɧɚɫɵɳɟɧɧɵɯ ɩɚɪɨɜ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɟ ɩɪɨɰɟɫɫɚ. Ɋɚɫɬɜɨɪɢɬɟɥɢ ɫ ɧɟɞɨɫɬɚɬɨɱɧɨ ɧɢɡɤɨɣ ɭɩɪɭɝɨɫɬɶɸ ɩɚɪɨɜ ɛɭɞɭɬ ɢɧɬɟɧɫɢɜɧɨ ɢɫɩɚɪɹɬɶɫɹ ɢ ɡɚɝɪɹɡɧɹɬɶ ɨɛɪɚɛɚɬɵɜɚɟɦɵɟ ɝɚɡɵ. Ʉɪɨɦɟ ɬɨɝɨ, ɧɢɡɤɨɤɢɩɹɳɢɣ ɚɛɫɨɪɛɟɧɬ ɫɥɨɠɧɨ ɪɟɝɟɧɟɪɢɪɨɜɚɬɶ, ɬɚɤ ɤɚɤ ɢɡɜɥɟɱɶ (ɞɟɫɨɪɛɢɪɨɜɚɬɶ ɢɡ ɧɟɝɨ) ɭɥɨɜɥɟɧɧɨɟ ɜɟɳɟɫɬɜɨ ɧɚɝɪɟɜɚɧɢɟɦ ɧɟɜɨɡɦɨɠɧɨ. ɇɚ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɩɟɪɟɯɨɞɚ ɡɚɝɪɹɡɧɢɬɟɥɹ ɢɡ ɝɚɡɨɜɨɣ ɮɚɡɵ ɜ ɠɢɞɤɭɸ ɛɨɥɶɲɨɟ ɜɥɢɹɧɢɟ ɨɤɚɡɵɜɚɸɬ ɬɟɦɩɟɪɚɬɭɪɚ ɢ ɞɚɜɥɟɧɢɟ ɩɪɨɰɟɫɫɚ, ɚ ɬɚɤɠɟ ɫɩɨɫɨɛ ɨɪɝɚɧɢɡɚɰɢɢ ɤɨɧɬɚɤɬɚ ɮɚɡ. ɋ ɪɨɫɬɨɦ ɞɚɜɥɟɧɢɹ ɢ ɫɧɢɠɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɫɤɨɪɨɫɬɶ ɚɛɫɨɪɛɰɢɢ ɭɜɟɥɢɱɢɜɚɟɬɫɹ. Ⱥɛɫɨɪɛɟɧɬɵ, ɪɚɛɨɬɚɸɳɢɟ ɩɪɢ ɨɬɪɢɰɚɬɟɥɶɧɵɯ (ɩɨ ɐɟɥɶɫɢɸ) ɬɟɦɩɟɪɚɬɭɪɚɯ, ɩɪɢɧɹɬɨ ɧɚɡɵɜɚɬɶ ɯɥɚɞɨɧɨɫɢɬɟɥɹɦɢ, ɚ ɩɪɨɰɟɫɫ ɚɛɫɨɪɛɰɢɢ, ɩɪɨɬɟɤɚɸɳɢɣ ɜ ɬɚɤɢɯ ɭɫɥɨɜɢɹɯ - ɤɨɧɬɚɤɬɧɨɣ ɤɨɧɞɟɧɫɚɰɢɟɣ. 3.1.2. Ɋɚɜɧɨɜɟɫɢɟ ɜ ɩɪɨɰɟɫɫɚɯ ɚɛɫɨɪɛɰɢɢ ɉɟɪɟɧɨɫ ɤɨɦɩɨɧɟɧɬɨɜ ɫɨɩɪɢɤɚɫɚɸɳɢɯɫɹ ɮɚɡ ɢɞɟɬ ɞɨ ɞɨɫɬɢɠɟɧɢɹ ɦɟɠɞɭ ɧɢɦɢ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. əɜɥɟɧɢɹ, ɩɪɨɢɫɯɨɞɹɳɢɟ ɩɪɢ ɚɛɫɨɪɛɰɢɢ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ, ɨɩɢɫɵɜɚɸɬ ɧɚ ɨɫɧɨɜɟ ɞɜɭɯɩɥɟɧɨɱɧɨɣ ɬɟɨɪɢɢ ɍɢɬɦɟɧɚ, ɫɨɝɥɚɫɧɨ ɤɨɬɨɪɨɣ ɢɡɦɟɧɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɣ ɩɟɪɟɯɨɞɹɳɟɝɨ ɜɟɳɟɫɬɜɚ ɩɪɨɢɫɯɨɞɢɬ ɜ ɬɨɧɤɢɯ ɩɪɢɩɨɜɟɪɯɧɨɫɬɧɵɯ ɫɥɨɹɯ (ɩɥɟɧɤɚɯ) ɝɚɡɚ FG ɢ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɝɨ ɜɟɳɟɫɬɜɚ FL (ɪɢɫ. 3.2.). ɉɪɢɧɢɦɚɸɬ, ɱɬɨ ɜ ɩɪɢɝɪɚɧɢɱɧɵɯ ɩɥɟɧɤɚɯ ɤɨɧɜɟɤɰɢɹ ɨɬɫɭɬɫɬɜɭɟɬ, ɢ ɦɚɫɫɨɩɟɪɟɧɨɫ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɢɫɤɥɸɱɢɬɟɥɶɧɨ ɡɚ ɫɱɟɬ ɦɨɥɟɤɭɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ, ɜ ɬɨ ɜɪɟɦɹ ɤɚɤ ɩɟɪɟɧɨɫ ɢɡ ɨɛɴɟɦɚ ɝɚɡɚ VG ɤ ɩɥɟɧɤɟ ɢ ɨɬ ɩɥɟɧɤɢ ɜ ɨɛɴɟɦ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ɮɚɡɵ VL ɩɪɨɢɫɯɨɞɢɬ ɨɱɟɧɶ ɛɵɫɬɪɨ (ɧɚɩɪɢɦɟɪ, ɡɚ ɫɱɟɬ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɢ). ɉɨɷɬɨɦɭ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɟɪɟɯɨɞɹɳɟɝɨ ɤɨɦɩɨɧɟɧɬɚ ɭ ɜ ɨɛɴɟɦɟ ɝɚɡɨɜɨɣ ɮɚɡɵ VG ɢ ɯ ɜ ɨɛɴɟɦɟ VL ɫɱɢɬɚɸɬɫɹ ɩɨɫɬɨɹɧɧɵɦɢ. ȼ ɩɥɺɧɤɟ ɝɚɡɚ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɟɪɟɯɨɞɹɳɟɝɨ ɤɨɦɩɨɧɟɧɬɚ ɩɚɞɚɟɬ ɞɨ ɡɧɚɱɟɧɢɹ ɭs ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ S, ɚ ɩɥɟɧɤɚ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ɮɚɡɵ ɧɚɫɵɳɚɟɬɫɹ ɞɨ ɤɨɧɰɟɧɬɪɚɰɢɢ xs, ɩɪɢɱɟɦ ɫɚɦɚ ɩɨɜɟɪɯɧɨɫɬɶ S ɧɟ ɨɤɚɡɵɜɚɟɬ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɩɟɪɟɯɨɞɭ ɤɨɦɩɨɧɟɧɬɚ. ȼ ɩɥɟɧɤɟ FL ɤɨɧɰɟɧɬɪɚɰɢɹ ɫɧɢɠɚɟɬɫɹ ɞɨ ɩɨɫɬɨɹɧɧɨɝɨ ɡɧɚɱɟɧɢɹ ɯ ɜɫɥɟɞɫɬɜɢɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɤɨɦɩɨɧɟɧɬɚ ɜ ɨɛɴɟɦɟ VL. ɉɟɪɟɧɨɫ ɩɪɨɞɨɥɠɚɟɬɫɹ ɞɨ ɞɨɫɬɢɠɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ, ɩɪɢ ɤɨɬɨɪɨɦ ɯɢɦɢɱɟɫɤɢɟ ɩɨɬɟɧɰɢɚɥɵ ɩɟɪɟɯɨɞɹɳɟɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɢ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ɮɚɡɚɯ ɜɵɪɚɜɧɢɜɚɸɬɫɹ. Ɋɢɫ. 3.2. ɋɯɟɦɚ ɦɚɫɫɨɩɟɪɟɧɨɫɚ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ ȼ ɬɟɯɧɢɱɟɫɤɢɯ ɪɚɫɱɟɬɚɯ ɭɞɨɛɧɟɟ ɯɚɪɚɤɬɟɪɢɡɨɜɚɬɶ ɨɬɞɚɥɟɧɧɨɫɬɶ ɫɢɫɬɟɦɵ ɨɬ ɪɚɜɧɨɜɟɫɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɧɟ ɜɟɥɢɱɢɧɨɣ ɯɢɦɢɱɟɫɤɨɝɨ ɩɨɬɟɧɰɢɚɥɚ, ɚ ɨɬɤɥɨɧɟɧɢɟɦ ɞɟɣɫɬɜɢɬɟɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɭ ɨɬ ɪɚɜɧɨɜɟɫɧɨɣ ɫ ɫɨɩɪɢɤɚɫɚɸɳɟɣɫɹ ɮɚɡɨɣ yeq ɢɥɢ ɨɬɤɥɨɧɟɧɢɟɦ ɞɟɣɫɬɜɢɬɟɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ ɜ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ɮɚɡɟ ɯ ɨɬ ɪɚɜɧɨɜɟɫɧɨɣ ɫ ɝɚɡɨɜɨɣ ɮɚɡɨɣ xeq (ɩɪɢ ɨɞɢɧɚɤɨɜɵɯ ɪ, Ɍ). ɂɫɯɨɞɹ ɢɡ ɷɬɨɝɨ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɚɛɫɨɪɛɰɢɢ ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɤɚɤ ɩɨ ɝɚɡɨɜɨɣ ('y = y - yeq), ɬɚɤ ɢ ɩɨ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ('x = xeq - x) ɮɚɡɚɦ. Ɋɚɫɫɦɨɬɪɢɦ ɞɜɟ ɮɚɡɵ G ɢ L, ɩɪɢɱɟɦ ɪɚɫɩɪɟɞɟɥɹɟɦɨɟ ɜɟɳɟɫɬɜɨ ɜɧɚɱɚɥɟ ɧɚɯɨɞɢɬɫɹ ɬɨɥɶɤɨ ɜ ɩɟɪɜɨɣ ɮɚɡɟ G ɢ ɢɦɟɟɬ ɤɨɧɰɟɧɬɪɚɰɢɸ ɭ. ȿɫɥɢ ɩɪɢɜɟɫɬɢ ɮɚɡɵ ɜ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɟ, ɬɨ ɪɚɫɩɪɟɞɟɥɹɟɦɨɟ ɜɟɳɟɫɬɜɨ ɧɚɱɧɟɬ ɩɟɪɟɯɨɞɢɬɶ ɜ ɮɚɡɭ L. ɋ ɦɨɦɟɧɬɚ ɩɨɹɜɥɟɧɢɹ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɮɚɡɟ L ɧɚɱɧɟɬɫɹ ɢ ɨɛɪɚɬɧɵɣ ɩɟɪɟɯɨɞ ɟɝɨ ɜ ɮɚɡɭ G. ɋɤɨɪɨɫɬɶ ɨɛɪɚɬɧɨɝɨ ɩɟɪɟɯɨɞɚ ɛɭɞɟɬ ɭɜɟɥɢɱɢɜɚɬɶɫɹ ɩɨ ɦɟɪɟ ɩɨɜɵɲɟɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɮɚɡɟ L. ȼ ɧɟɤɨɬɨɪɵɣ ɦɨɦɟɧɬ ɫɤɨɪɨɫɬɢ ɩɟɪɟɯɨɞɚ ɜɟɳɟɫɬɜɚ ɢɡ ɮɚɡɵ G ɜ ɮɚɡɭ L ɢ ɨɛɪɚɬɧɨ ɫɬɚɧɭɬ ɨɞɢɧɚɤɨɜɵɦɢ. ɉɪɢ ɷɬɨɦ ɭɫɬɚɧɨɜɢɬɫɹ ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ ɦɟɠɞɭ ɮɚɡɚɦɢ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ - ɷɬɨ ɬɚɤɨɣ ɦɨɦɟɧɬ ɦɚɫɫɨɨɛɦɟɧɧɨɝɨ ɩɪɨɰɟɫɫɚ, ɩɪɢ ɤɨɬɨɪɨɦ ɫɤɨɪɨɫɬɢ ɩɟɪɟɯɨɞɚ ɜɟɳɟɫɬɜɚ ɢɡ ɨɞɧɨɣ ɮɚɡɵ ɜ ɞɪɭɝɭɸ ɢ ɨɛɪɚɬɧɨ ɪɚɜɧɵ. Ɉɞɧɚɤɨ ɷɬɨ ɜɨɜɫɟ ɧɟ ɨɡɧɚɱɚɟɬ ɪɚɜɟɧɫɬɜɨ ɤɨɧɰɟɧɬɪɚɰɢɣ ɜ ɮɚɡɚɯ. ȼ ɫɨɫɬɨɹɧɢɢ ɪɚɜɧɨɜɟɫɢɹ ɫɭɳɟɫɬɜɭɟɬ ɨɩɪɟɞɟɥɟɧɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɨɛɟɢɯ ɮɚɡɚɯ, ɚ ɢɦɟɧɧɨ, ɥɸɛɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɯ ɷɬɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɮɚɡɟ L ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɭ* ɜ ɮɚɡɟ G: y* = f (x). (3.1) ɉɪɢ ɚɛɫɨɪɛɰɢɨɧɧɨɣ ɨɱɢɫɬɤɟ ɝɚɡɨɜ ɤɨɧɰɟɧɬɪɚɰɢɢ ɭɥɚɜɥɢɜɚɟɦɵɯ ɩɪɢɦɟɫɟɣ ɨɛɵɱɧɨ ɧɟɜɟɥɢɤɢ, ɱɬɨ ɩɨɡɜɨɥɹɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɫɢɫɬɟɦɭ ɤɚɤ ɫɥɚɛɨɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɭɸ. Ʉɨɧɰɟɧɬɪɚɰɢɢ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɪɚɜɧɨɜɟɫɢɸ ɮɚɡ, ɬ.ɟ. ɪɚɜɧɨɜɟɫɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɝɚɡɨɜɨɣ ɢ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɣ ɮɚɡɚɯ, ɞɥɹ ɬɚɤɢɯ ɫɢɫɬɟɦ ɞɨɫɬɚɬɨɱɧɨ ɬɨɱɧɨ ɨɩɪɟɞɟɥɹɸɬɫɹ ɡɚɤɨɧɚɦɢ Ɋɚɭɥɹ ɢ Ƚɟɧɪɢ. ȼ ɤɚɱɟɫɬɜɟ ɨɫɧɨɜɧɨɝɨ ɡɚɤɨɧɚ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɟɝɨ ɪɚɜɧɨɜɟɫɢɟ ɜ ɫɢɫɬɟɦɟ ɝɚɡ-ɠɢɞɤɨɫɬɶ, ɢɫɩɨɥɶɡɭɟɬɫɹ ɡɚɤɨɧ Ƚɟɧɪɢ, ɫɨɝɥɚɫɧɨ ɤɨɬɨɪɨɦɭ ɦɨɥɶɧɚɹ ɞɨɥɹ ɝɚɡɚ ɜ ɪɚɫɬɜɨɪɟ ɯi ɩɪɢ ɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɩɚɪɰɢɚɥɶɧɨɦɭ ɞɚɜɥɟɧɢɸ ɝɚɡɚ ɧɚɞ ɪɚɫɬɜɨɪɨɦ: xi pi / Ei , (3.2) ɝɞɟ xi - ɦɨɥɶɧɚɹ ɞɨɥɹ i -ɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɠɢɞɤɨɫɬɢ; pi - ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ i-ɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɟ ɩɪɢ ɪɚɜɧɨɜɟɫɢɢ, ɉɚ; E i - ɤɨɷɮɮɢɰɢɟɧɬ Ƚɟɧɪɢ, ɉɚ. ɋ ɪɨɫɬɨɦ ɬɟɦɩɟɪɚɬɭɪɵ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɹɯ ɭɦɟɧɶɲɚɟɬɫɹ. ɋɨɝɥɚɫɧɨ ɡɚɤɨɧɭ Ⱦɚɥɶɬɨɧɚ ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɪɚɜɧɨ ɨɛɳɟɦɭ ɞɚɜɥɟɧɢɸ, ɭɦɧɨɠɟɧɧɨɦɭ ɧɚ ɦɨɥɶɧɭɸ ɞɨɥɸ ɷɬɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɫɦɟɫɢ: (3.3) p i P ˜ y i ɢɥɢ y i p i / P , ɝɞɟ P - ɨɛɳɟɟ ɞɚɜɥɟɧɢɟ ɝɚɡɨɜɨɣ ɫɦɟɫɢ. ɂɫɩɨɥɶɡɭɹ ɡɚɤɨɧ Ƚɟɧɪɢ, ɩɨɥɭɱɢɦ y i pi / P Ei / P ˜ xi ɢɥɢ ɝɞɟ A ɪ yi m (3.4) A ɪ ˜ xi , (3.5) E i / P - ɤɨɧɫɬɚɧɬɚ ɮɚɡɨɜɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. Ⱥɧɚɥɢɡ ɢ ɪɚɫɱɺɬ ɩɪɨɰɟɫɫɚ ɚɛɫɨɪɰɢɢ ɭɞɨɛɧɨ ɩɪɨɜɨɞɢɬɶ, ɜɵɪɚɠɚɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɝɚɡɚ ɜ ɨɬɧɨɫɢɬɟɥɶɧɵɯ ɟɞɢɧɢɰɚɯ, ɬ.ɤ. ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɪɚɫɱɺɬɧɵɟ ɡɧɚɱɟɧɢɹ ɩɨɬɨɤɨɜ ɝɚɡɨɜɨɣ ɢ ɠɢɞɤɨɣ ɮɚɡ ɩɨɫɬɨɹɧɧɵ. ɉɨɷɬɨɦɭ ɜ ɭɪɚɜɧɟɧɢɹɯ ɪɚɜɧɨɜɟɫɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɯ ɢ ɭ, ɜɵɪɚɠɟɧɧɵɟ ɜ ɦɨɥɶɧɵɯ ɞɨɥɹɯ, ɡɚɦɟɧɹɸɬ ɧɚ X ɢ Y , ɜɵɪɚɠɟɧɧɵɟ ɜ ɨɬɧɨɫɢɬɟɥɶɧɵɯ ɦɨɥɶɧɵɯ ɞɨɥɹɯ: x y X Y X ; ; ; , (3.6) x y Y 1 x 1 y 1 Y 1 X ɝɞɟ 1 (ɟɞɢɧɢɰɚ) - ɨɞɢɧ ɤɝ ɧɨɫɢɬɟɥɹ (ɮɚɡɵ). Ɍɨɝɞɚ ɭɪɚɜɧɟɧɢɟ ɪɚɜɧɨɜɟɫɢɹ ɛɭɞɟɬ Aɪ ˜ X Y 1  1  Aɪ X . (3.7) ɜɢɞ ɉɪɢ ɧɟɡɧɚɱɢɬɟɥɶɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ X ɭɪɚɜɧɟɧɢɟ ɩɪɢɨɛɪɟɬɚɟɬ ɩɪɨɫɬɨɣ Aɪ ˜ X . (3.8) Ʉ ɮɚɤɬɨɪɚɦ, ɭɥɭɱɲɚɸɳɢɦ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɹɯ, ɨɬɧɨɫɹɬɫɹ ɩɨɜɵɲɟɧɧɨɟ ɞɚɜɥɟɧɢɟ ɢ ɩɨɧɢɠɟɧɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ, ɚ ɤ ɮɚɤɬɨɪɚɦ, ɫɩɨɫɨɛɫɬɜɭɸɳɢɦ ɞɟɫɨɪɛɰɢɢ - ɩɨɧɢɠɟɧɧɨɟ ɞɚɜɥɟɧɢɟ, ɩɨɜɵɲɟɧɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɢ ɩɪɢɛɚɜɥɟɧɢɟ ɤ ɚɛɫɨɪɛɟɧɬɭ ɞɨɛɚɜɨɤ, ɭɦɟɧɶɲɚɸɳɢɯ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɹɯ. Ɋɚɜɧɨɜɟɫɢɟ ɦɟɠɞɭ ɮɚɡɚɦɢ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɝɪɚɮɢɱɟɫɤɢ ɧɚ (ɭ – ɯ) ɞɢɚɝɪɚɦɦɟ. ɇɚ ɷɬɨɣ ɞɢɚɝɪɚɦɦɟ ɩɨ ɨɫɢ ɚɛɫɰɢɫɫ ɨɬɤɥɚɞɵɜɚɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɯ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɮɚɡɟ L, ɚ ɩɨ ɨɫɢ ɨɪɞɢɧɚɬ — ɟɝɨ ɤɨɧɰɟɧɬɪɚɰɢɹ ɭ ɜ ɮɚɡɟ G. Ʉɪɢɜɚɹ Ɉɋ, ɢɡɨɛɪɚɠɚɸɳɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɪɚɜɧɨɜɟɫɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɭ* ɨɬ ɯ, ɧɚɡɵɜɚɟɬɫɹ ɥɢɧɢɟɣ ɪɚɜɧɨɜɟɫɢɹ (ɪɢɫ.3.3). Y Ɋɢɫ. 3.3. Ʌɢɧɢɹ ɪɚɜɧɨɜɟɫɢɹ Ɋɚɜɧɨɜɟɫɢɟ ɦɟɠɞɭ ɮɚɡɚɦɢ ɩɪɟɞɫɬɚɜɥɹɸɬ ɜ ɜɢɞɟ ɝɪɚɮɢɱɟɫɤɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɪɚɜɧɨɜɟɫɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ y* ɨɬ ɟɝɨ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ x (ɪɢɫ. 3.3), ɬ.ɟ. ɢɫɩɨɥɶɡɭɸɬ ɡɚɜɢɫɢɦɨɫɬɶ y* = f(x). Ⱦɥɹ ɩɪɚɤɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɨɜ ɩɨɥɶɡɭɸɬɫɹ ɩɨɥɭɱɟɧɧɵɦɢ ɢɡ ɨɩɵɬɚ ɡɧɚɱɟɧɢɹɦɢ ɪɚɜɧɨɜɟɫɧɨɝɨ ɩɚɪɰɢɚɥɶɧɨɝɨ ɞɚɜɥɟɧɢɹ ɝɚɡɚ p* ɢ ɜɵɱɢɫɥɹɸɬ y* ɩɨ ɭɪɚɜɧɟɧɢɸ y* = (Mɤ/Mɧ)[p*/(P – p*)], (3.9) ɝɞɟ Ɇɤ, Ɇɧ - ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɦɨɥɟɤɭɥɹɪɧɚɹ ɦɚɫɫɚ ɤɨɦɩɨɧɟɧɬɚ ɢ ɦɚɫɫɚ ɧɨɫɢɬɟɥɹ, ɤɝ. ɋɨɝɥɚɫɧɨ ɡɚɤɨɧɭ Ƚɟɧɪɢ, ɪɚɜɧɨɜɟɫɧɨɟ ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ p* ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɫɨɞɟɪɠɚɧɢɸ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɝɚɡɚ ɜ ɪɚɫɬɜɨɪɟ ɏ (ɜ ɤɝ/ɤɝ ɩɨɝɥɨɬɢɬɟɥɹ): p* = \ X, (3.10) ɝɞɟ \ - ɤɨɷɮɮɢɰɢɟɧɬ, ɢɦɟɸɳɢɣ ɪɚɡɦɟɪɧɨɫɬɶ ɞɚɜɥɟɧɢɹ. Ɉɧ ɡɚɜɢɫɢɬ ɨɬ ɫɜɨɣɫɬɜ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɝɚɡɚ ɢ ɬɟɦɩɟɪɚɬɭɪɵ. ɉɨɫɥɟ ɩɨɞɫɬɚɧɨɜɤɢ ɮɨɪɦɭɥɵ (3.10) ɜ ɭɪɚɜɧɟɧɢɟ (3.9) ɩɨɥɭɱɢɦ: Y* = (Mɤ/Mɧ)[ \ X /(P – \ X )]. (3.11) ɍɪɚɜɧɟɧɢɟ (3.11) ɢɫɩɨɥɶɡɭɸɬ ɩɪɢ ɩɨɫɬɪɨɟɧɢɢ ɥɢɧɢɢ ɪɚɜɧɨɜɟɫɢɹ ɜ ɤɨɨɪɞɢɧɚɬɚɯ Y—X. ȿɫɥɢ ɚɛɫɨɪɛɰɢɹ ɜɟɞɟɬɫɹ ɛɟɡ ɨɬɜɨɞɚ ɬɟɩɥɚ ɢɥɢ ɫ ɧɟɩɨɥɧɵɦ ɟɝɨ ɨɬɜɨɞɨɦ, ɬɟɦɩɟɪɚɬɭɪɚ ɩɪɨɰɟɫɫɚ ɩɨɜɵɲɚɟɬɫɹ ɢɡ-ɡɚ ɜɵɞɟɥɟɧɢɹ ɬɟɩɥɚ ɩɪɢ ɪɚɫɬɜɨɪɟɧɢɢ ɝɚɡɚ ɜ ɠɢɞɤɨɫɬɢ. Ʉɨɥɢɱɟɫɬɜɨ ɜɵɞɟɥɹɸɳɟɝɨɫɹ ɩɪɢ ɚɛɫɨɪɛɰɢɢ ɬɟɩɥɚ ɫɨɫɬɚɜɥɹɟɬ Q = M ) = ).L(X1 – X2), (3.12) ɝɞɟ Ɇ - ɤɨɥɢɱɟɫɬɜɨ ɩɨɝɥɨɳɟɧɧɨɝɨ ɤɨɦɩɨɧɟɧɬɚ, ɤɝ/ɫ; Ɏ - ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɚɹ ɬɟɩɥɨɬɚ ɪɚɫɬɜɨɪɟɧɢɹ, Ⱦɠ/ɤɝ (ɷɬɨ ɤɨɥɢɱɟɫɬɜɨ ɬɟɩɥɚ, ɜɵɞɟɥɹɸɳɟɝɨɫɹ ɩɪɢ ɩɨɝɥɨɳɟɧɢɢ 1 ɤɝ ɤɨɦɩɨɧɟɧɬɚ ɜ ɪɚɫɬɜɨɪɟ ɞɚɧɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ). ɋɱɢɬɚɟɦ, ɱɬɨ ɜɫɺ ɜɵɞɟɥɹɸɳɟɟɫɹ ɬɟɩɥɨ ɢɞɟɬ ɧɚ ɧɚɝɪɟɜɚɧɢɟ ɠɢɞɤɨɫɬɢ: Q = L.C(t1 – t2), (3.13) . ɝɞɟ ɋ - ɭɞɟɥɶɧɚɹ ɬɟɩɥɨɟɦɤɨɫɬɶ ɠɢɞɤɨɫɬɢ, Ⱦɠ/(ɤɝ Ʉ); t1, t2 - ɬɟɦɩɟɪɚɬɭɪɵ ɠɢɞɤɨɫɬɢ ɧɚ ɜɵɯɨɞɟ ɢɡ ɚɛɫɨɪɛɟɪɚ ɢ ɧɚ ɜɯɨɞɟ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, °ɋ. ɉɪɢɪɚɜɧɹɟɦ ɩɪɚɜɵɟ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɣ (3.12) ɢ (3.13), ɩɨɥɭɱɢɦ: )(X1 – X2) = C(t1 – t2). (3.14) Ⱦɥɹ ɱɚɫɬɢ ɚɛɫɨɪɛɟɪɚ, ɪɚɫɩɨɥɨɠɟɧɧɨɣ ɜɵɲɟ ɫɟɱɟɧɢɹ, ɜ ɤɨɬɨɪɨɦ ɫɨɫɬɚɜ ɠɢɞɤɨɫɬɢ ɪɚɜɟɧ X, ɚ ɬɟɦɩɟɪɚɬɭɪɚ t, ɭɪɚɜɧɟɧɢɟ (3.14) ɩɪɢɦɟɬ ɜɢɞ: )(X – X2) = C(t – t2). (3.15) ɂɡ ɩɨɫɥɟɞɧɟɝɨ ɭɪɚɜɧɟɧɢɹ ɜɵɪɚɡɢɦ t: t = t2 + )(X – X2). (3.16) ɝɞɟ t - ɬɟɦɩɟɪɚɬɭɪɚ ɠɢɞɤɨɫɬɢ ɜ ɥɸɛɨɦ ɫɟɱɟɧɢɢ ɚɛɫɨɪɛɟɪɚ, °ɋ, ɩɪɢ ɫɨɫɬɚɜɟ ɠɢɞɤɨɫɬɢ, ɪɚɜɧɨɦ X. ɍɪɚɜɧɟɧɢɟ (3.16) ɬɚɤɠɟ ɢɫɩɨɥɶɡɭɸɬ ɩɪɢ ɩɨɫɬɪɨɟɧɢɢ ɥɢɧɢɢ ɪɚɜɧɨɜɟɫɢɹ. Ɇɟɬɨɞɢɤɚ ɝɪɚɮɢɱɟɫɤɨɝɨ ɩɨɫɬɪɨɟɧɢɹ ɪɚɜɧɨɜɟɫɧɨɣ ɥɢɧɢɢ ɜɤɥɸɱɚɟɬ ɫɥɟɞɭɸɳɢɟ ɫɬɚɞɢɢ: - ɡɚɞɚɸɬɫɹ ɢɧɬɟɪɜɚɥɨɦ ɡɧɚɱɟɧɢɣ X, ɢɫɯɨɞɹ ɢɡ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ ɩɪɨɰɟɫɫɚ; - ɞɥɹ ɤɚɠɞɨɝɨ ɡɧɚɱɟɧɢɹ ɏ ɨɩɪɟɞɟɥɹɸɬ ɬɟɦɩɟɪɚɬɭɪɭ ɠɢɞɤɨɫɬɢ ɩɨ ɭɪɚɜɧɟɧɢɸ (3.16); - ɞɥɹ ɜɵɱɢɫɥɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɬɟɦɩɟɪɚɬɭɪɵ ɠɢɞɤɨɫɬɢ t ɨɩɪɟɞɟɥɹɸɬ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɜɟɥɢɱɢɧɵ \; - ɨɩɪɟɞɟɥɹɸɬ Y* ɞɥɹ ɤɚɠɞɨɣ t ɢ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɞɥɹ ɤɨɧɤɪɟɬɧɨɝɨ X. 3.1.3. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɚɛɫɨɪɛɰɢɢ Ⱦɥɹ ɜɵɜɨɞɚ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ ɢ ɭɪɚɜɧɟɧɢɹ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɪɚɫɫɦɨɬɪɢɦ ɫɯɟɦɭ ɦɚɫɫɨɨɛɦɟɧɧɨɝɨ ɚɩɩɚɪɚɬɚ (ɪɢɫ. 3.4). Ɋɢɫ.3.4. ɋɯɟɦɚ ɦɚɫɫɨɨɛɦɟɧɧɨɝɨ ɚɩɩɚɪɚɬɚ Ɉɛɨɡɧɚɱɢɦ: G - ɦɚɫɫɨɜɵɣ ɪɚɫɯɨɞ ɝɚɡɨɜɨɣ ɮɚɡɵ, ɤɝ/ɫ (ɧɨɫɢɬɟɥɶ); L - ɦɚɫɫɨɜɵɣ ɪɚɫɯɨɞ ɠɢɞɤɨɣ ɮɚɡɵ, ɤɝ/ɫ (ɧɨɫɢɬɟɥɶ); Y1, Y2 - ɫɨɞɟɪɠɚɧɢɟ ɤɨɦɩɨɧɟɧɬɚ ɜ ɮɚɡɟ G ɧɚ ɜɯɨɞɟ ɢ ɜɵɯɨɞɟ ɢɡ ɚɩɩɚɪɚɬɚ (ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɜɟɫɨɜɵɟ ɞɨɥɢ); ɏ1, ɏ2 ɫɨɞɟɪɠɚɧɢɟ ɤɨɦɩɨɧɟɧɬɚ ɜ ɮɚɡɟ L ɧɚ ɜɵɯɨɞɟ ɢ ɜɯɨɞɟ ɜ ɚɩɩɚɪɚɬ (ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɜɟɫɨɜɵɟ ɞɨɥɢ). ɉɭɫɬɶ ɤɨɦɩɨɧɟɧɬ ɩɟɪɟɯɨɞɢɬ ɢɡ ɮɚɡɵ G ɜ ɮɚɡɭ L. ɋ ɭɱɟɬɨɦ ɤɨɥɢɱɟɫɬɜɚ ɤɨɦɩɨɧɟɧɬɨɜ ɜ ɮɚɡɚɯ ɭɪɚɜɧɟɧɢɟ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ ɡɚɩɢɲɟɬɫɹ ɜ ɜɢɞɟ Gɧ˜yɧ + Lɧ˜xɧ = Gɤ˜yɤ + Lɤ˜xɤ, ɝɞɟ Gɧ, Gɤ - ɪɚɫɯɨɞ ɝɚɡɨɜɨɣ ɮɚɡɵ ɧɚ ɜɯɨɞɟ ɜ ɚɛɫɨɪɛɟɪ ɢ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ, ɤɦɨɥɶ/ɫ (ɤɝ/ɫ); xɤ, xɤ - ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɠɢɞɤɨɣ ɮɚɡɟ ɧɚ ɜɯɨɞɟ ɜ ɚɛɫɨɪɛɟɪ ɢ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ, ɦɨɥɶɧɵɟ ɞɨɥɢ (ɦɚɫɫ.ɞɨɥɢ); Lɧ, Lɤ ɪɚɫɯɨɞ ɚɛɫɨɪɛɟɧɬɚ ɧɚ ɜɯɨɞɟ ɜ ɚɛɫɨɪɛɟɪ ɢ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ, ɤɦɨɥɶ/ɫ (ɤɝ/c); yɧ, yɤ - ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ (ɤɨɦɩɨɧɟɧɬɚ) ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɧɚ ɜɯɨɞɟ ɜ ɚɛɫɨɪɛɟɪ ɢ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ, ɦɨɥɶɧɵɟ ɞɨɥɢ (ɦɚɫɫ.ɞɨɥɢ). Ɋɚɫɫɦɨɬɪɢɦ ɫɥɭɱɚɣ, ɤɨɝɞɚ ɧɨɫɢɬɟɥɢ ɧɟ ɭɱɚɫɬɜɭɸɬ ɜ ɩɪɨɰɟɫɫɟ ɦɚɫɫɨɨɛɦɟɧɚ, ɢɯ ɤɨɥɢɱɟɫɬɜɚ ɧɟ ɢɡɦɟɧɹɸɬɫɹ ɩɨ ɜɵɫɨɬɟ ɚɩɩɚɪɚɬɚ. Ɍɨɝɞɚ, ɤɨɥɢɱɟɫɬɜɨ ɤɨɦɩɨɧɟɧɬɚ Ɇ, ɩɟɪɟɲɟɞɲɟɝɨ ɢɡ ɮɚɡɵ G, ɪɚɜɧɨ: M = G(Y1 – Y2). (3.17) Ʉɨɥɢɱɟɫɬɜɨ ɤɨɦɩɨɧɟɧɬɚ Ɇ, ɩɟɪɟɲɟɞɲɟɝɨ ɜ ɮɚɡɭ L, ɪɚɜɧɨ: M = L.X1 – L.X2 = L(X1 – X2). (3.18) ɉɪɢɪɚɜɧɹɟɦ ɩɪɚɜɵɟ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɣ (3.17) ɢ (3.18): G(Y1 – Y2) = L(X1 – X2), (3.19) ɢɥɢ ɜ ɜɢɞɟ G(Yɧ – Yɤ ) = L(Xɤ – Xɧ), (3.20) ɝɞɟ G - ɪɚɫɯɨɞ ɢɧɟɪɬɧɨɝɨ ɝɚɡɚ, ɤɦɨɥɶ/ɫ (ɤɝ/ɫ); L - ɪɚɫɯɨɞ ɚɛɫɨɪɛɟɧɬɚ, ɤɦɨɥɶ/ɫ (ɤɝ/ɫ); Yɧ ɢ Yɤ - ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɟ-ɧɨɫɢɬɟɥɟ, ɤɦɨɥɶ/ɤɦɨɥɶ ɝɚɡɚ (ɤɝ/ɤɝ ɝɚɡɚ); Xɤ ɢ Xɧ – ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ ɜ ɩɨɝɥɨɬɢɬɟɥɟ (ɚɛɫɨɪɛɟɧɬɟ), ɤɦɨɥɶ/ɤɦɨɥɶ ɚɛɫɨɪɛɟɧɬɚ (ɤɝ/ɤɝ ɚɛɫɨɪɛɟɧɬɚ). ɍɪɚɜɧɟɧɢɹ (3.19), (3.20) ɟɫɬɶ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ. Ɉɛɳɢɣ ɪɚɫɯɨɞ ɚɛɫɨɪɛɟɧɬɚ ɪɚɜɟɧ L G (Yɧ  Yɤ ) ( X ɤ  X ɧ ) . (3.21) Ɉɩɪɟɞɟɥɢɦ ɭɞɟɥɶɧɵɣ ɪɚɫɯɨɞ ɩɨɝɥɨɬɢɬɟɥɹ l, ɤɝ/ɤɝ: l = L/G. (3.22) ɂɡ ɭɪɚɜɧɟɧɢɣ (3.19) ɢ (3.20): l = (Y1 – Y2)/(X1 – X2) ɢɥɢ l = (Yɧ – Yɤ)/(Xɤ – Xɧ). (3.23) Ɋɚɫɫɦɨɬɪɢɦ ɩɪɨɢɡɜɨɥɶɧɨɟ ɫɟɱɟɧɢɟ ɚɩɩɚɪɚɬɚ 0-0, ɝɞɟ ɫɨɫɬɚɜɵ ɮɚɡ ɛɭɞɭɬ Y ɢ ɏ ɜ ɮɚɡɟ G ɢ L ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ (ɪɢɫ. 3.4). ɇɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ ɞɥɹ ɱɚɫɬɢ ɚɩɩɚɪɚɬɚ, ɪɚɫɩɨɥɨɠɟɧɧɨɝɨ ɜɵɲɟ ɫɟɱɟɧɢɹ 0-0: G.Y + L.X2 = G.Y2 + L.X. (3.24) Ɉɬɤɭɞɚ ɩɨɥɭɱɢɦ Y = Y2 + (X – X2)L/G ɢɥɢ Y = Y2 + l(X – X2). (3.25) ɍɪɚɜɧɟɧɢɹ (3.25) ɟɫɬɶ ɭɪɚɜɧɟɧɢɟ ɪɚɛɨɱɟɣ ɥɢɧɢɢ. Ɉɧɨ ɜɵɪɚɠɚɟɬ ɡɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɧɟɪɚɜɧɨɜɟɫɧɵɦɢ ɫɨɫɬɚɜɚɦɢ ɮɚɡ ɜ ɥɸɛɨɦ ɫɟɱɟɧɢɢ ɚɩɩɚɪɚɬɚ. ɂɡ ɚɧɚɥɢɡɚ (3.25) ɜɢɞɧɨ, ɱɬɨ ɷɬɨ ɭɪɚɜɧɟɧɢɟ ɩɪɹɦɨɣ ɥɢɧɢɢ (Y = a + b.X). ɉɨɞɫɬɚɜɢɦ ɜ ɭɪɚɜɧɟɧɢɟ (3.25) ɭɪɚɜɧɟɧɢɟ (3.23): Y = Y2 + (Y1 – Y2)(X – X2)/(X1 – X2) (3.26) ɢɥɢ (Y – Y2)/(Y1 – Y2) = (X – X2)/( X1 – X2) (3.27) ɗɬɨ ɟɫɬɶ ɭɪɚɜɧɟɧɢɹ ɩɪɹɦɨɣ, ɩɪɨɯɨɞɹɳɟɣ ɱɟɪɟɡ ɬɨɱɤɭ A (X1; Y1) ɢ ɬɨɱɤɭ B (X2; Y2). Ɋɚɛɨɱɭɸ ɥɢɧɢɸ ɩɪɨɰɟɫɫɚ ɚɛɫɨɪɛɰɢɢ ɫɬɪɨɹɬ ɜ ɬɟɯ ɠɟ ɨɫɹɯ YX, ɱɬɨ ɢ ɥɢɧɢɸ ɪɚɜɧɨɜɟɫɢɹ. ɍɪɚɜɧɟɧɢɟ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɜɵɜɟɞɟɧɨ ɜɵɲɟ: Y = Y2 + l(X – X2) = Y2 + (Y1 – Y2)(X – X2)/(X1 – X2). (3.28) Ⱦɥɹ ɩɨɫɬɪɨɟɧɢɹ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɧɚɞɨ ɡɧɚɬɶ ɫɨɫɬɚɜɵ ɮɚɡ ɧɚ ɜɯɨɞɟ ɜ ɚɛɫɨɪɛɟɪ (ɏ2, Y1)) ɢ ɧɚ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ (ɏ1, Y2). ɉɨ ɷɬɢɦ ɞɚɧɧɵɦ ɨɩɪɟɞɟɥɹɸɬ ɬɨɱɤɢ Ⱥ ɢ ȼ (ɪɢɫ. 3.5). Ɋɢɫ. 3.5. Ʌɢɧɢɹ ɪɚɜɧɨɜɟɫɢɹ (Ɉɋ) ɢ ɪɚɛɨɱɚɹ ɥɢɧɢɹ (Ⱥȼ) ɑɚɫɬɨ ɡɚɞɚɧɵ ɬɨɥɶɤɨ ɧɚɱɚɥɶɧɵɟ ɫɨɫɬɚɜɵ ɝɚɡɚ ɢ ɠɢɞɤɨɫɬɢ (Y1, X2) ɢ ɫɬɟɩɟɧɶ ɢɡɜɥɟɱɟɧɢɹ (H). ɋɬɟɩɟɧɶ ɢɡɜɥɟɱɟɧɢɹ - ɷɬɨ ɨɬɧɨɲɟɧɢɟ ɤɨɥɢɱɟɫɬɜɚ ɮɚɤɬɢ- ɱɟɫɤɢ ɩɨɝɥɨɳɟɧɧɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɤ ɤɨɥɢɱɟɫɬɜɭ, ɩɨɝɥɨɳɚɟɦɨɦɭ ɩɪɢ ɩɨɥɧɨɦ ɢɡɜɥɟɱɟɧɢɢ: H = G(Y1 – Y2)/(G.Y1) = 1 – Y2/Y1. (3.29) Ʉɚɤ ɜɢɞɧɨ ɢɡ ɜɵɪɚɠɟɧɢɹ (3.29), ɩɨ H, Y1 ɦɨɠɧɨ ɨɰɟɧɢɬɶ Y2, ɬ.ɟ. ɧɚ ɞɢɚɝɪɚɦɦɟ YX ɨɩɪɟɞɟɥɢɬɶ ɬɨɱɤɭ ȼ (Y2, ɏ2), ɚ ɬɨɱɤɚ Ⱥ ɛɭɞɟɬ ɧɚɯɨɞɢɬɶɫɹ ɧɚ ɨɪɞɢɧɚɬɟ Y1. ɉɨɥɨɠɟɧɢɟ ɬɨɱɤɢ Ⱥ ɡɚɜɢɫɢɬ ɨɬ ɭɞɟɥɶɧɨɝɨ ɪɚɫɯɨɞɚ ɩɨɝɥɨɬɢɬɟɥɹ l. Ɇɨɦɟɧɬ ɜ ɩɪɨɰɟɫɫɟ ɚɛɫɨɪɛɰɢɢ, ɤɨɝɞɚ ɪɚɛɨɱɚɹ ɥɢɧɢɹ ɤɚɫɚɟɬɫɹ ɥɢɧɢɢ ɪɚɜɧɨɜɟɫɢɹ, ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɦɢɧɢɦɚɥɶɧɨɦɭ ɪɚɫɯɨɞɭ ɩɨɝɥɨɬɢɬɟɥɹ. ȼ ɬɨɱɤɟ ɤɚɫɚɧɢɹ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɫ ɥɢɧɢɟɣ ɪɚɜɧɨɜɟɫɢɹ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɪɚɜɧɚ ɧɭɥɸ. ɉɪɢ ɷɬɨɦ ɬɪɟɛɭɟɬɫɹ ɚɛɫɨɪɛɟɪ ɛɟɫɤɨɧɟɱɧɨ ɛɨɥɶɲɨɣ ɜɵɫɨɬɵ. ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɭɞɟɥɶɧɨɝɨ ɪɚɫɯɨɞɚ ɩɨɝɥɨɬɢɬɟɥɹ ɭɦɟɧɶɲɚɟɬɫɹ ɬɪɟɛɭɟɦɚɹ ɜɵɫɨɬɚ ɚɛɫɨɪɛɟɪɚ, ɧɨ ɜɨɡɪɚɫɬɚɸɬ ɪɚɫɯɨɞɵ ɧɚ ɞɟɫɨɪɛɰɢɸ, ɧɚ ɩɟɪɟɤɚɱɢɜɚɧɢɟ ɩɨɝɥɨɬɢɬɟɥɹ ɢ ɞɪ. Ɉɩɬɢɦɚɥɶɧɵɣ ɭɞɟɥɶɧɵɣ ɪɚɫɯɨɞ ɩɨɝɥɨɬɢɬɟɥɹ ɨɩɪɟɞɟɥɹɸɬ ɬɟɯɧɢɤɨ-ɷɤɨɧɨɦɢɱɟɫɤɢɦ ɪɚɫɱɟɬɨɦ. ɉɪɢ ɚɛɫɨɪɛɰɢɢ ɪɚɛɨɱɚɹ ɥɢɧɢɹ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɜɵɲɟ ɥɢɧɢɢ ɪɚɜɧɨɜɟɫɢɹ, ɬɚɤ ɤɚɤ ɜ ɷɬɨɦ ɩɪɨɰɟɫɫɟ ɫɨɞɟɪɠɚɧɢɟ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɛɨɥɶɲɟ ɪɚɜɧɨɜɟɫɧɨɝɨ Y ! Y*. ɉɪɢ ɞɟɫɨɪɛɰɢɢ, ɧɚɨɛɨɪɨɬ, ɪɚɛɨɱɚɹ ɥɢɧɢɹ ɥɟɠɢɬ ɧɢɠɟ ɥɢɧɢɢ ɪɚɜɧɨɜɟɫɢɹ. 3.1.4. Ɇɚɫɫɨɩɟɪɟɧɨɫ ɜ ɩɪɨɰɟɫɫɟ ɚɛɫɨɪɛɰɢɢ ɉɭɫɬɶ ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɮɚɡɟ G ɜɵɲɟ ɪɚɜɧɨɜɟɫɧɨɣ, ɢ ɜɟɳɟɫɬɜɨ ɩɟɪɟɯɨɞɢɬ ɢɡ ɮɚɡɵ G ɜ ɮɚɡɭ L (ɪɢɫ. 3.6). ɪɚɫɩɪɟɞɟɥɹɟɦɨɟ ɜɟɳɟɫɬɜɨ ɜ ɮɚɡɟ G ɩɟɪɟɧɨɫɢɬɫɹ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ, ɚ ɜ ɮɚɡɟ L ɩɟɪɟɧɨɫɢɬɫɹ ɨɬ ɷɬɨɣ ɩɨɜɟɪɯɧɨɫɬɢ. Ɋɢɫ. 3.6. ɋɯɟɦɚ ɩɪɨɰɟɫɫɚ ɦɚɫɫɨɨɛɦɟɧɚ ɦɟɠɞɭ ɠɢɞɤɨɫɬɶɸ ɢ ɝɚɡɨɦ: 1 - ɹɞɪɨ ɮɚɡɵ, 2 - ɩɨɝɪɚɧɢɱɧɵɣ ɫɥɨɣ, 3 - ɩɨɜɟɪɯɧɨɫɬɶ ɪɚɡɞɟɥɚ ɮɚɡ. ɉɟɪɟɧɨɫ ɜɟɳɟɫɬɜɚ ɜ ɨɛɟɢɯ ɮɚɡɚɯ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɭɬɟɦ ɦɨɥɟɤɭɥɹɪɧɨɣ ɢ ɤɨɧɜɟɤɬɢɜɧɨɣ ɞɢɮɮɭɡɢɢ. Ɇɨɥɟɤɭɥɹɪɧɚɹ ɞɢɮɮɭɡɢɹ - ɞɢɮɮɭɡɢɹ ɦɨɥɟɤɭɥ ɱɟɪɟɡ ɫɥɨɣ ɧɨɫɢɬɟɥɹ. Ʉɨɧɜɟɤɬɢɜɧɚɹ ɞɢɮɮɭɡɢɹ - ɷɬɨ ɞɢɮɮɭɡɢɹ ɞɜɢɠɭɳɢɦɢɫɹ ɱɚɫɬɢɰɚɦɢ ɧɨɫɢɬɟɥɹ ɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ. ȼ ɨɫɧɨɜɧɨɣ (ɰɟɧɬɪɚɥɶɧɨɣ) ɦɚɫɫɟ ɮɚɡɵ, ɬ.ɟ. ɹɞɪɟ ɮɚɡɵ, ɝɞɟ ɨɛɵɱɧɨ ɩɪɨɢɫɯɨɞɢɬ ɢɧɬɟɧɫɢɜɧɨɟ ɩɟɪɟɦɟɲɢɜɚɧɢɟ, ɩɟɪɟɧɨɫ ɜɟɳɟɫɬɜɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɪɟɢɦɭɳɟɫɬɜɟɧɧɨ ɫ ɩɨɦɨɳɶɸ ɤɨɧɜɟɤɬɢɜɧɨɣ ɞɢɮɮɭɡɢɢ. ɉɟɪɟɧɨɫ ɜɟɳɟɫɬɜɚ ɜ ɩɨɝɪɚɧɢɱɧɨɦ ɫɥɨɟ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɭɬɟɦ ɤɨɧɜɟɤɬɢɜɧɨɣ ɢ ɦɨɥɟɤɭɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ, ɩɪɢɱɟɦ, ɩɨ ɦɟɪɟ ɩɪɢɛɥɢɠɟɧɢɹ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ ɩɪɨɢɫɯɨɞɢɬ ɡɚɬɭɯɚɧɢɟ ɤɨɧɜɟɤɬɢɜɧɵɯ ɩɨɬɨɤɨɜ ɢ ɜɨɡɪɚɫɬɚɟɬ ɪɨɥɶ ɦɨɥɟɤɭɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ. ɍɪɚɜɧɟɧɢɟ ɦɨɥɟɤɭɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ ɢɦɟɟɬ ɫɥɟɞɭɸɳɢɣ ɜɢɞ: (3.30) M = D.F.'ɫɫɥ.W/G, ɝɞɟ Ɇ - ɤɨɥɢɱɟɫɬɜɨ ɤɨɦɩɨɧɟɧɬɚ, ɞɢɮɮɭɧɞɢɪɭɸɳɟɝɨ ɱɟɪɟɡ ɫɥɨɣ ɜɟɳɟɫɬɜɚ, ɤɝ; D - ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ, ɦ/ɫ; F - ɩɨɜɟɪɯɧɨɫɬɶ ɫɥɨɹ, ɦ2; 'ɫɫɥ - ɢɡɦɟɧɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɨ ɬɨɥɳɢɧɟ ɫɥɨɹ, ɤɝ/ɦ3; W - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɩɪɨɰɟɫɫɚ, ɫ; G ɬɨɥɳɢɧɚ ɫɥɨɹ, ɦ. ɍɪɚɜɧɟɧɢɟ (3.30) ɟɫɬɶ ɦɚɬɟɦɚɬɢɱɟɫɤɨɟ ɜɵɪɚɠɟɧɢɟ ɡɚɤɨɧɚ Ɏɢɤɚ. Ʉɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ D ɡɚɜɢɫɢɬ ɨɬ ɫɜɨɣɫɬɜ ɞɢɮɮɭɧɞɢɪɭɸɳɟɝɨ ɤɨɦɩɨɧɟɧɬɚ ɢ ɫɪɟɞɵ, ɜ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɞɢɮɮɭɡɢɹ, ɚ ɬɚɤɠɟ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɢ ɞɚɜɥɟɧɢɹ ɩɪɨɰɟɫɫɚ. Ʉɨɷɮɮɢɰɢɟɧɬɵ ɞɢɮɮɭɡɢɢ ɜ ɠɢɞɤɨɫɬɹɯ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɧɶɲɟ, ɱɟɦ ɜ ɝɚɡɚɯ. ɍɪɚɜɧɟɧɢɟ ɤɨɧɜɟɤɬɢɜɧɨɣ ɞɢɮɮɭɡɢɢ ɢɦɟɟɬ ɫɥɟɞɭɸɳɢɣ ɜɢɞ: (3.31) M = E.F.'ɫɮ-ɫɥ, ɝɞɟ Ɇ - ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ, ɩɟɪɟɧɨɫɢɦɨɝɨ ɢɡ ɮɚɡɵ, ɨɬɞɚɸɳɟɣ ɜɟɳɟɫɬɜɨ, ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ (ɢɥɢ ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ ɜ ɮɚɡɭ, ɜɨɫɩɪɢɧɢɦɚɸɳɭɸ ɷɬɨ ɜɟɳɟɫɬɜɨ), ɤɝ/ɫ; E - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ, ɦ/ɫ; F - ɩɨɜɟɪɯɧɨɫɬɶ ɪɚɡɞɟɥɚ ɮɚɡ, ɦ2; 'ɫɮ-ɫɥ - ɪɚɡɧɨɫɬɶ ɤɨɧɰɟɧɬɪɚɰɢɣ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɮɚɡɟ ɢ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ, ɤɝ/ɦ3. Ʉɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɡɚɜɢɫɢɬ ɨɬ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɢɯ, ɮɢɡɢɱɟɫɤɢɯ ɢ ɝɟɨɦɟɬɪɢɱɟɫɤɢɯ ɮɚɤɬɨɪɨɜ ɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦ ɩɭɬɟɦ ɫ ɨɛɪɚɛɨɬɤɨɣ ɞɚɧɧɵɯ ɩɪɢ ɩɨɦɨɳɢ ɬɟɨɪɢɢ ɩɨɞɨɛɢɹ. ɍɪɚɜɧɟɧɢɟ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɢɦɟɟɬ ɫɥɟɞɭɸɳɢɣ ɜɢɞ: (3.32) M = K.F.', ɝɞɟ Ɇ - ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ, ɩɟɪɟɲɟɞɲɟɝɨ ɢɡ ɨɞɧɨɣ ɮɚɡɵ ɜ ɞɪɭɝɭɸ, ɤɝ/ɫ; K ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ, ɦ/ɫ; F - ɩɨɜɟɪɯɧɨɫɬɶ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɹ ɮɚɡ, ɦ2; ' - ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ, ɤɝ/ɦ3 (ɉɚ). ɂɡ ɭɪɚɜɧɟɧɢɹ (3.32) ɫɥɟɞɭɟɬ, ɱɬɨ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɜɵɪɚɠɚɟɬ ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ, ɩɟɪɟɯɨɞɹɳɟɝɨ ɢɡ ɨɞɧɨɣ ɮɚɡɵ ɜ ɞɪɭɝɭɸ ɡɚ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ ɱɟɪɟɡ ɟɞɢɧɢɰɭ ɩɨɜɟɪɯɧɨɫɬɢ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɹ ɩɪɢ ɞɜɢɠɭɳɟɣ ɫɢɥɟ, ɪɚɜɧɨɣ ɟɞɢɧɢɰɟ. Ɋɚɡɦɟɪɧɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɧɨɫɬɢ ɞɜɢɠɭɳɟɣ ɫɢɥɵ. ɇɚɩɪɢɦɟɪ, ɟɫɥɢ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɜɵɪɚɠɚɟɬɫɹ ɜ ɜɢɞɟ ɪɚɡɧɨɫɬɢ ɨɛɴɟɦɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ, ɬ.ɟ. ɤɝ/ɦ3, ɬɨ ɪɚɡɦɟɪɧɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɫɨɝɥɚɫɧɨ ɭɪɚɜɧɟɧɢɸ (3.32): KC = [ɤɝ/(ɦ2.ɫ.ɤɝ/ɦ3)] = [ɦ/ɫ]. (3.33) ȿɫɥɢ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ' ɜɵɪɚɠɟɧɚ ɱɟɪɟɡ ɪɚɡɧɨɫɬɶ ɩɚɪɰɢɚɥɶɧɵɯ ɞɚɜɥɟɧɢɣ, ɬ.ɟ. ɜ ɉɚ ɢɥɢ ɇ/ɦ2, ɪɚɡɦɟɪɧɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ: KP = [ɤɝ/ɦ2.ɫ.ɇ/ɦ2] = [ɤɝ/ɫ. (ɤɝ.ɦ/ɫ2)] = [ɫ/ɦ]. (3.34) ɋɜɹɡɶ ɦɟɠɞɭ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɦɚɫɫɨɩɟɪɟɞɚɱɢ KC ɢ KP: KP = KC.Mɤ/(R.T), (3.35) ɝɞɟ Ɇɤ - ɦɨɥɟɤɭɥɹɪɧɚɹ ɦɚɫɫɚ ɤɨɦɩɨɧɟɧɬɚ; R - ɝɚɡɨɜɚɹ ɩɨɫɬɨɹɧɧɚɹ, Ⱦɠ/(ɤɦɨɥɶ.ɝɪɚɞ); Ɍ - ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ, Ʉ. ɂɧɨɝɞɚ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɨɬɧɨɫɹɬ ɤ ɟɞɢɧɢɰɟ ɪɚɛɨɱɟɝɨ ɨɛɴɟɦɚ ɚɩɩɚɪɚɬɚ (ɨɛɴɟɦɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ). ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɨɨɬɧɨɲɟɧɢɟɦ Kɨɛ = K.f, (3.36) ɝɞɟ f - ɩɨɜɟɪɯɧɨɫɬɶ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɹ ɮɚɡ, ɨɬɧɟɫɟɧɧɚɹ ɤ ɟɞɢɧɢɰɟ ɪɚɛɨɱɟɝɨ ɨɛɴɟɦɚ ɚɩɩɚɪɚɬɚ, ɦ2/ɦ3. Ɋɚɡɦɟɪɧɨɫɬɶ ɨɛɴɟɦɧɨɝɨ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɩɪɢ ɞɜɢɠɭɳɟɣ ɫɢɥɟ, ɜɵɪɚɠɟɧɧɨɣ ɜ ɤɝ/ɦ3: [Kɨɛ] = [1/ɫ]. ɉɪɢɥɨɠɟɧɢɟ ɬɟɨɪɢɢ ɩɨɞɨɛɢɹ ɤ ɩɪɨɰɟɫɫɚɦ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɩɨɤɚɡɚɥɨ, ɱɬɨ ɷɬɢ ɩɪɨɰɟɫɫɵ ɨɩɪɟɞɟɥɹɸɬɫɹ ɤɪɢɬɟɪɢɟɦ Ɋɟɣɧɨɥɶɞɫɚ Re ɢ ɞɢɮɮɭɡɢɨɧɧɵɦɢ ɤɪɢɬɟɪɢɹɦɢ ɇɭɫɫɟɥɶɬɚ Nu' ɢ ɉɪɚɧɞɬɥɹ Ɋrc, ɹɜɥɹɸɳɢɦɢɫɹ ɚɧɚɥɨɝɚɦɢ ɬɟɩɥɨɜɵɯ ɤɪɢɬɟɪɢɟɜ Nu ɢ Pr. Ʉɪɢɬɟɪɢɢ Re ɢ Ɋr ɹɜɥɹɸɬɫɹ ɨɩɪɟɞɟɥɹɸɳɢɦɢ, ɤɪɢɬɟɪɢɣ Nu - ɨɩɪɟɞɟɥɹɟɦɵɦ. Ɂɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɤɪɢɬɟɪɢɹɦɢ ɜɵɪɚɠɚɟɬɫɹ ɜ ɨɛɳɟɦ ɜɢɞɟ ɭɪɚɜɧɟɧɢɟɦ Nuc = f(Re, Prc). (3.37) ɉɨ ɧɚɣɞɟɧɧɨɦɭ ɡɧɚɱɟɧɢɸ Nu' ɜɵɱɢɫɥɹɸɬ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ E. ɇɢɠɟ ɩɪɢɜɨɞɹɬɫɹ ɡɧɚɱɟɧɢɹ ɞɢɮɮɭɡɢɨɧɧɵɯ ɤɪɢɬɟɪɢɟɜ ɢ ɤɪɢɬɟɪɢɹ Ɋɟɣɧɨɥɶɞɫɚ: Nuc = E.l/D; (3.38) Prc = P/(U.D); (3.39) . . Re = w l U/P. (3.40) Ɂɞɟɫɶ E - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ, ɦ/ɫ; l - ɨɩɪɟɞɟɥɹɸɳɢɣ ɝɟɨɦɟɬɪɢɱɟɫɤɢɣ ɪɚɡɦɟɪ, ɦ; D - ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ, ɦ2/ɫ; P - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ, ɉɚ.ɫ; U - ɩɥɨɬɧɨɫɬɶ, ɤɝ/ɦ3; w - ɫɤɨɪɨɫɬɶ, ɦ/ɫ. 3.1.5. Ʉɢɧɟɬɢɱɟɫɤɢɟ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɚɛɫɨɪɛɰɢɢ Ⱦɜɢɠɭɳɟɣ ɫɢɥɨɣ ɚɛɫɨɪɛɰɢɢ ɹɜɥɹɟɬɫɹ ɪɚɡɧɨɫɬɶ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦ ɞɚɜɥɟɧɢɟɦ ɪɚɫɬɜɨɪɢɦɨɝɨ ɝɚɡɚ ɜ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɢ ɟɝɨ ɪɚɜɧɨɜɟɫɧɵɦ ɞɚɜɥɟɧɢɟɦ ɧɚɞ ɩɥɟɧɤɨɣ ɠɢɞɤɨɫɬɢ, ɤɨɧɬɚɤɬɢɪɭɸɳɟɣ ɫ ɝɚɡɨɦ. Ⱥɛɫɨɪɛɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɜ ɬɨɦ ɫɥɭɱɚɟ, ɟɫɥɢ ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɚɛɫɨɪɛɢɪɭɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɛɨɥɶɲɟ ɪɚɜɧɨɜɟɫɧɨɝɨ ɩɚɪɰɢɚɥɶɧɨɝɨ ɞɚɜɥɟɧɢɹ ɷɬɨɝɨ ɠɟ ɤɨɦɩɨɧɟɧɬɚ ɧɚɞ ɞɚɧɧɵɦ ɪɚɫɬɜɨɪɨɦ. ɑɟɦ ɛɨɥɶɲɟ ɪɚɡɧɢɰɚ ɦɟɠɞɭ ɷɬɢɦɢ ɞɚɜɥɟɧɢɹɦɢ, ɬɟɦ ɛɨɥɶɲɟ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɢ ɬɟɦ ɫ ɛɨɥɶɲɟɣ ɫɤɨɪɨɫɬɶɸ ɩɪɨɬɟɤɚɟɬ ɚɛɫɨɪɛɰɢɹ. ȿɫɥɢ ɡɧɚɱɟɧɢɟ ɞɜɢɠɭɳɟɣ ɫɢɥɵ ɧɟ ɹɜɥɹɟɬɫɹ ɩɨɥɨɠɢɬɟɥɶɧɵɦ ɱɢɫɥɨɦ, ɬɨ ɚɛɫɨɪɛɰɢɢ ɧɟ ɩɪɨɢɫɯɨɞɢɬ. ȿɫɥɢ ɡɧɚɱɟɧɢɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɨɬɪɢɰɚɬɟɥɶɧɭɸ ɜɟɥɢɱɢɧɭ, ɬɨ ɩɪɨɢɫɯɨɞɢɬ ɞɟɫɨɪɛɰɢɹ, ɢ ɤɨɥɢɱɟɫɬɜɨ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜ ɨɛɪɚɛɚɬɵɜɚɟɦɨɦ ɝɚɡɟ ɦɨɠɟɬ ɜɨɡɪɚɫɬɢ. ɋɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɚɛɫɨɪɛɰɢɢ ɩɪɢ ɩɟɪɟɧɨɫɟ ɜɟɳɟɫɬɜɚ ɢɡ ɨɞɧɨɣ ɮɚɡɵ ɜ ɞɪɭɝɭɸ ɨɩɪɟɞɟɥɹɟɬɫɹ ɭɪɚɜɧɟɧɢɹɦɢ ɦɚɫɫɨɩɟɪɟɞɚɱɢ: M K y ˜ F ˜ 'Yɫɪ ; M K x ˜ F ˜ 'X ɫɪ , (3.41) ɝɞɟ K y ɢ Ʉ X - ɤɨɷɮɮɢɰɢɟɧɬɵ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɩɨ ɝɚɡɨɜɨɣ ɢ ɠɢɞɤɨɣ ɮɚɡɚɦ; F ɩɨɜɟɪɯɧɨɫɬɶ ɤɨɧɬɚɤɬɚ ɮɚɡ; 'Yɫɪ, 'Xɫɪ - ɫɪɟɞɧɹɹ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɜ ɝɚɡɨɜɨɣ ɢ ɠɢɞɤɨɣ ɮɚɡɚɯ. Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɤɨɪɨɫɬɢ ɚɛɫɨɪɛɰɢɢ ɧɟɨɛɯɨɞɢɦɨ ɡɧɚɬɶ ɞɜɢɠɭɳɭɸ ɫɢɥɭ ɩɪɨɰɟɫɫɚ, ɤɨɬɨɪɚɹ ɜɵɪɚɠɚɟɬɫɹ ɪɚɡɧɨɫɬɶɸ ɤɨɧɰɟɧɬɪɚɰɢɣ ɤɨɦɩɨɧɟɧɬɚ ɜ ɨɞɧɨɣ ɢɡ ɮɚɡ ɢ ɪɚɜɧɨɜɟɫɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɟɣ (ɢɥɢ ɨɛɪɚɬɧɨɣ ɪɚɡɧɨɫɬɶɸ), ɬ.ɟ. 'Yɫɪ = Y - Y*; (3.42) * 'Xɫɪ = X - X. (3.43) ɑɟɦ ɛɨɥɶɲɟ ɷɬɚ ɪɚɡɧɨɫɬɶ, ɬɟɦ ɫ ɛɨɥɶɲɟɣ ɫɤɨɪɨɫɬɶɸ ɩɪɨɬɟɤɚɟɬ ɩɪɨɰɟɫɫ. Ɉɧɚ ɢɡɦɟɧɹɟɬɫɹ ɩɨ ɜɵɫɨɬɟ ɚɩɩɚɪɚɬɚ ɢ ɡɚɜɢɫɢɬ ɨɬ ɦɧɨɝɢɯ ɮɚɤɬɨɪɨɜ, ɜ ɬɨɦ ɱɢɫɥɟ ɨɬ ɯɚɪɚɤɬɟɪɚ ɞɜɢɠɟɧɢɹ ɮɚɡ. Ʉɨɧɰɟɧɬɪɚɰɢɹ ɝɚɡɨɜɨɣ ɢ ɠɢɞɤɨɣ ɮɚɡɵ ɢɡɦɟɧɹɟɬɫɹ ɩɪɢ ɞɜɢɠɟɧɢɢ ɮɚɡɵ ɜɞɨɥɶ ɩɨɜɟɪɯɧɨɫɬɢ ɢɯ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɹ; ɜɫɥɟɞɫɬɜɢɟ ɷɬɨɝɨ ɨɛɵɱɧɨ ɢɡɦɟɧɹɟɬɫɹ ɜɞɨɥɶ ɩɨɜɟɪɯɧɨɫɬɢ ɫɨɩɪɢɤɨɫɧɨɜɟɧɢɹ ɢ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ. ɉɪɢ ɪɚɫɱɟɬɟ ɩɨɥɶɡɭɸɬɫɹ ɫɪɟɞɧɢɦ ɡɧɚɱɟɧɢɟɦ ɞɜɢɠɭɳɟɣ ɫɢɥɵ. ɋɪɟɞɧɸɸ ɞɜɢɠɭɳɭɸ ɫɢɥɭ ɩɪɨɰɟɫɫɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɦɨɠɧɨ ɪɚɫɫɱɢɬɚɬɶ ɤɚɤ ɫɪɟɞɧɸɸ ɢɧɬɟɝɪɚɥɶɧɭɸ, ɫɪɟɞɧɸɸ ɥɨɝɚɪɢɮɦɢɱɟɫɤɭɸ ɢɥɢ ɫɪɟɞɧɸɸ ɚɪɢɮɦɟɬɢɱɟɫɤɭɸ ɜɟɥɢɱɢɧɭ ɢɡ ɞɜɢɠɭɳɢɯ ɫɢɥ ɧɚ ɜɯɨɞɟ ɜ ɚɩɩɚɪɚɬ ɢ ɧɚ ɜɵɯɨɞɟ. ɋɪɟɞɧɹɹ ɢɧɬɟɝɪɚɥɶɧɚɹ ɜɟɥɢɱɢɧɚ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɬɨɦ ɫɥɭɱɚɟ, ɟɫɥɢ ɪɚɜɧɨɜɟɫɧɚɹ ɥɢɧɢɹ ɧɚ ɞɢɚɝɪɚɦɦɟ Y-X ɹɜɥɹɟɬɫɹ ɤɪɢɜɨɣ: Yɧ Yɤ 'Yɫɪ = (Yɧ – Yɤ)/³dY/(Y – Y*). (3.44) ɋɪɟɞɧɹɹ ɥɨɝɚɪɢɮɦɢɱɟɫɤɚɹ ɜɟɥɢɱɢɧɚ ɞɜɢɠɭɳɟɣ ɫɢɥɵ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɬɨɦ ɫɥɭɱɚɟ, ɤɨɝɞɚ ɪɚɜɧɨɜɟɫɧɚɹ ɥɢɧɢɹ ɧɚ ɞɢɚɝɪɚɦɦɟ Y-X ɹɜɥɹɟɬɫɹ ɩɪɹɦɨɣ Y* = m.x: 'Yɛ  'Y ɦ 'Yɫɪ (3.45) 2,3 lg('Yɛ 'Y ɦ ) ; 'X ɫɪ 'X ɛ  'X ɦ 2,3 lg('X ɛ 'X ɦ ) ; (3.46) 'Yɛ Yɧ  Yɧ *; 'YK YK  YK *; (3.47) 'X ɛ X ɤ *  X ɤ ; 'X M X H *X H , (3.48) ɝɞɟ Y - ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ, ɦɨɥɶɧɵɟ ɞɨɥɢ (ɦɚɫɫ. ɞɨɥɢ); X* - ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɠɢɞɤɨɣ ɮɚɡɟ, ɦɨɥɶɧɵɟ ɞɨɥɢ (ɦɚɫɫ. ɞɨɥɢ); Yɧ, Yɤ - ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɧɚ ɜɯɨɞɟ ɜ ɚɩɩɚɪɚɬ ɢ ɧɚ ɜɵɯɨɞɟ ɦɨɥɶɧɵɟ ɞɨɥɢ (ɦɚɫɫ.ɞɨɥɢ); m - ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɫɩɪɟɞɟɥɟɧɢɹ; 'YG , 'YM , 'X G , 'X M - ɛɨɥɶɲɚɹ ɢ ɦɟɧɶɲɚɹ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ ɦɨɥɶɧɵɟ ɞɨɥɢ (ɦɚɫɫ.ɞɨɥɢ). ɋɪɟɞɧɹɹ ɚɪɢɮɦɟɬɢɱɟɫɤɚɹ ɜɟɥɢɱɢɧɚ ɞɜɢɠɭɳɟɣ ɫɢɥɵ ɢɫɩɨɥɶɡɭɟɬɫɹ, ɤɨɝɞɚ ('Yɛ/'Yɦ) d 2: 'Yɫɪ = ('Yɛ + 'Yɦ)/2. (3.49) Ʉɨɷɮɮɢɰɢɟɧɬɵ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɫɜɹɡɚɧɵ ɫ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɦɚɫɫɨɨɬɞɚɱɢ: 1 1 Ky , (3.50) ; Kx 1 1 m 1   Eɝ Eɠ E ɠ m. E ɝ * ɝɞɟ Eɝ ɢ Eɠ - ɤɨɷɮɮɢɰɢɟɧɬɵ ɦɚɫɫɨɨɬɞɚɱɢ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɜ ɝɚɡɨɜɨɣ ɢ ɠɢɞɤɨɣ ɮɚɡɚɯ. ɑɥɟɧ (1/Eɝ) ɜɵɪɚɠɚɟɬ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɩɟɪɟɯɨɞɭ ɜɟɳɟɫɬɜɚ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ G, ɱɥɟɧ (m/Eɠ) - ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɜ ɠɢɞɤɨɣ ɮɚɡɟ L . Ⱦɥɹ ɯɨɪɨɲɨ ɪɚɫɬɜɨɪɢɦɵɯ ɝɚɡɨɜ ɜɟɥɢɱɢɧɚ m ɧɟɡɧɚɱɢɬɟɥɶɧɚ, ɬ.ɟ. (1/Eɝ) !! (1/Eɠ) ɢ ɦɨɠɧɨ ɩɪɢɧɹɬɶ, ɱɬɨ Ky | Eɝ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɜ ɬɚɤɨɣ ɫɢɫɬɟɦɟ ɜɫɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɦɚɫɫɨɩɟɪɟɞɚɱɟ ɫɨɫɪɟɞɨɬɨɱɟɧɨ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ. ɉɪɢ ɦɚɥɨɣ ɪɚɫɬɜɨɪɢɦɨɫɬɢ ɝɚɡɚ ɜ ɠɢɞɤɨɫɬɢ (1/Eɠ) !! (1/m.Eɝ), ɩɨɷɬɨɦɭ ɦɨɠɧɨ ɩɨɥɚɝɚɬɶ Kx | Eɠ. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɜɫɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɦɚɫɫɨɩɟɪɟɞɚɱɟ ɫɨɫɪɟɞɨɬɨɱɟɧɨ ɜ ɠɢɞɤɨɣ ɮɚɡɟ. ɉɪɢ ɩɪɨɬɟɤɚɧɢɢ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ ɚɛɫɨɪɛɢɪɭɟɦɵɣ ɤɨɦɩɨɧɟɧɬ ɜɫɬɭɩɚɟɬ ɜ ɪɟɚɤɰɢɸ ɫ ɩɨɝɥɨɬɢɬɟɥɟɦ. ɉɪɢ ɷɬɨɦ ɜɨɡɪɚɫɬɚɟɬ ɝɪɚɞɢɟɧɬ ɤɨɧɰɟɧɬɪɚɰɢɣ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ, ɢ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɮɢɡɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɟɣ ɫɤɨɪɨɫɬɶ ɩɨɝɥɨɳɟɧɢɹ ɭɜɟɥɢɱɢɜɚɟɬɫɹ. Ʉɨɷɮɮɢɰɢɟɧɬ ɭɫɤɨɪɟɧɢɹ ɚɛɫɨɪɛɰɢɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ ɩɪɢ ɩɪɨɬɟɤɚɧɢɢ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ ɪɚɜɟɧ k = Eɠc/Eɠ, (3.51) ɝɞɟ Eɠ ɢ Eɠc - ɤɨɷɮɮɢɰɢɟɧɬɵ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ ɞɥɹ ɮɢɡɢɱɟɫɤɨɣ ɚɛɫɨɪɛɰɢɢ ɢ ɯɟɦɨɫɨɪɛɰɢɢ. ɋɜɹɡɶ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɫ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɦɚɫɫɨɨɬɞɚɱɢ ɩɪɢ ɯɟɦɨɫɨɪɛɰɢɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɭɪɚɜɧɟɧɢɹɦɢ 1/Kyc = (1/Eɝ) + (m/Eɠc); (3.52) . (1/Kxc) = (1/m Eɝ) + (1/Eɠc). (3.53) Ʉɨɷɮɮɢɰɢɟɧɬ ɭɫɤɨɪɟɧɢɹ ɡɚɜɢɫɢɬ ɨɬ ɫɤɨɪɨɫɬɢ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ ɢ ɫɬɟɩɟɧɢ ɬɭɪɛɭɥɢɡɚɰɢɢ ɠɢɞɤɨɫɬɢ. ɉɨ ɦɟɪɟ ɩɪɨɬɟɤɚɧɢɹ ɯɟɦɨɫɨɪɛɰɢɢ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ Eɠc ɭɦɟɧɶɲɚɟɬɫɹ, ɱɬɨ ɡɚɬɪɭɞɧɹɟɬ ɜɵɱɢɫɥɟɧɢɟ ɞɜɢɠɭɳɟɣ ɫɢɥɵ. ɉɪɢ ɚɛɫɨɪɛɰɢɢ, ɫɨɩɪɨɜɨɠɞɚɸɳɟɣɫɹ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɟɣ, ɜɨɡɧɢɤɚɟɬ ɩɨɜɟɪɯɧɨɫɬɧɚɹ ɤɨɧɜɟɤɰɢɹ, ɡɧɚɱɢɬɟɥɶɧɨ ɭɫɤɨɪɹɸɳɚɹ ɩɪɨɰɟɫɫ ɦɚɫɫɨɩɟɪɟɞɚɱɢ. 3.1.6. ɋɯɟɦɵ ɚɛɫɨɪɛɰɢɨɧɧɵɯ ɩɪɨɰɟɫɫɨɜ ȼ ɩɪɚɤɬɢɤɟ ɚɛɫɨɪɛɰɢɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɧɟɫɤɨɥɶɤɨ ɩɪɢɧɰɢɩɢɚɥɶɧɵɯ ɫɯɟɦ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɫɚ. ɇɚɢɛɨɥɟɟ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɸɬɫɹ ɩɪɹɦɨɬɨɱɧɚɹ (ɪɢɫ. 3.7ɚ) ɢ ɩɪɨɬɢɜɨɬɨɱɧɚɹ (ɪɢɫ. 3.7ɛ) ɫɯɟɦɵ. Y G ,Y L, X ɧ ɧ A Yɧ Yɤ Yp Y AX  B B f ( x) X G , Yɤ Xɧ L, X ɤ Xɤ ɚ) ɉɪɹɦɨɬɨɱɧɚɹ ɚɛɫɨɪɛɰɢɹ G , Yɤ Y L, X ɧ B Yɧ Yɤ A X G ,Yɧ L, X ɤ Xɧ Xɤ ɛ) ɉɪɨɬɢɜɨɬɨɱɧɚɹ ɚɛɫɨɪɛɰɢɹ Ɋɢɫ. 3.7. Ɉɫɧɨɜɧɵɟ ɫɯɟɦɵ ɚɛɫɨɪɛɰɢɨɧɧɵɯ ɩɪɨɰɟɫɫɨɜ ȼ ɩɪɹɦɨɬɨɱɧɨɣ ɫɯɟɦɟ ɚɛɫɨɪɛɰɢɢ ɩɨɬɨɤɢ ɝɚɡɚ ɢ ɚɛɫɨɪɛɟɧɬɚ ɞɜɢɠɭɬɫɹ ɩɚɪɚɥɥɟɥɶɧɨ ɞɪɭɝ ɞɪɭɝɭ. ȼ ɷɬɨɣ ɫɯɟɦɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɜɟɳɟɫɬɜ ɜ ɩɪɨɰɟɫɫɟ ɚɛɫɨɪɛɰɢɢ ɝɚɡ ɫ ɛɨɥɶɲɟɣ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ Yɧ ɩɪɢɜɨɞɢɬɫɹ ɜ ɤɨɧɬɚɤɬ ɫ ɠɢɞɤɨɫɬɶɸ, ɢɦɟɸɳɟɣ ɦɟɧɶɲɭɸ ɤɨɧɰɟɧɬɪɚɰɢɸ Xɧ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ, ɚ ɝɚɡ ɫ ɦɟɧɶɲɟɣ ɤɨɧɰɟɧɬɪɚɰɢɟɣ Yɤ ɜɡɚɢɦɨɞɟɣɫɬɜɭɟɬ ɧɚ ɜɵɯɨɞɟ ɢɡ ɚɩɩɚɪɚɬɚ ɫ ɠɢɞɤɨɫɬɶɸ, ɢɦɟɸɳɢɣ ɛɨɥɶɲɭɸ ɤɨɧɰɟɧɬɪɚɰɢɸ Xɤ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ. ɉɨ ɩɪɨɬɢɜɨɬɨɱɧɨɣ ɫɯɟɦɟ ɚɛɫɨɪɛɰɢɢ ɜ ɨɞɧɨɦ ɤɨɧɰɟ ɚɩɩɚɪɚɬɚ ɩɪɢɜɨɞɹɬɫɹ ɜ ɤɨɧɬɚɤɬ ɝɚɡ ɢ ɠɢɞɤɨɫɬɶ, ɢɦɟɸɳɢɟ ɛɨɥɶɲɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ Yɧ ɢ Xɤ, ɚ ɜ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨɦ ɤɨɧɰɟ – ɦɟɧɶɲɢɟ Yɤ ɢ Xɧ. ɋɨɩɨɫɬɚɜɢɦ ɪɚɫɫɦɨɬɪɟɧɧɵɟ ɫɯɟɦɵ ɚɛɫɨɪɛɰɢɢ, ɢɦɟɹ ɜɜɢɞɭ ɫɥɟɞɭɸɳɢɟ ɩɨɤɚɡɚɬɟɥɢ ɩɪɨɰɟɫɫɚ: ɭɞɟɥɶɧɵɣ ɪɚɫɯɨɞ ɚɛɫɨɪɛɟɧɬɚ, ɞɜɢɠɭɳɭɸ ɫɢɥɭ ɩɪɨɰɟɫɫɚ ɢ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ. ɋɨɩɨɫɬɚɜɥɟɧɢɟ ɩɪɨɜɨɞɢɬɫɹ ɩɪɢ ɩɪɟɞɟɥɶɧɨɦ ɩɨɥɨɠɟɧɢɢ ɪɚɛɨɱɢɯ ɥɢɧɢɣ, ɤɨɝɞɚ ɤɨɧɟɱɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɠɢɞɤɨɫɬɢ Xɤ1 ɞɥɹ ɩɪɹɦɨɝɨ ɬɨɤɚ ɢ Xɤ2 ɞɥɹ ɩɪɨɬɢɜɨɬɨɤɚ ɞɨɫɬɢɝɚɸɬ ɪɚɜɧɨɜɟɫɧɵɯ ɡɧɚɱɟɧɢɣ. ɉɪɢ ɩɟɪɟɫɟɱɟɧɢɢ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɩɪɨɰɟɫɫɚ ɫ ɪɚɜɧɨɜɟɫɧɨɣ ɥɢɧɢɟɣ ɤɨɧɟɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɢɡɜɥɟɤɚɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ Xɤ2 ɞɥɹ ɩɪɨɬɢɜɨɬɨɱɧɨɝɨ ɩɪɨɰɟɫɫɚ ɛɨɥɶɲɟ ɤɨɧɟɱɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɞɥɹ ɩɪɹɦɨɬɨɱɧɨɝɨ ɩɪɨɰɟɫɫɚ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɩɪɨɬɢɜɨɬɨɱɧɵɣ ɩɪɨɰɟɫɫ ɨɛɟɫɩɟɱɢɜɚɟɬ ɛɨɥɶɲɭɸ ɤɨɧɟɱɧɭɸ ɤɨɧɰɟɧɬɪɚɰɢɸ ɩɨɝɥɨɳɚɟɦɨɝɨ ɝɚɡɚ ɜ ɚɛɫɨɪɛɟɧɬɟ ɢ ɜɦɟɫɬɟ ɫ ɷɬɢɦ ɦɟɧɶɲɢɣ ɪɚɫɯɨɞ ɚɛɫɨɪɛɟɧɬɚ. ɉɪɢ ɩɪɨɬɢɜɨɬɨɤɟ ɦɨɠɧɨ ɞɨɫɬɢɱɶ ɛɨɥɟɟ ɩɨɥɧɨɝɨ ɢɡɜɥɟɱɟɧɢɹ ɤɨɦɩɨɧɟɧɬɚ ɢɡ ɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɱɟɦ ɩɪɢ ɩɪɹɦɨɬɨɱɧɨɣ ɫɯɟɦɟ. ȼ ɬɟɯɧɢɤɟ ɚɛɫɨɪɛɰɢɢ ɢɫɩɨɥɶɡɭɸɬ ɬɚɤɠɟ ɨɞɧɨɫɬɭɩɟɧɱɚɬɵɟ ɫɯɟɦɵ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ (ɪɢɫ. 3.8) ɢ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɵɟ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ, ɤɨɬɨɪɵɟ ɩɪɟɞɭɫɦɚɬɪɢɜɚɸɬ ɦɧɨɝɨɤɪɚɬɧɵɣ ɜɨɡɜɪɚɬ ɜ ɚɩɩɚɪɚɬ ɥɢɛɨ ɠɢɞɤɨɫɬɢ, ɥɢɛɨ ɝɚɡɚ. ȼ ɫɯɟɦɟ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɠɢɞɤɨɫɬɢ (ɪɢɫ. 3.8ɚ) ɝɚɡ ɩɪɨɯɨɞɢɬ ɱɟɪɟɡ ɚɩɩɚɪɚɬ ɫɧɢɡɭ ɜɜɟɪɯ, ɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɧɟɦ ɢɡɦɟɧɹɟɬɫɹ ɨɬ Yɧ ɞɨ Yɤ. ɉɨɝɥɨɳɚɸɳɚɹ ɠɢɞɤɨɫɬɶ ɩɨɞɜɨɞɢɬɫɹ ɤ ɜɟɪɯɧɟɣ ɱɚɫɬɢ ɚɩɩɚɪɚɬɚ ɩɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ Xɧ, ɡɚɬɟɦ ɫɦɟɲɢɜɚɟɬɫɹ ɫ ɜɵɯɨɞɹɳɟɣ ɢɡ ɚɩɩɚɪɚɬɚ ɠɢɞɤɨɫɬɶɸ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɱɟɝɨ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɨɜɵɲɚɟɬɫɹ ɞɨ Xɫ. Ɋɚɛɨɱɚɹ ɥɢɧɢɹ ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɧɚ ɞɢɚɝɪɚɦɦɟ ɨɬɪɟɡɤɨɦ ɩɪɹɦɨɣ; ɤɪɚɣɧɢɟ ɬɨɱɤɢ ɟɝɨ ɢɦɟɸɬ ɤɨɨɪɞɢɧɚɬɵ Yɧ, Xɤ ɢ Yɤ, Xc ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. Ɂɧɚɱɟɧɢɟ Xɫ ɦɨɠɧɨ ɧɚɣɬɢ ɢɡ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ: G(Yɧ  Yɤ ) L( X ɤ  X ɧ ) L ˜ n( X ɤ  X ɫ ) , (3.54) Xc > X ɤ (n  1)  X ɧ @ n, (3.55) ɝɞɟ n - ɨɬɧɨɲɟɧɢɟ ɤɨɥɢɱɟɫɬɜɚ ɩɨɝɥɨɳɚɸɳɟɣ ɠɢɞɤɨɫɬɢ ɧɚ ɜɯɨɞɟ ɜ ɚɩɩɚɪɚɬ ɤ ɤɨɥɢɱɟɫɬɜɭ ɫɜɟɠɟɣ ɩɨɝɥɨɳɚɸɳɟɣ ɠɢɞɤɨɫɬɢ. L(n  1), X ɤ G , Yɤ L, X ɧ Y L˜n Xc A Yɧ Yp B Yɤ AX  B Y f (X ) Bc X G , Yɧ Xɧ Xc L, X ɤ Xɤ ɚ) ɋɯɟɦɚ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɠɢɞɤɨɫɬɢ G, Yɤ G˜n L, X ɧ Y A Yɧ G (n  1),Yɤ AC Y Yc AX  B Yp B f (X ) Yɤ X G, Yɧ Yc L, X ɤ Xɧ Xɤ ɛ) ɋɯɟɦɚ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɝɚɡɚ Ɋɢɫ. 3.8. Ɋɟɰɢɪɤɭɥɹɰɢɨɧɧɵɟ ɫɯɟɦɵ ɚɛɫɨɪɛɰɢɢ Ɇɚɬɟɪɢɚɥɶɧɵɟ ɫɨɨɬɧɨɲɟɧɢɹ ɜ ɫɯɟɦɟ ɚɛɫɨɪɛɰɢɢ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɝɚɡɚ (ɪɢɫ. 3.8ɛ) ɚɧɚɥɨɝɢɱɧɵ ɩɪɟɞɵɞɭɳɢɦ. ɉɨɥɨɠɟɧɢɟ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɨɩɪɟɞɟɥɹɸɬ ɬɨɱɤɢ Ac(Yɫ, Xɤ) ɢ B(Yɤ, Xɧ); ɨɪɞɢɧɚɬɚ ɧɚɯɨɞɢɬɫɹ ɢɡ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ: G (Yɧ  Yɤ ) G ˜ n(Yc  Yɤ ) L( X ɤ  X ɧ ) , (3.56) Yc >Yɤ (n  1)  Yɧ @ n . (3.57) ɋɯɟɦɵ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɦɨɝɭɬ ɛɵɬɶ ɩɪɨɬɢɜɨɬɨɱɧɵɦɢ ɢ ɩɪɹɦɨɬɨɱɧɵɦɢ. Ɉɞɧɨɫɬɭɩɟɧɱɚɬɵɟ ɫɯɟɦɵ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɚɛɫɨɪɛɟɧɬɚ ɢɥɢ ɝɚɡɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫɨ ɫɯɟɦɚɦɢ ɛɟɡ ɪɟɰɢɪɤɭɥɹɰɢɢ ɢɦɟɸɬ ɫɥɟɞɭɸɳɭɸ ɨɫɨɛɟɧɧɨɫɬɶ. ȼ ɫɯɟɦɟ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɩɨɝɥɨɬɢɬɟɥɹ ɩɪɢ ɨɞɧɨɦ ɢ ɬɨɦ ɠɟ ɪɚɫɯɨɞɟ ɫɜɟɠɟɝɨ ɚɛɫɨɪɛɟɧɬɚ ɤɨɥɢɱɟɫɬɜɨ ɠɢɞɤɨɫɬɢ, ɩɪɨɯɨɞɹɳɟɣ ɱɟɪɟɡ ɚɩɩɚɪɚɬ, ɛɨɥɶɲɟ. Ɋɟɡɭɥɶɬɚɬɨɦ ɷɬɨɝɨ ɹɜɥɹɟɬɫɹ ɩɨɜɵɲɟɧɢɟ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɡɚ ɫɱɟɬ ɭɜɟɥɢɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ ɢ ɧɟɤɨɬɨɪɨɟ ɭɦɟɧɶɲɟɧɢɟ ɞɜɢɠɭɳɟɣ ɫɢɥɵ, ɱɬɨ ɦɨɠɟɬ ɩɪɢɜɟɫɬɢ ɤ ɭɦɟɧɶɲɟɧɢɸ ɝɚɛɚɪɢɬɨɜ ɚɩɩɚɪɚɬɚ. Ɋɟɰɢɪɤɭɥɹɰɢɹ ɠɢɞɤɨɫɬɢ ɜɫɟɝɞɚ ɩɪɟɞɩɨɱɬɢɬɟɥɶɧɟɟ ɩɪɢ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɫɨɩɪɨɜɨɠɞɚɬɶ ɩɪɨɰɟɫɫ ɚɛɫɨɪɛɰɢɢ ɨɯɥɚɠɞɟɧɢɟɦ, ɬɚɤ ɤɚɤ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɜɤɥɸɱɟɧɢɟ ɯɨɥɨɞɢɥɶɧɢɤɚ ɜ ɜɟɬɜɶ ɪɟɰɢɪɤɭɥɢɪɭɸɳɟɝɨ ɚɛɫɨɪɛɟɧɬɚ ɩɨɡɜɨɥɹɸɬ ɥɟɝɤɨ ɨɬɜɨɞɢɬɶ ɬɟɩɥɨ ɨɬ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɜɟɳɟɫɬɜ. Ɇɧɨɝɨɫɬɭɩɟɧɱɚɬɵɟ ɫɯɟɦɵ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɦɨɝɭɬ ɜɤɥɸɱɚɬɶ ɩɪɹɦɨɣ ɬɨɤ, ɩɪɨɬɢɜɨɬɨɤ, ɪɟɰɢɪɤɭɥɹɰɢɸ ɝɚɡɚ. Ȼɨɥɶɲɨɟ ɩɪɚɤɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ ɢɦɟɟɬ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɚɹ ɩɪɨɬɢɜɨɬɨɱɧɚɹ ɫɯɟɦɚ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɠɢɞɤɨɫɬɢ ɜ ɤɚɠɞɨɣ ɫɬɭɩɟɧɢ. Ɋɚɛɨɱɢɟ ɥɢɧɢɢ ɧɚɧɨɫɹɬ ɧɚ ɞɢɚɝɪɚɦɦɭ ɨɬɞɟɥɶɧɨ ɞɥɹ ɤɚɠɞɨɣ ɫɬɭɩɟɧɢ. Ɇɧɨɝɨɫɬɭɩɟɧɱɚɬɵɟ ɫɯɟɦɵ ɫ ɪɟɰɢɪɤɭɥɹɰɢɟɣ ɝɚɡɚ ɢ ɠɢɞɤɨɫɬɢ ɨɛɥɚɞɚɸɬ ɜɫɟɦɢ ɩɪɟɢɦɭɳɟɫɬɜɚɦɢ ɨɞɧɨɫɬɭɩɟɧɱɚɬɵɯ ɫɯɟɦ ɢ ɜɦɟɫɬɟ ɫ ɬɟɦ ɨɛɟɫɩɟɱɢɜɚɟɬ ɛɨɥɶɲɭɸ ɞɜɢɠɭɳɭɸ ɫɢɥɭ ɩɪɨɰɟɫɫɚ. ɉɨ ɭɤɚɡɚɧɧɨɣ ɩɪɢɱɢɧɟ ɜ ɛɨɥɶɲɢɧɫɬɜɟ ɫɥɭɱɚɟɜ ɜɵɛɢɪɚɸɬ ɜɚɪɢɚɧɬ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɵɯ ɪɟɰɢɪɤɭɥɹɰɢɨɧɧɵɯ ɫɯɟɦ. 3.2. Ⱥɞɫɨɪɛɰɢɹ ɝɚɡɨɜɵɯ ɩɪɢɦɟɫɟɣ Ⱥɞɫɨɪɛɰɢɟɣ ɧɚɡɵɜɚɸɬ ɩɪɨɰɟɫɫ ɢɡɛɢɪɚɬɟɥɶɧɨɝɨ ɩɨɝɥɨɳɟɧɢɹ ɤɨɦɩɨɧɟɧɬɚ ɝɚɡɚ, ɩɚɪɚ ɢɥɢ ɪɚɫɬɜɨɪɚ ɫ ɩɨɦɨɳɶɸ ɚɞɫɨɪɛɟɧɬɨɜ — ɩɨɪɢɫɬɵɯ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ ɫ ɛɨɥɶɲɨɣ ɭɞɟɥɶɧɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ. Ƚɚɡɨɜɚɹ ɫɪɟɞɚ, ɢɡ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɩɨɝɥɨɳɟɧɢɟ ɤɨɦɩɨɧɟɧɬɚ, ɧɚɡɵɜɚɟɬɫɹ ɝɚɡɨɦ-ɧɨɫɢɬɟɥɟɦ, ɬɜɟɪɞɨɟ ɜɟɳɟɫɬɜɨ, ɩɨɝɥɨɳɚɸɳɟɟ ɤɨɦɩɨɧɟɧɬ — ɚɞɫɨɪɛɟɧɬɨɦ, ɰɟɥɟɜɨɣ ɩɨɝɥɨɳɚɟɦɵɣ ɤɨɦɩɨɧɟɧɬ (ɩɨɝɥɨɳɚɟɦɨɟ ɜɟɳɟɫɬɜɨ), ɧɚɯɨɞɹɳɢɣɫɹ ɜ ɨɱɢɳɚɟɦɨɦ ɝɚɡɟ, ɧɚɡɵɜɚɸɬ ɚɞɫɨɪɛɬɢɜɨɦ, ɷɬɨɬ ɠɟ ɤɨɦɩɨɧɟɧɬ ɜ ɚɞɫɨɪɛɢɪɨɜɚɧɧɨɦ ɫɨɫɬɨɹɧɢɢ, ɬ.ɟ. ɩɨɝɥɨɳɟɧɧɨɟ ɜɟɳɟɫɬɜɨ ɜ ɚɞɫɨɪɛɟɧɬɟ - ɚɞɫɨɪɛɚɬɨɦ. ɉɪɨɰɟɫɫɵ ɚɞɫɨɪɛɰɢɢ ɹɜɥɹɸɬɫɹ ɢɡɛɢɪɚɬɟɥɶɧɵɦɢ ɢ ɨɛɪɚɬɢɦɵɦɢ. Ʉɚɠɞɵɣ ɩɨɝɥɨɬɢɬɟɥɶ ɨɛɥɚɞɚɟɬ ɫɩɨɫɨɛɧɨɫɬɶɸ ɩɨɝɥɨɳɚɬɶ ɥɢɲɶ ɨɩɪɟɞɟɥɟɧɧɵɟ ɜɟɳɟɫɬɜɚ ɢ ɧɟ ɩɨɝɥɨɳɚɬɶ ɞɪɭɝɢɟ. ɉɨɝɥɨɳɟɧɧɨɟ ɜɟɳɟɫɬɜɨ ɜɫɟɝɞɚ ɦɨɠɟɬ ɛɵɬɶ ɜɵɞɟɥɟɧɨ ɢɡ ɩɨɝɥɨɬɢɬɟɥɹ ɩɭɬɟɦ ɞɟɫɨɪɛɰɢɢ. ȼ ɨɬɥɢɱɢɟ ɨɬ ɚɛɫɨɪɛɰɢɨɧɧɵɯ ɦɟɬɨɞɨɜ ɚɞɫɨɪɛɰɢɹ ɩɨɡɜɨɥɹɟɬ ɩɪɨɜɨɞɢɬɶ ɨɱɢɫɬɤɭ ɝɚɡɨɜ ɩɪɢ ɩɨɜɵɲɟɧɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ. ɉɨ ɯɚɪɚɤɬɟɪɭ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɚɞɫɨɪɛɚɬɚ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɪɚɡɥɢɱɚɸɬ ɮɢɡɢɱɟɫɤɭɸ ɢ ɯɢɦɢɱɟɫɤɭɸ ɚɞɫɨɪɛɰɢɸ. ɉɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɦɟɠɞɭ ɦɨɥɟɤɭɥɚɦɢ ɚɞɫɨɪɛɟɧɬɚ ɢ ɦɨɥɟɤɭɥɚɦɢ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɧɟ ɩɪɨɢɫɯɨɞɢɬ ɯɢɦɢɱɟɫɤɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ. ɉɪɨɰɟɫɫ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɦɨɠɟɬ ɛɵɬɶ ɨɛɪɚɬɢɦɵɦ, ɬ. ɟ. ɱɟɪɟɞɭɸɬɫɹ ɫɬɚɞɢɢ ɚɞɫɨɪɛɰɢɢ ɢ ɞɟɫɨɪɛɰɢɢ (ɜɵɞɟɥɟɧɢɹ ɩɨɝɥɨɳɟɧɧɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɢɡ ɚɞɫɨɪɛɟɧɬɚ). Ɏɢɡɢɱɟɫɤɚɹ ɚɞɫɨɪɛɰɢɹ ɨɛɭɫɥɨɜɥɢɜɚɟɬɫɹ ɫɢɥɚɦɢ ɦɟɠɦɨɥɟɤɭɥɹɪɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ (ɞɢɫɩɟɪɫɢɨɧɧɵɣ, ɨɪɢɟɧɬɚɰɢɨɧɧɵɣ ɢ ɢɧɞɭɤɰɢɨɧɧɵɣ ɷɮɮɟɤ- ɬɵ). Ɇɟɠɦɨɥɟɤɭɥɹɪɧɵɟ ɫɢɥɵ ɫɥɚɛɵ, ɩɨɷɬɨɦɭ ɩɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɥɢɲɶ ɧɟɛɨɥɶɲɚɹ ɞɟɮɨɪɦɚɰɢɹ ɚɞɫɨɪɛɢɪɨɜɚɧɧɵɯ ɱɚɫɬɢɰ. ɗɬɨɬ ɜɢɞ ɚɞɫɨɪɛɰɢɢ - ɱɢɫɬɨ ɮɢɡɢɱɟɫɤɢɣ ɩɪɨɰɟɫɫ ɫ ɷɧɟɪɝɢɟɣ ɚɤɬɢɜɚɰɢɢ ɩɨɪɹɞɤɚ 4…12 ɤȾɠ/ɦɨɥɶ. ɉɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɩɨɝɥɨɳɚɟɦɵɟ ɦɨɥɟɤɭɥɵ ɝɚɡɨɜ ɢ ɩɚɪɨɜ ɭɞɟɪɠɢɜɚɸɬɫɹ ɫɢɥɚɦɢ ȼɚɧ-ɞɟɪ-ȼɚɚɥɶɫɚ, ɩɪɢ ɯɟɦɨɫɨɪɛɰɢɢ - ɯɢɦɢɱɟɫɤɢɦɢ ɫɢɥɚɦɢ. ɉɪɢ ɯɢɦɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɦɨɥɟɤɭɥɵ ɚɞɫɨɪɛɟɧɬɚ ɢ ɚɞɫɨɪɛɬɢɜɚ ɯɢɦɢɱɟɫɤɢ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɬ. Ⱦɟɫɨɪɛɰɢɹ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɨɫɭɳɟɫɬɜɢɦɚ. ɉɪɢ ɯɢɦɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɜɵɞɟɥɹɟɬɫɹ ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɶɲɟ ɬɟɩɥɨɬɵ, ɱɟɦ ɩɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ. ɏɢɦɢɱɟɫɤɚɹ ɚɞɫɨɪɛɢɢɹ (ɯɟɦɨɫɨɪɛɰɢɹ) ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɡɚ ɫɱɟɬ ɧɟɧɚɫɵɳɟɧɧɵɯ ɜɚɥɟɧɬɧɵɯ ɫɢɥ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɫɥɨɹ. ɉɪɢ ɷɬɨɦ ɦɨɝɭɬ ɨɛɪɚɡɨɜɵɜɚɬɶɫɹ ɩɨɜɟɪɯɧɨɫɬɧɵɟ ɯɢɦɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ, ɫɜɨɣɫɬɜɚ ɢ ɫɬɪɨɟɧɢɟ ɤɨɬɨɪɵɯ ɟɳɟ ɦɚɥɨ ɢɡɭɱɟɧɵ. ɂɡɜɟɫɬɧɨ ɬɨɥɶɤɨ, ɱɬɨ ɨɧɢ ɨɬɥɢɱɧɵ ɨɬ ɫɜɨɣɫɬɜ ɨɛɴɟɦɧɵɯ ɫɨɟɞɢɧɟɧɢɣ. ɉɪɢ ɨɛɪɚɡɨɜɚɧɢɢ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɫɨɟɞɢɧɟɧɢɣ ɧɟɨɛɯɨɞɢɦɨ ɩɪɟɨɞɨɥɟɬɶ ɷɧɟɪɝɟɬɢɱɟɫɤɢɣ ɛɚɪɶɟɪ, ɤɨɬɨɪɵɣ ɨɛɵɱɧɨ ɫɨɫɬɚɜɥɹɟɬ 40…100 ɤȾɠ/ɦɨɥɶ. ɉɨɫɤɨɥɶɤɭ ɯɟɦɨɫɨɪɛɰɢɹ ɬɪɟɛɭɟɬ ɡɧɚɱɢɬɟɥɶɧɨɣ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ, ɟɟ ɢɧɨɝɞɚ ɧɚɡɵɜɚɸɬ ɚɤɬɢɜɢɪɨɜɚɧɧɨɣ ɚɞɫɨɪɛɰɢɟɣ. ɉɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɦɨɥɟɤɭɥ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɚɞɫɨɪɛɟɧɬɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɪɚɜɧɢɬɟɥɶɧɨ ɫɥɚɛɵɦɢ ɫɢɥɚɦɢ (ɞɢɫɩɟɪɫɧɵɦɢ, ɢɧɞɭɤɰɢɨɧɧɵɦɢ, ɨɪɢɟɧɬɚɰɢɨɧɧɵɦɢ). Ⱦɥɹ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɯɚɪɚɤɬɟɪɧɚ ɜɵɫɨɤɚɹ ɫɤɨɪɨɫɬɶ, ɦɚɥɚɹ ɩɪɨɱɧɨɫɬɶ ɫɜɹɡɢ ɦɟɠɞɭ ɩɨɜɟɪɯɧɨɫɬɶɸ ɚɞɫɨɪɛɟɧɬɚ ɢ ɚɞɫɨɪɛɬɢɜɨɦ, ɦɚɥɚɹ ɬɟɩɥɨɬɚ ɚɞɫɨɪɛɰɢɢ (ɞɨ 60 ɤȾɠ/ɦɨɥɶ). ȼ ɨɫɧɨɜɟ ɯɢɦɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɥɟɠɢɬ ɯɢɦɢɱɟɫɤɨɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɦɟɠɞɭ ɚɞɫɨɪɛɟɧɬɨɦ ɢ ɚɞɫɨɪɛɢɪɭɟɦɵɦ ɜɟɳɟɫɬɜɨɦ. Ⱦɟɣɫɬɜɭɸɳɢɟ ɩɪɢ ɷɬɨɦ ɫɢɥɵ ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɶɲɟ, ɱɟɦ ɩɪɢ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ, ɚ ɜɵɫɜɨɛɨɠɞɚɸɳɟɟɫɹ ɬɟɩɥɨ ɫɨɜɩɚɞɚɟɬ ɫ ɬɟɩɥɨɦ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ (ɨɧɚ ɤɨɥɟɛɥɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 20…400 ɤȾɠ/ɦɨɥɶ). ȼɟɥɢɱɢɧɵ ɮɢɡɢɱɟɫɤɨɣ ɢ ɯɢɦɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɫ ɪɨɫɬɨɦ ɬɟɦɩɟɪɚɬɭɪɵ ɭɦɟɧɶɲɚɸɬɫɹ, ɨɞɧɚɤɨ ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɮɢɡɢɱɟɫɤɚɹ ɚɞɫɨɪɛɰɢɹ ɦɨɠɟɬ ɫɤɚɱɤɨɨɛɪɚɡɧɨ ɩɟɪɟɣɬɢ ɜ ɚɤɬɢɜɢɪɨɜɚɧɧɭɸ. ɉɪɢ ɚɞɫɨɪɛɰɢɢ ɜɨɡɦɨɠɧɵ ɨɱɟɧɶ ɛɨɥɶɲɢɟ ɫɤɨɪɨɫɬɢ ɩɨɝɥɨɳɟɧɢɹ ɢ ɩɨɥɧɨɟ ɢɡɜɥɟɱɟɧɢɟ ɤɨɦɩɨɧɟɧɬɨɜ, ɜɵɞɟɥɟɧɢɟ ɤɨɬɨɪɵɯ ɩɭɬɟɦ ɚɛɫɨɪɛɰɢɢ ɛɵɥɨ ɛɵ ɧɟɜɨɡɦɨɠɧɨ ɢɡ-ɡɚ ɢɯ ɦɚɥɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɫɦɟɫɢ. Ⱥɞɫɨɪɛɰɢɸ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɫ ɧɟɜɵɫɨɤɢɦ ɫɨɞɟɪɠɚɧɢɟɦ ɝɚɡɨɨɛɪɚɡɧɵɯ ɢɥɢ ɩɚɪɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɟɧɢɣ ɞɨ ɩɨɥɭɱɟɧɢɹ ɢɯ ɨɱɟɧɶ ɧɢɡɤɢɯ ɨɛɴɟɦɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ. Ⱥɞɫɨɪɛɰɢɸ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɭɥɚɜɥɢɜɚɧɢɹ ɢɡ ɝɚɡɨɜ, ɜɟɧɬɢɥɹɰɢɨɧɧɵɯ ɜɵɛɪɨɫɨɜ ɫɟɪɧɢɫɬɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɭɝɥɟɜɨɞɨɪɨɞɨɜ, ɯɥɨɪɚ, ɨɤɢɫɥɨɜ ɚɡɨɬɚ, ɩɚɪɨɜ ɨɪɝɚɧɢɱɟɫɤɢɯ ɪɚɫɬɜɨɪɢɬɟɥɟɣ ɢ ɞɪ. Ⱥɞɫɨɪɛɰɢɹ ɩɪɨɞɨɥɠɚɟɬ ɨɫɬɚɜɚɬɶɫɹ ɨɫɧɨɜɧɵɦ ɫɩɨɫɨɛɨɦ ɨɱɢɫɬɤɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ. ȼ ɩɪɢɧɰɢɩɟ, ɚɞɫɨɪɛɰɢɹ ɦɨɠɟɬ ɛɵɬɶ ɩɪɢɦɟɧɟɧɚ ɞɥɹ ɢɡɜɥɟɱɟɧɢɹ ɥɸɛɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɢɡ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. ɇɚ ɩɪɚɤɬɢɤɟ ɨɛɥɚɫɬɶ ɟɟ ɩɪɢɦɟɧɟɧɢɹ ɨɝɪɚɧɢɱɟɧɚ ɪɹɞɨɦ ɷɤɫɩɥɭɚɬɚɰɢɨɧɧɵɯ, ɬɟɯɧɢɱɟɫɤɢɯ ɢ ɷɤɨɧɨɦɢɱɟɫɤɢɯ ɭɫɥɨɜɢɣ. Ɍɚɤ, ɩɨ ɬɪɟɛɨɜɚɧɢɹɦ ɩɨɠɚɪɨ- ɢ ɜɡɪɵɜɨɛɟɡɨɩɚɫɧɨɫɬɢ ɧɟɥɶɡɹ ɩɨɞɜɟɪɝɚɬɶ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɨɛɪɚɛɨɬɤɟ ɝɚɡɵ ɫ ɫɨɞɟɪɠɚɧɢɟɦ ɜɡɪɵɜɨɨɩɚɫɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ ɛɨɥɟɟ 2/3 ɨɬ ɧɢɠɧɟɝɨ ɤɨɧɰɟɧɬɪɚɰɢɨɧɧɨɝɨ ɩɪɟɞɟɥɚ ɜɨɫɩɥɚɦɟɧɟɧɢɹ. Ɉɩɬɢɦɚɥɶɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜ ɝɚɡɚɯ, ɩɨɞɚɜɚɟɦɵɯ ɧɚ ɨɱɢɫɬɤɭ, ɧɚɯɨɞɹɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 0,02...0,5% ɨɛ. (ɜ ɩɟɪɟɫɱɟɬɟ ɧɚ ɫɨɟɞɢɧɟɧɢɹ ɫ ɦɨɥɟɤɭɥɹɪɧɨɣ ɦɚɫɫɨɣ ~ 100). ɋɨɜɪɟɦɟɧɧɵɟ ɬɟɯɧɢɱɟɫɤɢɟ ɜɨɡɦɨɠɧɨɫɬɢ ɧɟ ɩɨɡɜɨɥɹɸɬ ɫɧɢɠɚɬɶ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɨɫɪɟɞɫɬɜɨɦ ɚɞɫɨɪɛɰɢɢ ɞɨ ɫɚɧɢɬɚɪɧɵɯ ɧɨɪɦ. Ɉɪɢɟɧɬɢɪɨɜɨɱɧɨ ɦɢɧɢɦɚɥɶɧɵɟ ɤɨɧɟɱɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɩɪɢɟɦɥɟɦɵɦ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦ ɚɞɫɨɪɛɰɢɨɧɧɵɯ ɚɩɩɚɪɚɬɨɜ, ɧɚ ɩɪɚɤɬɢɤɟ ɫɨɫɬɚɜɥɹɸɬ 0,002...0,004% ɨɛ. ɉɨɷɬɨɦɭ ɚɞɫɨɪɛɰɢɨɧɧɚɹ ɨɱɢɫɬɤɚ ɝɚɡɨɜ ɫ ɧɚɱɚɥɶɧɵɦ ɫɨɞɟɪɠɚɧɢɟɦ ɡɚɝɪɹɡɧɢɬɟɥɹ ɦɟɧɟɟ 0,02% ɭɦɟɫɬɧɚ, ɟɫɥɢ ɷɬɨ ɞɨɪɨɝɨɫɬɨɹɳɢɣ ɩɪɨɞɭɤɬ ɢɥɢ ɜɟɳɟɫɬɜɨ ɜɵɫɨɤɨɝɨ ɤɥɚɫɫɚ ɨɩɚɫɧɨɫɬɢ. Ɉɛɪɚɛɨɬɤɚ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɫ ɜɵɫɨɤɨɣ (ɛɨɥɟɟ 0,2...0,4% ɨɛ. ɜ ɩɟɪɟɫɱɟɬɟ ɧɚ ɫɨɟɞɢɧɟɧɢɹ ɫ ɦɨɥɟɤɭɥɹɪɧɨɣ ɦɚɫɫɨɣ ɩɨɪɹɞɤɚ 100...50) ɧɚɱɚɥɶɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɡɚɝɪɹɡɧɢɬɟɥɹ ɬɪɟɛɭɟɬ ɡɧɚɱɢɬɟɥɶɧɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɚɞɫɨɪɛɟɧɬɚ ɢ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɛɨɥɶɲɢɯ ɝɚɛɚɪɢɬɨɜ ɚɞɫɨɪɛɟɪɚ. Ƚɪɨɦɨɡɞɤɨɫɬɶ ɚɩɩɚɪɚɬɨɜ ɜɵɡɵɜɚɟɬɫɹ ɢ ɦɚɥɵɦɢ (ɞɨ 0,5 ɦ/ɫ) ɡɧɚɱɟɧɢɹɦɢ ɫɤɨɪɨɫɬɢ ɩɨɬɨɤɚ ɱɟɪɟɡ ɫɥɨɣ ɚɞɫɨɪɛɟɧɬɚ, ɩɨɫɤɨɥɶɤɭ ɩɪɢ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɫɤɨɪɨɫɬɹɯ ɪɟɡɤɨ ɜɨɡɪɚɫɬɚɟɬ ɢɫɬɢɪɚɧɢɟ ɢ ɭɧɨɫ ɚɞɫɨɪɛɟɧɬɚ. Ɍɚɤ, ɩɨɬɟɪɢ ɚɞɫɨɪɛɟɧɬɚ ɡɚ ɫɱɟɬ ɭɧɨɫɚ ɦɨɝɭɬ ɞɨɯɨɞɢɬɶ ɩɪɢ ɫɤɨɪɨɫɬɹɯ ɩɨɬɨɤɚ 1...1,5 ɦ/ɫ ɞɨ 5% ɜ ɫɭɬɤɢ. Ɉɞɧɚɤɨ ɜɨɡɦɨɠɧɨɫɬɢ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɟɳɟ ɞɚɥɟɤɨ ɧɟ ɢɫɱɟɪɩɚɧɵ. ȼ ɪɹɞɟ ɫɥɭɱɚɟɜ ɨɧ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧ ɞɥɹ ɫɨɡɞɚɧɢɹ ɨɱɢɫɬɧɵɯ ɫɢɫɬɟɦ ɧɨɜɨɝɨ ɩɨɤɨɥɟɧɢɹ, ɭɞɨɜɥɟɬɜɨɪɹɸɳɢɯ ɧɟ ɬɨɥɶɤɨ ɫɚɧɢɬɚɪɧɵɦ ɧɨɪɦɚɦ, ɧɨ ɢ ɷɤɨɧɨɦɢɱɟɫɤɢɦ ɬɪɟɛɨɜɚɧɢɹɦ. Ʉ ɩɪɢɦɟɪɭ, ɚɞɫɨɪɛɰɢɸ ɦɨɠɧɨ ɩɪɢɦɟɧɢɬɶ ɜ ɞɜɭɯɫɬɭɩɟɧɱɚɬɨɣ ɫɯɟɦɟ ɨɱɢɫɬɤɢ ɞɥɹ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɝɨ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ ɫɢɥɶɧɨ ɪɚɡɛɚɜɥɟɧɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɩɨɫɬɭɩɚɸɳɢɯ ɡɚɬɟɦ ɧɚ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɟ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜ ɜɟɧɬɢɥɹɰɢɨɧɧɵɯ ɜɵɛɪɨɫɚɯ ɦɨɠɧɨ ɩɨɜɵɫɢɬɶ ɜ ɞɟɫɹɬɤɢ ɪɚɡ. Ⱥɞɫɨɪɛɰɢɹ ɦɨɠɟɬ ɩɪɨɬɟɤɚɬɶ ɜ ɧɟɩɨɞɜɢɠɧɨɦ ɫɥɨɟ, ɩɟɪɟɦɟɳɚɸɳɟɦɫɹ (ɞɜɢɠɭɳɟɦɫɹ) ɫɥɨɟ, ɤɢɩɹɳɟɦ (ɩɫɟɜɞɨɨɠɢɠɟɧɧɨɦ) ɫɥɨɟ ɚɞɫɨɪɛɟɧɬɚ. 3.2.1. Ɍɟɨɪɢɹ ɚɞɫɨɪɛɰɢɢ ɋɩɨɫɨɛɧɨɫɬɶ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɱɚɫɬɢɰ (ɢɨɧɨɜ, ɚɬɨɦɨɜ ɢɥɢ ɦɨɥɟɤɭɥ) ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɵɯ ɬɟɥ ɩɪɢɬɹɝɢɜɚɬɶ ɢ ɭɞɟɪɠɢɜɚɬɶ ɦɨɥɟɤɭɥɵ ɝɚɡɚ ɨɛɭɫɥɨɜɥɟɧɚ ɢɡɛɵɬɤɨɦ ɷɧɟɪɝɢɢ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ (ɩɨ ɫɪɚɜɧɟɧɢɸ ɫɨ ɫɪɟɞɧɟɣ ɷɧɟɪɝɢɟɣ ɱɚɫɬɢɰ ɜ ɨɛɴɟɦɟ ɬɟɥɚ) ɢ ɩɪɢɫɭɳɚ ɜɫɟɦ ɬɜɟɪɞɵɦ ɜɟɳɟɫɬɜɚɦ ɢ ɠɢɞɤɨɫɬɹɦ. ɇɚ ɩɪɚɤɬɢɤɟ ɜ ɤɚɱɟɫɬɜɟ ɚɞɫɨɪɛɟɧɬɨɜ ɜɵɝɨɞɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜɟɳɟɫɬɜɚ ɫ ɪɚɡɜɢɬɨɣ ɭɞɟɥɶɧɨɣ (ɧɚ ɟɞɢɧɢɰɭ ɨɛɴɟɦɚ) ɩɨɜɟɪɯɧɨɫɬɶɸ. Ʉɨɥɢɱɟɫɬɜɨ ɚɞɫɨɪɛɚɬɚ, ɭɞɟɪɠɢɜɚɟɦɨɟ ɧɚ ɟɞɢɧɢɱɧɨɣ ɩɥɨɳɚɞɢ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ, ɜ ɤɨɧɟɱɧɨɦ ɫɱɟɬɟ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɢɥɨɣ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɟɠɞɭ ɦɨɥɟɤɭɥɚɦɢ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɢ ɱɚɫɬɢɰɚɦɢ, ɧɚɯɨɞɹɳɢɦɢɫɹ ɜ ɩɪɢɩɨɜɟɪɯɧɨɫɬɧɵɯ ɫɥɨɹɯ ɚɞɫɨɪɛɟɧɬɚ. Ȼɥɚɝɨɞɚɪɹ ɩɨɫɬɨɹɧɧɵɦ ɤɨɥɟɛɚɧɢɹɦ ɰɟɧɬɪɨɜ ɡɚɪɹɞɨɜ (ɷɥɟɤɬɪɨɧɧɵɯ ɨɛɨɥɨɱɟɤ ɢ ɹɞɟɪ) ɚɬɨɦɨɜ ɨɤɨɥɨ ɫɪɟɞɧɟɝɨ ɩɨɥɨɠɟɧɢɹ ɧɟɩɪɟɪɵɜɧɨ ɜɨɡɧɢɤɚɸɬ ɢ ɢɫɱɟɡɚɸɬ ɞɢɩɨɥɶɧɵɟ, ɤɜɚɞɪɭɩɨɥɶɧɵɟ, ɜɵɫɲɢɟ ɦɭɥɶɬɢɩɨɥɶɧɵɟ ɦɨɦɟɧɬɵ. Ɉɧɢ ɫɨɡɞɚɸɬ ɜ ɩɪɨɫɬɪɚɧɫɬɜɟ ɜɨɤɪɭɝ ɚɬɨɦɨɜ ɩɭɥɶɫɢɪɭɸɳɢɟ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɩɨɥɹ, ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɤɨɬɨɪɵɯ ɦɨɝɭɬ ɛɵɬɶ ɜɵɱɢɫɥɟɧɵ ɜ ɩɪɨɫɬɟɣɲɢɯ ɫɥɭɱɚɹɯ ɩɨ ɭɪɚɜɧɟɧɢɹɦ ɤɜɚɧɬɨɜɨɣ ɦɟɯɚɧɢɤɢ. ɋɢɥɵ, ɜɨɡɧɢɤɚɸɳɢɟ ɩɪɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɤɜɚɧɬɨɜɵɯ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɩɨɥɟɣ ɱɚɫɬɢɰ, ɭɱɚɫɬɜɭɸɳɢɯ ɜ ɩɪɨɰɟɫɫɟ ɚɞɫɨɪɛɰɢɢ, ɧɚɡɵɜɚɸɬ ȼɚɧ-ɞɟɪ-ɜɚɚɥɶɫɨɜɵɦɢ ɢɥɢ ɞɢɫɩɟɪɫɢɨɧɧɵɦɢ ɫɢɥɚɦɢ. Ⱦɢɫɩɟɪɫɢɨɧɧɵɟ ɫɢɥɵ ɞɟɣɫɬɜɭɸɬ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ ɢ ɚɧɚɥɨɝɢɱɧɵ ɫɢɥɚɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɟɠɞɭ ɦɨɥɟɤɭɥɚɦɢ ɜ ɨɛɴɟɦɟ ɝɚɡɚ (ɫɢɥɚɦ ɦɟɠɦɨɥɟɤɭɥɹɪɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ), ɨɛɭɫɥɚɜɥɢɜɚɸɳɢɦ ɨɬɤɥɨɧɟɧɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɪɟɚɥɶɧɵɯ ɝɚɡɨɜ ɨɬ ɢɞɟɚɥɶɧɵɯ. ɋɨɝɥɚɫɧɨ ɤɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɢɦ ɪɚɫɱɟɬɚɦ, ɫɢɥɵ ȼɚɧ-ɞɟɪȼɚɚɥɶɫɚ ɪɟɡɤɨ ɭɛɵɜɚɸɬ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɰɟɧɬɪɚɦɢ ɡɚɪɹɞɨɜ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɱɚɫɬɢɰ (ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɵ 6-ɣ ɫɬɟɩɟɧɢ ɪɚɫɫɬɨɹɧɢɹ) ɢ ɧɚ ɧɟɫɤɨɥɶɤɨ ɩɨɪɹɞɤɨɜ ɫɥɚɛɟɟ ɨɛɦɟɧɧɵɯ ɫɢɥ, ɫɨɡɞɚɸɳɢɯ ɯɢɦɢɱɟɫɤɭɸ ɫɜɹɡɶ. Ɉɞɧɚɤɨ, ɜ ɨɬɥɢɱɢɟ ɨɬ ɨɛɴɟɦɧɵɯ ɫɢɥ, ɞɢɫɩɟɪɫɢɨɧɧɵɟ ɦɨɝɭɬ ɞɟɣɫɬɜɨɜɚɬɶ ɧɚ ɨɬɧɨɫɢɬɟɥɶɧɨ ɛɨɥɶɲɢɯ ɪɚɫɫɬɨɹɧɢɹɯ (ɩɪɟɜɵɲɚɸɳɢɯ ɪɚɡɦɟɪɵ ɦɨɥɟɤɭɥ) ɢ ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɧɟɧɚɫɵɳɚɟɦɨɫɬɶɸ. ɉɨɥɟ, ɫɨɡɞɚɜɚɟɦɨɟ ɦɝɧɨɜɟɧɧɵɦɢ ɞɢɩɨɥɶɧɵɦɢ ɦɨɦɟɧɬɚɦɢ ɨɞɧɨɣ ɦɨɥɟɤɭɥɵ, ɦɨɠɟɬ ɜɡɚɢɦɨɞɟɣɫɬɜɨɜɚɬɶ ɫ ɩɨɥɹɦɢ ɦɧɨɝɢɯ ɞɪɭɝɢɯ ɦɨɥɟɤɭɥ. ɉɪɢɧɢɦɚɟɬɫɹ, ɱɬɨ ɩɪɢ ɞɢɫɩɟɪɫɢɨɧɧɵɯ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹɯ ɨɛɨɛɳɟɫɬɜɥɟɧɢɹ ɷɥɟɤɬɪɨɧɨɜ ɧɟ ɩɪɨɢɫɯɨɞɢɬ, ɢ ɯɢɦɢɱɟɫɤɚɹ ɫɜɹɡɶ ɧɟ ɨɛɪɚɡɭɟɬɫɹ. Ɉɞɧɭ ɢɡ ɞɜɭɯ ɝɪɚɧɢɱɧɵɯ ɦɨɞɟɥɟɣ ɚɞɫɨɪɛɰɢɢ, ɩɪɟɞɩɨɥɚɝɚɸɳɭɸ, ɱɬɨ ɩɪɢ ɭɞɟɪɠɚɧɢɢ ɦɨɥɟɤɭɥ ɝɚɡɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɚɞɫɨɪɛɟɧɬɚ ɧɟ ɩɪɨɢɫɯɨɞɢɬ ɷɥɟɤɬɪɨɧɧɨɝɨ ɨɛɦɟɧɚ ɢ ɨɛɪɚɡɨɜɚɧɢɹ ɯɢɦɢɱɟɫɤɨɣ ɫɜɹɡɢ, ɧɚɡɵɜɚɸɬ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɟɣ ɢɥɢ ɡɚɱɚɫɬɭɸ ɩɪɨɫɬɨ ɚɞɫɨɪɛɰɢɟɣ. ȼ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɚɯ ɭɱɢɬɵɜɚɸɬ ɤɪɨɦɟ ɞɢɫɩɟɪɫɢɨɧɧɨɝɨ ɩɪɢɬɹɠɟɧɢɹ ɫɢɥɭ ɨɬɬɚɥɤɢɜɚɧɢɹ ɡɚɪɹɞɨɜ, ɩɪɢɧɢɦɚɹ ɟɟ ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɣ 12-ɣ ɫɬɟɩɟɧɢ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɰɟɧɬɪɚɦɢ ɡɚɪɹɞɨɜ. ȿɫɥɢ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɟ ɱɚɫɬɢɰɵ ɢɦɟɸɬ ɩɨɫɬɨɹɧɧɵɟ ɞɢɩɨɥɶɧɵɟ ɦɨɦɟɧɬɵ (ɧɚɩɪɢɦɟɪ, ɦɨɥɟɤɭɥɵ ɜɨɞɵ ɢɥɢ ɢɨɧɧɵɟ ɩɨɜɟɪɯɧɨɫɬɢ) ɢɥɢ ɫɜɨɛɨɞɧɵɟ ɷɥɟɤɬɪɨɧɵ (ɦɟɬɚɥɥɢɱɟɫɤɢɟ ɩɨɜɟɪɯɧɨɫɬɢ), ɬɨ ɦɟɠɞɭ ɧɢɦɢ ɜɨɡɧɢɤɚɸɬ ɢ ɤɥɚɫɫɢɱɟɫɤɢɟ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɢɟ ɫɢɥɵ. Ɍɨɱɧɵɣ ɬɟɨɪɟɬɢɱɟɫɤɢɣ ɪɚɫɱɟɬ ɢɯ ɜɟɥɢɱɢɧɵ ɧɟɜɨɡɦɨɠɟɧ, ɯɨɬɹ ɧɚ ɩɪɚɤɬɢɤɟ ɨɧɢ ɜɧɨɫɹɬ ɫɭɳɟɫɬɜɟɧɧɵɣ ɜɤɥɚɞ ɜ ɫɢɥɭ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ, ɚ ɢɧɨɝɞɚ ɢ ɨɩɪɟɞɟɥɹɸɬ ɯɚɪɚɤɬɟɪ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ. Ɍɚɤ, ɧɚɩɪɢɦɟɪ, ɝɨɪɚɡɞɨ ɛɨɥɟɟ ɲɢɪɨɤɨɟ ɩɪɢɦɟɧɟɧɢɟ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɚɤɬɢɜɢɪɨɜɚɧɧɵɯ ɭɝɥɟɣ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɫɢɧɬɟɬɢɱɟɫɤɢɦɢ ɩɨɥɹɪɧɵɦɢ ɚɞɫɨɪɛɟɧɬɚɦɢ - ɫɢɥɢɤɚɝɟɥɹɦɢ, ɰɟɨɥɢɬɚɦɢ, ɨɛɴɹɫɧɹɟɬɫɹ ɬɟɦ, ɱɬɨ ɭɝɥɢ ɜɜɢɞɭ ɧɟɩɨɥɹɪɧɨɫɬɢ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɱɚɫɬɢɰ ɨɞɢɧɚɤɨɜɨ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɬ ɤɚɤ ɫ ɩɨɥɹɪɧɵɦɢ, ɬɚɤ ɢ ɫ ɧɟɩɨɥɹɪɧɵɦɢ ɦɨɥɟɤɭɥɚɦɢ ɝɚɡɨɜɨɣ ɮɚɡɵ. Ɇɨɥɟɤɭɥɵ ɜɨɞɵ, ɨɛɥɚɞɚɹ ɩɨɫɬɨɹɧɧɵɦ ɞɢɩɨɥɶɧɵɦ ɦɨɦɟɧɬɨɦ, ɜɡɚɢɦɧɨ ɩɪɢɬɹɝɢɜɚɸɬ ɞɪɭɝ ɞɪɭɝɚ ɜ ɩɚɪɨɜɨɣ ɮɚɡɟ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɞɢɮɮɭɧɞɢɪɭɸɬ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɭɝɥɹ ɯɭɠɟ ɧɟɩɨɥɹɪɧɵɯ ɦɨɥɟɤɭɥ. ɉɨɷɬɨɦɭ ɚɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ ɞɨɫɬɚɬɨɱɧɨ ɷɮɮɟɤɬɢɜɧɨ ɢɡɜɥɟɤɚɟɬ ɡɚɝɪɹɡɧɢɬɟɥɢ ɢɡ ɜɥɚɠɧɵɯ ɝɚɡɨɜ, ɜ ɬɨ ɜɪɟɦɹ ɤɚɤ ɩɨɥɹɪɧɵɟ ɚɞɫɨɪɛɟɧɬɵ ɫɩɨɫɨɛɵ ɢɡɜɥɟɤɚɬɶ ɢɡ ɧɢɯ ɥɢɲɶ ɜɨɞɭ. Ɋɟɡɭɥɶɬɚɬɵ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɨɜ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɮɢɡɢɱɟɫɤɨɣ ɫɨɪɛɰɢɢ ɢɦɟɸɬ ɧɢɡɤɭɸ ɫɯɨɞɢɦɨɫɬɶ ɫ ɨɩɵɬɧɵɦɢ ɞɚɧɧɵɦɢ ɢ ɩɪɢɝɨɞɧɵ ɬɨɥɶɤɨ ɞɥɹ ɤɚɱɟɫɬɜɟɧɧɨɣ ɨɰɟɧɤɢ ɩɪɨɰɟɫɫɨɜ. ɉɨ ɞɪɭɝɨɣ ɦɨɞɟɥɢ ɚɞɫɨɪɛɰɢɢ ɩɪɟɞɩɨɥɚɝɚɟɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɯɢɦɢɱɟɫɤɨɣ ɫɜɹɡɢ ɦɟɠɞɭ ɦɨɥɟɤɭɥɨɣ ɝɚɡɚ ɢ ɱɚɫɬɢɰɟɣ ɚɞɫɨɪɛɟɧɬɚ. Ɍɚɤɭɸ ɦɨɞɟɥɶ ɧɚɡɵɜɚɸɬ ɯɢɦɢɱɟɫɤɨɣ ɫɨɪɛɰɢɟɣ ɢɥɢ ɯɟɦɨɫɨɪɛɰɢɟɣ. ɗɧɟɪɝɢɹ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɜ ɩɪɨɰɟɫɫɟ ɯɟɦɨɫɨɪɛɰɢɢ ɛɥɢɡɤɚ (ɧɨ ɧɟ ɪɚɜɧɚ) ɷɧɟɪɝɢɢ ɯɢɦɢɱɟɫɤɨɣ ɫɜɹɡɢ ɦɨɥɟɤɭɥɵ, ɫɨɫɬɨɹɳɟɣ ɢɡ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɷɥɟɦɟɧɬɨɜ. Ⱦɥɹ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɨɜ ɷɧɟɪɝɢɢ ɩɪɨɰɟɫɫɚ ɯɟɦɨɫɨɪɛɰɢɢ ɢɫɩɨɥɶɡɭɸɬ ɭɪɚɜɧɟɧɢɟ ɒɪɟɞɢɧɝɟɪɚ. ȿɝɨ ɫɬɪɨɝɨɟ ɢ ɬɨɱɧɨɟ ɪɟɲɟɧɢɟ ɩɨɥɭɱɟɧɨ ɥɢɲɶ ɞɥɹ ɫɥɭɱɚɹ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɨɞɧɨɝɨ ɩɪɨɬɨɧɚ ɢ ɨɞɧɨɝɨ ɷɥɟɤɬɪɨɧɚ. Ɍɟɨɪɟɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɪɚɫɱɟɬɨɜ ɛɨɥɟɟ ɫɥɨɠɧɵɯ ɫɢɫɬɟɦ ɜɟɫɶɦɚ ɝɪɨɦɨɡɞɤɢ, ɚ ɢɯ ɪɟɡɭɥɶɬɚɬɵ ɩɥɨɯɨ ɫɨɜɩɚɞɚɸɬ ɫ ɨɩɵɬɧɵɦɢ ɞɚɧɧɵɦɢ, ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɧɟɩɪɢɝɨɞɧɵ ɞɥɹ ɩɪɚɤɬɢɱɟɫɤɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɩɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɚɞɫɨɪɛɰɢɨɧɧɵɯ ɭɫɬɪɨɣɫɬɜ. 3.2.2. Ⱥɞɫɨɪɛɟɧɬɵ Ɍɟɯɧɢɤɨ-ɷɤɨɧɨɦɢɱɟɫɤɢɟ ɩɨɤɚɡɚɬɟɥɢ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɨɛɪɚɛɨɬɤɢ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɜɨ ɦɧɨɝɨɦ ɡɚɜɢɫɹɬ ɨɬ ɫɜɨɣɫɬɜ ɚɞɫɨɪɛɟɧɬɨɜ, ɬɪɟɛɨɜɚɧɢɹ ɤ ɤɨɬɨɪɵɦ ɮɨɪɦɢɪɨɜɚɥɢɫɶ ɫɬɪɟɦɥɟɧɢɟɦ ɜɫɟɦɟɪɧɨ ɫɧɢɡɢɬɶ ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɢ ɦɚɬɟɪɢɚɥɶɧɵɟ ɡɚɬɪɚɬɵ ɧɚ ɨɱɢɫɬɤɭ. Ⱥɞɫɨɪɛɟɧɬ - ɬɜɟɪɞɨɟ ɬɟɥɨ, ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɢ ɜ ɩɨɪɚɯ ɤɨɬɨɪɨɝɨ ɩɪɨɢɫɯɨɞɢɬ ɚɞɫɨɪɛɰɢɹ. Ⱥɞɫɨɪɛɟɧɬɵ ɨɬɥɢɱɚɸɬɫɹ ɜɵɫɨɤɨɣ ɩɨɪɢɫɬɨɫɬɶɸ, ɢɦɟɸɬ ɛɨɥɶɲɭɸ ɭɞɟɥɶɧɭɸ ɩɨɜɟɪɯɧɨɫɬɶ. Ɍɚɤ, ɭ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɯ ɚɞɫɨɪɛɟɧɬɨɜ ɨɧɚ ɦɨɠɟɬ ɞɨɫɬɢɝɚɬɶ 1000 ɦ2/ɝ. ɉɪɨɦɵɲɥɟɧɧɵɟ ɚɞɫɨɪɛɟɧɬɵ ɢɡɝɨɬɚɜɥɢɜɚɸɬ ɢɡ ɬɜɟɪɞɵɯ ɩɨɪɢɫɬɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɢɫɩɨɥɶɡɭɸɬ ɜ ɞɪɨɛɥɟɧɧɨɦ, ɝɪɚɧɭɥɢɪɨɜɚɧɧɨɦ ɢɥɢ ɩɨɪɨɲɤɨɨɛɪɚɡɧɨɦ ɜɢɞɟ. Ⱥɞɫɨɪɛɟɧɬ ɞɨɥɠɟɧ ɢɦɟɬɶ ɜɵɫɨɤɭɸ ɫɨɪɛɰɢɨɧɧɭɸ ɟɦɤɨɫɬɶ, ɬ.ɟ. ɜɨɡɦɨɠɧɨɫɬɶ ɩɨɝɥɨɳɚɬɶ ɛɨɥɶɲɨɟ ɤɨɥɢɱɟɫɬɜɨ ɚɞɫɨɪɛɬɢɜɚ ɩɪɢ ɟɝɨ ɦɚɥɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɝɚɡɨɜɨɣ ɫɪɟɞɟ, ɱɬɨ ɡɚɜɢɫɢɬ ɨɬ ɭɞɟɥɶɧɨɣ ɩɥɨɳɚɞɢ ɩɨɜɟɪɯɧɨɫɬɢ ɢ ɮɢɡɢɤɨɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɱɚɫɬɢɰ. Ⱥɞɫɨɪɛɰɢɨɧɧɚɹ ɟɦɤɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ ɡɚɜɢɫɢɬ ɨɬ ɟɝɨ ɩɪɢɪɨɞɵ. Ɉɧɚ ɜɨɡɪɚɫɬɚɟɬ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɩɨɜɟɪɯɧɨɫɬɢ, ɩɨɪɢɫɬɨɫɬɢ, ɫɨ ɫɧɢɠɟɧɢɟɦ ɪɚɡɦɟɪɨɜ ɩɨɪ ɚɞɫɨɪɛɟɧɬɚ, ɚ ɬɚɤɠɟ ɫ ɩɨɜɵɲɟɧɢɟɦ ɤɨɧɰɟɧɬɪɚɰɢɢ ɚɞɫɨɪɛɬɢɜɚ ɜ ɝɚɡɟ-ɧɨɫɢɬɟɥɟ ɢ ɞɚɜɥɟɧɢɹ ɜ ɫɢɫɬɟɦɟ. ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɢ ɜɥɚɠɧɨɫɬɢ ɚɞɫɨɪɛɰɢɨɧɧɚɹ ɟɦɤɨɫɬɶ ɚɞɫɨɪɛɟɧɬɨɜ ɫɧɢɠɚɟɬɫɹ. ɏɨɪɨɲɢɟ ɚɞɫɨɪɛɟɧɬɵ ɜɵɞɟɪɠɢɜɚɸɬ ɧɟɫɤɨɥɶɤɨ ɫɨɬɟɧ ɢ ɬɵɫɹɱ ɰɢɤɥɨɜ «ɚɞɫɨɪɛɰɢɹ-ɞɟɫɨɪɛɰɢɹ» ɛɟɡ ɫɭɳɟɫɬɜɟɧɧɨɣ ɩɨɬɟɪɢ ɚɤɬɢɜɧɨɫɬɢ. Ⱥɞɫɨɪɛɟɧɬ ɞɨɥɠɟɧ ɢɦɟɬɶ ɜɵɫɨɤɭɸ ɫɟɥɟɤɬɢɜɧɨɫɬɶ (ɢɡɛɢɪɚɬɟɥɶɧɨɫɬɶ) ɜ ɨɬɧɨɲɟɧɢɢ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ. Ɉɧ ɞɨɥɠɟɧ ɨɛɥɚɞɚɬɶ ɞɨɫɬɚɬɨɱɧɨɣ ɦɟɯɚɧɢɱɟɫɤɨɣ ɩɪɨɱɧɨɫɬɶɸ. ɑɬɨɛɵ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɫɥɨɹ ɛɵ- ɥɨ ɧɟɜɵɫɨɤɢɦ, ɩɥɨɬɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ ɞɨɥɠɧɚ ɛɵɬɶ ɧɟɛɨɥɶɲɨɣ, ɚ ɮɨɪɦɚ ɱɚɫɬɢɰ ɨɛɬɟɤɚɟɦɨɣ ɢ ɫɨɡɞɚɜɚɬɶ ɜɵɫɨɤɭɸ ɩɨɪɨɡɧɨɫɬɶ ɧɚɫɵɩɤɢ. Ⱥɞɫɨɪɛɟɧɬ ɞɥɹ ɩɪɨɰɟɫɫɚ ɮɢɡɢɱɟɫɤɨɣ ɫɨɪɛɰɢɢ ɞɨɥɠɟɧ ɛɵɬɶ ɯɢɦɢɱɟɫɤɢ ɢɧɟɪɬɧɵɦ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɤɨɦɩɨɧɟɧɬɚɦ ɨɱɢɳɚɟɦɨɣ ɝɚɡɨɜɨɣ ɫɪɟɞɵ, ɚ ɞɥɹ ɯɢɦɢɱɟɫɤɨɣ ɫɨɪɛɰɢɢ (ɯɟɦɨɫɨɪɛɰɢɢ) - ɜɫɬɭɩɚɬɶ ɫ ɦɨɥɟɤɭɥɚɦɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɜ ɯɢɦɢɱɟɫɤɭɸ ɪɟɚɤɰɢɸ. Ⱦɥɹ ɫɧɢɠɟɧɢɹ ɡɚɬɪɚɬ ɧɚ ɞɟɫɨɪɛɰɢɸ ɭɥɨɜɥɟɧɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ ɭɞɟɪɠɢɜɚɸɳɚɹ ɫɩɨɫɨɛɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ ɧɟ ɞɨɥɠɧɚ ɛɵɬɶ ɫɥɢɲɤɨɦ ɜɵɫɨɤɨɣ, ɬ.ɟ. ɨɧ ɞɨɥɠɟɧ ɢɦɟɬɶ ɫɩɨɫɨɛɧɨɫɬɶ ɤ ɪɟɝɟɧɟɪɚɰɢɢ. Ⱥɞɫɨɪɛɟɧɬɵ ɞɨɥɠɧɵ ɢɦɟɬɶ ɧɟɜɵɫɨɤɭɸ ɫɬɨɢɦɨɫɬɶ ɢ ɢɡɝɨɬɚɜɥɢɜɚɬɶɫɹ ɢɡ ɞɨɫɬɭɩɧɵɯ ɦɚɬɟɪɢɚɥɨɜ. ɉɨɪɵ ɜ ɬɜɟɪɞɵɯ ɬɟɥɚɯ ɤɥɚɫɫɢɮɢɰɢɪɭɸɬɫɹ ɧɚ: ɦɚɤɪɨɩɨɪɵ ɫ ɪɚɞɢɭɫɨɦ ɛɨɥɟɟ 1000…2000 °Ⱥ; ɩɟɪɟɯɨɞɧɵɟ (ɦɟɡɨɩɨɪɵ) ɫ ɪɚɞɢɭɫɨɦ ɨɬ 15 ɞɨ 1000 °Ⱥ; ɦɢɤɪɨɩɨɪɵ ɫ ɪɚɞɢɭɫɨɦ ɞɨ 15 °Ⱥ. Ɇɚɤɪɨɩɨɪɵ ɫ ɪɚɡɦɟɪɚɦɢ ɩɨɪ ɛɨɥɟɟ 1000…2000 °Ⱥ ɹɜɥɹɸɬɫɹ ɬɪɚɧɫɩɨɪɬɧɵɦɢ ɤɚɧɚɥɚɦɢ ɞɥɹ ɩɨɞɜɨɞɚ ɚɞɫɨɪɛɢɪɭɟɦɵɯ ɦɨɥɟɤɭɥ ɤ ɦɟɡɨɩɨɪɚɦ ɢ ɦɢɤɪɨɩɨɪɚɦ. ȼ ɦɚɤɪɨɩɨɪɚɯ ɢ ɦɟɡɨɩɨɪɚɯ ɧɚɛɥɸɞɚɟɬɫɹ ɩɨɫɥɨɣɧɵɣ ɦɟɯɚɧɢɡɦ ɚɞɫɨɪɛɰɢɢ, ɜ ɦɢɤɪɨɩɨɪɚɯ, ɪɚɡɦɟɪ ɤɨɬɨɪɵɯ ɫɨɢɡɦɟɪɢɦ ɫ ɪɚɡɦɟɪɚɦɢ ɚɞɫɨɪɛɢɪɭɟɦɵɯ ɦɨɥɟɤɭɥ, ɚɞɫɨɪɛɰɢɹ ɧɨɫɢɬ ɯɚɪɚɤɬɟɪ ɨɛɴɟɦɧɨɝɨ ɡɚɩɨɥɧɟɧɢɹ. ɉɨɷɬɨɦɭ ɞɥɹ ɦɢɤɪɨɩɨɪɢɫɬɵɯ ɚɞɫɨɪɛɟɧɬɨɜ ɨɛɴɟɦ ɩɨɪ, ɚ ɧɟ ɩɨɜɟɪɯɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ ɢɝɪɚɟɬ ɪɟɲɚɸɳɟɟ ɡɧɚɱɟɧɢɟ ɜ ɚɞɫɨɪɛɰɢɢ. Ⱥɞɫɨɪɛɟɧɬ ɫ ɤɪɭɩɧɵɦɢ ɩɨɪɚɦɢ ɥɭɱɲɟ ɚɞɫɨɪɛɢɪɭɟɬ ɜɟɳɟɫɬɜɚ ɫ ɛɨɥɶɲɢɦɢ ɪɚɡɦɟɪɚɦɢ ɦɨɥɟɤɭɥ ɢ ɩɪɢ ɛɨɥɶɲɢɯ ɞɚɜɥɟɧɢɹɯ. ɋɪɟɞɧɟɩɨɪɢɫɬɵɣ ɚɞɫɨɪɛɟɧɬ ɷɮɮɟɤɬɢɜɧɟɟ ɚɞɫɨɪɛɢɪɭɟɬ ɩɪɢ ɫɪɟɞɧɢɯ ɞɚɜɥɟɧɢɹɯ, ɚ ɦɟɥɤɨɩɨɪɢɫɬɵɣ - ɩɪɢ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɹɯ. ɍɞɟɥɶɧɵɣ ɨɛɴɟɦ ɦɢɤɪɨɩɨɪ ɜ ɚɞɫɨɪɛɟɧɬɚɯ ɞɨɫɬɢɝɚɟɬ 0,2…0,6 ɫɦɁ/ɝ, ɚ ɭɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ - ɞɨ 500 ɦ2/ɝ ɢ ɛɨɥɟɟ. ɉɨɷɬɨɦɭ ɦɢɤɪɨɩɨɪɵ ɢɝɪɚɸɬ ɨɫɧɨɜɧɭɸ ɪɨɥɶ ɩɪɢ ɪɚɡɞɟɥɟɧɢɢ ɝɚɡɨɜɵɯ ɫɦɟɫɟɣ, ɨɫɨɛɟɧɧɨ ɩɪɢ ɨɱɢɫɬɤɟ ɝɚɡɨɜ ɨɬ ɦɚɥɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ ɩɪɢɦɟɫɟɣ. ɉɪɢ ɩɪɨɱɢɯ ɪɚɜɧɵɯ ɭɫɥɨɜɢɹɯ ɤɨɥɢɱɟɫɬɜɨ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ (ɚɞɫɨɪɛɚɬɚ) ɛɭɞɟɬ ɜɨɡɪɚɫɬɚɬɶ ɩɨ ɦɟɪɟ ɭɜɟɥɢɱɟɧɢɹ ɚɞɫɨɪɛɢɪɭɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ. ɋɢɥɶɧɨ ɪɚɡɜɢɬɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɢɦɟɸɬ ɜɟɳɟɫɬɜɚ ɫ ɨɱɟɧɶ ɜɵɫɨɤɨɣ ɩɨɪɢɫɬɨɫɬɶɸ, ɝɭɛɱɚɬɨɣ ɫɬɪɭɤɬɭɪɨɣ ɢɥɢ ɜ ɫɨɫɬɨɹɧɢɢ ɬɨɧɱɚɣɲɟɝɨ ɢɡɦɟɥɶɱɟɧɢɹ. ɂɡ ɩɪɚɤɬɢɱɟɫɤɢ ɢɫɩɨɥɶɡɭɟɦɵɯ ɚɞɫɨɪɛɢɪɭɸɳɢɯ ɜɟɳɟɫɬɜ (ɚɞɫɨɪɛɟɧɬɨɜ) ɜɟɞɭɳɟɟ ɦɟɫɬɨ ɩɪɢɧɚɞɥɟɠɢɬ ɪɚɡɥɢɱɧɵɦ ɜɢɞɚɦ ɢɡɝɨɬɚɜɥɢɜɚɟɦɵɯ ɚɤɬɢɜɢɪɨɜɚɧɧɵɯ ɭɝɥɟɣ (ɞɪɟɜɟɫɧɵɣ, ɤɨɫɬɹɧɨɣ ɢ ɞɪ.), ɩɨɜɟɪɯɧɨɫɬɶ ɤɨɬɨɪɵɯ ɦɨɠɟɬ ɩɪɟɜɵɲɚɬɶ 1000 ɦ2/ɝ. ɏɨɪɨɲɢɦɢ ɚɞɫɨɪɛɟɧɬɚɦɢ ɹɜɥɹɸɬɫɹ ɬɚɤɠɟ ɝɟɥɶ ɤɪɟɦɧɢɟɜɨɣ ɤɢɫɥɨɬɵ (ɫɢɥɢɤɚɝɟɥɶ), ɝɥɢɧɨɡɟɦ, ɤɚɨɥɢɧ, ɧɟɤɨɬɨɪɵɟ ɚɥɸɦɨɫɢɥɢɤɚɬɵ (ɚɥɸɦɨɝɟɥɢ), ɰɟɨɥɢɬɵ ɢ ɞɪɭɝɢɟ ɜɟɳɟɫɬɜɚ. ɗɬɢ ɜɟɳɟɫɬɜɚ ɨɬɥɢɱɚɸɬɫɹ ɞɪɭɝ ɨɬ ɞɪɭɝɚ ɩɪɢɪɨɞɨɣ ɦɚɬɟɪɢɚɥɚ ɢ, ɤɚɤ ɫɥɟɞɫɬɜɢɟ, ɫɜɨɢɦɢ ɚɞɫɨɪɛɰɢɨɧɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ, ɪɚɡɦɟɪɚɦɢ ɝɪɚɧɭɥ, ɩɥɨɬɧɨɫɬɶɸ ɢ ɞɪ. Ɋɚɡɥɢɱɚɸɬ ɢɫɬɢɧɧɭɸ, ɤɚɠɭɳɭɸɫɹ ɢ ɧɚɫɵɩɧɭɸ ɩɥɨɬɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ. ɂɫɬɢɧɧɚɹ ɩɥɨɬɧɨɫɬɶ - ɦɚɫɫɚ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɩɥɨɬɧɨɝɨ ɚɞɫɨɪɛɟɧɬɚ (ɬ. ɟ. ɛɟɡ ɭɱɟɬɚ ɩɨɪ). Ʉɚɠɭɳɚɹɫɹ ɩɥɨɬɧɨɫɬɶ — ɦɚɫɫɚ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɩɨɪɢɫɬɨɝɨ ɦɚɬɟɪɢɚɥɚ ɚɞɫɨɪɛɟɧɬɚ. ɉɨɞ ɧɚɫɵɩɧɨɣ ɩɥɨɬɧɨɫɬɶɸ ɩɨɧɢɦɚɸɬ ɦɚɫɫɭ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ, ɜɤɥɸɱɚɹ ɨɛɴɟɦ ɩɨɪ ɜ ɝɪɚɧɭɥɚɯ ɚɞɫɨɪɛɟɧɬɚ ɢ ɩɪɨɦɟɠɭɬɤɨɜ ɦɟɠɞɭ ɝɪɚɧɭɥɚɦɢ ɚɞɫɨɪɛɟɧɬɚ. Ⱥɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ - ɩɨɪɢɫɬɵɣ ɭɝɥɟɪɨɞɧɵɣ ɚɞɫɨɪɛɟɧɬ. ɉɪɢɦɟɧɹɸɬ ɧɟɫɤɨɥɶɤɨ ɦɚɪɨɤ ɚɤɬɢɜɢɪɨɜɚɧɧɨɝɨ ɭɝɥɹ, ɪɚɡɥɢɱɚɸɳɢɯɫɹ ɪɚɡɦɟɪɨɦ ɦɢɤɪɨɩɨɪ. Ⱥɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɦɚɪɤɢ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɚɞɫɨɪɛɰɢɢ ɪɚɡɥɢɱɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ (ɝɚɡɨɜ, ɥɟɬɭɱɢɯ ɪɚɫɬɜɨɪɢɬɟɥɟɣ ɢ ɞɪ.), ɨɛɥɚɞɚɸɳɢɯ ɪɚɡɥɢɱɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ. Ɋɚɡɦɟɪ ɝɪɚɧɭɥ ɚɤɬɢɜɢɪɨɜɚɧɧɨɝɨ ɭɝɥɹ 1,0…6,0 ɦɦ, ɧɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ 380…600 ɤɝ/ɦ3. ɋɢɥɢɤɚɝɟɥɶ - ɫɢɧɬɟɬɢɱɟɫɤɢɣ ɦɢɧɟɪɚɥɶɧɵɣ ɚɞɫɨɪɛɟɧɬ. ɋɢɥɢɤɚɝɟɥɢ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɝɢɞɪɚɬɢɪɨɜɚɧɧɵɟ ɚɦɨɪɮɧɵɟ ɤɪɟɦɧɟɡɟɦɵ (AliO2˜nH2O). ɍɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɫɢɥɢɤɚɝɟɥɹ ɫɨɫɬɚɜɥɹɟɬ 400…770 ɦ2/ɤɝ. ɋɢɥɢɤɚɝɟɥɶ ɩɪɢɦɟɧɹɟɬɫɹ ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ ɞɥɹ ɩɨɝɥɨɳɟɧɢɹ ɜɥɚɝɢ. Ɉɧ ɫɩɨɫɨɛɟɧ ɭɞɟɪɠɢɜɚɬɶ ɞɨ 50 % ɜɥɚɝɢ ɤ ɦɚɫɫɟ ɚɞɫɨɪɛɟɧɬɚ. ȿɝɨ ɩɪɟɢɦɭɳɟɫɬɜɨ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɚɤɬɢɜɢɪɨɜɚɧɧɵɦ ɭɝɥɟɦ — ɧɟɝɨɪɸɱɟɫɬɶ, ɧɢɡɤɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɪɟɝɟɧɟɪɚɰɢɢ (100…200°ɋ), ɧɢɡɤɚɹ ɫɟɛɟɫɬɨɢɦɨɫɬɶ ɩɪɢ ɦɚɫɫɨɜɨɦ ɩɪɨɢɡɜɨɞɫɬɜɟ, ɨɬɧɨɫɢɬɟɥɶɧɨ ɜɵɫɨɤɚɹ ɦɟɯɚɧɢɱɟɫɤɚɹ ɩɪɨɱɧɨɫɬɶ. ɉɪɨɦɵɲɥɟɧɧɨɫɬɶ ɜɵɩɭɫɤɚɟɬ ɪɹɞ ɦɚɪɨɤ ɫɢɥɢɤɚɝɟɥɹ, ɨɬɥɢɱɚɸɳɢɯɫɹ ɮɨɪɦɨɣ ɢ ɪɚɡɦɟɪɚɦɢ ɡɟɪɟɧ (0,2…7,0 ɦɦ ɤɭɫɤɨɜɵɟ ɢ ɝɪɚɧɭɥɢɪɨɜɚɧɧɵɟ), ɧɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ 400…900 ɤɝ/ɦ3 . ɋɢɥɢɤɚɝɟɥɶ ɨɛɥɚɞɚɟɬ ɜɵɫɨɤɨɣ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɟɦɤɨɫɬɶɸ. ȿɝɨ ɢɫɩɨɥɶɡɭɸɬ ɱɚɫɬɨ ɞɥɹ ɨɫɭɲɟɧɢɹ ɝɚɡɚ ɢ ɩɨɝɥɨɳɟɧɢɹ ɩɚɪɨɜ, ɧɚɩɪɢɦɟɪ, ɦɟɬɢɥɨɜɨɝɨ ɫɩɢɪɬɚ ɢɡ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. Ɍɪɟɛɨɜɚɧɢɹ, ɩɪɟɞɴɹɜɥɹɟɦɵɟ ɤ ɚɞɫɨɪɛɟɧɬɚɦ, ɱɚɫɬɨ ɩɪɨɬɢɜɨɪɟɱɢɜɵ ɢ ɢɧɨɝɞɚ ɬɪɭɞɧɨɜɵɩɨɥɧɢɦɵ. Ʉ ɩɨɫɥɟɞɧɢɦ ɨɬɧɨɫɢɬɫɹ ɢ ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɪɚɛɨɬɵ ɫ ɜɥɚɠɧɵɦɢ ɝɚɡɚɦɢ. Ⱦɥɹ ɛɨɥɶɲɢɧɫɬɜɚ ɫɨɜɪɟɦɟɧɧɵɯ, ɚɞɫɨɪɛɟɧɬɨɜ ɬɪɟɛɭɟɬɫɹ ɩɪɟɞɜɚɪɢɬɟɥɶɧɚɹ ɨɫɭɲɤɚ ɩɨɞɚɜɚɟɦɵɯ ɧɚ ɨɱɢɫɬɤɭ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ. Ⱥɥɸɦɨɝɟɥɶ - ɚɤɬɢɜɧɚɹ ɨɤɢɫɶ ɚɥɸɦɢɧɢɹ. Ⱥɥɸɦɨɝɟɥɶ (Al2O3˜nH2O) ɩɨɥɭɱɚɸɬ ɩɪɨɤɚɥɢɜɚɧɢɟɦ ɝɢɞɪɨɤɫɢɞɨɜ ɚɥɸɦɢɧɢɹ. ɍɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɚɥɸɦɨɝɟɥɟɣ ɫɨɫɬɚɜɥɹɟɬ 170…220 ɦ2/ɤɝ, ɫɭɦɦɚɪɧɵɣ ɨɛɴɟɦ ɩɨɪ 0,6…1,0 ɫɦ3/ɝ. Ⱥɥɸɦɨɝɟɥɢ ɫɬɨɣɤɢ ɤ ɜɨɡɞɟɣɫɬɜɢɸ ɤɚɩɟɥɶɧɨɣ ɜɥɚɝɢ. Ƚɢɞɪɨɮɢɥɶɧɵɣ ɚɞɫɨɪɛɟɧɬ ɫ ɪɚɡɜɢɬɨɣ ɩɨɪɢɫɬɨɣ ɫɬɪɭɤɬɭɪɨɣ. ɂɫɩɨɥɶɡɭɟɬɫɹ, ɤɚɤ ɢ ɫɢɥɢɤɚɝɟɥɶ, ɞɥɹ ɨɫɭɲɤɢ ɝɚɡɨɜ ɢ ɩɨɝɥɨɳɟɧɢɹ ɢɡ ɧɢɯ ɪɹɞɚ ɩɨɥɹɪɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. Ȼɥɚɝɨɞɚɪɹ ɫɜɨɢɦ ɩɨɥɨɠɢɬɟɥɶɧɵɦ ɫɜɨɣɫɬɜɚɦ (ɞɨɫɬɭɩɧɨɫɬɶ, ɫɬɨɣɤɨɫɬɶ ɤ ɜɨɡɞɟɣɫɬɜɢɸ ɠɢɞɤɨɫɬɟɣ ɢ ɞɪ.) ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɟɬɫɹ. ȼɵɩɭɫɤɚɟɬɫɹ ɜ ɜɢɞɟ ɝɪɚɧɭɥ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɮɨɪɦɵ ɞɢɚɦɟɬɪɨɦ 2,5…5 ɦɦ, ɜɵɫɨɬɨɣ 3…7 ɦɦ, ɧɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ 500…700 ɦɦ, ɢ ɲɚɪɨɜɨɣ ɮɨɪɦɵ - ɪɚɞɢɭɫ 3…4 ɦɦ, ɧɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ 600…900 ɤɝ/ɦ3. ɐɟɨɥɢɬɵ - ɚɥɸɦɨɫɢɥɢɤɚɬɵ, ɫɨɞɟɪɠɚɳɢɟ ɨɤɫɢɞɵ ɳɟɥɨɱɧɵɯ ɢ ɳɟɥɨɱɧɨɡɟɦɟɥɶɧɵɯ ɦɟɬɚɥɥɨɜ. ɏɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɪɟɝɭɥɹɪɧɨɣ ɫɬɪɭɤɬɭɪɨɣ ɩɨɪ, ɪɚɡɦɟɪɵ ɤɨɬɨɪɵɯ ɫɨɢɡɦɟɪɢɦɵ ɫ ɪɚɡɦɟɪɚɦɢ ɦɨɥɟɤɭɥ. ɗɬɨɬ ɚɞɫɨɪɛɟɧɬ ɧɚɡɵɜɚɸɬ «ɦɨɥɟɤɭɥɹɪɧɵɟ ɫɢɬɚ» ɡɚ ɢɯ ɫɩɨɫɨɛɧɨɫɬɶ ɪɚɡɞɟɥɹɬɶ ɜɟɳɟɫɬɜɚ ɧɚ ɦɨɥɟɤɭɥɹɪɧɨɦ ɭɪɨɜɧɟ ɛɥɚɝɨɞɚɪɹ ɫɬɪɭɤɬɭɪɟ ɢ ɪɚɡɦɟɪɚɦ ɫɜɨɢɯ ɩɨɪ. ɐɟɨɥɢɬɵ ɚɞɫɨɪɛɢɪɭɸɬ ɝɚɡɵ, ɦɨɥɟɤɭɥɵ ɤɨɬɨɪɵɯ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɪɚɡɦɟɪɚɦ "ɨɤɨɧ" ɜ ɤɪɢɫɬɚɥɥɢɱɟɫɤɨɣ ɪɟɲɟɬɤɟ. Ɍɚɤ, ɰɟɨɥɢɬ NaA ɫɨɪɛɢɪɭɟɬ ɝɚɡɵ ɫ ɪɚɡɦɟɪɨɦ ɦɨɥɟɤɭɥ ɧɟ ɛɨɥɟɟ 4 ɧɦ ɦɟɬɚɧ, ɷɬɚɧ, ɚɦɦɢɚɤ, ɫɟɪɨɜɨɞɨɪɨɞ, ɫɟɪɨɭɝɥɟɪɨɞ, ɨɤɫɢɞ ɭɝɥɟɪɨɞɚ ɢ ɞɪ. ɐɟɨɥɢɬ ɋɚȺ ɫɨɪɛɢɪɭɟɬ ɭɝɥɟɪɨɜɨɞɨɪɨɞɵ ɧɨɪɦɚɥɶɧɨɝɨ ɫɬɪɨɟɧɢɹ ɢ ɧɟ ɫɨɪɛɢɪɭɟɬ ɢɡɨ- ɦɟɪɵ. ɐɟɨɥɢɬɵ ɋɚɏ ɢ NaX ɦɨɝɭɬ ɫɨɪɛɢɪɨɜɚɬɶ ɚɪɨɦɚɬɢɱɟɫɤɢɟ, ɫɟɪɨɨɪɝɚɧɢɱɟɫɤɢɟ, ɧɢɬɪɨɨɪɝɚɧɢɱɟɫɤɢɟ, ɝɚɥɨɝɟɧɡɚɦɟɳɟɧɧɵɟ ɭɝɥɟɜɨɞɨɪɨɞɵ. Ɉɞɧɚɤɨ ɢɡ ɜɥɚɠɧɵɯ ɩɨɬɨɤɨɜ ɰɟɨɥɢɬɵ ɢɡɜɥɟɤɚɸɬ ɬɨɥɶɤɨ ɩɚɪɵ ɜɨɞɵ. ɐɟɨɥɢɬɵ ɨɛɥɚɞɚɸɬ ɬɚɤɠɟ ɜɵɫɨɤɨɣ ɫɟɥɟɤɬɢɜɧɨɫɬɶɸ. ɐɟɨɥɢɬɵ ɜɵɩɭɫɤɚɸɬɫɹ ɜ ɜɢɞɟ ɝɪɚɧɭɥ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɢ ɲɚɪɨɜɨɣ ɮɨɪɦɵ. Ɋɚɡɦɟɪ ɝɪɚɧɭɥ ɲɚɪɨɨɛɪɚɡɧɵɯ d = 4 ɦɦ, ɰɢɥɢɧɞɪɢɱɟɫɤɢɯ 4 ɦɦ, ɧɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ 600…900 ɤɝ/ɦ3. ɂɨɧɢɬɵ – ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɟ ɫɨɟɞɢɧɟɧɢɹ ɩɪɢɪɨɞɧɨɝɨ ɢ ɢɫɤɭɫɫɬɜɟɧɧɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ. ɇɟ ɧɚɲɥɢ ɩɨɤɚ ɲɢɪɨɤɨɝɨ ɩɪɢɦɟɧɟɧɢɹ ɞɥɹ ɨɱɢɫɬɤɢ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ. ȿɞɢɧɫɬɜɟɧɧɵɦ ɚɞɫɨɪɛɟɧɬɨɦ, ɭɞɨɜɥɟɬɜɨɪɢɬɟɥɶɧɨ ɪɚɛɨɬɚɸɳɢɦ ɜɨ ɜɥɚɠɧɵɯ ɫɪɟɞɚɯ, ɹɜɥɹɟɬɫɹ ɚɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ. Ɉɧ ɭɞɨɜɥɟɬɜɨɪɹɟɬ ɢ ɛɨɥɶɲɢɧɫɬɜɭ ɞɪɭɝɢɯ ɬɪɟɛɨɜɚɧɢɣ, ɜ ɫɜɹɡɢ ɫ ɱɟɦ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɟɬɫɹ. Ɉɞɧɢɦ ɢɡ ɨɫɧɨɜɧɵɯ ɧɟɞɨɫɬɚɬɤɨɜ ɚɤɬɢɜɢɪɨɜɚɧɧɨɝɨ ɭɝɥɹ ɹɜɥɹɟɬɫɹ ɯɢɦɢɱɟɫɤɚɹ ɧɟɫɬɨɣɤɨɫɬɶ ɤ ɤɢɫɥɨɪɨɞɭ, ɨɫɨɛɟɧɧɨ ɩɪɢ ɩɨɜɵɲɟɧɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ. Ɉɫɬɚɥɶɧɵɟ ɚɞɫɨɪɛɟɧɬɵ ɩɪɨɹɜɥɹɸɬ, ɤɚɤ ɩɪɚɜɢɥɨ, ɫɟɥɟɤɬɢɜɧɨɫɬɶ ɤ ɭɥɚɜɥɢɜɚɧɢɸ ɡɚɝɪɹɡɧɢɬɟɥɟɣ. Ɍɚɤ, ɨɤɫɢɞɵ ɚɥɸɦɢɧɢɹ (ɚɥɸɦɨɝɟɥɢ) ɢɫɩɨɥɶɡɭɸɬɫɹ ɞɥɹ ɭɥɚɜɥɢɜɚɧɢɹ ɮɬɨɪɚ ɢ ɮɬɨɪɢɫɬɨɝɨ ɜɨɞɨɪɨɞɚ, ɩɨɥɹɪɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɫɢɥɢɤɚɬ ɤɚɥɶɰɢɹ - ɞɥɹ ɭɥɚɜɥɢɜɚɧɢɹ ɩɚɪɨɜ ɠɢɪɧɵɯ ɤɢɫɥɨɬ, ɫɢɥɢɤɚɝɟɥɶ - ɞɥɹ ɩɨɥɹɪɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɫɭɯɢɯ ɝɚɡɨɜɵɯ ɫɦɟɫɟɣ. Ȼɨɥɶɲɢɧɫɬɜɨ ɩɨɥɹɪɧɵɯ ɚɞɫɨɪɛɟɧɬɨɜ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɨɫɭɲɤɢ ɝɚɡɨɜ. Ⱦɥɹ ɩɪɨɰɟɫɫɨɜ ɯɟɦɨɫɨɪɛɰɢɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɢɦɩɪɟɝɧɢɪɨɜɚɧɢɟ ɧɟɤɨɬɨɪɵɯ ɢɡ ɩɪɢɜɟɞɟɧɧɵɯ ɫɨɪɛɟɧɬɨɜ. ɂɦɩɪɟɝɧɢɪɭɸɳɢɟ (ɩɪɨɩɢɬɵɜɚɸɳɢɟ) ɜɟɳɟɫɬɜɚ ɦɨɝɭɬ ɞɟɣɫɬɜɨɜɚɬɶ ɞɜɨɹɤɨ: ɜɫɬɭɩɚɬɶ ɜ ɪɟɚɤɰɢɢ ɫ ɨɩɪɟɞɟɥɟɧɧɵɦɢ ɡɚɝɪɹɡɧɢɬɟɥɹɦɢ ɢɥɢ ɤɚɬɚɥɢɡɢɪɨɜɚɬɶ ɪɟɚɤɰɢɢ, ɜɟɞɭɳɢɟ ɤ ɢɯ ɨɛɟɡɜɪɟɠɢɜɚɧɢɸ - ɪɚɫɩɚɞɭ, ɨɤɢɫɥɟɧɢɸ ɢ ɬ.ɞ. Ɍɚɤ, ɩɪɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɚɤɬɢɜɢɪɨɜɚɧɧɨɝɨ ɭɝɥɹ, ɨɛɪɚɛɨɬɚɧɧɨɝɨ ɬɹɠɟɥɵɦɢ ɝɚɥɨɝɟɧɚɦɢ (ɛɪɨɦɨɦ, ɣɨɞɨɦ), ɫ ɦɟɬɚɧɨɦ ɢɥɢ ɷɬɚɧɨɦ, ɨɛɪɚɡɭɸɬɫɹ ɬɹɠɟɥɵɟ ɝɚɥɨɝɟɧɡɚɦɟɳɟɧɧɵɟ ɭɝɥɟɜɨɞɨɪɨɞɵ, ɤɨɬɨɪɵɟ ɡɚɬɟɦ ɥɟɝɤɨ ɚɞɫɨɪɛɢɪɭɸɬɫɹ. Ⱥɥɸɦɨɫɢɥɢɤɚɬɵ, ɩɪɨɩɢɬɚɧɧɵɟ ɨɤɫɢɞɚɦɢ ɠɟɥɟɡɚ, ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɟ ɪɚɡɥɨɠɟɧɢɹ ɝɚɥɨɝɟɧɨɪɝɚɧɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ ɫɩɨɫɨɛɫɬɜɭɸɬ ɪɟɚɤɰɢɢ ɯɥɨɪɚ ɫ ɨɤɫɢɞɨɦ ɦɟɬɚɥɥɚ. Ɉɛɪɚɡɨɜɚɜɲɢɟɫɹ ɩɚɪɨɨɛɪɚɡɧɵɟ ɯɥɨɪɢɞɵ ɦɟɬɚɥɥɨɜ ɦɨɝɭɬ ɛɵɬɶ ɜ ɞɚɥɶɧɟɣɲɟɦ ɥɟɝɤɨ ɫɤɨɧɞɟɧɫɢɪɨɜɚɧɵ, ɬɚɤ ɤɚɤ ɢɦɟɸɬ ɧɢɡɤɭɸ ɭɩɪɭɝɨɫɬɶ ɧɚɫɵɳɟɧɧɵɯ ɩɚɪɨɜ. 3.2.3. Ɇɟɯɚɧɢɡɦ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ Ⱥɞɫɨɪɛɰɢɨɧɧɵɟ ɹɜɥɟɧɢɹ ɪɚɡɜɢɜɚɸɬɫɹ ɧɚ ɝɪɚɧɢɰɟ ɬɜɟɪɞɨɣ ɢɥɢ ɠɢɞɤɨɣ ɮɚɡɵ ɫ ɞɪɭɝɨɣ ɠɢɞɤɨɣ ɮɚɡɨɣ ɢɥɢ ɝɚɡɨɦ. ɇɚɢɛɨɥɶɲɟɟ ɩɪɚɤɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ ɢɦɟɟɬ ɪɚɫɫɦɚɬɪɢɜɚɟɦɚɹ ɞɚɥɟɟ ɚɞɫɨɪɛɰɢɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ. ɉɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɩɨɬɨɤɚ ɝɚɡɚ ɱɟɪɟɡ ɚɞɫɨɪɛɟɧɬ (ɪɢɫ. 3.9) ɫɧɚɱɚɥɚ ɭɱɚɫɬɜɭɟɬ ɜ ɪɚɛɨɬɟ ɥɢɲɶ ɫɥɨɣ ɜɵɫɨɬɨɣ H0, ɜ ɤɨɬɨɪɨɦ ɧɚɱɚɥɶɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɢɡɜɥɟɤɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɫɧɢɠɚɟɬɫɹ ɞɨ ɧɭɥɹ (ɪɚɛɨɬɚɸɳɢɣ ɫɥɨɣ ɢɥɢ ɡɨɧɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ). Ʉɪɢɜɚɹ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɣ ɚɞɫɨɪɛɬɢɜɚ ɜ ɝɚɡɟ (ɪɚɫɬɜɨɪɟ) ɞɨ ɧɚɫɵɳɟɧɢɹ ɩɟɪɜɨɝɨ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ ɋ ɋ0 Ɏɪɨɧɬ ɚɞɫɨɪɛɰɢɢ ɇ0 ɋ ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɨɟ ɧɚɫɵɳɟɧɢɟ ɋɥɨɟɜ ɚɞɫɨɪɛɟɧɬɚ ɇ0 h ɇ Ɋɢɫ. 3.9. Ʉ ɦɟɯɚɧɢɡɦɭ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ȼ ɪɚɫɱɟɬɚɯ ɚɞɫɨɪɛɟɪɨɜ ɫ ɧɟɩɨɞɜɢɠɧɵɦ ɚɞɫɨɪɛɟɧɬɨɦ ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɟɬɫɹ ɦɨɞɟɥɶ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɜɨɥɧɵ, ɨɫɧɨɜɚɧɧɚɹ ɧɚ ɫɥɟɞɭɸɳɢɯ ɩɪɟɞɩɨɥɨɠɟɧɢɹɯ. ɉɨɥɚɝɚɸɬ, ɱɬɨ ɜ ɧɚɱɚɥɟ ɩɪɨɰɟɫɫɚ ɧɢɠɧɢɣ ɫɥɨɣ ɚɞɫɨɪɛɟɧɬɚ ɬɨɥɳɢɧɨɣ h0 (ɪɢɫ. 3.10) ɛɵɫɬɪɨ ɧɚɫɵɳɚɟɬɫɹ ɞɨ ɫɨɫɬɨɹɧɢɹ, ɛɥɢɡɤɨɝɨ ɤ ɪɚɜɧɨɜɟɫɧɨɦɭ. Ɋɢɫ. 3.10. Ɇɨɞɟɥɶ «ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɜɨɥɧɵ» Ʉɨɧɰɟɧɬɪɚɰɢɹ ɡɚɝɪɹɡɧɢɬɟɥɹ ɩɨ ɦɟɪɟ ɩɪɨɯɨɠɞɟɧɢɹ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɱɟɪɟɡ ɫɥɟɞɭɸɳɢɟ ɫɥɨɢ ɚɞɫɨɪɛɟɧɬɚ ɩɨɧɢɠɚɟɬɫɹ ɩɨ ɧɟɤɨɬɨɪɨɦɭ ɡɚɤɨɧɭ, ɜɵɪɚɠɟɧɧɨɦɭ ɝɪɚɮɢɱɟɫɤɢ ɤɪɢɜɨɣ 1, ɢ ɧɚ ɨɩɪɟɞɟɥɟɧɧɨɣ ɜɵɫɨɬɟ h1 ɫɬɚɧɨɜɢɬɫɹ ɪɚɜɧɨɣ 0 (ɧɭɥɸ). Ⱦɚɥɟɟ ɱɟɪɟɡ ɫɥɨɣ ɱɢɫɬɨɝɨ ɚɞɫɨɪɛɟɧɬɚ ɜɵɫɨɬɨɣ (H - h1) ɮɢɥɶɬɪɭɟɬɫɹ ɱɢɫɬɵɣ ɝɚɡ. ɑɟɪɟɡ ɨɩɪɟɞɟɥɟɧɧɨɟ ɜɪɟɦɹ ɜɨɥɧɚ ɧɚɫɵɳɟɧɢɹ ɚɞɫɨɪɛɟɧɬɚ ɞɨɯɨɞɢɬ ɞɨ ɜɵɫɨɬɵ h2 ɚ ɨɬɛɪɨɫɧɵɟ ɝɚɡɵ ɩɨɥɧɨɫɬɶɸ ɨɫɜɨɛɨɠɞɚɸɬɫɹ ɨɬ ɡɚɝɪɹɡɧɢɬɟɥɹ ɧɚ ɜɵɫɨɬɟ ɇ, ɬ.ɟ. ɧɚ ɜɵɯɨɞɟ ɢɡ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ (ɤɪɢɜɚɹ 2). ɉɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɢ ɩɪɟɤɪɚɳɚɸɬ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜ ɨɬɛɪɨɫɧɵɯ ɝɚɡɚɯ ɧɚ ɜɵɯɨɞɟ ɢɡ ɫɥɨɹ ɞɨɫɬɢɝɚɟɬ ɡɚɪɚɧɟɟ ɡɚɞɚɧɧɨɣ ɜɟɥɢɱɢɧɵ ɩɪɨɫɤɨɤɚ ɉ (ɤɪɢɜɚɹ 3). ɉɪɢ ɷɬɨɦ ɜɨɥɧɚ ɧɚɫɵɳɟɧɢɹ ɚɞɫɨɪɛɟɧɬɚ ɞɨɫɬɢɝɚɟɬ ɜɵɫɨɬɵ h3 ɢ ɟɝɨ ɧɚɩɪɚɜɥɹɸɬ ɧɚ ɪɟɝɟɧɟɪɚɰɢɸ. ɉɪɢ ɚɞɫɨɪɛɰɢɢ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ «ɩɪɨɫɤɨɤ» ɤɨɦɩɨɧɟɧɬɚ, ɤɨɝɞɚ ɚɞɫɨɪɛɟɧɬ ɩɟɪɟɫɬɚɟɬ ɩɨɝɥɨɳɚɬɶ ɟɝɨ. ɉɨɞ ɚɤɬɢɜɧɨɫɬɶɸ ɚɞɫɨɪɛɟɧɬɚ ɩɨɧɢɦɚɸɬ ɟɝɨ ɫɩɨɫɨɛɧɨɫɬɶ ɩɨɝɥɨɳɚɬɶ ɜɟɳɟɫɬɜɨ. Ⱥɞɫɨɪɛɟɧɬɵ ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɫɬɚɬɢɱɟɫɤɨɣ ɢ ɞɢɧɚɦɢɱɟɫɤɨɣ ɚɤɬɢɜɧɨɫɬɶɸ. Ⱦɢɧɚɦɢɱɟɫɤɚɹ ɚɤɬɢɜɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ - ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ, ɩɨɝɥɨɳɟɧɧɨɟ ɟɞɢɧɢɰɟɣ ɜɟɫɚ (ɨɛɴɟɦɚ) ɚɞɫɨɪɛɟɧɬɚ ɡɚ ɜɪɟɦɹ ɨɬ ɧɚɱɚɥɚ ɚɞɫɨɪɛɰɢɢ ɞɨ ɧɚɱɚɥɚ ɩɪɨɫɤɨɤɚ. ɋɬɚɬɢɱɟɫɤɚɹ ɚɤɬɢɜɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ - ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ, ɩɨɝɥɨɳɟɧɧɨɟ ɬɟɦ ɠɟ ɤɨɥɢɱɟɫɬɜɨɦ ɚɞɫɨɪɛɟɧɬɚ ɡɚ ɜɪɟɦɹ ɨɬ ɧɚɱɚɥɚ ɚɞɫɨɪɛɰɢɢ ɞɨ ɭɫɬɚɧɨɜɥɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ. Ⱦɢɧɚɦɢɱɟɫɤɚɹ ɚɤɬɢɜɧɨɫɬɶ ɜɫɟɝɞɚ ɦɟɧɶɲɟ ɫɬɚɬɢɱɟɫɤɨɣ, ɩɨɷɬɨɦɭ ɪɚɫɯɨɞ ɚɞɫɨɪɛɟɧɬɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɟɝɨ ɞɢɧɚɦɢɱɟɫɤɨɣ ɚɤɬɢɜɧɨɫɬɢ. Ɉɬ ɚɤɬɢɜɧɨɫɬɢ ɚɞɫɨɪɛɟɧɬɚ ɡɚɜɢɫɹɬ ɪɚɡɦɟɪɵ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɚɩɩɚɪɚɬɭɪɵ, ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɱɢɫɬɤɢ ɝɚɡɨɜ. ɉɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɢ ɜ ɬɟɱɟɧɢɟ ɨɩɪɟɞɟɥɟɧɧɨɝɨ ɜɪɟɦɟɧɢ ɩɪɨɬɟɤɚɟɬ ɩɪɢ ɩɨɫɬɨɹɧɧɨɦ ɡɧɚɱɟɧɢɢ ɫɬɟɩɟɧɢ ɩɨɝɥɨɳɟɧɢɹ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ. ɗɬɨ ɜɪɟɦɹ ɧɚɡɵɜɚɟɬɫɹ ɜɪɟɦɟɧɟɦ ɡɚɳɢɬɧɨɝɨ ɞɟɣɫɬɜɢɹ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ. Ɋɟɲɟɧɢɟ ɡɚɞɚɱɢ ɩɨ ɨɩɪɟɞɟɥɟɧɢɸ ɫɬɚɰɢɨɧɚɪɧɨɝɨ ɮɪɨɧɬɚ ɫɨɪɛɰɢɢ ɩɪɢ ɪɚɜɧɨɜɟɫɧɨɦ ɪɟɠɢɦɟ ɚɞɫɨɪɛɰɢɢ (ɭɪɚɜɧɟɧɢɟ ɒɢɥɨɜɚ): W ɝɞɟ k k ˜ H W0 (3.58) 1 - ɤɨɷɮɮɢɰɢɟɧɬ ɡɚɳɢɬɧɨɝɨ ɞɟɣɫɬɜɢɹ ɫɥɨɹ; w - ɫɤɨɪɨɫɬɶ ɩɟɪɟɦɟɳɟw ɧɢɹ ɮɪɨɧɬɚ ɫɨɪɛɰɢɢ; h k ( H  h) , W0 k ˜ h - ɜɪɟɦɹ ɩɨɬɟɪɢ ɡɚɳɢɬɧɨɝɨ ɞɟɣɫɬɜɢɹ ɫɥɨɹ; ( H  H 0 ) - ɜɵɫɨɬɚ ɧɟɢɫɩɨɥɶɡɨɜɚɧɧɨɣ ɟɦɤɨɫɬɢ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ. 3.2.4. Ɋɚɜɧɨɜɟɫɢɟ ɩɪɢ ɚɞɫɨɪɛɰɢɢ ɉɨɝɥɨɬɢɬɟɥɶɧɚɹ ɫɩɨɫɨɛɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɨɜ ɜɵɪɚɠɚɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɚɞɫɨɪɛɚɬɚ ɜ ɦɚɫɫɨɜɨɣ ɢɥɢ ɨɛɴɟɦɧɨɣ ɟɞɢɧɢɰɟ ɚɞɫɨɪɛɟɧɬɚ. ɉɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɢ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɜɵɞɟɥɟɧɢɟɦ ɬɟɩɥɚ, ɩɨɷɬɨɦɭ ɫɧɢɠɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɫɩɨɫɨɛɫɬɜɭɟɬ ɟɝɨ ɩɪɨɜɟɞɟɧɢɸ. ɇɟɡɚɜɢɫɢɦɨ ɨɬ ɩɪɢɪɨɞɵ ɚɞɫɨɪɛɰɢɨɧɧɵɯ ɫɢɥ ɧɚ ɜɟɥɢɱɢɧɭ ɚɞɫɨɪɛɰɢɢ ɜɥɢɹɸɬ ɫɥɟɞɭɸɳɢɟ ɮɚɤɬɨɪɵ: ɩɪɢɪɨɞɚ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ; ɬɟɦɩɟɪɚɬɭɪɚ; ɞɚɜɥɟɧɢɟ; ɩɪɢɦɟɫɢ ɜ ɮɚɡɟ, ɢɡ ɤɨɬɨɪɨɣ ɩɨɝɥɨɳɚɟɬɫɹ ɜɟɳɟɫɬɜɨ. ɉɪɢɪɨɞɚ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ - ɫɱɢɬɚɟɬɫɹ, ɱɬɨ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɚɞɫɨɪɛɟɧɬɟ ɬɟɦ ɜɵɲɟ, ɱɟɦ ɛɨɥɶɲɟ ɦɨɥɟɤɭɥɹɪɧɵɣ ɜɟɫ ɩɨɝɥɨɳɚɟɦɨɝɨ ɝɚɡɚ, ɚ ɜ ɫɥɭɱɚɟ ɪɚɫɬɜɨɪɨɜ - ɱɟɦ ɦɟɧɶɲɟ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɠɢɞɤɨɫɬɢ. ɋ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɩɪɢ ɩɪɨɱɢɯ ɪɚɜɧɵɯ ɭɫɥɨɜɢɹɯ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɭɦɟɧɶɲɚɟɬɫɹ. ɋ ɪɨɫɬɨɦ ɞɚɜɥɟɧɢɹ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɟ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ x ɭɜɟɥɢɱɢɜɚɟɬɫɹ. ɉɪɢɦɟɫɢ ɜ ɮɚɡɟ, ɢɡ ɤɨɬɨɪɨɣ ɩɨɝɥɨɳɚɟɬɫɹ ɜɟɳɟɫɬɜɨ. ɉɪɢ ɧɚɥɢɱɢɢ ɜ ɮɚɡɟ, ɢɡ ɤɨɬɨɪɨɣ ɚɞɫɨɪɛɟɧɬ ɩɨɝɥɨɳɚɟɬ ɜɟɳɟɫɬɜɨ Ⱥ, ɤɨɧɤɭɪɢɪɭɸɳɟɝɨ (ɜɵɬɟɫ- ɧɹɸɳɟɝɨ) ɜɟɳɟɫɬɜɚ ȼ, ɬ.ɟ. ɜɟɳɟɫɬɜɚ, ɬɚɤɠɟ ɫɩɨɫɨɛɧɨɝɨ ɩɨɝɥɨɳɚɬɶɫɹ ɷɬɢɦ ɚɞɫɨɪɛɟɧɬɨɦ, ɭɦɟɧɶɲɚɟɬɫɹ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɟɳɟɫɬɜɚ Ⱥ ɜ ɚɞɫɨɪɛɟɧɬɟ. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɜɟɳɟɫɬɜɨ ȼ ɥɢɛɨ ɱɚɫɬɢɱɧɨ, ɥɢɛɨ ɩɨɥɧɨɫɬɶɸ ɜɵɬɟɫɧɹɟɬ ɢɥɢ ɡɚɦɟɳɚɟɬ ɜɟɳɟɫɬɜɨ Ⱥ ɜ ɚɞɫɨɪɛɟɧɬɟ. ɋ ɬɟɱɟɧɢɟɦ ɜɪɟɦɟɧɢ ɩɪɢ ɚɞɫɨɪɛɰɢɢ ɧɚɫɬɭɩɚɟɬ ɪɚɜɧɨɜɟɫɢɟ, ɩɪɢ ɤɨɬɨɪɨɦ ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɨɩɪɟɞɟɥɟɧɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɏ (ɤɝ/ɤɝ ɚɞɫɨɪɛɟɧɬɚ) ɢ ɟɝɨ ɤɨɧɰɟɧɬɪɚɰɢɟɣ Y ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ: X = A.Y1/n, (3.59) ɝɞɟ Y - ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɢɧɟɪɬɧɨɣ ɱɚɫɬɢ ɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɤɝ/ɤɝ; Ⱥ, ɩ ɤɨɷɮɮɢɰɢɟɧɬɵ, ɨɩɪɟɞɟɥɹɟɦɵɟ ɨɩɵɬɧɵɦ ɩɭɬɟɦ (ɩɪɢɱɟɦ n t 1). Ɂɚɜɢɫɢɦɨɫɬɶ (3.59) ɜɟɥɢɱɢɧɵ ɚɞɫɨɪɛɰɢɢ ɰɟɥɟɜɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɭɫɥɨɜɢɹɯ ɪɚɜɧɨɜɟɫɢɹ ɦɟɠɞɭ ɮɚɡɚɦɢ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɧɚɡɵɜɚɸɬ ɢɡɨɬɟɪɦɨɣ ɚɞɫɨɪɛɰɢɢ. ɋɭɳɟɫɬɜɭɟɬ ɩɹɬɶ ɬɢɩɨɜ ɢɡɨɬɟɪɦ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɩɚɪɨɜ. Ɉɧɢ ɩɪɢɜɟɞɟɧɵ ɧɚ ɪɢɫ. 3.11. Ɋɢɫ. 3.11. Ɍɢɩɵ ɢɡɨɬɟɪɦ ɚɞɫɨɪɛɰɢɢ ɂɡɨɬɟɪɦɚ ɬɢɩɚ ɚ) ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ ɥɟɧɝɦɸɪɨɜɫɤɨɣ ɚɞɫɨɪɛɰɢɢ; ɢɡɨɬɟɪɦɵ ɬɢɩɚ ɛ), ɜ) - ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ ɢ ɩɨɥɢɦɨɥɟɤɭɥɹɪɧɨɣ ɚɞɫɨɪɛɰɢɢ. ɂɡɨɬɟɪɦɵ ɬɢɩɚ ɝ) ɢ ɞ) ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɫɥɭɱɚɸ, ɤɨɝɞɚ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɚɹ ɢ ɩɨɥɢɦɨɥɟɤɭɥɹɪɧɚɹ ɚɞɫɨɪɛɰɢɢ ɫɨɩɪɨɜɨɠɞɚɸɬɫɹ ɤɚɩɢɥɥɹɪɧɨɣ ɤɨɧɞɟɧɫɚɰɢɟɣ. ɍɪɚɜɧɟɧɢɟ (3.59) ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɜ ɞɪɭɝɨɦ ɜɢɞɟ (ɬ.ɤ. ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɟɝɨ ɞɚɜɥɟɧɢɸ): X = A1.P1/n, (3.60) ɝɞɟ A1 - ɤɨɷɮɮɢɰɢɟɧɬ; Ɋ - ɪɚɜɧɨɜɟɫɧɨɟ ɞɚɜɥɟɧɢɟ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɉɚ. Ⱥɞɫɨɪɛɰɢɹ ɭɫɤɨɪɹɟɬɫɹ ɩɪɢ ɩɨɧɢɠɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɢɥɢ ɩɪɢ ɩɨɜɵɲɟɧɢɢ ɞɚɜɥɟɧɢɹ. ɗɬɢ ɠɟ ɮɚɤɬɨɪɵ ɜɥɢɹɸɬ ɧɚ ɩɪɨɰɟɫɫ ɞɟɫɨɪɛɰɢɢ ɜ ɨɛɪɚɬɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ. Ⱦɟɫɨɪɛɰɢɹ ɭɫɤɨɪɹɟɬɫɹ ɫ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɚɞɫɨɪɛɟɧɬɚ ɢ ɫɧɢɠɟɧɢɟɦ ɞɚɜɥɟɧɢɹ, ɚ ɬɚɤɠɟ ɩɪɢ ɩɪɨɩɭɫɤɚɧɢɢ ɱɟɪɟɡ ɚɞɫɨɪɛɟɧɬ ɩɚɪɨɜ, ɜɵɬɟɫɧɹɸɳɢɯ ɩɨɝɥɨɳɟɧɧɨɟ ɜɟɳɟɫɬɜɨ. ɉɪɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɢɥɢ ɦɚɥɵɯ ɩɚɪɰɢɚɥɶɧɵɯ ɞɚɜɥɟɧɢɹɯ ɢɡɨɬɟɪɦɵ ɚɞɫɨɪɛɰɢɢ ɚɩɩɪɨɤɫɢɦɢɪɭɸɬɫɹ ɡɚɤɨɧɨɦ Ƚɟɧɪɢ: a Aɪ ˜ p , (3.61) ɝɞɟ ɚ* - ɤɨɥɢɱɟɫɬɜɨ ɩɨɝɥɨɳɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ, ɤɝ/ɤɝ (ɚɞɫɨɪɛɟɧɬɚ) ɢɥɢ ɤɝ/ɦ3; Ⱥɪ ɤɨɧɫɬɚɧɬɚ ɮɚɡɨɜɨɝɨ ɪɚɜɧɨɜɟɫɢɹ; ɪ - ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɤɨɦɩɨɧɟɧɬɚ ɜ ɝɚɡɟ. ȼ ɩɪɚɤɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɚɯ ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɟɬɫɹ ɭɪɚɜɧɟɧɢɟ Ɏɪɟɣɧɞɥɢɯɚ: a A1 ˜ p n , (3.62) ɝɞɟ Ⱥ1 ɢ n - ɤɨɷɮɮɢɰɢɟɧɬɵ. Ⱦɥɹ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɨɣ ɮɢɡɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɭɪɚɜɧɟɧɢɟ Ʌɟɧɝɦɸɪɚ: a b ˜ am ˜ p /(1  b ˜ p ) , (3.63) ɝɞɟ b – ɤɨɷɮɮɢɰɢɟɧɬ; am – ɩɪɟɞɟɥɶɧɚɹ ɜɟɥɢɱɢɧɚ ɚɞɫɨɪɛɰɢɢ. ɍɧɢɜɟɪɫɚɥɶɧɵɣ ɯɚɪɚɤɬɟɪ ɢɦɟɟɬ ɭɪɚɜɧɟɧɢɟ Ȼɪɭɧɚɭɟɪ-ɗɦɦɟɬ-Ɍɟɥɥɟɪ (ȻɗɌ), ɨɩɢɫɵɜɚɸɳɟɟ ɦɨɧɨɦɨɥɟɤɭɥɹɪɧɭɸ ɢ ɦɧɨɝɨɫɥɨɣɧɭɸ ɚɞɫɨɪɛɰɢɸ: a c ˜ am ˜ p / p s , (1  p / p s )>1  (c  1) p / p s @ (3.64) ɝɞɟ ps – ɞɚɜɥɟɧɢɟ ɧɚɫɵɳɟɧɧɨɝɨ ɩɚɪɚ; c – ɤɨɧɫɬɚɧɬɚ. ɇɚ ɩɨɝɥɨɳɚɟɦɵɟ ɦɨɥɟɤɭɥɵ ɫɨ ɫɬɨɪɨɧɵ ɩɨɜɟɪɯɧɨɫɬɢ ɚɞɫɨɪɛɟɧɬɚ ɞɟɣɫɬɜɭɟɬ ɫɢɥɚ ɩɪɢɬɹɠɟɧɢɹ, ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚɹ ɚɞɫɨɪɛɰɢɨɧɧɨɦɭ ɩɨɬɟɧɰɢɚɥɭ: E R ˜ T ˜ ln p s / p . (3.65) ɋɟɪɶɟɡɧɵɦ ɨɬɤɥɨɧɟɧɢɟɦ ɨɬ ɪɟɚɥɶɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɚɞɫɨɪɛɰɢɢ ɹɜɥɹɟɬɫɹ ɩɪɟɞɩɨɥɨɠɟɧɢɟ ɨɛ ɢɡɨɬɟɪɦɢɱɧɨɫɬɢ ɩɪɨɰɟɫɫɚ. Ⱥɞɫɨɪɛɰɢɹ ɦɨɠɟɬ ɛɵɬɶ ɢɡɨɬɟɪɦɢɱɟɫɤɨɣ ɬɨɥɶɤɨ ɩɪɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɨɪɝɚɧɢɡɚɰɢɢ ɬɟɩɥɨɨɬɜɨɞɚ ɢɡ ɡɨɧɵ ɤɨɧɞɟɧɫɚɰɢɢ. ȼ ɞɪɭɝɢɯ ɫɥɭɱɚɹɯ ɬɟɩɥɨ, ɜɵɞɟɥɹɟɦɨɟ ɩɪɢ ɤɨɧɞɟɧɫɚɰɢɢ ɚɞɫɨɪɛɚɬɚ ɢ ɫɦɚɱɢɜɚɧɢɢ ɩɨɜɟɪɯɧɨɫɬɢ ɚɞɫɨɪɛɟɧɬɚ, ɩɨɣɞɟɬ ɧɚ ɧɚɝɪɟɜ ɨɛɪɚɛɚɬɵɜɚɟɦɨɝɨ ɝɚɡɚ ɢ ɱɚɫɬɢɰ ɚɞɫɨɪɛɟɧɬɚ. 3.2.5. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɉɪɨɰɟɫɫɵ ɚɞɫɨɪɛɰɢɢ ɩɪɨɜɨɞɹɬ ɩɟɪɢɨɞɢɱɟɫɤɢ ɢɥɢ, ɟɫɥɢ ɚɞɫɨɪɛɟɧɬ ɞɜɢɠɟɬɫɹ ɱɟɪɟɡ ɚɩɩɚɪɚɬ, ɧɟɩɪɟɪɵɜɧɨ. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɬɚɤɨɝɨ ɩɪɨɰɟɫɫɚ ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ, ɨɛɳɢɦ ɞɥɹ ɜɫɟɯ ɩɪɨɰɟɫɫɨɜ ɦɚɫɫɨɩɟɪɟɞɚɱɢ G.dY = L.dX, (3.66) ɝɞɟ G - ɪɚɫɯɨɞ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɵ ɢɥɢ ɪɚɫɬɜɨɪɚ, ɤɝ (ɢɧɟɪɬɧɨɣ ɱɚɫɬɢ)/ɫ; L - ɪɚɫɯɨɞ ɚɞɫɨɪɛɟɧɬɚ, ɤɝ (ɚɤɬɢɜɧɨɣ ɱɚɫɬɢ)/ɫ; Y - ɪɚɛɨɱɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɟ ɢɥɢ ɪɚɫɬɜɨɪɟ, ɤɝ/ɤɝ (ɢɧɟɪɬɧɨɣ ɱɚɫɬɢ); X - ɪɚɛɨɱɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɚɞɫɨɪɛɟɧɬɟ, ɤɝ/ɤɝ (ɚɞɫɨɪɛɟɧɬɚ). Ⱥɞɫɨɪɛɰɢɹ ɜ ɫɥɨɟ ɧɟɩɨɞɜɢɠɧɨɝɨ ɚɞɫɨɪɛɟɧɬɚ ɹɜɥɹɟɬɫɹ ɩɟɪɢɨɞɢɱɟɫɤɢɦ ɩɪɨɰɟɫɫɨɦ, ɩɪɢ ɤɨɬɨɪɨɦ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɚɞɫɨɪɛɟɧɬɟ ɢ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɟ ɦɟɧɹɟɬɫɹ ɜɨ ɜɪɟɦɟɧɢ ɢ ɜ ɩɪɨɫɬɪɚɧɫɬɜɟ. Ɋɢɫ. 3.12. ɗɥɟɦɟɧɬ ɧɟɩɨɞɜɢɠɧɨɝɨ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ ȼɵɞɟɥɢɦ ɜ ɧɟɩɨɞɜɢɠɧɨɦ ɚɞɫɨɪɛɟɧɬɟ ɷɥɟɦɟɧɬɚɪɧɵɣ ɫɥɨɣ ɫ ɩɥɨɳɚɞɶɸ ɩɨɩɟɪɟɱɧɨɝɨ ɫɟɱɟɧɢɹ S ɢ ɜɵɫɨɬɨɣ dz (ɪɢɫ. 3.), ɱɟɪɟɡ ɤɨɬɨɪɵɣ ɞɜɢɠɟɬɫɹ ɝɚɡ ɫɨ ɫɤɨɪɨɫɬɶɸ w. Ƚɚɡ ɜɯɨɞɢɬ ɜ ɷɥɟɦɟɧɬ ɩɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫ, ɚ ɜɵɯɨɞɢɬ ɩɪɢ ɤɨɧwC ɰɟɧɬɪɚɰɢɢ ɋ + dz . Ʉɨɧɰɟɧɬɪɚɰɢɹ ɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɚɞɫɨɪɛɟɧɬɟ ɡɚ wz wa dW ). Ʉɨɥɢɱɟɫɬɜɨ ɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ, ɜɪɟɦɹ dW ɢɡɦɟɧɢɬɫɹ ɨɬ a ɞɨ (a + wW ɜɯɨɞɹɳɟɟ ɜ ɷɥɟɦɟɧɬ ɡɚ ɜɪɟɦɹ dW , ɫɨɫɬɚɜɥɹɟɬ Mz = w.C.S.dW, (3.67) ɚ ɤɨɥɢɱɟɫɬɜɨ ɜɵɯɨɞɹɳɟɝɨ ɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ _ dC (3.68) dz ) S dW . M z  dz = w(C  dz Ɂɚ ɜɪɟɦɹ dW ɜ ɷɥɟɦɟɧɬɟ ɫɨɪɛɢɪɭɟɬɫɹ ɫɥɟɞɭɸɳɟɟ ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ: dC . . dz S dW. (3.69) dM= Mz – Mz+dz = - w dz ɗɬɨ ɠɟ ɤɨɥɢɱɟɫɬɜɨ ɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɷɥɟɦɟɧɬɟ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧɨ ɱɟɪɟɡ ɢɡɦɟɧɟɧɢɹ ɟɝɨ ɤɨɧɰɟɧɬɪɚɰɢɣ ɜ ɚɞɫɨɪɛɟɧɬɟ ɢ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɷɥɟɦɟɧɬɚ ɡɚ ɜɪɟɦɹ dW : wC wa . . wW S dz+ H wW S dz , (3.70) dM = wW wW ɝɞɟ İ – ɩɨɪɨɡɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ. Ɉɛɳɢɣ ɦɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɩɨ ɫɨɪɛɢɪɭɟɦɨɦɭ ɜɟɳɟɫɬɜɭ ɜ ɷɥɟɦɟɧɬɟ ɡɚ ɜɪɟɦɹ dW ɛɟɡ ɭɱɟɬɚ ɩɪɨɞɨɥɶɧɨɝɨ ɩɟɪɟɦɟɲɢɜɚɧɢɹ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ _ wC S dz dW w wz ɢɥɢ ɨɤɨɧɱɚɬɟɥɶɧɨ _ _ wa wC S dz dW  H S dz dW . wW wW _ (3.71) _ wa wC wC w H . (3.72) wz wW wW Ɋɚɜɟɧɫɬɜɨ (3.72) ɧɚɡɵɜɚɸɬ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɦ ɭɪɚɜɧɟɧɢɟɦ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ ɩɟɪɢɨɞɢɱɟɫɤɨɝɨ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɜ ɫɥɨɟ ɧɟɩɨɞɜɢɠɧɨɝɨ ɚɞɫɨɪɛɟɧɬɚ. 3.2.6. Ʉɢɧɟɬɢɤɚ ɚɞɫɨɪɛɰɢɢ ɉɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɢ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ ɩɪɨɬɟɤɚɸɳɢɯ ɫɬɚɞɢɣ ɞɢɮɮɭɡɢɢ ɦɨɥɟɤɭɥ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɢɡ ɩɨɬɨɤɚ ɝɚɡɚ ɤ ɜɧɟɲɧɟɣ ɩɨɜɟɪɯɧɨɫɬɢ ɚɞɫɨɪɛɟɧɬɚ (ɜɧɟɲɧɹɹ ɞɢɮɮɭɡɢɹ), ɩɪɨɧɢɤɧɨɜɟɧɢɹ ɦɨɥɟɤɭɥ ɜɧɭɬɪɢ ɩɨɪɢɫɬɨɝɨ ɩɨɝɥɨɬɢɬɟɥɹ (ɜɧɭɬɪɟɧɧɹɹ ɞɢɮɮɭɡɢɹ) ɢ ɫɨɪɛɰɢɢ (ɤɨɧɞɟɧɫɚɰɢɢ) ɦɨɥɟɤɭɥ ɧɚ ɜɧɭɬɪɟɧɧɟɣ ɩɨɜɟɪɯɧɨɫɬɢ ɩɨɪ. ɇɟɫɬɚɰɢɨɧɚɪɧɚɹ ɨɞɧɨɦɟɪɧɚɹ ɞɢɮɮɭɡɢɹ ɦɨɠɟɬ ɛɵɬɶ ɨɩɢɫɚɧɚ ɜɬɨɪɵɦ ɡɚɤɨɧɨɦ Ɏɢɤɚ: w (a  c) w 2c (3.73)  De ˜ F 2 , wW wz ɝɞɟ ɚ = X ɢ ɫ = Y – ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɜ ɬɜɟɪɞɨɣ ɢ ɝɚɡɨɜɨɣ ɮɚɡɚɯ; De – ɷɮɮɟɤɬɢɜɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ; F – ɩɨɜɟɪɯɧɨɫɬɶ, ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɚɹ ɧɚɩɪɚɜɥɟɧɢɸ ɩɨɬɨɤɚ; w 2 c / wz 2 - ɱɚɫɬɧɚɹ ɩɪɨɢɡɜɨɞɧɚɹ ɩɨ ɝɪɚɞɢɟɧɬɭ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɨɫɢ z. Ɇɟɯɚɧɢɡɦ ɤɨɧɤɪɟɬɧɨɝɨ ɩɪɨɰɟɫɫɚ ɞɢɮɮɭɡɢɢ ɨɩɪɟɞɟɥɹɸɬ ɧɚ ɨɫɧɨɜɟ ɢɡɭɱɟɧɢɹ ɡɚɜɢɫɢɦɨɫɬɟɣ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɞɢɮɮɭɡɢɢ ɨɬ ɞɚɜɥɟɧɢɹ, ɬɟɦɩɟɪɚɬɭɪɵ, ɦɨɥɟɤɭɥɹɪɧɵɯ ɦɚɫɫ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɢ ɝɚɡɚ-ɧɨɫɢɬɟɥɹ. ɍɪɚɜɧɟɧɢɟ ɤɢɧɟɬɢɤɢ ɚɞɫɨɪɛɰɢɢ: da dW > @ E 0 C  C (a) , (3.74) ɝɞɟ E0 - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ, ɜɵɪɚɠɚɟɦɵɣ ɱɟɪɟɡ ɤɨɷɮɮɢɰɢɟɧɬɵ ɜɧɟɲɧɟɝɨ E1 ɢ ɜɧɭɬɪɟɧɧɟɝɨ E2 ɦɚɫɫɨɨɛɦɟɧɚ 1 1 E0 E1  1 E2  D , w2 (3.75) ɝɞɟ D* - ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɞɨɥɶɧɨɣ ɞɢɮɮɭɡɢɢ; w - ɫɤɨɪɨɫɬɶ ɩɨɬɨɤɚ ɝɚɡɚ. Ɋɚɡɥɢɱɚɸɬ ɫɬɚɰɢɨɧɚɪɧɵɟ ɢ ɧɟɫɬɚɰɢɨɧɚɪɧɵɟ ɩɪɨɰɟɫɫɵ ɚɞɫɨɪɛɰɢɢ. ȼ ɫɬɚɰɢɨɧɚɪɧɨɦ ɩɪɨɰɟɫɫɟ ɤɨɧɰɟɧɬɪɚɰɢɹ ɚɞɫɨɪɛɚɬɚ ɜ ɤɚɠɞɨɣ ɬɨɱɤɟ ɫɥɨɹ ɩɨɝɥɨɬɢɬɟɥɹ ɩɨɫɬɨɹɧɧɚ ɢ ɧɟɩɪɟɪɵɜɧɚ. ȼ ɩɪɚɤɬɢɤɟ ɫɚɧɢɬɚɪɧɨɣ ɨɱɢɫɬɤɢ ɝɚɡɚ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ ɧɟɫɬɚɰɢɨɧɚɪɧɵɟ ɩɟɪɢɨɞɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ. Ⱦɥɹ ɩɨɫɬɪɨɟɧɢɹ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɩɪɨɰɟɫɫɚ ɧɟɨɛɯɨɞɢɦɨ ɪɚɫɩɨɥɚɝɚɬɶ ɜɟɥɢɱɢɧɚɦɢ ɞɢɧɚɦɢɱɟɫɤɨɣ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɟɦɤɨɫɬɢ ɚɞɫɨɪɛɟɧɬɚ aɞ ɩɨ ɢɡɜɥɟɤɚɟɦɨɦɭ ɤɨɦɩɨɧɟɧɬɭ ɞɥɹ ɡɚɞɚɧɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ ɚɞɫɨɪɛɟɧɬɚ ɧɚ ɜɯɨɞɟ ɜ ɚɞɫɨɪɛɟɪ ɢ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ: a ɞ C 0 ˜ w0 ˜ W , (3.76) ɝɞɟ C0 - ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɪɢɦɟɫɢ ɜ ɨɱɢɳɚɟɦɨɦ ɝɚɡɟ ɧɚ ɜɯɨɞɟ ɜ ɚɞɫɨɪɛɟɪ; w0 ɩɪɢɜɟɞɟɧɧɚɹ ɤ ɫɟɱɟɧɢɸ ɚɩɩɚɪɚɬɚ ɫɤɨɪɨɫɬɶ ɝɚɡɚ; W - ɜɪɟɦɹ ɡɚɳɢɬɧɨɝɨ ɞɟɣɫɬɜɢɹ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ. ɇɟɨɛɯɨɞɢɦɚɹ ɜɵɫɨɬɚ (ɞɥɢɧɚ) H ɫɥɨɹ ɩɨɝɥɨɬɢɬɟɥɹ ɦɨɠɟɬ ɛɵɬɶ ɪɚɫɫɱɢɬɚɧɚ ɩɨ ɨɛɳɟɦɭ ɭɪɚɜɧɟɧɢɸ ɦɚɫɫɨɩɟɪɟɞɚɱɢ: w0 ˜ dc E 0 (c  c*) ˜ dH ; (3.77) ɨɬɤɭɞɚ ɜɵɫɨɬɚ ɫɥɨɹ H ɝɞɟ hn w0 E0 c0 dc ³ c c* hn ˜ n y , (3.78) cɤ w0 / E 0 - ɟɞɢɧɢɰɚ ɩɟɪɟɧɨɫɚ; ny – ɱɢɫɥɨ ɟɞɢɧɢɰ ɩɟɪɟɧɨɫɚ. ɑɢɫɥɨ ɟɞɢɧɢɰ ɩɟɪɟɧɨɫɚ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ Yɧ Xɤ * ny = ³dy/(Y – Y ) ɢɥɢ nx = ³dx/(X - X). Yɤ * Xɧ (3.79) Ɂɞɟɫɶ Yɧ, Yɤ - ɧɚɱɚɥɶɧɚɹ ɢ ɤɨɧɟɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɚɞɫɨɪɛɬɢɜɚ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɤɝ/ɦ3; ɏɧ, ɏɤ - ɧɚɱɚɥɶɧɚɹ ɢ ɤɨɧɟɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɚɞɫɨɪɛɚɬɚ ɜ ɬɜɟɪɞɨɣ ɮɚɡɟ, ɤɝ/ɦ3; X, Y - ɬɟɤɭɳɚɹ (ɪɚɛɨɱɚɹ) ɤɨɧɰɟɧɬɪɚɰɢɹ ɚɞɫɨɪɛɚɬɚ ɢ ɚɞɫɨɪɛɬɢɜɚ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɜ ɬɜɟɪɞɨɣ ɢ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɟ, ɤɝ/ɦ3; X*, Y* - ɪɚɜɧɨɜɟɫɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɚɞɫɨɪɛɚɬɚ ɜ ɬɜɟɪɞɨɣ. ɮɚɡɟ ɢ ɚɞɫɨɪɛɬɢɜɚ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɟ ɩɪɢ ɡɚɞɚɧɧɵɯ ɡɧɚɱɟɧɢɹɯ ɏ ɢ Y (ɨɩɪɟɞɟɥɹɸɬɫɹ ɩɨ ɤɪɢɜɨɣ ɪɚɜɧɨɜɟɫɢɹ). ɍɪɚɜɧɟɧɢɟ (3.79) ɨɛɵɱɧɨ ɪɟɲɚɸɬ ɦɟɬɨɞɨɦ ɝɪɚɮɢɱɟɫɤɨɝɨ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ. Ɂɚɞɚɜɲɢɫɶ ɪɹɞɨɦ ɡɧɚɱɟɧɢɣ Y ɜ ɢɧɬɟɪɜɚɥɟ (Yɧ - Yɤ), ɫɬɪɨɹɬ ɝɪɚɮɢɤ ɜ ɤɨɨɪɞɢɧɚɬɚɯ 1/(Y – Y*), ɡɚɬɟɦ ɢɡɦɟɪɹɸɬ ɩɥɨɳɚɞɶ ɤɪɢɜɨɥɢɧɟɣɧɨɣ ɬɪɚɩɟɰɢɢ f, ɨɝɪɚɧɢɱɟɧɧɭɸ ɤɪɢɜɨɣ ab, ɨɫɶɸ ɚɛɫɰɢɫɫ ɢ ɩɪɹɦɵɦɢ, ɩɪɨɜɟɞɟɧɧɵɦɢ ɢɡ ɬɨɱɟɤ Yɤ ɢ Yɧ (ɪɢɫ. 3.13). Ɋɢɫ. 3.13. Ɂɚɜɢɫɢɦɨɫɬɶ 1/(Y – Y*) = f(Y) ɑɢɫɥɨ ɟɞɢɧɢɰ ɩɟɪɟɧɨɫɚ ɨɩɪɟɞɟɥɹɸɬ ɢɡ ɜɵɪɚɠɟɧɢɹ (3.80) ny = f.Ɇ1.Ɇ2, ɝɞɟ M1 - ɦɚɫɲɬɚɛ ɩɨ ɨɫɢ 1/(Y – Y*); Ɇ2 - ɦɚɫɲɬɚɛ ɩɨ ɨɫɢ ɭ. ȼɟɥɢɱɢɧɭ ɦɚɫɲɬɚɛɨɜ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ ɮɨɪɦɭɥɟ Ɇ1 = l1/h1 ; Ɇ2 = l2/h2, (3.81) * 3 ɝɞɟ l1 - ɡɧɚɱɟɧɢɟ ɨɪɞɢɧɚɬɵ 1/(Y – Y )ɧɚ ɝɪɚɮɢɤɟ, ɤɝ/ɦ ; h1 - ɡɧɚɱɟɧɢɟ ɬɨɣ ɠɟ ɨɪɞɢɧɚɬɵ, ɦɦ; l2 - ɡɧɚɱɟɧɢɟ ɚɛɫɰɢɫɫɵ Y ɧɚ ɝɪɚɮɢɤɟ, ɤɝ/ɦ3; h2 - ɡɧɚɱɟɧɢɟ ɷɬɨɣ ɠɟ ɚɛɫɰɢɫɫɵ, ɦɦ. Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ Y* (ɢɥɢ X*), ɧɟɨɛɯɨɞɢɦɵɯ ɞɥɹ ɩɨɫɬɪɨɟɧɢɹ ɨɩɢɫɚɧɧɨɝɨ ɜɵɲɟ ɝɪɚɮɢɤɚ, ɧɭɠɧɨ ɩɨɫɬɪɨɢɬɶ ɪɚɛɨɱɭɸ ɥɢɧɢɸ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɢ ɢɡɨɬɟɪɦɭ ɚɞɫɨɪɛɰɢɢ (ɪɢɫ. 3.14). ɂɡɨɬɟɪɦɭ ɚɞɫɨɪɛɰɢɢ ɫɬɪɨɹɬ ɧɚ ɨɫɧɨɜɚɧɢɢ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɢɥɢ ɫɩɪɚɜɨɱɧɵɯ ɞɚɧɧɵɯ. ȿɫɥɢ ɢɡɨɬɟɪɦɚ ɚɞɫɨɪɛɰɢɢ ɧɟɢɡɜɟɫɬɧɚ, ɟɟ ɦɨɠɧɨ ɩɨɫɬɪɨɢɬɶ ɧɨ ɢɡɨɬɟɪɦɟ ɚɞɫɨɪɛɰɢɢ ɫɬɚɧɞɚɪɬɧɨɝɨ ɜɟɳɟɫɬɜɚ. ȼ ɤɚɱɟɫɬɜɟ ɫɬɚɧɞɚɪɬɧɨɝɨ ɜɟɳɟɫɬɜɚ ɨɛɵɱɧɨ ɜɵɫɬɭɩɚɟɬ ɛɟɧɡɨɥ. ȼɟɥɢɱɢɧɭ ɚɞɫɨɪɛɰɢɢ ɩɟɪɟɫɱɢɬɵɜɚɸɬ ɩɨ ɮɨɪɦɭɥɟ X2* = X1*(V1/V2) = X1*(1/Eɚ), (3.82) ɝɞɟ ɏ1* - ɨɪɞɢɧɚɬɚ ɢɡɨɬɟɪɦɵ ɫɬɚɧɞɚɪɬɧɨɝɨ ɜɟɳɟɫɬɜɚ (ɨɛɵɱɧɨ ɛɟɧɡɨɥɚ), ɤɝ/ɤɝ; ɏ2* - ɨɪɞɢɧɚɬɚ ɨɩɪɟɞɟɥɹɟɦɨɣ ɢɡɨɬɟɪɦɵ, ɤɝ/ɤɝ; V1, V2 - ɦɨɥɶɧɵɟ ɨɛɴɟɦɵ ɫɬɚɧɞɚɪɬɧɨɝɨ ɢ ɢɫɫɥɟɞɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɠɢɞɤɨɦ ɫɨɫɬɨɹɧɢɢ, ɦ3/ɤɦɨɥɶ; Eɚ = V2/V1 - ɤɨɷɮɮɢɰɢɟɧɬ ɚɮɮɢɧɧɨɫɬɢ. Ɋɢɫ. 3.14. Ƚɪɚɮɢɱɟɫɤɨɟ ɢɡɨɛɪɚɠɟɧɢɟ ɢɡɨɬɟɪɦɵ ɚɞɫɨɪɛɰɢɢ ɢ ɪɚɛɨɱɟɣ ɥɢɧɢɢ Ɇɨɥɶɧɵɟ ɨɛɴɟɦɵ ɜɟɳɟɫɬɜ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ ɜɵɪɚɠɟɧɢɸ: V = M/Uɠ, (3.83) ɝɞɟ Ɇ - ɦɨɥɶɧɚɹ ɦɚɫɫɚ ɜɟɳɟɫɬɜɚ ɜ ɠɢɞɤɨɦ ɫɨɫɬɨɹɧɢɢ, ɤɝ/ɤɦɨɥɶ; Uɠ - ɩɥɨɬɧɨɫɬɶ ɜɟɳɟɫɬɜɚ ɜ ɠɢɞɤɨɦ ɫɨɫɬɨɹɧɢɢ, ɤɝ/ɦ3. ȼɵɫɨɬɭ ɟɞɢɧɢɰɵ ɩɟɪɟɧɨɫɚ h ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ (3.84): (3.84) h = Gɝ/(Sɫɥ.Ey) = Vɝ.Uɝ/( Sɫɥ.Ey), ɝɞɟ Gɝ - ɦɚɫɫɨɜɵɣ ɪɚɫɯɨɞ ɩɚɪɨɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɤɝ/ɫ; Sɫɥ - ɫɟɱɟɧɢɟ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ, ɦ2; Ey - ɨɛɴɟɦɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɝɚɡɨɜɨɣ ɫɦɟɫɢ, 1/ɫ; Uɝ ɩɥɨɬɧɨɫɬɶ ɩɚɪɨɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɤɝ/ɦ3. Ɉɛɴɟɦɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ Ky ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɭɪɚɜɧɟɧɢɸ (3.85) 1/Ky = (1/Ey) + (m/Ex), ɝɞɟ Ex - ɨɛɴɟɦɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɬɜɟɪɞɨɣ ɮɚɡɟ, 1/ɫ; m = Yɧ/Xɤ* ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɫɩɪɟɞɟɥɟɧɢɹ (ɫɪɟɞɧɢɣ ɬɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɥɢɧɢɢ ɪɚɜɧɨɜɟɫɢɹ ɤ ɨɫɢ ɚɛɫɰɢɫɫ); ȼɟɥɢɱɢɧɚ m = Yɧ/Xɤ* ɨɛɵɱɧɨ ɦɚɥɚ, ɩɨɷɬɨɦɭ (3.86) 1/Ky | 1/Ey. ɇɚ ɷɬɨɦ ɨɫɧɨɜɚɧɢɢ ɜ ɭɪɚɜɧɟɧɢɢ (3.84) ɜɦɟɫɬɨ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɩɪɢɜɟɞɟɧ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ Ey. Ʉɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɨɩɪɟɞɟɥɹɸɬ ɢɡ ɜɵɪɚɠɟɧɢɹ ɤɪɢɬɟɪɢɹ ɇɭɫɫɟɥɶɬɚ (Nu'): Nuc = Ey.dɷ2/D. (3.87) Ʉɪɢɬɟɪɢɣ ɇɭɫɫɟɥɶɬɚ ɨɩɪɟɞɟɥɹɸɬ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɱɢɫɥɟɧɧɨɸ ɡɧɚɱɟɧɢɹ ɦɨɞɢɮɢɰɢɪɨɜɚɧɧɨɝɨ ɤɪɢɬɟɪɢɹ Ɋɟɣɧɨɥɶɞɫɚ (Re) ɢ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɤɪɢɬɟɪɢɹ ɉɪɚɧɞɬɥɹ (Prc): Re = wɝ dɷ Uɝ/(Hɧ Pɝ); (3.88) Prc = Pɝ/(Uɝ D), (3.89) ɝɞɟ wɝ – ɫɤɨɪɨɫɬɶ ɩɚɪɨɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɨɬɧɟɫɟɧɧɚɹ ɤ ɫɜɨɛɨɞɧɨɦɭ ɫɟɱɟɧɢɸ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ, ɦ/ɫ; Pɝ - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɝɚɡɚ, ɉɚ.ɫ; Hɧ - ɩɨɪɨɡɧɨɫɬɶ ɧɟɩɨɞ- ɜɢɠɧɨɝɨ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ; dɷ - ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ ɡɟɪɧɚ ɚɞɫɨɪɛɟɧɬɚ, ɦ; D - ɤɨɷɮɮɢɰɢɟɧɬ ɦɨɥɟɤɭɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ, ɦ2/ɫ. Ɉɛɴɟɦ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ Vɚɞ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ Vɚɞ = H.Sɫɥ. (3.90) ɉɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ W (ɫ) ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɨɩɪɟɞɟɥɹɸɬ ɜ ɡɚɜɢɫɢɦɨɫɬɢ oɬ ɜɢɞɚ ɢɡɨɬɟɪɦɵ ɚɞɫɨɪɛɰɢɢ. 1) ȿɫɥɢ ɢɡɨɬɟɪɦɚ ɚɞɫɨɪɛɰɢɢ ɜɵɪɚɠɟɧɚ ɥɢɧɟɣɧɨɣ ɡɚɜɢɫɢɦɨɫɬɶɸ (ɬɨɱɤɚ Yɧ ɧɚɯɨɞɢɬɫɹ ɜ ɩɟɪɜɨɣ ɨɛɥɚɫɬɢ ɢɡɨɬɟɪɦɵ ɚɞɫɨɪɛɰɢɢ), ɬɨ ɢɡɨɬɟɪɦɚ ɚɞɫɨɪɛɰɢɢ ɩɪɢɛɥɢɠɟɧɧɨ ɨɬɜɟɱɚɟɬ ɡɚɤɨɧɭ Ƚɟɧɪɢ: W1/2 = (X*.H/wɝ.Yɧ)1/2 – b(X*/Ey.Yɧ)1/2, (3.91) ɝɞɟ Yɧ - ɧɚɱɚɥɶɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɩɚɪɨɝɚɡɨɜɨɦ ɩɨɬɨɤɟ, ɤɝ/ɦ3; X* - ɪɚɜɧɨɜɟɫɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɚɞɫɨɪɛɢɪɨɜɚɧɧɨɝɨ ɜɟɳɟɫɬɜa, ɤɝ/ɤɝ (ɩɪɢɧɢɦɚɟɬɫɹ ɩɨ ɢɡɨɬɟɪɦɟ ɚɞɫɨɪɛɰɢɢ ɢ ɭɦɧɨɠɚɟɬɫɹ ɧɚ ɧɚɫɵɩɧɭɸ ɩɥɨɬɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ); ɇ - ɜɵɫɨɬɚ ɫɥɨɹ ɚɞɫɨɪɛɟɧɬɚ, ɦ; b - ɤɨɷɮɮɢɰɢɟɧɬ, ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɫɩɪɚɜɨɱɧɵɦ ɞɚɧɧɵɦ. 2) ȿɫɥɢ ɡɚɜɢɫɢɦɨɫɬɶ ɦɟɠɞɭ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɝɚɡɚ ɢ ɤɨɥɢɱɟɫɬɜɨɦ ɩɨɝɥɨɳɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɹɜɥɹɟɬɫɹ ɤɪɢɜɨɥɢɧɟɣɧɨɣ (ɜɬɨɪɚɹ ɨɛɥɚɫɬɶ ɢɡɨɬɟɪɦɵ ɚɞɫɨɪɛɰɢɢ): W = (X*/wɝ.Yɧ){H – wɝ/Ey[(Y1*/Yɧ) .ln([Yɧ/Yɤ] - 1) + ln([Yɧ/Yɤ] - 1)]}. (3.92) * Ɂɞɟɫɶ Y1 - ɫɨɞɟɪɠɚɧɢɟ ɜɟɳɟɫɬɜɚ ɜ ɝɚɡɨɜɨɦ ɩɨɬɨɤɟ, ɪɚɜɧɨɜɟɫɧɨɟ ɫ ɤɨɥɢɱɟɫɬɜɨɦ, ɪɚɜɧɨɦ ɩɨɥɨɜɢɧɟ ɜɟɳɟɫɬɜɚ, ɦɚɤɫɢɦɚɥɶɧɨ ɩɨɝɥɨɳɚɟɦɨɝɨ ɚɞɫɨɪɛɟɧɬɨɦ ɩɪɢ ɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ, ɬ.ɟ. ɩɪɢ Xmax*/2, ɤɝ/ɦ3. 3) ȿɫɥɢ ɤɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ, ɩɨɝɥɨɳɚɟɦɨɝɨ ɚɞɫɨɪɛɟɧɬɨɦ, ɞɨɫɬɢɝɚɟɬ ɩɪɟɞɟɥɚ ɢ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɵɦ (ɬɪɟɬɶɹ ɨɛɥɚɫɬɶ ɢɡɨɬɟɪɦɵ ɚɞɫɨɪɛɰɢɢ): (3.93) W = (X*/wɝ.Yɧ){H – wɝ/Ey[ln(Yɧ/Yɤ) – 1]}. 3.2.7. Ⱦɟɫɨɪɛɰɢɹ ɩɨɝɥɨɳɟɧɧɵɯ ɩɪɢɦɟɫɟɣ Ⱥɞɫɨɪɛɰɢɨɧɧɵɟ ɩɪɨɰɟɫɫɵ ɧɨɫɹɬ ɰɢɤɥɢɱɟɫɤɢɣ ɯɚɪɚɤɬɟɪ, ɬ.ɤ. ɧɟɨɛɯɨɞɢɦɚ ɩɟɪɢɨɞɢɱɟɫɤɚɹ ɪɟɝɟɧɟɪɚɰɢɹ ɧɚɫɵɳɟɧɧɵɯ ɰɟɥɟɜɵɦɢ ɤɨɦɩɨɧɟɧɬɚɦɢ ɩɨɝɥɨɬɢɬɟɥɟɣ. ɉɪɨɰɟɫɫ ɢɡɜɥɟɱɟɧɢɹ ɚɞɫɨɪɛɢɪɨɜɚɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɢɡ ɚɞɫɨɪɛɟɧɬɚ ɧɚɡɵɜɚɟɬɫɹ ɞɟɫɨɪɛɰɢɟɣ. Ɉɫɜɨɛɨɠɞɟɧɧɵɣ ɨɬ ɩɨɝɥɨɳɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɚɞɫɨɪɛɟɧɬ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧ ɜɬɨɪɢɱɧɨ. ɉɪɨɰɟɫɫ ɞɟɫɨɪɛɰɢɢ ɜɟɞɭɬ, ɢɫɩɨɥɶɡɭɹ ɩɨɜɵɲɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ, ɜɵɬɟɫɧɟɧɢɟ ɚɞɫɨɪɛɚɬɚ ɥɭɱɲɟ ɫɨɪɛɢɪɭɸɳɢɦɫɹ ɜɟɳɟɫɬɜɨɦ, ɫɧɢɠɟɧɢɟ ɞɚɜɥɟɧɢɹ ɢɥɢ ɤɨɦɛɢɧɚɰɢɸ ɷɬɢɯ ɩɪɢɟɦɨɜ. ɉɪɢ ɬɟɪɦɢɱɟɫɤɨɣ ɞɟɫɨɪɛɰɢɢ ɧɚɫɵɳɟɧɧɵɣ ɚɞɫɨɪɛɟɧɬ ɧɚɝɪɟɜɚɸɬ ɩɭɬɟɦ ɩɪɹɦɨɝɨ ɤɨɧɬɚɤɬɚ ɫ ɩɨɬɨɤɨɦ ɜɨɞɹɧɨɝɨ ɩɚɪɚ, ɝɨɪɹɱɟɝɨ ɜɨɡɞɭɯɚ ɢɥɢ ɢɧɟɪɬɧɨɝɨ ɝɚɡɚ, ɥɢɛɨ ɧɚɝɪɟɜɚɸɬ ɱɟɪɟɡ ɫɬɟɧɤɭ ɫ ɩɨɞɚɱɟɣ ɨɬɞɭɜɨɱɧɨɝɨ ɢɧɟɪɬɧɨɝɨ ɝɚɡɚ. ɂɧɬɟɪɜɚɥ ɬɟɦɩɟɪɚɬɭɪ 100…200qɋ ɨɛɟɫɩɟɱɢɜɚɟɬ ɞɟɫɨɪɛɰɢɸ ɰɟɥɟɜɵɯ ɤɨɦɩɨɧɟɧɬɨɜ, ɩɨɝɥɨɳɟɧɧɵɯ ɚɤɬɢɜɧɵɦɢ ɭɝɥɹɦɢ, ɫɢɥɢɤɚɝɟɥɹɦɢ ɢ ɚɥɸɦɨɝɟɥɹɦɢ. Ⱦɥɹ ɞɟ- ɫɨɪɛɰɢɢ ɩɪɢɦɟɫɟɣ, ɩɨɝɥɨɳɟɧɧɵɯ ɰɟɨɥɢɬɚɦɢ, ɞɨɫɬɚɬɨɱɧɵ ɬɟɦɩɟɪɚɬɭɪɵ ɨɬ 200 ɞɨ 400qɋ. ȼɵɬɟɫɧɢɬɟɥɶɧɚɹ ɞɟɫɨɪɛɰɢɹ (ɯɨɥɨɞɧɚɹ ɞɟɫɨɪɛɰɢɹ) ɨɫɧɨɜɚɧɚ ɧɚ ɫɨɪɛɢɪɭɟɦɨɫɬɢ ɰɟɥɟɜɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɢ ɜɟɳɟɫɬɜɚ, ɢɫɩɨɥɶɡɭɟɦɨɝɨ ɜ ɤɚɱɟɫɬɜɟ ɜɵɬɟɫɧɢɬɟɥɹ (ɞɟɫɨɪɛɟɧɬɚ). Ⱦɥɹ ɞɟɫɨɪɛɰɢɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ, ɚɦɦɢɚɤ, ɜɨɞɭ, ɧɟɤɨɬɨɪɵɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ. Ⱦɟɫɨɪɛɰɢɹ ɫɧɢɠɟɧɢɟɦ ɞɚɜɥɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɪɟɚɥɢɡɨɜɚɧɚ ɪɟɞɭɰɢɪɨɜɚɧɢɟɦ ɞɚɜɥɟɧɢɹ ɜ ɫɢɫɬɟɦɟ ɩɨɫɥɟ ɧɚɫɵɳɟɧɢɹ ɩɨɝɥɨɬɢɬɟɥɹ ɩɨɞ ɢɡɛɵɬɨɱɧɵɦ ɞɚɜɥɟɧɢɟɦ ɢɥɢ ɫɨɡɞɚɧɢɟɦ ɜ ɫɢɫɬɟɦɟ ɪɚɡɪɟɠɟɧɢɹ ɩɪɢ ɩɪɨɜɟɞɟɧɢɢ ɫɬɚɞɢɢ ɚɞɫɨɪɛɰɢɢ ɩɨɞ ɧɨɪɦɚɥɶɧɵɦ ɞɚɜɥɟɧɢɟɦ. ȼɪɟɦɹ ɞɟɫɨɪɛɰɢɢ ɰɟɥɟɜɵɯ ɤɨɦɩɨɧɟɧɬɨɜ a 1 ˜ ln 0 , (3.94) Wɞ kɞ a (1  H ɩ ) ˜ U ɤ ɝɞɟ kɞ - ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɞɟɫɨɪɛɰɢɢ; Hɩ - ɩɨɪɨɡɧɨɫɬɶ ɫɥɨɹ ( H ɩ 1  U ɧ / U ɤ ); U ɤ - ɤɚɠɭɳɚɹɫɹ ɩɥɨɬɧɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ; U ɧ - ɧɚɫɵɩɧɚɹ ɩɥɨɬɧɨɫɬɶ ɫɥɨɹ ɝɪɚɧɭɥ ɚɞɫɨɪɛɟɧɬɚ; ɚ0 ɢ ɚ – ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɧɚɱɚɥɶɧɚɹ ɢ ɬɟɤɭɳɚɹ ɜɟɥɢɱɢɧɚ ɚɞɫɨɪɛɰɢɢ. 3.3. Ɍɟɪɦɨɯɢɦɢɱɟɫɤɨɟ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɝɚɡɨɨɛɪɚɡɧɵɯ ɜɵɛɪɨɫɨɜ Ɉɱɢɫɬɤɚ ɩɪɨɦɵɲɥɟɧɧɵɯ ɝɚɡɨɨɛɪɚɡɧɵɯ ɜɵɛɪɨɫɨɜ, ɫɨɞɟɪɠɚɳɢɯ ɬɨɤɫɢɱɧɵɟ ɜɟɳɟɫɬɜɚ, ɜ ɧɚɫɬɨɹɳɟɟ ɜɪɟɦɹ ɹɜɥɹɟɬɫɹ ɧɟɩɪɟɦɟɧɧɵɦ ɬɪɟɛɨɜɚɧɢɟɦ ɜɨ ɜɫɟɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ. ɉɨɦɢɦɨ ɦɟɯɚɧɢɱɟɫɤɢɯ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɢ ɯɢɦɢɱɟɫɤɢɯ ɦɟɬɨɞɨɜ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɸɬ ɬɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ. ɉɪɢɦɟɪɧɵɣ ɫɨɫɬɚɜ ɩɪɨɞɭɤɬɨɜ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɝɚɡɨɨɛɪɚɡɧɵɯ ɜɵɛɪɨɫɚɯ, ɩɪɢɜɟɞɟɧ ɜ ɬɚɛɥ. 3.2. Ɇɟɬɨɞɵ ɫɠɢɝɚɧɢɹ ɜɪɟɞɧɵɯ ɩɪɢɦɟɫɟɣ, ɫɩɨɫɨɛɧɵɯ ɨɤɢɫɥɹɬɶɫɹ, ɧɚɯɨɞɹɬ ɜɫɟ ɛɨɥɶɲɟɟ ɩɪɢɦɟɧɟɧɢɟ ɞɥɹ ɨɱɢɫɬɤɢ ɞɪɟɧɚɠɧɵɯ ɢ ɜɟɧɬɢɥɹɰɢɨɧɧɵɯ ɜɵɛɪɨɫɨɜ. ɗɬɢ ɦɟɬɨɞɵ ɜɵɝɨɞɧɨ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɞɪɭɝɢɯ (ɧɚɩɪɢɦɟɪ, ɦɨɤɪɨɣ ɨɱɢɫɬɤɢ ɜ ɫɤɪɭɛɛɟɪɚɯ) ɛɨɥɟɟ ɜɵɫɨɤɨɣ ɫɬɟɩɟɧɶɸ ɨɱɢɫɬɤɢ, ɨɬɫɭɬɫɬɜɢɟɦ ɜ ɛɨɥɶɲɢɧɫɬɜɟ ɫɥɭɱɚɟɜ ɤɨɪɪɨɡɢɨɧɧɵɯ ɫɪɟɞ ɢ ɢɫɤɥɸɱɟɧɢɟɦ ɫɬɨɱɧɵɯ ɜɨɞ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɩɪɢɦɟɫɢ ɫɠɢɝɚɸɬ ɜ ɤɚɦɟɪɧɵɯ ɬɨɩɤɚɯ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɝɚɡɨɨɛɪɚɡɧɨɝɨ ɢɥɢ ɠɢɞɤɨɝɨ ɬɨɩɥɢɜɚ. ɂɧɨɝɞɚ ɧɚ ɩɪɚɤɬɢɤɟ ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɜɨɡɦɨɠɧɵɦ ɨɤɢɫɥɹɬɶ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɚɯ, ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɱɬɨ ɞɚɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɩɨɧɢɡɢɬɶ ɬɟɦɩɟɪɚɬɭɪɭ ɩɪɨɰɟɫɫɚ. Ɍɚɛɥɢɰɚ 3.2 ɋɨɫɬɚɜ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ ɩɨ ɨɬɪɚɫɥɹɦ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ȼɢɞ ɩɪɨɢɡɜɨɞɫɬɜɚ ɉɟɪɟɪɚɛɨɬɤɚ ɧɟɮɬɢ ɉɪɨɢɡɜɨɞɫɬɜɨ ɝɚɡɚ ɢɡ ɤɚɦɟɧɧɨɝɨ ɭɝɥɹ ɉɟɪɟɪɚɛɨɬɤɚ ɩɪɢɪɨɞɧɨɝɨ ɝɚɡɚ ɉɪɨɢɡɜɨɞɫɬɜɨ ɤɢɫɥɨɬ ɢ ɳɟɥɨɱɟɣ ɉɪɨɢɡɜɨɞɫɬɜɨ ɦɢɧɟɪɚɥɶɧɵɯ ɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɭɞɨɛɪɟɧɢɣ ɏɢɦɢɱɟɫɤɢɣ ɫɨɫɬɚɜ ɝɚɡɨɨɛɪɚɡɧɵɯ ɨɬɯɨɞɨɜ Ɇɟɪɤɚɩɬɚɧɵ, ɫɟɪɨɜɨɞɨɪɨɞ, ɚɦɦɢɚɤ, ɨɪɝɚɧɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ ɚɡɨɬɚ, ɨɤɫɢɞ ɭɝɥɟɪɨɞɚ ɋɨɟɞɢɧɟɧɢɹ ɫɟɪɵ (ɫɟɪɨɜɨɞɨɪɨɞ, ɫɟɪɨɭɝɥɟɪɨɞ, ɬɢɨɮɟɧ, ɬɢɨɥɵ, ɫɟɪɨɨɤɫɢɞ ɭɝɥɟɪɨɞɚ) ɋɟɪɨɜɨɞɨɪɨɞ, ɦɟɪɤɚɩɬɚɧɵ Ʉɢɫɥɨɪɨɞɧɵɟ ɫɨɟɞɢɧɟɧɢɹ ɚɡɨɬɚ ɢ ɫɟɪɵ Ⱥɦɦɢɚɤ, ɫɨɟɞɢɧɟɧɢɹ ɫɟɪɵ, ɮɬɨɪɢɫɬɵɣ ɜɨɞɨɪɨɞ, ɦɟɪɤɚɩɬɚɧɵ, ɬɪɢɦɟɬɢɥɚɦɢɧ ɢ ɞɪ. Ɏɨɪɦɚɥɶɞɟɝɢɞ, ɚɦɢɧɵ, ɚɦɢɞɵ, ɪɚɫɬɜɨɪɢɬɟɥɢ, ɫɨɟɞɢɧɟɧɢɹ ɫɟɪɵ, ɚɰɟɬɢɥɟɧ, ɮɟɧɨɥ ɢ ɞɪ. Ⱥɦɢɧɵ, ɜɨɫɫɬɚɧɨɜɥɟɧɧɵɟ ɫɨɟɞɢɧɟɧɢɹ ɫɟɪɵ, ɮɭɪɮɭɪɨɥ, ɦɟɬɚɧɨɥ ɏɢɦɢɱɟɫɤɢɟ ɡɚɜɨɞɵ (ɩɨ ɩɪɨɢɡɜɨɞɫɬɜɭ ɫɦɨɥ, ɥɚɤɨɜ, ɩɥɚɫɬɦɚɫɫ, ɠɢɪɨɜ, ɦɚɫɟɥ ɢ ɬ.ɞ.) Ɏɚɪɦɚɰɟɜɬɢɱɟɫɤɢɟ ɡɚɜɨɞɵ, ɩɢɜɨɜɚɪɟɧɧɵɟ ɡɚɜɨɞɵ, ɩɪɨɰɟɫɫɵ ɫɛɪɚɠɢɜɚɧɢɹ Ɍɟɤɫɬɢɥɶɧɵɟ ɢ ɛɭɦɚɠɧɵɟ ɮɚɛɪɢ- Ɇɨɱɟɜɢɧɚ, ɩɪɨɞɭɤɬɵ ɪɚɫɩɚɞɚ ɤɪɚɯɦɚɤɢ ɥɚ, ɞɢɦɟɬɢɥɫɭɥɶɮɢɞ Ȼɨɥɶɲɨɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɞɥɹ ɭɧɢɱɬɨɠɟɧɢɹ ɬɨɤɫɢɱɧɵɯ ɜɟɳɟɫɬɜ ɜ ɨɬɯɨɞɹɳɢɯ ɝɚɡɚɯ ɩɨɥɭɱɢɥɢ ɭɫɬɚɧɨɜɤɢ ɮɚɤɟɥɶɧɨɝɨ ɫɠɢɝɚɧɢɹ. Ʉ ɮɚɤɟɥɶɧɵɦ ɭɫɬɚɧɨɜɤɚɦ ɩɪɟɞɴɹɜɥɹɸɬɫɹ ɜɵɫɨɤɢɟ ɬɪɟɛɨɜɚɧɢɹ ɜ ɨɬɧɨɲɟɧɢɢ ɨɛɟɫɩɟɱɟɧɢɹ ɛɟɡɨɩɚɫɧɨɣ ɢ ɧɚɞɟɠɧɨɣ ɪɚɛɨɬɵ ɜ ɭɫɥɨɜɢɹɯ ɩɨɠɚɪɨ- ɢ ɜɡɪɵɜɨɨɩɚɫɧɨɫɬɢ ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɢɡɜɨɞɫɬɜ. ɏɢɦɢɱɟɫɤɢɟ ɪɟɚɤɰɢɢ ɦɟɠɞɭ ɢɧɝɪɟɞɢɟɧɬɚɦɢ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ, ɤɨɬɨɪɵɟ ɜ ɨɛɵɱɧɵɯ ɭɫɥɨɜɢɹɯ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɡɚɦɟɬɧɵ, ɡɧɚɱɢɬɟɥɶɧɨ ɭɫɤɨɪɹɸɬɫɹ ɫ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ. ɋɢɫɬɟɦɚ, ɫɨɞɟɪɠɚɳɚɹ ɬɨɤɫɢɱɧɵɟ ɜɟɳɟɫɬɜɚ, ɦɨɠɟɬ ɛɵɬɶ ɨɛɟɡɜɪɟɠɟɧɚ ɩɨɫɪɟɞɫɬɜɨɦ ɬɟɪɦɨɨɛɪɚɛɨɬɤɢ, ɟɫɥɢ ɪɟɚɤɰɢɢ, ɩɪɨɢɫɯɨɞɹɳɢɟ ɜ ɧɟɣ, ɩɪɢɜɟɞɭɬ ɤ ɨɛɪɚɡɨɜɚɧɢɸ ɦɟɧɟɟ ɬɨɤɫɢɱɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ. ɉɨ ɬɢɩɭ ɩɪɨɢɫɯɨɞɹɳɢɯ ɪɟɚɤɰɢɣ ɦɟɬɨɞɵ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɦɨɠɧɨ ɪɚɡɞɟɥɢɬɶ ɧɚ ɜɨɫɫɬɚɧɨɜɢɬɟɥɶɧɵɟ ɢ ɨɤɢɫɥɢɬɟɥɶɧɵɟ. Ɍɟɪɦɨɜɨɫɫɬɚɧɨɜɢɬɟɥɶɧɵɟ ɦɟɬɨɞɵ ɫɩɟɰɢɮɢɱɧɵ ɢ ɪɚɡɪɚɛɚɬɵɜɚɸɬɫɹ ɢɧɞɢɜɢɞɭɚɥɶɧɨ ɞɥɹ ɤɚɠɞɨɝɨ ɤɨɧɤɪɟɬɧɨɝɨ ɡɚɝɪɹɡɧɢɬɟɥɹ. ɂɡ ɧɢɯ ɤ ɧɚɫɬɨɹɳɟɦɭ ɜɪɟɦɟɧɢ ɜ ɬɟɯɧɢɤɟ ɝɚɡɨɨɱɢɫɬɤɢ ɧɚɲɥɢ ɩɪɢɦɟɧɟɧɢɟ ɫɩɨɫɨɛɵ ɬɟɪɦɨɯɢɦɢɱɟɫɤɨɝɨ (ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɚɦɦɢɚɤɚ) ɢ ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ NOɯ ɞɨ N2, ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ SO2 ɞɨ S2 ɧɟɤɨɬɨɪɵɟ ɞɪɭɝɢɟ. ɂɡ ɜɫɟɯ ɬɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɵɯ ɩɪɨɰɟɫɫɨɜ ɞɥɹ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɩɪɢɝɨɞɧɵ ɢɫɤɥɸɱɢɬɟɥɶɧɨ ɪɟɚɤɰɢɢ ɫ ɤɢɫɥɨɪɨɞɨɦ, ɩɨɫɤɨɥɶɤɭ ɩɪɢ ɭɱɚɫɬɢɢ ɢɧɵɯ ɨɤɢɫɥɢɬɟɥɟɣ ɩɪɢɧɰɢɩɢɚɥɶɧɨ ɧɟɜɨɡɦɨɠɧɨ ɩɨɥɭɱɢɬɶ ɛɟɡɜɪɟɞɧɵɟ ɩɪɨɞɭɤɬɵ ɨɤɢɫɥɟɧɢɹ. ɉɨɷɬɨɦɭ ɞɚɥɟɟ ɩɨɞ ɬɟɪɦɢɧɨɦ "ɨɤɢɫɥɟɧɢɟ" ɩɨɞɪɚɡɭɦɟɜɚɟɬɫɹ ɩɪɨɰɟɫɫ, ɨɤɢɫɥɢɬɟɥɟɦ ɜ ɤɨɬɨɪɨɦ ɫɥɭɠɢɬ ɤɢɫɥɨɪɨɞ. Ɍɟɪɦɨɨɤɢɫɥɟɧɢɟ ɝɚɡɨɨɛɪɚɡɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ (ɜ ɨɛɴɟɦɟ) ɢɥɢ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ (ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ). Ƚɚɡɨɮɚɡɧɵɣ ɩɪɨɰɟɫɫ ɨɫɭɳɟɫɬɜɥɹɸɬ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɣ ɨɝɧɟɜɨɣ ɨɛɪɚɛɨɬɤɨɣ (ɫɠɢɝɚɧɢɟɦ ɜ ɩɥɚɦɟɧɢ) ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɚɯ, ɩɪɟɜɵɲɚɸɳɢɯ ɬɟɦɩɟɪɚɬɭɪɭ ɜɨɫɩɥɚɦɟɧɟɧɢɹ ɝɨɪɸɱɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɜɵɛɪɨɫɨɜ. Ⱦɥɹ ɨɪɝɚɧɢɡɚɰɢɢ ɩɪɨɰɟɫɫɚ ɨɤɢɫɥɟɧɢɹ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ ɢɫɩɨɥɶɡɭɸɬ ɤɚɬɚɥɢɡɚɬɨɪɵ - ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɵɟ ɜɟɳɟɫɬɜɚ, ɫɩɨɫɨɛɧɵɟ ɡɚ ɫɱɟɬ ɚɤɬɢɜɧɨɫɬɢ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɱɚɫɬɢɰ ɭɫɤɨɪɹɬɶ ɩɪɨɰɟɫɫ ɨɤɢɫɥɟɧɢɹ ɬɨɝɨ ɢɥɢ ɢɧɨɝɨ ɡɚɝɪɹɡɧɢɬɟɥɹ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɚɯ ɧɢɠɟ ɬɟɦɩɟɪɚɬɭɪɵ ɜɨɫɩɥɚɦɟɧɟɧɢɹ. Ɍɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɵɟ ɦɟɬɨɞɵ ɦɟɧɟɟ ɫɩɟɰɢɮɢɱɧɵ, ɱɟɦ ɬɟɪɦɨɜɨɫɫɬɚɧɨɜɢɬɟɥɶɧɵɟ, ɨɞɧɚɤɨ ɢ ɨɧɢ ɧɟ ɭɧɢɜɟɪɫɚɥɶɧɵ. ȼɨɡɦɨɠɧɨɫɬɢ ɬɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɨɝɨ ɦɟɬɨɞɚ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɨɝɪɚɧɢɱɢɜɚɸɬɫɹ ɬɚɤɠɟ ɤɨɥɢɱɟɫɬɜɨɦ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɢ ɫɨɞɟɪɠɚɧɢɟɦ ɜ ɧɢɯ ɝɨɪɸɱɢɯ ɤɨɦɩɨɧɟɧɬɨɜ. ȿɫɥɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɝɨɪɸɱɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɜɵɛɪɨɫɨɜ ɧɟ ɞɨɫɬɢɝɚɟɬ ɧɢɠɧɟɝɨ ɩɪɟɞɟɥɚ ɜɨɫɩɥɚɦɟɧɟɧɢɹ ("ɛɟɞɧɵɟ" ɝɨɪɸɱɢɦ ɜɵɛɪɨɫɵ), ɬɨ ɢɯ ɨɝɧɟɜɚɹ ɨɛɪɚɛɨɬɤɚ ɬɪɟɛɭɟɬ ɞɨɩɨɥɧɢɬɟɥɶɧɨɝɨ ɪɚɫɯɨɞɚ ɬɨɩɥɢɜɚ ɧɚ ɩɪɨɝɪɟɜ ɜɵɛɪɨɫɨɜ ɞɨ ɬɟɦɩɟɪɚɬɭɪɵ ɫɚɦɨɜɨɫɩɥɚɦɟɧɟɧɢɹ, ɤɨɬɨɪɚɹ ɞɥɹ ɩɚɪɨɜ ɭɝɥɟɜɨɞɨɪɨɞɨɜ ɫɨɫɬɚɜɥɹɟɬ ɨɤɨɥɨ 500...750°ɋ. Ɍɟɦɩɟɪɚɬɭɪɧɵɣ ɭɪɨɜɟɧɶ ɩɪɨɰɟɫɫɚ ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɧɟɫɤɨɥɶɤɨ ɧɢɠɟ (ɨɛɵɱɧɨ 350...500°ɋ), ɱɬɨ ɬɚɤɠɟ ɬɪɟɛɭɟɬ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɡɚɬɪɚɬ ɬɨɩɥɢɜɚ. ɋɬɟɩɟɧɶ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɨɛɟɡɜɪɟɠɟɧɧɵɯ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ: Gɇ (Ɏɜɯ  Ɏ ɭɯ ) (Ɏɜɯ ) 1  Ɏ ɭɯ / Ɏɜɯ , (3.95) ɝɞɟ Ɏɜɯ ɢ Ɏɭɯ - ɫɭɦɦɚɪɧɚɹ ɬɨɤɫɢɱɧɨɫɬɶ ɩɨɞɥɟɠɚɳɢɯ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɢ ɧɟɣɬɪɚɥɢɡɢɪɨɜɚɧɧɵɯ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ. 3.3.1. Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɨɫɧɨɜɚɧɵ ɧɚ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɭɞɚɥɹɟɦɵɯ ɜɟɳɟɫɬɜ ɫ ɜɜɨɞɢɦɵɦ ɜ ɨɱɢɳɚɟɦɭɸ ɝɚɡɨɜɭɸ ɫɪɟɞɭ ɜɟɳɟɫɬɜɨɦ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɪɟɚɤɰɢɣ ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɝɚɡɟ ɩɪɢɦɟɫɢ ɩɪɟɜɪɚɳɚɸɬɫɹ ɜ ɞɪɭɝɢɟ ɫɨɟɞɢɧɟɧɢɹ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɟ ɦɟɧɶɲɭɸ ɨɩɚɫɧɨɫɬɶ, ɢɥɢ ɥɟɝɤɨ ɨɬɞɟɥɹɸɬɫɹ ɨɬ ɝɚɡɚ. Ʉɚɬɚɥɢɬɢɱɟɫɤɚɹ ɨɱɢɫɬɤɚ ɩɨɡɜɨɥɹɟɬ ɨɛɟɡɜɪɟɠɢɜɚɬɶ ɨɤɫɢɞɵ ɚɡɨɬɚ, ɨɤɫɢɞ ɭɝɥɟɪɨɞɚ, ɞɪɭɝɢɟ ɜɪɟɞɧɵɟ ɝɚɡɨɜɵɟ ɡɚɝɪɹɡɧɟɧɢɹ. Ȼɥɚɝɨɞɚɪɹ ɩɪɢɦɟɧɟɧɢɸ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɦɨɠɧɨ ɞɨɫɬɢɱɶ ɜɵɫɨɤɨɣ ɫɬɟɩɟɧɢ ɫɱɢɫɬɤɢ ɝɚɡɚ, ɞɨɫɬɢɝɚɸɳɟɣ ɜ ɪɹɞɟ ɫɥɭɱɚɟɜ 99,9 %. Ʉɚɬɚɥɢɬɢɱɟɫɤɚɹ ɨɱɢɫɬɤɚ ɩɪɢɦɟɧɹɟɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɩɪɢ ɧɟɛɨɥɶɲɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɭɞɚɥɹɟɦɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɨɱɢɳɚɟɦɨɦ ɝɚɡɟ. Ʉɚɬɚɥɢɬɢɱɟɫɤɨɟ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɢɫɩɨɥɶɡɭɸɬ ɨɛɵɱɧɨ ɬɨɝɞɚ, ɤɨɝɞɚ ɫɨɞɟɪɠɚɧɢɟ ɝɨɪɸɱɢɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɩɪɨɞɭɤɬɨɜ ɜ ɨɬɯɨɞɹɳɢɯ ɝɚɡɚɯ ɦɚɥɨ, ɢ ɧɟ ɜɵɝɨɞɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɢɯ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɦɟɬɨɞ ɩɪɹɦɨɝɨ ɫɠɢɝɚɧɢɹ. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɩɪɨɰɟɫɫ ɩɪɨɬɟɤɚɟɬ ɩɪɢ 200…300°ɋ, ɱɬɨ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɧɶɲɟ ɬɟɦɩɟɪɚɬɭɪɵ, ɬɪɟɛɭɟɦɨɣ ɞɥɹ ɩɨɥɧɨɝɨ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɩɪɢ ɩɪɹɦɨɦ ɫɠɢɝɚɧɢɢ ɜ ɩɟɱɚɯ ɢ ɪɚɜɧɨɣ 950…1100°ɋ. ɉɪɢ ɬɟɦɩɟɪɚɬɭɪɟ 100…150°ɋ ɩɪɨɰɟɫɫɵ ɪɚɫɫɦɚɬɪɢɜɚɸɬɫɹ ɤɚɤ ɧɟɨɛɪɚɬɢɦɵɟ, ɱɬɨ ɩɨɡɜɨɥɹɟɬ ɩɨɥɭɱɚɬɶ ɝɚɡ ɫ ɜɟɫɶɦɚ ɧɢɡɤɢɦ ɫɨɞɟɪɠɚɧɢɟɦ ɩɪɢɦɟɫɟɣ. ɓɟɥɨɱɧɵɟ ɦɚɬɟɪɢɚɥɵ ɢ ɢɯ ɫɨɟɞɢɧɟɧɢɹ, ɧɚɧɟɫɟɧɧɵɟ ɧɚ ɪɚɡɥɢɱɧɵɟ ɧɨɫɢɬɟɥɢ (ɧɚɩɪɢɦɟɪ, ɨɤɫɢɞɵ ɦɟɬɚɥɥɨɜ), ɱɚɫɬɨ ɨɤɚɡɵɜɚɸɬɫɹ ɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɵɦɢ ɢ ɧɚɞɟɠɧɵɦɢ, ɚ ɬɚɤɠɟ ɝɨɪɚɡɞɨ ɛɨɥɟɟ ɞɟɲɟɜɵɦɢ, ɱɟɦ ɤɚɬɚɥɢɡɚɬɨɪɵ ɢɡ ɛɥɚɝɨɪɨɞɧɵɯ ɦɟɬɚɥɥɨɜ. ɇɚ ɬɚɤɢɯ ɤɚɬɚɥɢɡɚɬɨɪɚɯ ɪɟɚɤɰɢɹ ɨɤɢɫɥɟɧɢɹ ɧɚɱɢɧɚɟɬɫɹ ɩɪɢ ɧɟɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ (ɨɤɨɥɨ 200°ɋ), ɱɬɨ ɡɧɚɱɢɬɟɥɶɧɨ ɩɨɜɵɲɚɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɢɯ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɞɥɹ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɫɠɢɝɚɧɢɹ ɝɚɡɨɜ. ȼ ɤɚɱɟɫɬɜɟ ɧɨɫɢɬɟɥɹ ɤɚɬɚɥɢɡɚɬɨɪɚ ɪɟɤɨɦɟɧɞɭɸɬɫɹ ɨɤɫɢɞ ɚɥɸɦɢɧɢɹ, ɤɢɡɟɥɶɝɭɪ ɢ ɫɢɥɢɤɚɬɵ. Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɨɫɧɨɜɚɧɵ ɧɚ ɝɟɬɟɪɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɢ ɫɥɭɠɚɬ ɞɥɹ ɩɪɟɜɪɚɳɟɧɢɹ ɩɪɢɦɟɫɟɣ ɜ ɛɟɡɜɪɟɞɧɵɟ ɢɥɢ ɥɟɝɤɨ ɭɞɚɥɹɟɦɵɟ ɫɨɟɞɢɧɟɧɢɹ. ɋɭɬɶ ɤɚɬɚɥɢɬɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɝɚɡɨɨɱɢɫɬɤɢ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɪɟɚɥɢɡɚɰɢɢ ɯɢɦɢɱɟɫɤɢɯ ɜɡɚɢɦɨɞɟɣɫɬɜɢɣ, ɩɪɢɜɨɞɹɳɢɯ ɤ ɤɨɧɜɟɪɫɢɢ ɨɛɟɡɜɪɟɠɢɜɚɟɦɵɯ ɩɪɢɦɟɫɟɣ ɜ ɞɪɭɝɢɟ ɩɪɨɞɭɤɬɵ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɫɩɟɰɢɚɥɶɧɵɯ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. Ʉɚɬɚɥɢɡɚɬɨɪɵ ɧɟ ɜɵɡɵɜɚɸɬ ɢɡɦɟɧɟɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɭɪɨɜɧɹ ɦɨɥɟɤɭɥ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɜɟɳɟɫɬɜ ɢ ɫɦɟɳɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɩɪɨɫɬɵɯ ɪɟɚɤɰɢɣ. ɂɯ ɪɨɥɶ ɫɜɨɞɢɬɫɹ ɤ ɭɜɟɥɢɱɟɧɢɸ ɫɤɨɪɨɫɬɢ ɯɢɦɢɱɟɫɤɢɯ ɜɡɚɢɦɨɞɟɣɫɬɜɢɣ. Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɜ ɝɟɬɟɪɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɩɪɨɢɫɯɨɞɹɬ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ ɝɚɡɨɜɨɣ ɫɦɟɫɢ ɢ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. Ʉɚɬɚɥɢɡɚɬɨɪ ɨɛɟɫɩɟɱɢɜɚɟɬ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɧɚ ɟɝɨ ɩɨɜɟɪɯɧɨɫɬɢ ɤɨɧɜɟɪɬɢɪɭɟɦɵɯ ɜɟɳɟɫɬɜ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɚɤɬɢɜɢɪɨɜɚɧɧɵɯ ɤɨɦɩɥɟɤɫɨɜ ɜ ɜɢɞɟ ɩɪɨɦɟɠɭɬɨɱɧɵɯ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɫɨɟɞɢɧɟɧɢɣ ɤɚɬɚɥɢɡɚɬɨɪɚ ɢ ɪɟɚɝɢɪɭɸɳɢɯ ɜɟɳɟɫɬɜ, ɮɨɪɦɢɪɭɸɳɢɯ ɡɚɬɟɦ ɩɪɨɞɭɤɬɵ ɤɚɬɚɥɢɡɚ, ɨɫɜɨɛɨɠɞɚɸɳɢɟ ɢ ɜɨɫɫɬɚɧɚɜɥɢɜɚɸɳɢɟ ɩɨɜɟɪɯɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɚ. ɋɯɟɦɚ ɷɬɨɝɨ ɩɪɨɰɟɫɫɚ ɞɥɹ ɝɚɡɨɜɨɣ ɪɟɚɤɰɢɢ Ⱥ  ȼ o ɋ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ K ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧ ɜ ɜɢɞɟ: Ⱥ  B  K o K > ȺB @; K > ȺB @ o C  K , (3.96) ɝɞɟ K[Ⱥȼ]- ɚɤɬɢɜɢɪɨɜɚɧɧɨɟ ɩɪɨɦɟɠɭɬɨɱɧɨɟ ɫɨɟɞɢɧɟɧɢɟ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. ɂɡɦɟɧɟɧɢɟ ɩɭɬɢ ɯɢɦɢɱɟɫɤɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ ɩɪɢɜɨɞɢɬ ɤ ɩɨɧɢɠɟɧɢɸ ɟɝɨ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ, ɱɬɨ ɜɵɪɚɠɚɟɬɫɹ ɜ ɭɫɤɨɪɹɸɳɟɦ ɞɟɣɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. ɗɬɨ ɫɥɟɞɭɟɬ ɢɡ ɭɪɚɜɧɟɧɢɹ Ⱥɪɪɟɧɢɭɫɚ: k k 0 ˜ exp( E / RT ) , (3.97) ɝɞɟ k - ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ; k0 - ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ; ȿ - ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ; R - ɝɚɡɨɜɚɹ ɩɨɫɬɨɹɧɧɚɹ; Ɍ - ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ. ɍɫɤɨɪɹɸɳɟɟ ɞɟɣɫɬɜɢɟ ɤɚɬɚɥɢɡɚɬɨɪɚ ɜɵɪɚɠɚɸɬ ɟɝɨ ɚɤɬɢɜɧɨɫɬɶɸ Ⱥ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɟɣ ɨɬɧɨɲɟɧɢɟ ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɟɣ ɪɟɚɤɰɢɣ, ɩɪɨɢɫɯɨɞɹɳɢɯ ɫ ɭɱɚɫɬɢɟɦ ɤɚɬɚɥɢɡɚɬɨɪɚ kɤ ɢ ɛɟɡ ɧɟɝɨ: (3.98) A = kɤ/k = [k0/exp(Eɤ/R.T)]exp(E/R.T)/k0 = exp('E/R.T), ɝɞɟ 'ȿ = (ȿ – ȿɤ) - ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. Ⱥɤɬɢɜɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɨɜɨɤɭɩɧɨɫɬɶɸ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɤɚɤ ɫɚɦɨɝɨ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɬɚɤ ɢ ɤɨɧɜɟɪɬɢɪɭɟɦɨɝɨ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ. ȼ ɧɚɢɛɨɥɶɲɟɣ ɫɬɟɩɟɧɢ ɨɧɚ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɩɪɟɜɪɚɳɟɧɢɹ, ɫɬɪɭɤɬɭɪɵ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɫɨɞɟɪɠɚɧɢɹ ɜ ɧɟɦ ɩɪɨɦɨɬɨɪɨɜ, ɞɚɜɥɟɧɢɹ, ɨɛɴɟɦɧɨɝɨ ɪɚɫɯɨɞɚ, ɤɨɧɰɟɧɬɪɚɰɢɢ ɢ ɦɨɥɟɤɭɥɹɪɧɵɯ ɦɚɫɫ ɢɫɯɨɞɧɵɯ ɪɟɚɝɟɧɬɨɜ ɢ ɩɪɨɞɭɤɬɨɜ ɤɨɧɜɟɪɫɢɢ ɜ ɝɚɡɨɜɨɣ ɫɦɟɫɢ. Ɉɫɨɛɟɧɧɨɫɬɶ ɩɪɨɰɟɫɫɨɜ ɤɚɬɚɥɢɬɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɬɨɦ, ɱɬɨ ɨɧɢ ɩɪɨɬɟɤɚɸɬ ɩɪɢ ɦɚɥɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɭɞɚɥɹɟɦɵɯ ɩɪɢɦɟɫɟɣ. Ɉɫɧɨɜɧɵɦ ɞɨɫɬɨɢɧɫɬɜɨɦ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɦɟɬɨɞɚ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɹɜɥɹɟɬɫɹ ɬɨ, ɱɬɨ ɨɧ ɞɚɟɬ ɜɵɫɨɤɭɸ ɫɬɟɩɟɧɶ ɨɱɢɫɬɤɢ, ɚ ɧɟɞɨɫɬɚɬɤɨɦ - ɨɛɪɚɡɨɜɚɧɢɟ ɧɨɜɵɯ ɜɟɳɟɫɬɜ, ɤɨɬɨɪɵɟ ɧɚɞɨ ɭɞɚɥɹɬɶ ɢɡ ɝɚɡɚ ɚɛɫɨɪɛɰɢɟɣ ɢɥɢ ɚɞɫɨɪɛɰɢɟɣ. Ɉɰɟɧɤɚ ɚɤɬɢɜɧɨɫɬɢ ɤɚɬɚɥɢɡɚɬɨɪɚ ɜ ɪɚɡɥɢɱɧɵɯ ɭɫɥɨɜɢɹɯ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɚ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɩɪɟɜɪɚɳɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧɚ ɨɬɧɨɲɟɧɢɟɦ ɤɨɥɢɱɟɫɬɜɚ ɨɛɪɚɡɭɸɳɢɯɫɹ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ ɩɪɨɞɭɤɬɨɜ Gɩ ɤ ɨɛɴɟɦɭ V, ɦɚɫɫɟ Gɤ, ɪɚɛɨɬɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ S ɤɚɬɚɥɢɡɚɬɨɪɚ: Ⱥ Gɩ / V ; A Gn / G k ; A Gn / S . (3.99) ȼ ɩɪɨɰɟɫɫɟ ɷɤɫɩɥɭɚɬɚɰɢɢ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɨɧɢ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɫɬɟɩɟɧɢ ɩɨɞɜɟɪɝɚɸɬɫɹ ɩɨɫɬɟɩɟɧɧɨɣ ɞɟɡɚɤɬɢɜɚɰɢɢ ɢɥɢ ɞɟɫɬɪɭɤɰɢɢ, ɤɨɬɨɪɵɟ ɜɵɡɵɜɚɸɬɫɹ ɯɢɦɢɱɟɫɤɢɦɢ ɨɬɪɚɜɥɟɧɢɹɦɢ, ɤɚɬɚɥɢɬɢɱɟɫɤɢɦɢ ɹɞɚɦɢ, ɦɟɯɚɧɢɱɟɫɤɢɦ ɢɫɬɢɪɚɧɢɟɦ, ɫɩɟɤɚɧɢɟɦ, ɚɝɪɟɝɚɬɢɪɨɜɚɧɢɟɦ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɩɟɪɢɨɞɢɱɟɫɤɨɣ ɪɟɝɟɧɟɪɚɰɢɢ (ɚɤɬɢɜɚɰɢɢ) ɢɥɢ ɡɚɦɟɧɵ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. Ʉɚɬɚɥɢɡɚɬɨɪɵ ɞɨɥɠɧɵ ɨɛɥɚɞɚɬɶ ɜɵɫɨɤɨɣ ɚɤɬɢɜɧɨɫɬɶɸ ɢ ɬɟɩɥɨɩɪɨɜɨɞɢɦɨɫɬɶɸ, ɪɚɡɜɢɬɨɣ ɩɨɪɢɫɬɨɣ ɫɬɪɭɤɬɭɪɨɣ, ɫɬɨɣɤɨɫɬɶɸ ɤ ɹɞɚɦ, ɦɟɯɚɧɢɱɟɫɤɨɣ ɩɪɨɱɧɨɫɬɶɸ, ɫɟɥɟɤɬɢɜɧɨɫɬɶɸ, ɬɟɪɦɨɫɬɨɣɤɨɫɬɶɸ, ɢɦɟɬɶ ɧɢɡɤɢɟ ɬɟɦɩɟɪɚɬɭɪɵ «ɡɚɠɢɝɚɧɢɹ», ɨɛɥɚɞɚɬɶ ɧɢɡɤɢɦ ɝɢɞɪɚɜɥɢɱɟɫɤɢɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ, ɢɦɟɬɶ ɧɢɡɤɭɸ ɫɬɨɢɦɨɫɬɶ. ȼ ɩɪɨɰɟɫɫɚɯ ɫɚɧɢɬɚɪɧɨɣ ɤɚɬɚɥɢɬɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ ɜɵɫɨɤɨɣ ɚɤɬɢɜɧɨɫɬɶɸ ɨɛɥɚɞɚɸɬ ɤɚɬɚɥɢɡɚɬɨɪɵ ɧɚ ɨɫɧɨɜɟ ɛɥɚɝɨɪɨɞɧɵɯ ɦɟɬɚɥɥɨɜ (ɩɥɚɬɢɧɚ, ɩɚɥɥɚɞɢɣ, ɫɟɪɟɛɪɨ ɢ ɞɪ.), ɨɤɫɢɞɨɜ ɦɚɪɝɚɧɰɚ, ɦɟɞɢ, ɤɨɛɚɥɶɬɚ, ɚ ɬɚɤɠɟ ɨɤɫɢɞɧɵɟ ɤɨɧɬɚɤɬɧɵɟ ɦɚɫɫɵ, ɚɤɬɢɜɢɪɨɜɚɧɧɵɟ ɛɥɚɝɨɪɨɞɧɵɦɢ ɦɟɬɚɥɥɚɦɢ (1,0…1,5%). Ɉɫɧɨɜɧɵɟ ɧɟɞɨɫɬɚɬɤɢ: ɨɛɵɱɧɨ ɭɫɬɚɧɨɜɤɢ ɞɥɹ ɤɚɬɚɥɢɬɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɫɥɨɠɧɵ, ɝɪɨɦɨɡɞɤɢ; ɜ ɤɚɱɟɫɬɜɟ ɷɮɮɟɤɬɢɜɧɵɯ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɩɪɢɯɨɞɢɬɫɹ ɩɪɢɦɟɧɹɬɶ ɞɨɪɨɝɨɫɬɨɹɳɢɟ ɜɟɳɟɫɬɜɚ — ɩɥɚɬɢɧɭ, ɩɚɥɥɚɞɢɣ, ɪɭɬɟɧɢɣ; ɢɫɩɨɥɶɡɭɸɬ ɢ ɛɨɥɟɟ ɞɟɲɟɜɵɟ — ɧɢɤɟɥɶ, ɯɪɨɦ, ɦɟɞɶ, ɧɨ ɨɧɢ ɦɟɧɟɟ ɷɮɮɟɤɬɢɜɧɵ. ȼ ɰɟɥɨɦ ɧɚɛɥɸɞɚɟɬɫɹ ɬɟɧɞɟɧɰɢɹ ɪɚɫɲɢɪɟɧɢɹ ɩɪɢɦɟɧɟɧɢɹ ɤɚɬɚɥɢɬɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ. ɗɬɢ ɦɟɬɨɞɵ ɧɭɠɞɚɸɬɫɹ ɜ ɞɚɥɶɧɟɣɲɟɦ ɫɨɜɟɪɲɟɧɫɬɜɨɜɚɧɢɢ. 3.3.2. Ɍɟɨɪɢɹ ɩɪɨɰɟɫɫɚ ɤɚɬɚɥɢɡɚ Ɋɨɥɶ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɢɫɤɥɸɱɢɬɟɥɶɧɨ ɜɟɥɢɤɚ. ɋ ɢɯ ɭɱɚɫɬɢɟɦ ɨɫɭɳɟɫɬɜɥɹɸɬɫɹ ɬɚɤɢɟ ɩɪɨɰɟɫɫɵ, ɤɚɤ ɩɪɨɢɡɜɨɞɫɬɜɨ ɫɟɪɧɨɣ ɤɢɫɥɨɬɵ, ɫɢɧɬɟɡ ɚɦɦɢɚɤɚ, ɩɨɥɭɱɟɧɢɟ ɢɡ ɭɝɥɹ ɠɢɞɤɨɝɨ ɬɨɩɥɢɜɚ, ɩɟɪɟɪɚɛɨɬɤɚ ɧɟɮɬɢ ɢ ɩɪɢɪɨɞɧɨɝɨ ɝɚɡɚ, ɫɢɧɬɟɡ ɢɫɤɭɫɫɬɜɟɧɧɨɝɨ ɤɚɭɱɭɤɚ, ɩɥɚɫɬɦɚɫɫ, ɝɢɞɪɨɝɟɧɢɡɚɰɢɹ ɠɢɪɨɜ, ɪɹɞ ɩɪɨɰɟɫɫɨɜ ɜ ɪɚɫɬɢɬɟɥɶɧɵɯ ɢ ɠɢɜɨɬɧɵɯ ɨɪɝɚɧɢɡɦɚɯ, ɩɪɨɬɟɤɚɸɳɢɯ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɛɢɨɥɨɝɢɱɟɫɤɢɯ ɤɚɬɚɥɢɡɚɬɨɪɨɜ (ɮɟɪɦɟɧɬɨɜ) ɢ ɞɪɭɝɢɟ ɬɟɯɧɨɥɨɝɢɢ. Ʉɚɬɚɥɢɡɨɦ ɧɚɡɵɜɚɸɬ ɢɡɦɟɧɟɧɢɟ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɢɥɢ ɜɨɡɛɭɠɞɟɧɢɟ ɟɟ, ɩɪɨɢɫɯɨɞɹɳɟɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɜɟɳɟɫɬɜ (ɤɚɬɚɥɢɡɚɬɨɪɨɜ), ɤɨɬɨɪɵɟ ɭɱɚɫɬɜɭɸɬ ɜ ɩɪɨɰɟɫɫɟ, ɧɨ ɜ ɧɟɦ ɧɟ ɪɚɫɯɨɞɭɸɬɫɹ ɢ ɤ ɤɨɧɰɭ ɪɟɚɤɰɢɢ ɨɫɬɚɸɬɫɹ ɯɢɦɢɱɟɫɤɢ ɧɟɢɡɦɟɧɧɵɦɢ, ɯɨɬɹ ɮɢɡɢɱɟɫɤɢ ɦɨɝɭɬ ɢɡɦɟɧɹɬɶɫɹ. ɇɚɥɢɱɢɟ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɧɟ ɨɬɪɚɠɚɟɬɫɹ ɫɬɟɯɢɨɦɟɬɪɢɱɟɫɤɢɦɢ ɭɪɚɜɧɟɧɢɹɦɢ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɣ. Ʉɚɬɚɥɢɡɚɬɨɪɵ ɜ ɪɚɜɧɨɣ ɫɬɟɩɟɧɢ ɢɡɦɟɧɹɸɬ ɫɤɨɪɨɫɬɶ ɩɪɹɦɨɣ ɢ ɨɛɪɚɬɧɨɣ ɪɟɚɤɰɢɣ, ɢɧɨɝɞɚ ɜ ɦɢɥɥɢɨɧɵ ɢ ɛɨɥɶɲɟɟ ɱɢɫɥɨ ɪɚɡ. Ɋɚɜɧɚɹ ɫɬɟɩɟɧɶ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɫɤɨɪɨɫɬɶ ɩɪɹɦɨɣ ɢ ɨɛɪɚɬɧɨɣ ɪɟɚɤɰɢɣ ɨɛɭɫɥɨɜɥɢɜɚɟɬ ɜɚɠɧɟɣɲɭɸ ɨɫɨɛɟɧɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɨɜ: ɨɧɢ ɧɟ ɢɡɦɟɧɹɸɬ ɫɨɫɬɨɹɧɢɹ ɯɢɦɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, ɤɨɧɫɬɚɧɬɵ ɪɚɜɧɨɜɟɫɢɹ, ɚ ɥɢɲɶ ɭɫɤɨɪɹɸɬ ɢɥɢ ɡɚɦɟɞɥɹɸɬ ɞɨɫɬɢɠɟɧɢɟ ɪɟɚɤɰɢɟɣ ɟɟ ɪɚɜɧɨɜɟɫɧɨɝɨ ɫɨɫɬɨɹɧɢɹ. ɍɜɟɥɢɱɟɧɢɟ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɧɚɡɵɜɚɸɬ ɩɨɥɨɠɢɬɟɥɶɧɵɦ ɤɚɬɚɥɢɡɨɦ ɢɥɢ ɩɪɨɫɬɨ ɤɚɬɚɥɢɡɨɦ, ɚ ɡɚɦɟɞɥɟɧɢɟ ɫɤɨɪɨɫɬɢ - ɨɬɪɢɰɚɬɟɥɶɧɵɦ ɤɚɬɚɥɢɡɨɦ (ɢɧɝɢɛɢɪɨɜɚɧɢɟɦ). Ɇɟɯɚɧɢɡɦ ɞɟɣɫɬɜɢɹ ɢɧɝɢɛɢɬɨɪɨɜ ɨɬɥɢɱɟɧ ɨɬ ɞɟɣɫɬɜɢɹ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. ɏɢɦɢɱɟɫɤɢɟ ɪɟɚɤɰɢɢ, ɩɪɨɬɟɤɚɸɳɢɟ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɨɜ, ɩɨɥɭɱɢɥɢ ɧɚɡɜɚɧɢɟ ɤɚɬɚɥɢɬɢɱɟɫɤɢɯ. ɂɡ ɢɯ ɱɢɫɥɚ ɜɵɞɟɥɹɸɬ ɚɜɬɨɤɚɬɚɥɢɬɢɱɟɫɤɢɟ (ɫɚɦɨɭɫɤɨɪɹɸɳɢɟɫɹ) ɪɟɚɤɰɢɢ, ɜ ɤɨɬɨɪɵɯ ɪɨɥɶ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɜɵɩɨɥɧɹɸɬ ɨɞɢɧ ɢɥɢ ɧɟɫɤɨɥɶɤɨ ɩɪɨɞɭɤɬɨɜ ɪɟɚɤɰɢɢ. ȼ ɫɜɨɸ ɨɱɟɪɟɞɶ, ɧɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɞɟɣɫɬɜɢɹ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɡɚɱɚɫɬɭɸ ɜɥɢɹɸɬ ɞɪɭɝɢɟ ɜɟɳɟɫɬɜɚ (ɤɚɬɚɥɢɬɢɱɟɫɤɢɟ ɹɞɵ ɢ ɩɪɨɦɨɬɨɪɵ). Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɹɞɵ - ɷɬɨ ɜɟɳɟɫɬɜɚ, ɫɧɢɠɚɸɳɢɟ ɢɥɢ ɩɨɥɧɨɫɬɶɸ ɭɧɢɱɬɨɠɚɸɳɢɟ ɚɤɬɢɜɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. Ʉ ɧɢɦ ɨɬɧɨɫɹɬɫɹ, ɧɚɩɪɢɦɟɪ, ɫɨɟɞɢɧɟɧɢɹ ɦɵɲɶɹɤɚ, ɪɬɭɬɢ, ɫɜɢɧɰɚ, ɰɢɚɧɢɞɵ, ɨɬɪɚɜɥɹɸɳɢɟ ɩɥɚɬɢɧɨɜɵɟ ɤɚɬɚɥɢɡɚɬɨɪɵ. ȼ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɪɟɚɝɢɪɭɸɳɢɟ ɜɟɳɟɫɬɜɚ ɫɬɚɪɚɸɬɫɹ ɨɱɢɳɚɬɶ ɨɬ ɤɚɬɚɥɢɬɢɱɟɫɤɢɯ ɹɞɨɜ, ɚ ɨɬɪɚɜɥɟɧɧɵɟ ɤɚɬɚɥɢɡɚɬɨɪɵ ɪɟɝɟɧɟɪɢɪɭɸɬ. ɉɪɨɦɨɬɨɪɵ - ɜɟɳɟɫɬɜɚ, ɭɫɢɥɢɜɚɸɳɢɟ ɞɟɣɫɬɜɢɟ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. ɇɚɩɪɢɦɟɪ, ɩɥɚɬɢɧɨɜɵɟ ɤɚɬɚɥɢɡɚɬɨɪɵ ɩɪɨɦɨɬɢɪɭɸɬ ɞɨɛɚɜɤɚɦɢ ɠɟɥɟɡɚ, ɚɥɸɦɢɧɢɹ ɢ ɞɪ. Ʉɚɬɚɥɢɡɚɬɨɪɵ ɦɨɝɭɬ ɨɛɥɚɞɚɬɶ ɬɚɤ ɧɚɡɵɜɚɟɦɵɦ ɫɜɨɣɫɬɜɨɦ ɫɩɟɰɢɮɢɱɧɨɫɬɢ. ɋɩɟɰɢɮɢɱɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɚ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɜɨ ɦɧɨɝɢɯ ɫɥɭɱɚɹɯ ɨɧ ɢɡɛɢɪɚɬɟɥɶɧɨ ɭɜɟɥɢɱɢɜɚɟɬ ɫɤɨɪɨɫɬɶ ɬɨɥɶɤɨ ɨɩɪɟɞɟɥɟɧɧɨɣ ɪɟɚɤɰɢɢ, ɧɟ ɜɥɢɹɹ ɡɚɦɟɬɧɨ ɧɚ ɫɤɨɪɨɫɬɶ ɞɪɭɝɢɯ, ɜɨɡɦɨɠɧɵɯ ɜ ɞɚɧɧɨɣ ɫɢɫɬɟɦɟ. Ɍɚɤ, ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɬɢɩɚ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɢɡ ɷɬɢɥɨɜɨɝɨ ɫɩɢɪɬɚ ɩɪɢ 300°ɋ ɦɨɠɧɨ ɩɨɥɭɱɢɬɶ ɜɨɞɭ ɢ ɷɬɢɥɟɧ (ɤɚɬɚɥɢɡɚɬɨɪ - ɨɤɫɢɞ ɚɥɸɦɢɧɢɹ) ɢɥɢ ɜɨɞɨɪɨɞ ɢ ɭɤɫɭɫɧɵɣ ɚɥɶɞɟɝɢɞ (ɤɚɬɚɥɢɡɚɬɨɪ - ɦɟɞɧɵɣ ɢɥɢ ɧɢɤɟɥɟɜɵɣ): Al2O3 C2H5OH o H2O + C2H4 ; (3.100) Cu, Ni C2H5OH o H2 + CH3CHO. (3.101) Ɉɞɧɚɤɨ ɫɩɟɰɢɮɢɱɧɨɫɬɶ ɧɟ ɹɜɥɹɟɬɫɹ ɨɛɳɢɦ ɫɜɨɣɫɬɜɨɦ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. Ɍɚɤ, ɦɟɬɚɥɥɢɱɟɫɤɢɟ Ni, Pd ɢɥɢ Pt ɤɚɬɚɥɢɡɢɪɭɸɬ ɰɟɥɵɣ ɪɹɞ ɪɟɚɤɰɢɣ ɝɢɞɪɨɝɟɧɢɡɚɰɢɢ ɢ ɞɟɝɢɞɪɨɝɟɧɢɡɚɰɢɢ. Ɋɚɡɥɢɱɚɸɬ ɞɜɚ ɜɢɞɚ ɤɚɬɚɥɢɡɚ: ɝɨɦɨɝɟɧɧɵɣ (ɨɞɧɨɪɨɞɧɵɣ) ɢ ɝɟɬɟɪɨɝɟɧɧɵɣ (ɧɟɨɞɧɨɪɨɞɧɵɣ). ɉɪɢ ɝɨɦɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɪɟɚɝɢɪɭɸɳɢɟ ɜɟɳɟɫɬɜɚ ɢ ɤɚɬɚɥɢɡɚɬɨɪ ɨɛɪɚɡɭɸɬ ɨɞɧɨɮɚɡɧɭɸ ɫɢɫɬɟɦɭ (ɠɢɞɤɭɸ ɢɥɢ ɝɚɡɨɜɭɸ). ɉɪɢɦɟɪɨɦ ɝɨɦɨɝɟɧɧɨɝɨ ɤɚɬɚɥɢɡɚ ɦɨɝɭɬ ɫɥɭɠɢɬɶ ɪɟɚɤɰɢɢ ɝɨɪɟɧɢɹ ɜɨɞɨɪɨɞɚ ɢ ɨɤɫɢɞɚ ɭɝɥɟɪɨɞɚ, ɜ ɤɨɬɨɪɵɯ ɪɨɥɶ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɜɵɩɨɥɧɹɸɬ ɚɤɬɢɜɢɪɨɜɚɧɧɵɟ ɱɚɫɬɢɰɵ, ɚ ɬɚɤɠɟ ɪɟɚɤɰɢɹ ɨɤɢɫɥɟɧɢɹ ɞɢɨɤɫɢɞɚ ɫɟɪɵ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɞɢɨɤɫɢɞɚ ɚɡɨɬɚ ɜ ɤɚɦɟɪɧɨɦ ɢ ɛɚɲɟɧɧɨɦ ɦɟɬɨɞɚɯ ɩɪɨɢɡɜɨɞɫɬɜɚ ɫɟɪɧɨɣ ɤɢɫɥɨɬɵ. ɍɫɬɚɧɨɜɥɟɧɨ, ɱɬɨ ɫɤɨɪɨɫɬɶ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ ɩɪɢ ɝɨɦɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. ɉɪɢ ɝɟɬɟɪɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɤɚɬɚɥɢɡɚɬɨɪ ɫɨɫɬɚɜɥɹɟɬ ɫɚɦɨɫɬɨɹɬɟɥɶɧɭɸ ɮɚɡɭ (ɨɛɵɱɧɨ ɬɜɟɪɞɭɸ). ɗɬɨɬ ɬɢɩ ɤɚɬɚɥɢɡɚ ɩɨɥɭɱɢɥ ɨɱɟɧɶ ɲɢɪɨɤɨɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. Ȼɨɥɶɲɭɸ ɱɚɫɬɶ ɩɪɨɞɭɤɰɢɢ, ɜɵɪɚɛɚɬɵɜɚɟɦɨɣ ɯɢɦɢɱɟɫɤɨɣ ɢ ɫɦɟɠɧɵɦɢ ɨɬɪɚɫɥɹɦɢ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ, ɩɨɥɭɱɚɸɬ ɫ ɩɨɦɨɳɶɸ ɝɟɬɟɪɨɝɟɧɧɨɝɨ ɤɚɬɚɥɢɡɚ, ɤɚɤ ɩɪɚɜɢɥɨ ɝɚɡɨɜɨɝɨ, ɬ.ɟ. ɤɨɝɞɚ ɭɫɤɨɪɹɸɬɫɹ ɪɟɚɤɰɢɢ ɝɚɡɨɜɨɣ ɮɚɡɵ. Ɇɟɧɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧ ɝɟɬɟɪɨɝɟɧɧɵɣ ɤɚɬɚɥɢɡ ɜ ɠɢɞɤɨɣ ɮɚɡɟ (ɝɢɞɪɨɝɟɧɢɡɚɰɢɹ ɠɢɪɨɜ). ȼɫɟ ɪɟɚɤɰɢɢ ɩɪɢ ɝɟɬɟɪɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɩɪɨɬɟɤɚɸɬ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɚɥɢɡɚɬɨɪɚ. Ɍɜɟɪɞɵɟ ɤɚɬɚɥɢɡɚɬɨɪɵ, ɤɨɬɨɪɵɟ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ, ɱɚɳɟ ɜɫɟɝɨ ɜɵɩɭɫɤɚɸɬ ɜ ɜɢɞɟ ɡɟɪɟɧ, ɬɚɛɥɟɬɨɤ, ɝɪɚɧɭɥ. ɗɬɨ ɜ ɨɫɧɨɜɧɨɦ ɦɟɬɚɥɥɵ ɢ ɢɯ ɨɤɫɢɞɵ, ɧɚɩɪɢɦɟɪ ɦɟɞɶ, ɫɟɪɟɛɪɨ, ɩɥɚɬɢɧɚ, ɩɥɚɬɢɧɨɢɞɵ, ɯɪɨɦ, ɦɨɥɢɛɞɟɧ, ɠɟɥɟɡɨ, ɧɢɤɟɥɶ, ɤɨɛɚɥɶɬ ɢ ɞɪ. ɑɚɫɬɨ ɦɟɬɚɥɥɵ ɢɫɩɨɥɶɡɭɸɬ ɜ ɜɢɞɟ ɞɢɫɩɟɪɫɢɣ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɧɨɫɢɬɟɥɟɣ. ɇɨɫɢɬɟɥɢ, ɢɥɢ ɬɪɟɝɟɪɵ, ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɩɨɪɢɫɬɵɟ, ɢɧɞɢɮɮɟɪɟɧɬɧɵɟ ɜɟɳɟɫɬɜɚ, ɜ ɤɚɱɟɫɬɜɟ ɤɨɬɨɪɵɯ ɩɪɢɦɟɧɹɸɬ ɩɟɦɡɭ, ɫɢɥɢɤɚɝɟɥɶ, ɤɚɨɥɢɧ, ɚɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ, ɚɥɸɦɨɫɢɥɢɤɚɬɵ ɢ ɞɪ. ɇɨɫɢɬɟɥɢ ɭɜɟɥɢɱɢɜɚɸɬ ɩɨɜɟɪɯɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɚ ɬɚɤɠɟ ɩɪɨɱɧɨɫɬɶ ɤɨɧɬɚɤɬɨɜ. Ɇɟɯɚɧɢɱɟɫɤɚɹ ɩɪɨɱɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɹɜɥɹɟɬɫɹ ɢɯ ɜɚɠɧɟɣɲɢɦ ɫɜɨɣɫɬɜɨɦ. ȼ ɰɟɥɨɦ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɧɨɫɢɬɟɥɹ ɫɧɢɠɚɟɬ ɫɟɛɟɫɬɨɢɦɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɚ. Ⱦɟɣɫɬɜɢɟ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɫɜɨɞɢɬɫɹ ɤ ɭɦɟɧɶɲɟɧɢɸ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ. Ɋɟɚɤɰɢɹ ɪɚɡɥɨɠɟɧɢɹ ɚɦɦɢɚɤɚ ɜ ɨɬɫɭɬɫɬɜɢɟ ɤɚɬɚɥɢɡɚɬɨɪɚ ɢɦɟɟɬ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ 297400 Ⱦɠ/ɦɨɥɶ, ɚ ɩɪɢ ɧɚɥɢɱɢɢ ɜɚɧɚɞɢɟɜɨɝɨ ɤɚɬɚɥɢɡɚɬɨɪɚ ɬɨɥɶɤɨ 163800 Ⱦɠ/ɦɨɥɶ. ɗɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɩɪɨɰɟɫɫɚ ɪɚɡɥɨɠɟɧɢɹ ɨɤɫɢɞɚ ɚɡɨ- ɬɚ ɛɟɡ ɤɚɬɚɥɢɡɚɬɨɪɚ ɢ ɫ ɩɥɚɬɢɧɨɜɵɦ ɤɚɬɚɥɢɡɚɬɨɪɨɦ - ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ 245700 ɢ 136500 Ⱦɠ/ɦɨɥɶ. ɋɧɢɠɟɧɢɟ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ ɨɛɴɹɫɧɹɟɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟɦ ɩɪɨɦɟɠɭɬɨɱɧɵɯ ɫɨɟɞɢɧɟɧɢɣ (ɚɤɬɢɜɢɪɨɜɚɧɧɵɯ ɤɨɦɩɥɟɤɫɨɜ). ȼɧɚɱɚɥɟ ɤɚɬɚɥɢɡɚɬɨɪ ɢ ɪɟɚɝɢɪɭɸɳɟɟ ɜɟɳɟɫɬɜɨ ɨɛɪɚɡɭɸɬ ɩɪɨɦɟɠɭɬɨɱɧɨɟ ɫɨɟɞɢɧɟɧɢɟ, ɤɨɬɨɪɨɟ ɡɚɬɟɦ ɪɟɚɝɢɪɭɟɬ ɫ ɞɪɭɝɢɦ ɢɫɯɨɞɧɵɦ ɜɟɳɟɫɬɜɨɦ, ɞɚɜɚɹ ɤɨɧɟɱɧɵɟ ɩɪɨɞɭɤɬɵ ɪɟɚɤɰɢɢ ɢ ɜɵɫɜɨɛɨɠɞɚɹ ɤɚɬɚɥɢɡɚɬɨɪ. ɉɪɨɦɟɠɭɬɨɱɧɨɟ ɫɨɟɞɢɧɟɧɢɟ ɜ ɤɚɬɚɥɢɡɟ - ɷɬɨ ɧɟ ɨɛɵɱɧɨɟ ɭɫɬɨɣɱɢɜɨɟ ɫɨɟɞɢɧɟɧɢɟ, ɤɨɬɨɪɨɟ ɦɨɠɟɬ ɛɵɬɶ ɜɵɞɟɥɟɧɨ ɜ ɱɢɫɬɨɦ ɜɢɞɟ ɢɥɢ ɫɭɳɟɫɬɜɭɟɬ ɜ ɜɢɞɟ ɨɬɞɟɥɶɧɨɣ ɮɚɡɵ. ɉɪɨɦɟɠɭɬɨɱɧɵɟ ɫɨɟɞɢɧɟɧɢɹ ɨɱɟɧɶ ɧɟɫɬɨɣɤɢ, ɫ ɦɚɥɵɦ ɩɟɪɢɨɞɨɦ ɠɢɡɧɢ, ɫɭɳɟɫɬɜɭɸɬ ɬɨɥɶɤɨ ɜ ɩɪɨɰɟɫɫɟ ɤɚɬɚɥɢɡɚ. ɂɯ ɫɜɨɣɫɬɜɚ ɪɟɡɤɨ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɫɜɨɣɫɬɜ ɚɧɚɥɨɝɢɱɧɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɨɛɪɚɡɭɸɳɢɯ ɨɛɴɟɦɧɭɸ ɮɚɡɭ. ɋɯɟɦɚɬɢɱɧɨ ɪɟɚɤɰɢɸ ɦɟɠɞɭ ɢɫɯɨɞɧɵɦɢ ɜɟɳɟɫɬɜɚɦɢ Ⱥ, ȼ ɫ ɭɱɚɫɬɢɟɦ ɤɚɬɚɥɢɡɚɬɨɪɚ K ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: A + K o AK; AK + B o C + D + K, (3.102) ɝɞɟ ɋ ɢ D - ɩɪɨɞɭɤɬɵ ɪɟɚɤɰɢɢ. Ɉɞɧɚ ɱɚɫɬɢɰɚ ɤɚɬɚɥɢɡɚɬɨɪɚ ɦɧɨɝɨɤɪɚɬɧɨ ɢ ɫ ɛɨɥɶɲɨɣ ɫɤɨɪɨɫɬɶɸ ɜɫɬɭɩɚɟɬ ɜɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ. Ɍɚɤ, ɨɞɧɚ ɱɚɫɬɢɰɚ ɤɨɥɥɨɢɞɧɨɣ ɩɥɚɬɢɧɵ ɜ ɫɟɤɭɧɞɭ ɦɨɠɟɬ ɪɚɡɥɨɠɢɬɶ 100000 ɦɨɥɟɤɭɥ ɇ2Ɉ2, ɚ ɨɞɧɚ ɱɚɫɬɢɰɚ ɮɟɪɦɟɧɬɚ ɤɚɬɚɥɚɡɵ ɪɚɡɥɚɝɚɟɬ ɞɨ 300000 ɦɨɥɟɤɭɥ ɇ2Ɉ2. Ɋɚɡɪɚɛɨɬɚɧɨ ɡɧɚɱɢɬɟɥɶɧɨɟ ɱɢɫɥɨ ɬɟɨɪɢɣ ɤɚɬɚɥɢɡɚ. ɇɚɢɛɨɥɟɟ ɦɧɨɝɨɱɢɫɥɟɧɧɵ ɬɟɨɪɢɢ ɝɟɬɟɪɨɝɟɧɧɨɝɨ ɤɚɬɚɥɢɡɚ. Ɉɛɳɢɦ ɞɥɹ ɧɢɯ ɹɜɥɹɟɬɫɹ ɩɪɟɞɫɬɚɜɥɟɧɢɟ, ɱɬɨ ɪɟɚɤɰɢɹ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɮɨɪɦɟ ɱɟɪɟɡ ɨɛɪɚɡɨɜɚɧɢɟ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɩɪɨɦɟɠɭɬɨɱɧɵɯ ɫɨɟɞɢɧɟɧɢɣ. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɚɤɬɢɜɧɨɫɬɶ ɤɚɬɚɥɢɡɚɬɨɪɚ ɡɚɜɢɫɢɬ ɨɬ ɬɚɤɢɯ ɫɜɨɣɫɬɜ ɟɝɨ ɩɨɜɟɪɯɧɨɫɬɢ, ɤɚɤ ɜɟɥɢɱɢɧɚ, ɯɢɦɢɱɟɫɤɢɣ ɫɨɫɬɚɜ, ɫɬɪɨɟɧɢɟ, ɫɨɫɬɨɹɧɢɟ. ɇɚ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ ɜ ɝɟɬɟɪɨɝɟɧɧɨɦ ɤɚɬɚɥɢɡɟ ɦɨɝɭɬ ɩɪɨɬɟɤɚɬɶ ɪɚɡɥɢɱɧɵɟ ɩɪɨɰɟɫɫɵ: ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɚɬɨɦɨɜ ɤɪɢɫɬɚɥɥɢɱɟɫɤɨɣ ɢɥɢ ɚɦɨɪɮɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɚɞɫɨɪɛɢɪɨɜɚɧɧɵɯ ɱɚɫɬɢɰ ɝɚɡɨɨɛɪɚɡɧɵɯ ɦɨɥɟɤɭɥ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ, ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɚɞɫɨɪɛɢɪɨɜɚɧɧɵɯ ɦɨɥɟɤɭɥ ɦɟɠɞɭ ɫɨɛɨɣ ɢ ɬ.ɞ. ɐɟɧɬɪɚɥɶɧɨɣ ɩɪɨɛɥɟɦɨɣ ɬɟɨɪɢɢ ɤɚɬɚɥɢɡɚ ɹɜɥɹɟɬɫɹ ɫɨɡɞɚɧɢɟ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɫ ɡɚɪɚɧɟɟ ɡɚɞɚɧɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ. 3.3.3. Ʉɢɧɟɬɢɤɚ ɪɟɚɤɰɢɣ ɝɟɬɟɪɨɝɟɧɧɨɝɨ ɤɚɬɚɥɢɡɚ. Ƚɟɬɟɪɨɝɟɧɧɨɟ ɤɚɬɚɥɢɬɢɱɟɫɤɨɟ ɩɪɟɜɪɚɳɟɧɢɟ ɹɜɥɹɟɬɫɹ ɫɥɨɠɧɵɦ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɵɦ ɩɪɨɰɟɫɫɨɦ, ɜɤɥɸɱɚɸɳɢɦ ɞɢɮɮɭɡɢɸ ɢɫɯɨɞɧɵɯ ɪɟɚɝɟɧɬɨɜ ɢɡ ɹɞɪɚ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɝɪɚɧɭɥ ɤɚɬɚɥɢɡɚɬɨɪɚ (ɜɧɟɲɧɹɹ ɞɢɮɮɭɡɢɹ), ɩɪɨɧɢɤɚɧɢɟ ɷɬɢɯ ɜɟɳɟɫɬɜ ɜ ɩɨɪɚɯ ɤɚɬɚɥɢɡɚɬɨɪɚ ɤ ɚɤɬɢɜɧɵɦ ɰɟɧɬɪɚɦ ɟɝɨ ɜɧɭɬɪɟɧɧɟɣ ɩɨɜɟɪɯɧɨɫɬɢ (ɜɧɭɬɪɟɧɧɹɹ ɞɢɮɮɭɡɢɹ), ɚɤɬɢɜɢɪɨɜɚɧɧɭɸ ɚɞɫɨɪɛɰɢɸ ɩɪɨɞɢɮɮɭɧɞɢɪɨɜɚɜɲɢɯ ɪɟɚɝɟɧɬɨɜ ɩɨɜɟɪɯɧɨɫɬɶɸ ɤɚɬɚɥɢɡɚɬɨɪɚ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɯɢɦɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ, ɯɢɦɢɱɟɫɤɨɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɚɞɫɨɪɛɢɪɨɜɚɧɧɵɯ ɜɟɳɟɫɬɜ c ɨɛɪɚɡɨɜɚɧɢɟɦ ɧɨɜɵɯ ɩɪɨɞɭɤɬɨɜ, ɞɟɫɨɪɛɰɢɸ ɩɪɨ- ɞɭɤɬɨɜ ɢ ɢɯ ɩɟɪɟɧɨɫ ɤ ɧɚɪɭɠɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɝɪɚɧɭɥ ɤɚɬɚɥɢɡɚɬɨɪɚ (ɜɧɭɬɪɟɧɧɹɹ ɞɢɮɮɭɡɢɹ) ɢ ɡɚɬɟɦ ɨɬ ɷɬɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɜ ɹɞɪɨ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ (ɜɧɟɲɧɹɹ ɞɢɮɮɭɡɢɹ). ȼɨ ɜɧɟɲɧɟɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɤɨɪɨɫɬɶɸ (dG A / dW ) ɩɟɪɟɧɨɫɚ ɤɨɦɩɨɧɟɧɬɚ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɡɟɪɟɧ ɤɚɬɚɥɢɡɚɬɨɪɚ: 1 dG A ˜ Fɱ dW E ɝ (C A  C *A ) , (3.103) ɝɞɟ Fɱ - ɜɧɟɲɧɹɹ ɩɨɜɟɪɯɧɨɫɬɶ ɱɚɫɬɢɰɵ ɤɚɬɚɥɢɡɚɬɨɪɚ; Eɝ - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ; ɋȺ, ɋȺ*- ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɨɦɩɨɧɟɧɬɚ Ⱥ ɜ ɝɚɡɨɜɨɦ ɩɨɬɨɤɟ ɢ ɟɝɨ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɱɚɫɬɢɰɵ ɤɚɬɚɥɢɡɚɬɨɪɚ. ɂɧɬɟɧɫɢɜɧɨɫɬɶ ɢɥɢ ɫɤɨɪɨɫɬɶ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɩɪɟɜɪɚɳɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧɚ ɱɟɪɟɡ ɤɨɥɢɱɟɫɬɜɨ ɤɨɧɜɟɪɬɢɪɭɟɦɨɣ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ W ɩɪɢɦɟɫɢ GA ɢɥɢ ɤɨɥɢɱɟɫɬɜɚ ɨɛɪɚɡɭɸɳɟɝɨɫɹ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ ɩɪɨɞɭɤɬɚ Gɩ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ: W dG A / dW  k ˜ 'C ; dG ɩ / dW W k ˜ 'C , (3.104) ɝɞɟ k - ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɩɪɨɰɟɫɫɚ; 'ɋ - ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ, ɩɪɟɞɫɬɚɜɥɹɸɳɚɹ ɫɨɝɥɚɫɧɨ ɡɚɤɨɧɭ ɞɟɣɫɬɜɢɹ ɦɚɫɫ ɩɪɨɢɡɜɟɞɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɪɟɚɝɢɪɭɸɳɢɯ ɜɟɳɟɫɬɜ. Ʉɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɩɪɟɜɪɚɳɟɧɢɹ ɩɪɢ ɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɹɜɥɹɟɬɫɹ ɮɭɧɤɰɢɟɣ ɤɨɧɫɬɚɧɬ ɫɤɨɪɨɫɬɟɣ ɩɪɹɦɨɣ, ɨɛɪɚɬɧɨɣ ɢ ɩɨɛɨɱɧɨɣ ɪɟɚɤɰɢɣ, ɚ ɬɚɤɠɟ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɞɢɮɮɭɡɢɢ ɢɫɯɨɞɧɵɯ ɪɟɚɝɟɧɬɨɜ ɢ ɩɪɨɞɭɤɬɨɜ ɢɯ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ. ɋɤɨɪɨɫɬɶ ɝɟɬɟɪɨɝɟɧɧɨɝɨ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɩɪɨɰɟɫɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɵɦɢ ɫɤɨɪɨɫɬɹɦɢ ɨɬɞɟɥɶɧɵɯ ɟɝɨ ɫɬɚɞɢɣ ɢ ɥɢɦɢɬɢɪɭɟɬɫɹ ɧɚɢɛɨɥɟɟ ɦɟɞɥɟɧɧɨɣ ɢɡ ɧɢɯ. Ⱦɥɹ ɜɧɭɬɪɢɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ ɢ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ ɫɭɦɦɚɪɧɭɸ ɫɤɨɪɨɫɬɶ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɩɪɨɰɟɫɫɚ ɧɚɯɨɞɹɬ, ɤɨɦɛɢɧɢɪɭɹ ɭɪɚɜɧɟɧɢɟ ɦɚɫɫɨɩɟɪɟɞɚɱɢ ɫ ɭɪɚɜɧɟɧɢɟɦ ɞɢɮɮɭɡɢɢ ɢ ɪɟɚɤɰɢɢ ɜɧɭɬɪɢ ɱɚɫɬɢɰɵ: 1 dG A ˜ Vɱ dW k ˜ C Ⱥ0 ˜ ɗC , (3.105) ɝɞɟ Vɱ - ɨɛɴɟɦ ɱɚɫɬɢɰ ɤɚɬɚɥɢɡɚɬɨɪɚ; k - ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ, ɨɬɧɟɫɟɧɧɚɹ ɤ 1 ɦ3 ɤɚɬɚɥɢɡɚɬɨɪɚ; ɗC C Ⱥ / C Ⱥɩ ; C A - ɫɪɟɞɧɹɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɦɩɨ- ɩ ɧɟɧɬɚ Ⱥ ɜɧɭɬɪɢ ɩɨɪɵ; C A - ɦɚɤɫɢɦɚɥɶɧɨ ɜɨɡɦɨɠɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɦɩɨɧɟɧ0 ɬɚ Ⱥ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɚɥɢɡɚɬɨɪɚ; C A - ɧɚɱɚɥɶɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɨɦɩɨɧɟɧɬɚ. 3.3.4. ȼɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɨɟ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ Ɉɝɧɟɜɨɣ ɨɛɪɚɛɨɬɤɨɣ, ɤɚɤ ɢ ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɢɦ ɨɤɢɫɥɟɧɢɟɦ, ɩɪɢɧɰɢɩɢɚɥɶɧɨ ɜɨɡɦɨɠɧɨ ɨɛɟɡɜɪɟɞɢɬɶ ɥɢɲɶ ɜɟɳɟɫɬɜɚ, ɦɨɥɟɤɭɥɵ ɤɨɬɨɪɵɯ ɧɟ ɫɨɞɟɪɠɚɬ ɤɚɤɢɯ-ɥɢɛɨ ɞɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ, ɤɪɨɦɟ ɜɨɞɨɪɨɞɚ ɇ, ɭɝɥɟɪɨɞɚ ɋ ɢ ɤɢɫɥɨɪɨɞɚ Ɉ. ɗɬɨ ɫɥɟɞɭɸɳɢɟ ɯɢɦɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ: ɜɨɞɨɪɨɞ ɇ2, ɨɤɫɢɞ ɭɝɥɟɪɨɞɚ ɋɈ, ɭɝɥɟɜɨɞɨɪɨɞɵ CmHn ɢ ɤɢɫɥɨɪɨɞɧɵɟ ɩɪɨɢɡɜɨɞɧɵɟ ɭɝɥɟɜɨɞɨɪɨɞɨɜ CmHnɈp . ɉɨɫɪɟɞɫɬɜɨɦ ɫɠɢɝɚɧɢɹ ɜɨɡɦɨɠɧɨ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɩɟɪɟɱɢɫɥɟɧɧɵɯ ɜɟɳɟɫɬɜ ɜ ɝɚɡɨɨɛɪɚɡɧɨɦ, ɠɢɞɤɨɦ ɢ ɬɜɟɪɞɨɦ ɫɨɫɬɨɹɧɢɹɯ, ɞɢɫɩɟɪɝɢɪɨɜɚɧɧɵɯ ɢɥɢ ɤɨɦɩɚɤɬɧɵɯ, ɚ ɩɨɫɪɟɞɫɬɜɨɦ ɬɟɪɦɨɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ - ɬɨɥɶɤɨ ɜ ɝɚɡɨɨɛɪɚɡɧɨɦ. Ɍɟɪɦɨɤɚɬɚɥɢɡ ɧɟɩɪɢɟɦɥɟɦ ɢ ɞɥɹ ɨɛɪɚɛɨɬɤɢ ɝɚɡɨɜ (ɩɚɪɨɜ) ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɯ ɢ ɜɵɫɨɤɨɤɢɩɹɳɢɯ ɫɨɟɞɢɧɟɧɢɣ, ɤɨɬɨɪɵɟ, ɩɥɨɯɨ ɢɫɩɚɪɹɹɫɶ ɫ ɤɚɬɚɥɢɡɚɬɨɪɚ, ɤɨɤɫɭɸɬɫɹ ɢ "ɨɬɪɚɜɥɹɸɬ" ɟɝɨ, ɬ.ɟ. ɡɚɩɨɥɧɹɸɬ ɚɤɬɢɜɧɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɫɚɠɢɫɬɵɦɢ ɩɪɨɞɭɤɬɚɦɢ ɧɟɩɨɥɧɨɝɨ ɨɤɢɫɥɟɧɢɹ. Ɂɚɝɪɹɡɧɢɬɟɥɢ, ɫɨɞɟɪɠɚɳɢɟ ɤɚɤɢɟ-ɥɢɛɨ ɷɥɟɦɟɧɬɵ, ɤɪɨɦɟ ɇ, ɋ ɢ Ɉ - ɫɟɪɭ S, ɮɨɫɮɨɪ Ɋ, ɝɚɥɨɝɟɧɵ, ɦɟɬɚɥɥɵ ɢ ɞɪ., ɧɟɥɶɡɹ ɩɨɞɚɜɚɬɶ ɧɚ ɬɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɭɸ ɨɛɪɚɛɨɬɤɭ, ɬɚɤ ɤɚɤ ɩɪɨɞɭɤɬɵ ɫɝɨɪɚɧɢɹ ɛɭɞɭɬ ɫɨɞɟɪɠɚɬɶ ɜɵɫɨɤɨɬɨɤɫɢɱɧɵɟ ɫɨɟɞɢɧɟɧɢɹ. ȼ ɪɟɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ ɢ ɩɪɢ ɫɠɢɝɚɧɢɢ ɱɢɫɬɨ ɨɪɝɚɧɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ ɧɟ ɭɞɚɟɬɫɹ ɨɛɟɫɩɟɱɢɬɶ ɚɛɫɨɥɸɬɧɨ ɩɨɥɧɨɟ ɨɤɢɫɥɟɧɢɟ ɢɫɯɨɞɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ ɞɨ ɩɪɚɤɬɢɱɟɫɤɢ ɛɟɡɜɪɟɞɧɵɯ ɭɝɥɟɤɢɫɥɨɝɨ ɝɚɡɚ ɋɈ2 ɢ ɩɚɪɨɜ ɜɨɞɵ ɇ2O. ȼ ɞɵɦɨɜɵɯ ɝɚɡɚɯ ɜɫɟɝɞɚ ɩɪɢɫɭɬɫɬɜɭɸɬ ɨɤɫɢɞ ɭɝɥɟɪɨɞɚ ɋɈ ɢ ɞɪɭɝɢɟ ɩɪɨɞɭɤɬɵ ɯɢɦɢɱɟɫɤɨɝɨ ɧɟɞɨɠɨɝɚ (ɧɟɩɨɥɧɨɝɨ ɨɤɢɫɥɟɧɢɹ). Ʉɪɨɦɟ ɬɨɝɨ, ɩɪɢ ɩɨɜɵɲɟɧɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɡɚɦɟɬɧɨ ɭɫɤɨɪɹɟɬɫɹ ɪɟɚɤɰɢɹ ɨɤɢɫɥɟɧɢɹ ɚɡɨɬɚ, ɤɨɬɨɪɵɣ ɩɨɫɬɭɩɚɟɬ ɜ ɡɨɧɭ ɝɨɪɟɧɢɹ ɫ ɬɨɩɥɢɜɨɦ ɢ ɜɨɡɞɭɯɨɦ. ɇɟɤɨɬɨɪɵɟ ɨɤɫɢɞɵ ɚɡɨɬɚ ɨɤɚɡɵɜɚɸɬ ɜɪɟɞɧɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ ɢ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ. Ɇɟɬɨɞɵ ɩɪɹɦɨɝɨ ɫɠɢɝɚɧɢɹ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɝɚɡɨɜ ɨɬ ɥɟɝɤɨ ɨɤɢɫɥɹɟɦɵɯ ɬɨɤɫɢɱɧɵɯ, ɚ ɬɚɤɠɟ ɞɭɪɧɨ ɩɚɯɧɭɳɢɯ ɩɪɢɦɟɫɟɣ. ɂɯ ɩɪɟɢɦɭɳɟɫɬɜɚɦɢ ɹɜɥɹɸɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɚɹ ɩɪɨɫɬɨɬɚ ɚɩɩɚɪɚɬɭɪɧɨɝɨ ɨɮɨɪɦɥɟɧɢɹ ɢ ɭɧɢɜɟɪɫɚɥɶɧɨɫɬɶ ɢɫɩɨɥɶɡɨɜɚɧɢɹ, ɬ.ɤ. ɧɚ ɪɚɛɨɬɭ ɬɟɪɦɢɱɟɫɤɢɯ ɧɟɣɬɪɚɥɢɡɚɬɨɪɨɜ ɦɚɥɨ ɜɥɢɹɟɬ ɫɨɫɬɚɜ ɨɛɪɚɛɚɬɵɜɚɟɦɵɯ ɝɚɡɨɜ. ɋɭɬɶ ɜɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɨɣ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɨɤɢɫɥɟɧɢɢ ɨɛɟɡɜɪɟɠɢɜɚɟɦɵɯ ɤɨɦɩɨɧɟɧɬɨɜ ɤɢɫɥɨɪɨɞɨɦ. Ɉɧɢ ɩɪɢɦɟɧɢɦɵ ɩɪɚɤɬɢɱɟɫɤɢ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɥɸɛɵɯ ɩɚɪɨɜ ɢ ɝɚɡɨɜ, ɩɪɨɞɭɤɬɵ ɫɠɢɝɚɧɢɹ ɤɨɬɨɪɵɯ ɦɟɧɟɟ ɬɨɤɫɢɱɧɵ, ɱɟɦ ɢɫɯɨɞɧɵɟ ɜɟɳɟɫɬɜɚ. ɉɪɹɦɨɟ ɫɠɢɝɚɧɢɟ ɢɫɩɨɥɶɡɭɸɬ ɜ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɤɨɧɰɟɧɬɪɚɰɢɹ ɝɨɪɸɱɢɯ ɜɟɳɟɫɬɜɚɯ ɜ ɨɬɯɨɞɹɳɢɯ ɝɚɡɚɯ ɧɟ ɜɵɯɨɞɢɬ ɡɚ ɩɪɟɞɟɥɵ ɜɨɫɩɥɚɦɟɧɟɧɢɹ. ɉɪɢ ɨɛɪɚɛɨɬɤɟ ɝɨɪɸɱɢɯ ɝɚɡɨɜ ɞɥɹ ɪɚɡɪɭɲɟɧɢɹ ɬɨɤɫɢɱɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɨ ɞɨɠɢɝɚɧɢɟ, ɨɞɧɚɤɨ ɩɪɢɦɟɧɟɧɢɟ ɷɬɨɝɨ ɦɟɬɨɞɚ ɡɚɬɪɭɞɧɟɧɨ ɬɟɦ, ɱɬɨ ɤɨɧɰɟɧɬɪɚɰɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɩɪɢɦɟɫɟɣ, ɪɚɫɩɪɟɞɟɥɟɧɧɵɯ ɜ ɛɨɥɶɲɨɦ ɨɛɴɟɦɟ ɜɨɡɞɭɯɚ, ɨɱɟɧɶ ɧɢɡɤɚ. Ⱦɨɠɢɝɚɧɢɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɦɟɬɨɞ ɨɱɢɫɬɤɢ ɝɚɡɨɜ ɩɭɬɟɦ ɬɟɪɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɭɝɥɟɜɨɞɨɪɨɞɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ ɞɨ ɋɈ2 ɢ ɇ2Ɉ. ȼ ɯɨɞɟ ɩɪɨɰɟɫɫɚ ɞɨɠɢɝɚɧɢɹ ɞɪɭɝɢɟ ɤɨɦɩɨɧɟɧɬɵ ɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɧɚɩɪɢɦɟɪ, ɝɚɥɨɝɟɧ- ɢ ɫɟɪɨɫɨɞɟɪɠɚɳɢɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ, ɬɚɤɠɟ ɩɪɟɬɟɪɩɟɜɚɸɬ ɯɢɦɢɱɟɫɤɢɟ ɢɡɦɟɧɟɧɢɹ ɢ ɜ ɧɨɜɨɣ ɮɨɪɦɟ ɦɨɝɭɬ ɷɮɮɟɤɬɢɜɧɨ ɭɞɚɥɹɬɶɫɹ ɢɥɢ ɢɡɜɥɟɤɚɬɶɫɹ ɢɡ ɝɚɡɨɜɵɯ ɩɨɬɨɤɨɜ. Ⱦɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɧɚɝɪɟɬɶ ɬɚɤɢɟ ɛɨɥɶɲɢɟ ɤɨɥɢɱɟɫɬɜɚ ɜɨɡɞɭɯɚ ɞɨ ɬɟɦɩɟɪɚɬɭɪ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɪɨɜɨɞɢɬɫɹ ɞɨɠɢɝɚɧɢɟ, ɪɚɫɯɨɞɭɟɬɫɹ ɨɱɟɧɶ ɛɨɥɶɲɨɟ ɤɨɥɢɱɟɫɬɜɨ ɷɧɟɪɝɢɢ. ɗɤɨɧɨɦɢɱɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɞɨɠɢɝɚɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɡɧɚɱɢɬɟɥɶɧɨ ɩɨɜɵɲɟɧɚ ɛɥɚɝɨɞɚɪɹ ɚɞɫɨɪɛɰɢɨɧɧɨɦɭ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɸ ɡɚɝɪɹɡɧɟɧɢɣ ɩɟɪɟɞ ɞɨɠɢɝɚɧɢɟɦ. Ɉɛɪɚɛɚɬɵɜɚɟɦɵɟ ɝɚɡɵ ɩɪɨɩɭɫɤɚɸɬ ɱɟɪɟɡ ɫɥɨɣ ɚɞɫɨɪɛɟɧɬɚ, ɚ ɧɚɫɵɳɟɧɧɵɣ ɚɞɫɨɪɛɟɧɬ ɩɪɨɞɭɜɚɸɬ ɜɨɡɞɭɯɨɦ, ɤɨɬɨɪɵɣ ɡɚɬɟɦ ɩɨɫɬɭɩɚɟɬ ɧɚ ɞɨɠɢɝɚɧɢɟ. Ɍɚɤɨɣ ɦɟɬɨɞ ɩɨɡɜɨɥɹɟɬ ɩɨɜɵɫɢɬɶ ɤɨɧɰɟɧɬɪɚɰɢɸ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜ 40 ɪɚɡ. 3.4. Ʉɨɧɞɟɧɫɚɰɢɹ ɝɚɡɨɨɛɪɚɡɧɵɯ ɩɪɢɦɟɫɟɣ Ʉɨɧɞɟɧɫɚɰɢɨɧɧɭɸ ɨɛɪɚɛɨɬɤɭ ɨɬɛɪɨɫɧɵɯ ɝɚɡɨɜ ɨɛɵɱɧɨ ɜɤɥɸɱɚɸɬ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɣ ɰɢɤɥ, ɟɫɥɢ ɩɪɨɰɟɫɫ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɨɳɭɬɢɦɵɦɢ ɩɨɬɟɪɹɦɢ ɩɪɨɦɟɠɭɬɨɱɧɵɯ ɢɥɢ ɤɨɧɟɱɧɵɯ ɩɪɨɞɭɤɬɨɜ. ɑɚɫɬɨ ɩɨɫɪɟɞɫɬɜɨɦ ɤɨɧɞɟɧɫɚɰɢɢ ɭɥɚɜɥɢɜɚɸɬ ɢ ɜɨɡɜɪɚɳɚɸɬ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɣ ɩɪɨɰɟɫɫ ɩɚɪɵ ɪɚɫɬɜɨɪɢɬɟɥɟɣ, ɭɞɚɥɹɟɦɵɯ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɢɡɞɟɥɢɣ ɩɨɫɥɟ ɧɚɧɟɫɟɧɢɹ ɮɭɧɤɰɢɨɧɚɥɶɧɵɯ, ɡɚɳɢɬɧɵɯ ɢ ɨɤɪɚɲɢɜɚɸɳɢɯ ɫɥɨɟɜ. ɂɧɨɝɞɚ ɤɨɧɞɟɧɫɚɰɢɸ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɢɡɜɥɟɱɟɧɢɹ ɢɡ ɝɚɡɨɜɨɝɨ ɩɨɬɨɤɚ ɰɟɧɧɵɯ (ɞɨɪɨɝɨɫɬɨɹɳɢɯ) ɢɥɢ ɨɫɨɛɨ ɨɩɚɫɧɵɯ ɜɟɳɟɫɬɜ. ɉɪɢ ɷɤɨɧɨɦɢɱɟɫɤɢ ɢ ɬɟɯɧɢɱɟɫɤɢ ɩɪɢɟɦɥɟɦɵɯ ɩɚɪɚɦɟɬɪɚɯ ɪɚɛɨɱɟɣ ɫɪɟɞɵ ɦɨɠɧɨ ɩɟɪɟɜɟɫɬɢ ɜ ɤɨɧɞɟɧɫɢɪɨɜɚɧɧɨɟ ɫɨɫɬɨɹɧɢɟ ɩɚɪɵ ɥɟɝɤɨɤɢɩɹɳɢɯ ɫɨɟɞɢɧɟɧɢɣ (ɨɛɵɱɧɨ ɢɫɩɨɥɶɡɭɟɦɵɯ ɜ ɤɚɱɟɫɬɜɟ ɪɚɫɬɜɨɪɢɬɟɥɟɣ) ɫ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɧɟ ɧɢɠɟ 5...10 ɝ/ɦ3. Ʉɨɧɞɟɧɫɚɰɢɹ ɛɨɥɟɟ ɪɚɡɛɚɜɥɟɧɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɪɟɞɫɬɚɜɥɹɟɬ ɬɟɯɧɢɱɟɫɤɢ ɫɥɨɠɧɭɸ ɡɚɞɚɱɭ ɢ ɬɪɟɛɭɟɬ ɡɧɚɱɢɬɟɥɶɧɵɯ ɡɚɬɪɚɬ. ɋɬɟɩɟɧɶ ɭɥɚɜɥɢɜɚɧɢɹ (ɝɥɭɛɢɧɚ ɢɡɜɥɟɱɟɧɢɹ) ɡɚɝɪɹɡɧɢɬɟɥɹ ɡɚɜɢɫɢɬ ɨɬ ɫɬɟɩɟɧɢ ɨɯɥɚɠɞɟɧɢɹ ɢ ɫɠɚɬɢɹ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ. ȼ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɬɟɦɩɟɪɚɬɭɪɭ ɢ ɞɚɜɥɟɧɢɟ ɩɪɢɧɢɦɚɸɬ ɬɚɤɢɦɢ, ɱɬɨɛɵ ɷɧɟɪɝɨɡɚɬɪɚɬɵ ɧɚ ɤɨɧɞɟɧɫɚɰɢɸ ɫɨɫɬɚɜɥɹɥɢ ɧɟɡɧɚɱɢɬɟɥɶɧɭɸ ɞɨɥɸ ɨɛɳɢɯ ɡɚɬɪɚɬ ɧɚ ɬɟɯɧɨɥɨɝɢɸ. ɉɨɷɬɨɦɭ ɫɬɟɩɟɧɶ ɢɡɜɥɟɱɟɧɢɹ ɞɚɠɟ ɞɨɪɨɝɨɫɬɨɹɳɢɯ ɩɪɨɞɭɤɬɨɜ ɧɚɡɧɚɱɚɸɬ ɧɟɜɵɫɨɤɨɣ, ɤɚɤ ɩɪɚɜɢɥɨ, ɜ ɩɪɟɞɟɥɚɯ 70...80%. ɉɨ ɷɬɨɣ ɠɟ ɩɪɢɱɢɧɟ ɢɫɩɨɥɶɡɨɜɚɬɶ ɤɨɧɞɟɧɫɚɰɢɸ ɜ ɤɚɱɟɫɬɜɟ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨɝɨ ɫɪɟɞɫɬɜɚ ɫɚɧɢɬɚɪɧɨɣ ɨɱɢɫɬɤɢ (ɬ.ɟ. ɫ ɝɥɭɛɢɧɨɣ ɢɡɜɥɟɱɟɧɢɹ ɞɨ ɫɚɧɢɬɚɪɧɵɯ ɧɨɪɦ) ɧɟɩɪɢɟɦɥɟɦɨ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɤɨɧɞɟɧɫɚɰɢɨɧɧɚɹ ɨɛɪɚɛɨɬɤɚ ɦɨɠɟɬ ɭɫɩɟɲɧɨ ɩɪɢɦɟɧɹɬɶɫɹ ɜ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɵɯ ɫɯɟɦɚɯ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ. ɋɭɳɟɫɬɜɭɸɬ ɬɪɢ ɧɚɩɪɚɜɥɟɧɢɹ ɜ ɨɛɥɚɫɬɢ ɝɚɡɨɨɱɢɫɬɤɢ, ɝɞɟ ɤɨɧɞɟɧɫɚɰɢɹ ɧɟ ɬɨɥɶɤɨ ɩɨɥɟɡɧɚ, ɧɨ ɢ ɧɟɨɛɯɨɞɢɦɚ. ɗɬɨ - ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɟ ɨɫɚɠɞɟɧɢɟ ɨɫɧɨɜɧɨɣ ɦɚɫɫɵ ɩɚɪɨɜ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɟɪɟɞ ɚɞɫɨɪɛɟɪɚɦɢ ɩɪɢ ɜɵɫɨɤɨɣ ɫɬɟɩɟɧɢ ɡɚɝɪɹɡɧɟɧɢɹ ɜɵɛɪɨɫɨɜ; - ɩɚɪɰɢɚɥɶɧɨɟ ɢɡɜɥɟɱɟɧɢɟ ɩɚɪɨɜ, ɫɨɞɟɪɠɚɳɢɯ ɫɨɟɞɢɧɟɧɢɹ ɮɨɫɮɨɪɚ, ɦɵɲɶɹɤɚ, ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ, ɝɚɥɨɝɟɧɨɜ ɩɟɪɟɞ ɬɟɪɦɨɨɛɟɡɜɪɟɠɢɜɚɧɢɟɦ ɫɦɟɫɢ ɡɚɝɪɹɡɧɢɬɟɥɟɣ; - ɤɨɧɞɟɧɫɚɰɢɹ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɨɫɥɟ ɯɢɦɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ ɫ ɰɟɥɶɸ ɩɟɪɟɜɨɞɚ ɜ ɥɟɝɤɨɤɨɧɞɟɧɫɢɪɭɟɦɵɟ ɫɨɟɞɢɧɟɧɢɹ, ɧɚɩɪɢɦɟɪ, ɩɨɫɥɟ ɯɟɦɨɫɨɪɛɰɢɨɧɧɵɯ ɚɩɩɚɪɚɬɨɜ. Ʉɨɧɞɟɧɫɚɰɢɹ ɦɨɠɟɬ ɛɵɬɶ ɩɪɢɦɟɧɟɧɚ ɞɥɹ ɨɛɪɚɛɨɬɤɢ ɫɢɫɬɟɦ, ɫɨɞɟɪɠɚɳɢɯ ɩɚɪɵ ɜɟɳɟɫɬɜ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɚɯ, ɞɨɫɬɚɬɨɱɧɨ ɛɥɢɡɤɢɯ ɤ ɢɯ ɬɨɱɤɟ ɪɨɫɵ. ɗɬɨɬ ɦɟɬɨɞ ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɟɧ ɜ ɫɥɭɱɚɟ ɭɝɥɟɜɨɞɨɪɨɞɨɜ ɢ ɞɪɭɝɢɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ, ɢɦɟɸɳɢɯ ɞɨɫɬɚɬɨɱɧɨ ɜɵɫɨɤɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɤɢɩɟɧɢɹ, ɩɪɢ ɨɛɵɱɧɵɯ ɭɫɥɨɜɢɹɯ ɢ ɩɪɢɫɭɬɫɬɜɭɸɳɢɯ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ ɜ ɨɬɧɨɫɢɬɟɥɶɧɨ ɜɵɫɨɤɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ. Ⱦɥɹ ɭɞɚɥɟɧɢɹ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɢɦɟɸɳɢɯ ɞɨɫɬɚɬɨɱɧɨ ɧɢɡɤɨɟ ɞɚɜɥɟɧɢɟ ɩɚɪɚ ɩɪɢ ɨɛɵɱɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ, ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɤɨɧɞɟɧɫɚɬɨɪɵ ɫ ɜɨɞɹɧɵɦ ɢ ɜɨɡɞɭɲɧɵɦ ɨɯɥɚɠɞɟɧɢɟɦ. Ⱦɥɹ ɛɨɥɟɟ ɥɟɬɭɱɢɯ ɪɚɫɬɜɨɪɢɬɟɥɟɣ ɜɨɡɦɨɠɧɚ ɞɜɭɯɫɬɚɞɢɣɧɚɹ ɤɨɧɞɟɧɫɚɰɢɹ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɜɨɞɹɧɨɝɨ ɨɯɥɚɠɞɟɧɢɹ ɧɚ ɩɟɪɜɨɣ ɫɬɚɞɢɢ ɢ ɧɢɡɤɨɬɟɦɩɟɪɚɬɭɪɧɨɝɨ - ɧɚ ɜɬɨɪɨɣ. Ɇɚɤɫɢɦɚɥɶɧɨɟ ɫɧɢɠɟɧɢɟ ɫɨɞɟɪɠɚɧɢɹ ɢɧɟɪɬɧɵɯ ɢɥɢ ɧɟɤɨɧɞɟɧɫɢɪɭɸɳɢɯɫɹ ɝɚɡɨɜ ɜ ɨɛɪɚɛɚɬɵɜɚɟɦɨɣ ɫɦɟɫɢ ɩɨɡɜɨɥɹɟɬ ɨɛɥɟɝɱɢɬɶ ɩɪɨɜɟɞɟɧɢɟ ɩɪɨɰɟɫɫɚ ɤɨɧɞɟɧɫɚɰɢɢ ɢ ɩɨɜɵɫɢɬɶ ɟɟ ɷɤɨɧɨɦɢɱɟɫɤɭɸ ɷɮɮɟɤɬɢɜɧɨɫɬɶ, ɩɨɫɤɨɥɶɤɭ ɞɚɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɢɫɤɥɸɱɢɬɶ ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɨɯɥɚɠɞɟɧɢɹ ɞɨ ɨɱɟɧɶ ɧɢɡɤɢɯ ɬɟɦɩɟɪɚɬɭɪ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɬɨɱɤɟ ɪɨɫɵ. Ʉɨɧɞɟɧɫɚɰɢɹ ɦɨɠɟɬ ɛɵɬɶ ɩɪɢɦɟɧɟɧɚ ɞɥɹ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɣ ɨɛɪɚɛɨɬɤɢ ɝɚɡɨɜ, ɩɪɢ ɤɨɬɨɪɨɣ ɜɵɞɟɥɹɸɬɫɹ ɰɟɧɧɵɟ ɪɚɫɬɜɨɪɢɬɟɥɢ ɢ ɭɦɟɧɶɲɚɟɬɫɹ ɤɨɥɢɱɟɫɬɜɨ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɩɟɪɟɞ ɩɨɫɥɟɞɭɸɳɟɣ ɫɬɚɞɢɟɣ ɨɛɪɚɛɨɬɤɢ. ɉɚɪɰɢɚɥɶɧɚɹ ɤɨɧɞɟɧɫɚɰɢɹ ɦɨɠɟɬ ɧɚɣɬɢ ɩɪɢɦɟɧɟɧɢɟ ɜ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɨɛɪɚɛɚɬɵɜɚɟɦɵɣ ɝɚɡ ɧɟ ɜɵɛɪɚɫɵɜɚɟɬɫɹ, ɚ ɫɧɨɜɚ ɜɨɡɜɪɚɳɚɟɬɫɹ ɜ ɩɪɨɰɟɫɫ ɢɥɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɩɪɨɰɟɫɫɟ ɞɨɠɢɝɚɧɢɹ. ɉɪɟɞɜɚɪɢɬɟɥɶɧɚɹ ɨɛɪɚɛɨɬɤɚ ɤɨɧɞɟɧɫɚɰɢɟɣ ɰɟɥɟɫɨɨɛɪɚɡɧɚ ɜ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɩɟɪɟɞ ɨɫɧɨɜɧɨɣ ɨɛɪɚɛɨɬɤɨɣ ɝɚɡɨɜɨɣ ɩɨɬɨɤ ɧɟɨɛɯɨɞɢɦɨ ɨɯɥɚɞɢɬɶ, ɧɚɩɪɢɦɟɪ, ɩɪɢ ɨɫɭɳɟɫɬɜɥɟɧɢɢ ɚɞɫɨɪɛɰɢɢ. ɉɪɢ ɨɯɥɚɠɞɟɧɢɢ ɦɧɨɝɨɤɨɦɩɨɧɟɧɬɧɨɣ ɝɚɡɨɜɨɣ ɫɦɟɫɢ, ɫɨɞɟɪɠɚɳɟɣ ɨɛɵɱɧɵɟ ɧɟɤɨɧɞɟɧɫɢɪɭɸɳɢɟɫɹ ɝɚɡɵ, ɨɯɥɚɠɞɟɧɢɟ ɫɦɟɫɢ ɫɧɚɱɚɥɚ ɩɪɨɢɫɯɨɞɢɬ ɡɚ ɫɱɟɬ ɤɨɧɜɟɤɰɢɢ, ɚ ɬɟɩɥɨɫɨɞɟɪɠɚɧɢɟ ɩɟɪɟɞɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ (ɫɬɟɧɤɚ ɬɪɭɛɵ ɜ ɩɨɜɟɪɯɧɨɫɬɧɨɦ ɤɨɧɞɟɧɫɚɬɨɪɟ ɥɢɛɨ ɤɚɩɥɹ ɢɥɢ ɩɥɟɧɤɚ ɯɥɚɞɨɚɝɟɧɬɚ ɩɪɢ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɦ ɤɨɧɬɚɤɬɟ) ɭɦɟɧɶɲɚɟɬɫɹ ɞɨ ɬɟɯ ɩɨɪ, ɩɨɤɚ ɝɚɡɨɜɚɹ ɮɚɡɚ ɧɟ ɧɚɫɵɳɚɟɬɫɹ ɨɞɧɢɦ ɢɥɢ ɧɟɫɤɨɥɶɤɢɦɢ ɢɡ ɟɟ ɤɨɧɞɟɧɫɢɪɭɟɦɵɯ ɤɨɦɩɨɧɟɧɬɨɜ. ɉɪɢ ɞɨɩɨɥɧɢɬɟɥɶɧɨɦ ɨɯɥɚɠɞɟɧɢɢ ɤɨɧɞɟɧɫɢɪɭɟɦɵɟ ɝɚɡɵ ɞɢɮɮɭɧɞɢɪɭɸɬ ɤ ɬɟɩɥɨɩɟɪɟɞɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɝɞɟ ɩɪɨɢɫɯɨɞɢɬ ɢɯ ɤɨɧɞɟɧɫɚɰɢɹ ɫ ɜɵɞɟɥɟɧɢɟɦ ɫɤɪɵɬɨɣ ɬɟɩɥɨɬɵ. ɇɚɱɚɥɶɧɚɹ ɬɨɱɤɚ ɪɨɫɵ ɢɥɢ ɬɟɦɩɟɪɚɬɭɪɚ ɧɚɫɵɳɟɧɢɹ ɞɥɹ ɤɚɠɞɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɢɡ ɤɪɢɜɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɬɟɦɩɟɪɚɬɭɪɵ ɨɬ ɞɚɜɥɟɧɢɹ ɩɚɪɚ ɞɥɹ ɞɚɧɧɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɩɪɢ ɢɡɜɟɫɬɧɨɣ ɜɟɥɢɱɢɧɟ ɟɝɨ ɦɨɥɶɧɨɣ ɞɨɥɢ ɜ ɩɚɪɚɯ: yA · P = (pA)ɩ, (3.106) ɝɞɟ yA – ɦɨɥɶɧɚɹ ɞɨɥɹ ɤɨɦɩɨɧɟɧɬɚ Ⱥ ɜ ɩɚɪɚɯ; Ɋ – ɫɭɦɦɚɪɧɨɟ ɚɛɫɨɥɸɬɧɨɟ ɞɚɜɥɟɧɢɟ ɝɚɡɚ; (pA)ɩ – ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɤɨɦɩɨɧɟɧɬɚ Ⱥ ɜ ɩɚɪɚɯ. Ʉɨɦɩɨɧɟɧɬ Ⱥ ɧɚɱɢɧɚɟɬ ɤɨɧɞɟɧɫɢɪɨɜɚɬɶɫɹ, ɤɨɝɞɚ ɬɟɦɩɟɪɚɬɭɪɚ ɝɚɡɚ ɫɧɢɠɚɟɬɫɹ ɞɨ ɬɟɦɩɟɪɚɬɭɪɵ, ɩɪɢ ɤɨɬɨɪɨɣ ɤɨɦɩɨɧɟɧɬ Ⱥ ɢɦɟɟɬ ɞɚɜɥɟɧɢɟ ɩɚɪɚ pA = (pA)ɩ. ɉɨɫɥɟ ɧɚɱɚɥɚ ɤɨɧɞɟɧɫɚɰɢɢ ɬɟɦɩɟɪɚɬɭɪɚ ɝɚɡɚ ɛɭɞɟɬ ɩɨɧɢɠɚɬɶɫɹ ɬɨɥɶɤɨ ɩɨ ɦɟɪɟ ɨɬɜɨɞɚ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɝɨ ɤɨɥɢɱɟɫɬɜɚ ɬɟɩɥɚ ɢ ɫɤɪɵɬɨɣ ɬɟɩɥɨɬɵ, ɜɫɥɟɞ- ɫɬɜɢɟ ɤɨɬɨɪɨɝɨ ɜ ɩɪɨɰɟɫɫɟ ɫɧɢɠɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ ɝɚɡ ɛɭɞɟɬ ɨɫɬɚɜɚɬɶɫɹ ɧɚɫɵɳɟɧɧɵɦ ɤɨɦɩɨɧɟɧɬɨɦ Ⱥ. ɉɨɫɤɨɥɶɤɭ ɩɚɪɵ ɜɟɳɟɫɬɜɚ Ⱥ ɞɨɥɠɧɵ ɞɢɮɮɭɧɞɢɪɨɜɚɬɶ ɤ ɬɟɩɥɨɩɟɪɟɞɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɩɪɨɰɟɫɫ ɤɨɧɬɪɨɥɢɪɭɟɬɫɹ ɬɟɩɥɨ- ɢ ɦɚɫɫɨɩɟɪɟɧɨɫɨɦ. ȼ ɫɢɫɬɟɦɟ, ɫɨɞɟɪɠɚɳɟɣ ɞɪɭɝɢɟ ɤɨɧɞɟɧɫɢɪɭɸɳɢɟɫɹ ɤɨɦɩɨɧɟɧɬɵ (ȼ, ɋ ɢ ɬ.ɞ.), ɤɚɠɞɵɣ ɢɡ ɷɬɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɧɚɱɧɟɬ ɤɨɧɞɟɧɫɢɪɨɜɚɬɶɫɹ ɬɨɝɞɚ, ɤɨɝɞɚ ɝɚɡ ɫɬɚɧɟɬ ɧɚɫɵɳɟɧ ɷɬɢɦ ɤɨɦɩɨɧɟɧɬɨɦ, ɢ ɞɥɹ ɧɟɝɨ ɛɭɞɟɬ ɜɵɩɨɥɧɹɬɶɫɹ ɫɨɨɬɧɨɲɟɧɢɟ ɩɚɪɰɢɚɥɶɧɵɯ ɞɚɜɥɟɧɢɣ, ɚɧɚɥɨɝɢɱɧɨɟ ɪA = (ɪA)ɩ. Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ, ɞɨ ɤɨɬɨɪɨɣ ɧɭɠɧɨ ɨɯɥɚɞɢɬɶ ɝɚɡ, ɱɬɨɛɵ ɞɨɫɬɢɱɶ ɩɨɫɥɟ ɨɛɪɚɛɨɬɤɢ ɬɪɟɛɭɟɦɨɟ ɫɨɞɟɪɠɚɧɢɟ ɤɨɦɩɨɧɟɧɬɚ Ⱥ, ɢɫɩɨɥɶɡɭɸɬɫɹ ɫɥɟɞɭɸɳɢɟ ɭɪɚɜɧɟɧɢɹ: (vA)ɝ = (yA)ɝ; (yA)ɝ·Ɋ = (ɪA)ɝ, (3.107) ɝɞɟ (vA)ɝ - ɞɨɩɭɫɬɢɦɚɹ ɨɛɴɟɦɧɚɹ ɞɨɥɹ ɤɨɦɩɨɧɟɧɬɚ Ⱥ ɜ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɚɯ; (yA)ɝ ɞɨɩɭɫɬɢɦɚɹ ɦɨɥɶɧɚɹ ɞɨɥɹ ɤɨɦɩɨɧɟɧɬɚ Ⱥ ɜ ɜɵɛɪɨɫɚɯ; Ɋ - ɚɛɫɨɥɸɬɧɨɟ ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɝɚɡɚ; (ɪA)ɝ - ɞɨɩɭɫɬɢɦɨɟ ɞɚɜɥɟɧɢɟ ɩɚɪɚ ɤɨɦɩɨɧɟɧɬɚ . ɇɟɨɛɯɨɞɢɦɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɝɚɡɚ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɬɟɦɩɟɪɚɬɭɪɭ, ɩɪɢ ɤɨɬɨɪɨɣ ɞɚɜɥɟɧɢɟ ɩɚɪɚ ɤɨɦɩɨɧɟɧɬɚ Ⱥ ɪɚɜɧɨ ɜɟɥɢɱɢɧɟ (ɪA)ɝ ɧɚ ɤɪɢɜɨɣ ɞɚɜɥɟɧɢɹ ɩɚɪɚ. ȼ ɩɪɢɫɭɬɫɬɜɢɢ ɧɟɫɤɨɥɶɤɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɭɥɚɜɥɢɜɚɧɢɟ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɨ ɤɨɦɩɨɧɟɧɬɭ, ɬɪɟɛɭɸɳɟɦɭ ɧɚɢɛɨɥɟɟ ɧɢɡɤɨɣ ɬɟɦɩɟɪɚɬɭɪɵ. Ɋɚɡɞɟɥ 4. Ɋɚɫɫɟɢɜɚɧɢɟ ɜɵɛɪɨɫɨɜ ɜ ɚɬɦɨɫɮɟɪɟ ȼ ɭɫɥɨɜɢɹɯ ɭɫɤɨɪɟɧɧɨɝɨ ɪɨɫɬɚ ɨɛɴɟɦɨɜ ɩɪɨɦɵɲɥɟɧɧɨɝɨ ɩɪɨɢɡɜɨɞɫɬɜɚ ɨɫɧɨɜɧɵɦ ɩɭɬɟɦ ɪɟɲɟɧɢɹ ɡɚɞɚɱɢ ɪɚɰɢɨɧɚɥɶɧɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɩɪɢɪɨɞɧɵɯ ɪɟɫɭɪɫɨɜ ɢ ɭɦɟɧɶɲɟɧɢɹ ɨɬɪɢɰɚɬɟɥɶɧɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ ɹɜɥɹɟɬɫɹ ɪɚɡɪɚɛɨɬɤɚ ɢ ɜɧɟɞɪɟɧɢɟ ɛɟɡɨɬɯɨɞɧɵɯ ɩɪɨɢɡɜɨɞɫɬɜ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɜɫɟɯ ɤɨɦɩɨɧɟɧɬɨɜ ɫɵɪɶɹ, ɜɨɡɞɭɯɚ ɢ ɜɨɞɵ ɜ ɡɚɦɤɧɭɬɨɦ ɰɢɤɥɟ. ɍɱɢɬɵɜɚɹ ɫɥɨɠɧɨɫɬɶ ɢ ɞɥɢɬɟɥɶɧɨɫɬɶ ɫɨɡɞɚɧɢɹ ɩɨɞɨɛɧɵɯ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɧɚ ɫɨɜɪɟɦɟɧɧɨɦ ɷɬɚɩɟ ɪɚɡɜɢɬɢɹ, ɷɮɮɟɤɬɢɜɧɵɦ ɩɭɬɟɦ ɨɝɪɚɧɢɱɟɧɢɹ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɩɪɨɞɨɥɠɚɟɬ ɨɫɬɚɜɚɬɶɫɹ ɧɨɪɦɢɪɨɜɚɧɢɟ ɤɨɥɢɱɟɫɬɜɚ ɜɵɛɪɚɫɵɜɚɟɦɵɯ ɜɟɳɟɫɬɜ ɢ ɤɨɧɬɪɨɥɶ ɡɚ ɬɚɤɢɦɢ ɜɵɛɪɨɫɚɦɢ. ɒɢɪɨɤɨɟ ɜɜɟɞɟɧɢɟ ɧɨɪɦ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɯ ɜɵɛɪɨɫɨɜ (ɉȾȼ) ɜ ɚɬɦɨɫɮɟɪɭ ɫ ɭɱɟɬɨɦ ɮɢɡɢɤɨ-ɝɟɨɝɪɚɮɢɱɟɫɤɢɯ ɨɫɨɛɟɧɧɨɫɬɟɣ ɞɚɧɧɨɝɨ ɪɚɣɨɧɚ, ɷɤɨɥɨɝɢɱɟɫɤɨɣ ɫɢɬɭɚɰɢɢ, ɤɨɥɢɱɟɫɬɜɚ ɢ ɯɚɪɚɤɬɟɪɚ ɪɚɡɦɟɳɟɧɢɹ ɧɚɫɟɥɟɧɢɹ, ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨ ɭɪɨɜɧɹ ɩɪɨɢɡɜɨɞɫɬɜ ɢ ɞɪɭɝɢɯ ɮɚɤɬɨɪɨɜ ɫɬɚɥɨ ɞɟɣɫɬɜɟɧɧɵɦ ɦɟɬɨɞɨɦ ɪɟɝɭɥɢɪɨɜɚɧɢɹ ɤɚɱɟɫɬɜɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɜ ɧɚɲɟɣ ɫɬɪɚɧɟ ɫ ɝɢɝɢɟɧɢɱɟɫɤɢɯ ɢ ɷɤɨɥɨɝɢɱɟɫɤɢɯ ɩɨɡɢɰɢɣ. ɉɪɨɦɵɲɥɟɧɧɵɟ ɢɫɬɨɱɧɢɤɢ ɜɵɛɪɨɫɨɜ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɨɪɝɚɧɢɡɨɜɚɧɧɵɟ ɢ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɵɟ. Ʉ ɨɪɝɚɧɢɡɨɜɚɧɧɵɦ ɩɪɨɦɵɲɥɟɧɧɵɦ ɢɫɬɨɱɧɢɤɚɦ ɨɬɧɨɫɹɬ ɬɪɭɛɵ, ɲɚɯɬɵ, ɚɷɪɚɰɢɨɧɧɵɟ ɮɨɧɚɪɢ, ɮɪɚɦɭɝɢ ɢ ɬ.ɩ. Ʉ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɵɦ ɩɪɨɦɵɲɥɟɧɧɵɦ ɜɵɛɪɨɫɚɦ ɨɬɧɨɫɹɬ ɨɬɤɪɵɬɵɟ ɫɤɥɚɞɵ ɦɢɧɟɪɚɥɶɧɨɝɨ ɫɵɪɶɹ, ɤɚɪɶɟɪɵ, ɯɪɚɧɢɥɢɳɚ ɬɜɺɪɞɵɯ ɢ ɠɢɞɤɢɯ ɨɬɯɨɞɨɜ, ɦɟɫɬɚ ɡɚɝɪɭɡɤɢ ɢ ɜɵɝɪɭɡɤɢ ɠɟɥɟɡɧɨɞɨɪɨɠɧɵɯ ɜɚɝɨɧɨɜ, ɚɜɬɨɦɚɲɢɧ, ɧɟɝɟɪɦɟɬɢɱɧɨɟ ɨɛɨɪɭɞɨɜɚɧɢɟ, ɬɪɚɧɫɩɨɪɬɧɵɟ ɷɫɬɚɤɚɞɵ ɢ ɬ.ɩ. ȼ ɪɹɞɟ ɫɥɭɱɚɟɜ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɵɟ ɢɫɬɨɱɧɢɤɢ ɹɜɥɹɸɬɫɹ ɧɚɡɟɦɧɵɦɢ. Ɉɪɝɚɧɢɡɨɜɚɧɧɵɟ ɩɪɨɦɵɲɥɟɧɧɵɟ ɢɫɬɨɱɧɢɤɢ ɜɵɛɪɨɫɨɜ ɦɨɠɧɨ ɩɨɞɪɚɡɞɟɥɢɬɶ ɧɚ ɬɪɢ ɬɢɩɚ: ɜɵɫɨɤɢɟ, ɧɢɡɤɢɟ ɢ ɩɪɨɦɟɠɭɬɨɱɧɵɟ. ɑɟɪɟɡ ɜɵɫɨɤɢɟ ɢɫɬɨɱɧɢɤɢ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫɛɪɨɫ ɜ ɚɬɦɨɫɮɟɪɭ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɝɚɡɨɜ ɢ ɡɚɝɪɹɡɧɟɧɧɨɝɨ ɜɟɧɬɢɥɹɰɢɨɧɧɨɝɨ ɜɨɡɞɭɯɚ. Ʉ ɧɢɦ ɨɬɧɨɫɹɬɫɹ ɬɪɭɛɵ, ɜɵɛɪɨɫɵ ɢɡ ɤɨɬɨɪɵɯ ɩɪɨɢɡɜɨɞɹɬɫɹ ɜ ɜɟɪɯɧɢɟ ɫɥɨɢ ɚɬɦɨɫɮɟɪɵ, ɜɵɲɟ ɝɪɚɧɢɰɵ ɩɪɨɦɟɠɭɬɨɱɧɨɣ ɡɨɧɵ, ɱɬɨ ɨɛɟɫɩɟɱɢɜɚɟɬ ɢɯ ɯɨɪɨɲɟɟ ɪɚɫɫɟɢɜɚɧɢɟ. ɇɢɡɤɢɟ ɢɫɬɨɱɧɢɤɢ ɹɜɥɹɸɬɫɹ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɺɧɧɵɦɢ ɞɥɹ ɫɛɪɨɫɚ ɜɟɧɬɢɥɹɰɢɨɧɧɨɝɨ ɜɨɡɞɭɯɚ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɫɞɭɜɨɤ ɜ ɚɬɦɨɫɮɟɪɭ. ȼɵɛɪɨɫɵ ɢɡ ɬɚɤɢɯ ɢɫɬɨɱɧɢɤɨɜ ɩɪɨɢɡɜɨɞɹɬɫɹ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɜ ɡɨɧɭ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɣ ɬɟɧɢ (ɪɢɫ. 4.1), ɫɨɡɞɚɜɚɟɦɨɣ ɡɞɚɧɢɹɦɢ ɢ ɫɨɨɪɭɠɟɧɢɹɦɢ, ɢ ɡɚɝɪɹɡɧɹɸɬ ɜ ɨɫɧɨɜɧɨɦ ɬɟɪɪɢɬɨɪɢɸ ɨɤɨɥɨ ɷɬɢɯ ɡɞɚɧɢɣ ɢ ɫɨɨɪɭɠɟɧɢɣ. Ʉ ɩɪɨɦɟɠɭɬɨɱɧɵɦ ɢɫɬɨɱɧɢɤɚɦ ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɬɪɭɛɵ, ɜɟɪɯɧɹɹ ɨɬɦɟɬɤɚ ɤɨɬɨɪɵɯ ɧɚɯɨɞɢɬɫɹ ɧɢɠɟ ɝɪɚɧɢɰɵ ɩɪɨɦɟɠɭɬɨɱɧɨɣ, ɡɨɧɵ, ɧɨ ɧɟ ɦɟɧɟɟ ɱɟɦ ɧɚ 20% ɜɵɲɟ ɝɪɚɧɢɰɵ ɡɨɧɵ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɣ ɬɟɧɢ (ɪɢɫ. 4.1). ɉɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɣ ɜɵɛɪɨɫ (ɉȾȼ) ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ȽɈɋɌ 17.2.1.0477 ɹɜɥɹɟɬɫɹ ɬɟɯɧɢɱɟɫɤɢɦ ɧɨɪɦɚɬɢɜɨɦ, ɭɫɬɚɧɚɜɥɢɜɚɟɦɵɦ ɢɡ ɭɫɥɨɜɢɹ, ɱɬɨɛɵ ɫɨɞɟɪɠɚɧɢɟ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɜɨɡɞɭɯɚ ɨɬ ɢɫɬɨɱɧɢɤɚ ɢɥɢ ɢɯ ɫɨɜɨɤɭɩɧɨɫɬɢ ɧɟ ɩɪɟɜɵɲɚɥɨ ɧɨɪɦɚɬɢɜɨɜ ɤɚɱɟɫɬɜɚ ɜɨɡɞɭɯɚ ɞɥɹ ɧɚɫɟɥɟɧɢɹ, ɠɢɜɨɬɧɨɝɨ ɢ ɪɚɫɬɢɬɟɥɶɧɨɝɨ ɦɢɪɚ. Ɋɚɫɱɟɬɧɵɟ ɡɧɚɱɟɧɢɹ ɉȾȼ ɫɥɟɞɭɟɬ ɫɱɢɬɚɬɶ ɜɟɪɯɧɢɦ ɩɪɟɞɟɥɨɦ. Ɋɢɫ 4.1. ɋɯɟɦɚ ɝɚɡɨɜɨɡɞɭɲɧɨɝɨ ɮɚɤɟɥɚ ɜ ɫɧɨɫɹɳɟɦ ɩɨɬɨɤɟ: 1 - ɤɪɢɜɚɹ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ; 2 - ɩɪɨɮɢɥɢ ɤɨɧɰɟɧɬɪɚɰɢɣ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜ ɫɟɱɟɧɢɹɯ ɮɚɤɟɥɚ. Ɉɫɧɨɜɧɵɦ ɤɪɢɬɟɪɢɟɦ ɤɚɱɟɫɬɜɚ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɹɜɥɹɸɬɫɹ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ (ɉȾɄ) ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɧɨɦ ɜɨɡɞɭɯɟ ɧɚɫɟɥɺɧɧɵɯ ɦɟɫɬ. Ɋɚɫɱɟɬɧɚɹ ɜɟɥɢɱɢɧɚ ɧɚɢɛɨɥɶɲɟɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɚɠɞɨɣ ɩɪɢɦɟɫɢ ɋɦ (ɦɝ/ɦ3) ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɚɬɦɨɫɮɟɪɵ ɨɬ ɜɫɟɣ ɫɨɜɨɤɭɩɧɨɫɬɢ ɢɫɬɨɱɧɢɤɨɜ ɧɟ ɞɨɥɠɧɚ ɩɪɟɜɵɲɚɬɶ ɜɟɥɢɱɢɧɵ ɟɟ ɉȾɄ ɜ ɚɬɦɨɫɮɟɪɧɨɦ ɜɨɡɞɭɯɟ: ɋɦ d ɉȾɄ (4.1) ɉɪɢ ɫɨɜɦɟɫɬɧɨɦ ɩɪɢɫɭɬɫɬɜɢɢ ɜ ɚɬɦɨɫɮɟɪɟ ɧɟɫɤɨɥɶɤɢɯ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ, ɨɛɥɚɞɚɸɳɢɯ ɫɭɦɦɢɪɭɸɳɢɦ ɞɟɣɫɬɜɢɟɦ (ɧɚɩɪɢɦɟɪ, SO2, NO2, HF, H2SO4, ɮɟɧɨɥ) ɤɪɢɬɟɪɢɟɦ ɤɚɱɟɫɬɜɚ ɜɨɡɞɭɯɚ ɫɥɭɠɢɬ ɫɨɨɬɧɨɲɟɧɢɟ: Ci d 1 , i 1 ɉȾɄ i n ¦ (4.2) ɝɞɟ: n - ɤɨɥɢɱɟɫɬɜɨ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɫ ɫɭɦɦɢɪɭɸɳɢɦɫɹ ɜɪɟɞɧɵɦ ɞɟɣɫɬɜɢɟɦ; ɋi ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɧɨɦ ɜɨɡɞɭɯɟ ɜ ɨɞɧɨɣ ɢ ɬɨɣ ɠɟ ɬɨɱɤɟ ɦɟɫɬɧɨɫɬɢ, ɦɝ/ɦ3; ɉȾɄi - ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɦɚɤɫɢɦɚɥɶɧɵɟ ɪɚɡɨɜɵɟ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɧɨɦ ɜɨɡɞɭɯɟ, ɦɝ/ɦ3. ȼ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɧɟɨɛɯɨɞɢɦɨ ɭɱɢɬɵɜɚɬɶ ɡɧɚɱɟɧɢɟ ɮɨɧɨɜɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ Cɮ ɡɚɝɪɹɡɧɢɬɟɥɟɣ, ɜ ɫɨɨɬɧɨɲɟɧɢɢ (4.2) ɜɦɟɫɬɨ ɜɟɥɢɱɢɧɵ ɋ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜɟɥɢɱɢɧɚ (ɋ + ɋɮ). Ɏɨɧɨɜɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɹɜɥɹɟɬɫɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ ɫɭɳɟɫɬɜɭɸɳɟɝɨ ɡɚɝɪɹɡɧɟɧɢɹ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ ɧɚ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɥɨɳɚɞɤɚɯ ɢ ɜ ɧɚɫɟɥɟɧɧɵɯ ɩɭɧɤɬɚɯ ɢ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɫɭɦɦɚɪɧɨɟ ɡɚɝɪɹɡɧɟɧɢɟ ɚɬɦɨɫɮɟɪɵ, ɨɛɭɫɥɨɜɥɟɧɧɨɟ ɜɫɟɦɢ ɢɫɬɨɱɧɢɤɚɦɢ, ɜ ɬɨɦ ɱɢɫɥɟ ɢ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɵɦɢ. ɉɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɜɧɨɜɶ ɫɬɪɨɹɳɢɯɫɹ ɩɪɟɞɩɪɢɹɬɢɣ ɜ ɪɚɣɨɧɚɯ, ɝɞɟ ɚɬɦɨɫɮɟɪɧɵɣ ɜɨɡɞɭɯ ɢ ɦɟɫɬɧɨɫɬɶ ɭɠɟ ɡɚɝpɹɡɧɟɧɵ ɜɪɟɞɧɵɦɢ ɯɢɦɢɱɟɫɤɢɦɢ ɜɟ- ɳɟɫɬɜɚɦɢ, ɜɵɛɪɚɫɵɜɚɟɦɵɦɢ ɞɪɭɝɢɦɢ ɩɪɟɞɩɪɢɹɬɢɹɦɢ, ɫɭɦɦɚ ɪɚɫɱɟɬɧɨɣ ɢ ɮɨɧɨɜɨɣ ɤɨɧɰɟɧɬɪɚɰɢɣ ɞɥɹ ɤɚɠɞɨɝɨ ɜɪɟɞɧɨɝɨ ɯɢɦɢɱɟɫɤɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɚɬɦɨɫɮɟɪɟ ɧɟ ɞɨɥɠɧɚ ɩɪɟɜɵɲɚɬɶ ɭɫɬɚɧɨɜɥɟɧɧɵɯ ɞɥɹ ɧɟɝɨ ɢɥɢ ɪɚɫɫɱɢɬɚɧɧɵɯ ɡɧɚɱɟɧɢɣ ɉȾɄ. ȿɫɥɢ ɜ ɜɨɡɞɭɯɟ ɝɨɪɨɞɨɜ ɢɥɢ ɞpɭɝɢɯ ɧɚɫɟɥɟɧɧɵɯ ɩɭɧɤɬɨɜ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɩɪɟɜɵɲɚɟɬ ɉȾɄ, ɚ ɉȾȼ ɩɨ ɨɛɴɟɤɬɢɜɧɵɦ ɩɪɢɱɢɧɚɦ ɧɟ ɦɨɠɟɬ ɛɵɬɶ ɞɨɫɬɢɝɧɭɬ, ɜɜɨɞɢɬɫɹ ɩɨɷɬɚɩɧɨɟ ɭɦɟɧɶɲɟɧɢɟ ɜɵɛɪɨɫɨɜ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɨɬ ɞɟɣɫɬɜɭɸɳɢɯ ɩɪɟɞɩɪɢɹɬɢɣ ɞɨ ɡɧɚɱɟɧɢɣ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɧɨɪɦɚɦ ɤɚɱɟɫɬɜɚ ɜɨɡɞɭɯɚ, ɢɥɢ ɞɨ ɩɨɥɧɨɝɨ ɩɪɟɞɨɬɜɪɚɳɟɧɢɹ ɜɵɛɪɨɫɨɜ. ɇɚ ɤɚɠɞɨɦ ɷɬɚɩɟ ɞɨ ɨɛɟɫɩɟɱɟɧɢɹ ɉȾȼ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɜɪɟɦɟɧɧɨ ɫɨɝɥɚɫɨɜɚɧɧɵɟ ɜɵɛɪɨɫɵ (ȼɋȼ) ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɧɚ ɭɪɨɜɧɟ ɜɵɛɪɨɫɨɜ ɩɪɟɞɩɪɢɹɬɢɣ ɫ ɧɚɢɛɨɥɟɟ ɫɨɜɟɪɲɟɧɧɨɣ ɬɟɯɧɨɥɨɝɢɟɣ ɩɪɨɢɡɜɨɞɫɬɜɚ, ɚɧɚɥɨɝɢɱɧɵɯ ɩɨ ɦɨɳɧɨɫɬɢ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɦ ɩɪɨɰɟɫɫɚɦ. Ⱦɥɹ ɩɪɟɞɨɬɜɪɚɳɟɧɢɹ ɢ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɭɦɟɧɶɲɟɧɢɹ ɨɪɝɚɧɢɡɨɜɚɧɧɵɯ ɢ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɵɯ ɜɵɛɪɨɫɨɜ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɞɨɥɠɧɵ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ ɧɚɢɛɨɥɟɟ ɫɨɜɪɟɦɟɧɧɚɹ ɬɟɯɧɨɥɨɝɢɹ, ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɢ ɞɪɭɝɢɟ ɬɟɯɧɢɱɟɫɤɢɟ ɫɪɟɞɫɬɜɚ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɬɪɟɛɨɜɚɧɢɹɦɢ ɫɚɧɢɬɚɪɧɵɯ ɧɨɪɦ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɪɟɞɩɪɢɹɬɢɣ. ɂɫɩɨɥɶɡɨɜɚɧɢɟ ɜɨɡɦɨɠɧɨɫɬɢ ɪɚɫɫɟɢɜɚɧɢɹ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɟ ɜɫɥɟɞɫɬɜɢɟ ɭɜɟɥɢɱɟɧɢɹ ɜɵɫɨɬɵ ɜɵɛɪɨɫɚ ɞɨɩɭɫɤɚɟɬɫɹ ɬɨɥɶɤɨ ɩɨɫɥɟ ɩɪɢɦɟɧɟɧɢɹ ɜɫɟɯ ɢɦɟɸɳɢɯɫɹ ɫɨɜɪɟɦɟɧɧɵɯ ɬɟɯɧɢɱɟɫɤɢɯ ɫɪɟɞɫɬɜ ɩɨ ɫɨɤɪɚɳɟɧɢɸ ɜɵɛɪɨɫɨɜ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ. ɉɪɢ ɭɫɬɚɧɨɜɥɟɧɢɢ ɉȾȼ (ȼɋȼ) ɫɥɟɞɭɟɬ ɭɱɢɬɵɜɚɬɶ ɮɢɡɢɤɨɝɟɨɝɪɚɮɢɱɟɫɤɢɟ ɢ ɤɥɢɦɚɬɢɱɟɫɤɢɟ ɭɫɥɨɜɢɹ ɦɟɫɬɧɨɫɬɢ, ɪɚɫɩɨɥɨɠɟɧɢɟ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɥɨɳɚɞɨɤ ɢ ɭɱɚɫɬɤɨɜ ɫɭɳɟɫɬɜɭɸɳɟɣ ɢ ɧɚɦɟɱɟɧɧɨɣ ɠɢɥɨɣ ɡɚɫɬɪɨɣɤɢ, ɫɚɧɚɬɨɪɢɟɜ, ɡɨɧ ɨɬɞɵɯɚ ɝɨɪɨɞɨɜ ɢ ɬ.ɩ. 4.1. Ⱦɢɮɮɭɡɢɨɧɧɵɟ ɩɪɨɰɟɫɫɵ ɜ ɚɬɦɨɫɮɟɪɟ Ƚɚɡɨɨɛɪɚɡɧɵɟ ɢ ɩɵɥɟɜɵɟ ɩɪɢɦɟɫɢ ɪɚɫɫɟɢɜɚɸɬɫɹ ɜ ɚɬɦɨɫɮɟɪɟ ɬɭɪɛɭɥɟɧɬɧɵɦɢ ɜɟɬɪɨɜɵɦɢ ɩɨɬɨɤɚɦɢ. ɋɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɦɟɯɚɧɢɡɦ ɩɟɪɟɧɨɫɚ ɩɪɢɦɟɫɟɣ ɞɜɨɹɤɢɣ: ɤɨɧɜɟɤɬɢɜɧɵɣ ɩɟɪɟɧɨɫ ɨɫɪɟɞɧɟɧɧɵɦ ɞɜɢɠɟɧɢɟɦ ɢ ɞɢɮɮɭɡɢɨɧɧɵɣ ɬɭɪɛɭɥɟɧɬɧɵɦɢ ɩɭɥɶɫɚɰɢɹɦɢ. ɉɪɢɦɟɫɢ ɨɛɵɱɧɨ ɩɨɥɚɝɚɸɬ ɩɚɫɫɢɜɧɵɦɢ ɜ ɬɨɦ ɫɦɵɫɥɟ, ɱɬɨ ɩɪɢɫɭɬɫɬɜɢɟ ɢɯ ɧɟ ɨɤɚɡɵɜɚɟɬ ɡɚɦɟɬɧɨɝɨ ɜɥɢɹɧɢɹ ɧɚ ɤɢɧɟɦɚɬɢɤɭ ɢ ɞɢɧɚɦɢɤɭ ɞɜɢɠɟɧɢɹ ɩɨɬɨɤɨɜ. Ɍɚɤɨɟ ɞɨɩɭɳɟɧɢɟ ɦɨɠɟɬ ɨɤɚɡɚɬɶɫɹ ɫɥɢɲɤɨɦ ɝɪɭɛɵɦ ɞɥɹ ɚɷɪɨɡɨɥɶɧɵɯ ɱɚɫɬɢɰ ɛɨɥɶɲɢɯ ɪɚɡɦɟɪɨɜ. ɍɪɚɜɧɟɧɢɟ ɞɢɮɮɭɡɢɨɧɧɨ-ɤɨɧɜɟɤɬɢɜɧɨɝɨ ɩɟɪɟɧɨɫɚ, ɨɩɢɫɵɜɚɸɳɟɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɋ ɩɪɢɦɟɫɢ, ɢɦɟɟɬ ɜɢɞ dC/dW + u(dC/dx) + w(dC/dy) + v(dC/dz) = = d/dx[Dx dC/dx] + d/dy[Dy dC/dy] + d/dz[Dz dC/dz]. (4.3) ɍɪɚɜɧɟɧɢɟ (4.3) ɟɫɬɶ ɭɪɚɜɧɟɧɢɟ ɧɟɪɚɡɪɵɜɧɨɫɬɢ ɩɨɬɨɤɚ ɩɪɢɦɟɫɢ. ɑɥɟɧɵ, ɫɨɞɟɪɠɚɳɢɟ ɤɨɦɩɨɧɟɧɬɵ ɨɫɪɟɞɧɟɧɧɨɣ ɫɤɨɪɨɫɬɢ u, w, v, ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɤɨɨɪɞɢɧɚɬɧɵɯ ɨɫɟɣ ɯ, ɭ, z, ɨɩɢɫɵɜɚɸɬ ɤɨɧɜɟɤɬɢɜɧɵɣ ɩɟɪɟɧɨɫ ɩɪɢɦɟɫɢ. ȼ ɩɪɚɜɨɣ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɹ ɫɝɪɭɩɩɢɪɨɜɚɧɵ ɱɥɟɧɵ, ɨɩɢɫɵɜɚɸɳɢɟ ɬɭɪɛɭ- ɥɟɧɬɧɭɸ ɞɢɮɮɭɡɢɸ ɩɪɢɦɟɫɢ. Dx, Dy, Dz - ɤɨɷɮɮɢɰɢɟɧɬɵ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɢ ɩɨ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦ ɧɚɩɪɚɜɥɟɧɢɹɦ. ɉɪɢɛɥɢɠɟɧɧɨ ɩɨɥɚɝɚɸɬ, ɱɬɨ ɫɢɥɵ ɩɥɚɜɭɱɟɫɬɢ, ɫɜɹɡɚɧɧɵɟ ɫ ɧɚɥɢɱɢɟɦ ɝɪɚɞɢɟɧɬɚ ɬɟɦɩɟɪɚɬɭɪɵ ɩɨ ɜɵɫɨɬɟ ɚɬɦɨɫɮɟɪɵ, ɧɟ ɩɨɪɨɠɞɚɸɬ ɨɫɪɟɞɧɟɧɧɨɝɨ ɞɜɢɠɟɧɢɹ ɩɨ ɜɟɪɬɢɤɚɥɢ, ɧɨ ɨɤɚɡɵɜɚɸɬ ɫɭɳɟɫɬɜɟɧɧɨɟ ɜɥɢɹɧɢɟ ɧɚ ɫɬɪɭɤɬɭɪɭ ɬɭɪɛɭɥɟɧɬɧɨɫɬɢ, ɬɨ ɟɫɬɶ ɧɚ ɪɚɡɦɟɪɵ ɢ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɩɭɥɶɫɚɰɢɣ ɬɭɪɛɭɥɟɧɬɧɵɯ ɜɢɯɪɟɣ. Ɍɨɝɞɚ, ɟɫɥɢ ɨɫɶ ɯ ɨɪɢɟɧɬɢɪɨɜɚɧɚ ɩɨ ɧɚɩɪɚɜɥɟɧɢɸ ɜɟɬɪɚ, ɬɨ ɞɥɹ ɪɨɜɧɨɣ ɦɟɫɬɧɨɫɬɢ w = 0, ɚ ɟɫɥɢ ɩɪɢɦɟɫɶ ɩɚɫɫɢɜɧɚ, ɬɨ ɢ v = 0. Ɇɨɠɧɨ ɬɚɤɠɟ ɩɪɟɧɟɛɪɟɱɶ ɱɥɟɧɨɦ, ɭɱɢɬɵɜɚɸɳɢɦ ɞɢɮɮɭɡɢɸ ɩɪɢɦɟɫɢ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɨɫɢ ɯ, ɬɚɤ ɤɚɤ ɞɢɮɮɭɡɢɨɧɧɵɣ ɩɟɪɟɧɨɫ ɜ ɷɬɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɡɧɚɱɢɬɟɥɶɧɨ ɫɥɚɛɟɟ ɤɨɧɜɟɤɬɢɜɧɨɝɨ. Ⱦɥɹ ɫɬɚɰɢɨɧɚɪɧɨɝɨ ɩɪɨɰɟɫɫɚ ɪɚɫɫɟɢɜɚɧɢɹ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɷɬɢɯ ɭɩɪɨɳɟɧɢɣ, ɭɪɚɜɧɟɧɢɟ (4.3) ɩɪɢɧɢɦɚɟɬ ɜɢɞ d/dy(Dy dC/dy) + d/dz(Dz dC/dz) - u(dC/dx) = 0. (4.4) ȿɫɥɢ ɢɫɬɨɱɧɢɤ ɢɧɬɟɧɫɢɜɧɨɫɬɶɸ Ɇ (ɝ/ɫ) ɪɚɫɩɨɥɨɠɟɧ ɜ ɬɨɱɤɟ ɫ ɤɨɨɪɞɢɧɚɬɚɦɢ ɯ = 0, ɭ = 0, z = H, ɬɨ ɝɪɚɧɢɱɧɵɟ ɭɫɥɨɜɢɹ ɞɥɹ ɭɪɚɜɧɟɧɢɹ (4.4) ɮɨɪɦɭɥɢɪɭɸɬɫɹ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ u.C = M.G(y) G(z - H), x = 0; (4.5) C o 0 ɩɪɢ z o f ɢ ɩɪɢ _y_ o f; (4.6) Dz dC/dz = 0 ɩɪɢ z = 0, (4.7) ɝɞɟ G(y), G(z - H) – ɞɟɥɶɬɚ-ɮɭɧɤɰɢɢ, ɦ-1. ɍɫɥɨɜɢɟ (4.5) ɭɬɜɟɪɠɞɚɟɬ, ɱɬɨ ɤɨɧɜɟɤɬɢɜɧɵɣ ɩɨɬɨɤ ɩɪɢɦɟɫɢ ɨɬ ɬɨɱɟɱɧɨɝɨ ɢɫɬɨɱɧɢɤɚ ɪɚɜɟɧ ɟɝɨ ɢɧɬɟɧɫɢɜɧɨɫɬɢ. ɍɫɥɨɜɢɹ (4.6) ɜɵɬɟɤɚɸɬ ɢɡ ɨɱɟɜɢɞɧɨɝɨ ɮɚɤɬɚ ɭɛɵɜɚɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫ ɭɞɚɥɟɧɢɟɦ ɨɬ ɢɫɬɨɱɧɢɤɚ. ɍɪɚɜɧɟɧɢɟ (4.7) ɟɫɬɶ ɭɫɥɨɜɢɟ ɧɟɩɪɨɧɢɰɚɟɦɨɫɬɢ ɩɨɞɫɬɢɥɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ ɞɥɹ ɩɪɢɦɟɫɢ. ɉɨɞɫɬɢɥɚɸɳɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɦɨɠɟɬ ɱɚɫɬɢɱɧɨ ɢɥɢ ɩɨɥɧɨɫɬɶɸ ɩɨɝɥɨɳɚɬɶ ɩɪɢɦɟɫɶ. ɇɚɩɪɢɦɟɪ, ɜɨɞɧɚɹ ɢɥɢ ɭɜɥɚɠɧɟɧɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɦɨɠɟɬ ɩɨɝɥɨɳɚɬɶ ɝɚɡɨɜɵɟ ɩɪɢɦɟɫɢ, ɪɚɫɬɜɨɪɹɹ ɢɯ; ɨɫɟɞɚɧɢɟ ɞɢɫɩɟɪɫɧɵɯ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɬɨɠɟ ɫɥɟɞɭɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɢɯ ɩɨɝɥɨɳɟɧɢɟ. ȼ ɷɬɢɯ ɫɥɭɱɚɹɯ ɭɫɥɨɜɢɟ ɧɟɩɪɨɧɢɰɚɟɦɨɫɬɢ (4.7) ɞɨɥɠɧɨ ɛɵɬɶ ɡɚɦɟɧɟɧɨ ɧɚ ɭɫɥɨɜɢɟ ɱɚɫɬɢɱɧɨɣ ɢɥɢ ɩɨɥɧɨɣ ɩɪɨɧɢɰɚɟɦɨɫɬɢ. Ⱦɥɹ ɪɟɲɟɧɢɹ ɭɪɚɜɧɟɧɢɹ (4.4) ɩɪɢ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɹɯ (4.5)... (4.7) ɧɟɨɛɯɨɞɢɦɨ ɢɦɟɬɶ ɢɧɮɨɪɦɚɰɢɸ ɨ ɪɚɫɩɪɟɞɟɥɟɧɢɢ ɩɨ ɜɵɫɨɬɟ ɚɬɦɨɫɮɟɪɵ ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ ɢ ɡɧɚɱɟɧɢɢ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɢ Dz, Dy . ɋɬɪɭɤɬɭɪɚ ɬɭɪɛɭɥɟɧɬɧɨɫɬɢ ɜ ɚɬɦɨɫɮɟɪɟ, ɚ ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɢ ɡɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɢ ɫɥɨɠɧɵɦ ɨɛɪɚɡɨɦ ɡɚɜɢɫɹɬ ɨɬ ɜɵɫɨɬɵ z, ɲɟɪɨɯɨɜɚɬɨɫɬɢ ɩɨɞɫɬɢɥɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɚ ɬɚɤɠɟ ɨɬ ɤɪɢɬɟɪɢɹ Ɋɢɱɚɪɞɫɨɧɚ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɟɝɨ ɨɬɧɨɲɟɧɢɟ ɫɢɥ ɩɥɚɜɭɱɟɫɬɢ ɢ ɢɧɟɪɰɢɢ ɜ ɚɬɦɨɫɮɟɪɟ Ri = (g E/Prɬ)[(dT/dz)/(du/dz)2]. (4.8) ɇɚɪɹɞɭ ɫ ɝɪɚɞɢɟɧɬɧɵɦ ɩɪɟɞɫɬɚɜɥɟɧɢɟɦ ɤɪɢɬɟɪɢɹ Ɋɢɱɚɪɞɫɨɧɚ ɢɫɩɨɥɶɡɭɸɬ ɢɧɬɟɝɪɚɥɶɧɨɟ Ri = (g l/u2)('U/U) = - (g l/u2)E 'T, (4.9) ɝɞɟ E - ɬɟɪɦɢɱɟɫɤɢɣ ɤɨɷɮɮɢɰɢɟɧɬ ɨɛɴɟɦɧɨɝɨ ɪɚɫɲɢɪɟɧɢɹ, Ʉ-1; Ɋrɬ - ɬɭɪɛɭɥɟɧɬɧɨɟ ɱɢɫɥɨ ɉɪɚɧɞɬɥɹ (Ɋrɬ | 0,7); l - ɪɚɡɦɟɪ ɨɛɴɟɤɬɚ, ɧɚɩɪɢɦɟɪ, ɬɨɥɳɢɧɚ ɨɛɥɚɤɚ ɢɥɢ ɫɥɨɹ ɚɬɦɨɫɮɟɪɵ, ɦ; 'U = U - U0 - ɪɚɡɧɨɫɬɶ ɩɥɨɬɧɨɫɬɟɣ ɜɨɡɞɭɯɚ ɧɚ ɜɵɫɨɬɟ z ɢ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɡɟɦɥɢ, ɤɝ/ɦ3. ȼɟɥɢɱɢɧɚ ɝɪɚɞɢɟɧɬɚ dT/dz ɨɩɪɟɞɟɥɹɟɬ ɬɟɦɩɟɪɚɬɭɪɧɭɸ ɫɬɪɚɬɢɮɢɤɚɰɢɸ (ɪɚɫɫɥɨɟɧɢɟ) ɩɨ ɜɵɫɨɬɟ ɚɬɦɨɫɮɟɪɵ. ȿɫɥɢ ɩɟɪɟɧɨɫ ɬɟɩɥɚ ɩɨ ɜɟɪɬɢɤɚɥɢ ɨɬɫɭɬɫɬɜɭɟɬ, ɬɨ ɚɬɦɨɫɮɟɪɚ ɧɚɯɨɞɢɬɫɹ ɜ ɫɨɫɬɨɹɧɢɢ ɪɚɜɧɨɜɟɫɧɨɣ (ɛɟɡɪɚɡɥɢɱɧɨɣ) ɫɬɪɚɬɢɮɢɤɚɰɢɢ. ɋɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɬɚɤɨɦɭ ɫɨɫɬɨɹɧɢɸ ɝɪɚɞɢɟɧɬ. ɧɚɡɵɜɚɟɦɵɣ ɚɞɢɚɛɚɬɢɱɟɫɤɢɦ dT/dz = g/cp, ɪɚɜɟɧ, ɩɪɢɦɟɪɧɨ, 1 Ʉ ɧɚ 100 ɦ ɜɵɫɨɬɵ. ɉɪɢ dT/dz ! g/cp (ɫɜɟɪɯɚɞɢɚɛɚɬɢɱɟɫɤɢɣ ɝɪɚɞɢɟɧɬ) ɫɨɫɬɨɹɧɢɟ ɚɬɦɨɫɮɟɪɵ ɧɟɭɫɬɨɣɱɢɜɨ, ɬɟɩɥɨɜɵɟ ɩɨɬɨɤɢ ɫɩɨɫɨɛɫɬɜɭɸɬ ɪɚɡɜɢɬɢɸ ɤɨɧɜɟɤɰɢɢ ɜ ɜɟɪɬɢɤɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɢ ɭɫɢɥɟɧɢɸ ɬɭɪɛɭɥɟɧɬɧɨɝɨ ɨɛɦɟɧɚ. ȿɫɥɢ ɝɪɚɞɢɟɧɬ ɬɟɦɩɟɪɚɬɭɪɵ ɩɨɥɨɠɢɬɟɥɟɧ, ɬɨ ɢɦɟɟɬ ɦɟɫɬɨ ɭɫɬɨɣɱɢɜɚɹ ɫɬɪɚɬɢɮɢɤɚɰɢɹ, ɧɚɡɵɜɚɟɦɚɹ ɬɟɦɩɟɪɚɬɭɪɧɨɣ ɢɧɜɟɪɫɢɟɣ. Ɍɚɤɚɹ ɫɢɬɭɚɰɢɹ ɫɩɨɫɨɛɫɬɜɭɟɬ ɩɨɞɚɜɥɟɧɢɸ ɤɨɧɜɟɤɬɢɜɧɨɝɨ ɞɜɢɠɟɧɢɹ ɢ ɨɫɥɚɛɥɟɧɢɸ ɬɭɪɛɭɥɟɧɬɧɨɫɬɢ. ȼɵɫɨɬɚ ɫɥɨɟɜ ɩɪɢɡɟɦɧɨɣ ɢɧɜɟɪɫɢɢ ɦɨɠɟɬ ɤɨɥɟɛɚɬɶɫɹ ɨɬ ɞɟɫɹɬɤɨɜ ɞɨ ɫɨɬɟɧ ɦɟɬɪɨɜ. Ɂɧɚɱɟɧɢɟ ɝɪɚɞɢɟɧɬɚ ɬɟɦɩɟɪɚɬɭɪɵ ɢɡɦɟɧɹɟɬɫɹ ɜ ɬɟɱɟɧɢɟ ɫɭɬɨɤ ɢ ɩɨ ɫɟɡɨɧɚɦ ɢ ɡɚɜɢɫɢɬ ɨɬ ɪɚɞɢɚɰɢɨɧɧɨɝɨ ɛɚɥɚɧɫɚ ɩɨɞɫɬɢɥɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ. ɉɪɢ ɧɚɥɢɱɢɢ ɜɟɬɪɚ ɞɜɢɠɟɧɢɟ ɜ ɫɥɭɱɚɟ ɧɟɭɫɬɨɣɱɢɜɨɣ ɫɬɪɚɬɢɮɢɤɚɰɢɢ ɛɭɞɟɬ ɬɚɤɠɟ ɧɟɭɫɬɨɣɱɢɜɵɦ; ɜ ɫɥɭɱɚɟ ɭɫɬɨɣɱɢɜɨɣ ɫɬɪɚɬɢɮɢɤɚɰɢɢ ɯɚɪɚɤɬɟɪ ɜɟɪɬɢɤɚɥɶɧɨɝɨ ɤɨɧɜɟɤɬɢɜɧɨɝɨ ɞɜɢɠɟɧɢɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɡɧɚɱɟɧɢɟɦ ɱɢɫɥɚ Ɋɢɱɚɪɞɫɨɧɚ. ȼ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɚɬɦɨɫɮɟɪɵ Dx = D1 (z/z1)(1 – Rim)1/2, (4.10) ɝɞɟ D1 - ɡɧɚɱɟɧɢɟ Dz ɧɚ ɜɵɫɨɬɟ z1 = 1 ɦ ɩɪɢ ɪɚɜɧɨɜɟɫɧɵɯ ɭɫɥɨɜɢɹɯ, ɦ2/ɫ; Rim ɫɪɟɞɧɟɟ ɩɨ ɜɵɫɨɬɟ ɩɪɢɡɟɦɧɨɝɨ ɫɥɨɹ ɡɧɚɱɟɧɢɟ ɱɢɫɥɚ Ɋɢɱɚɪɞɫɨɧɚ. ɉɪɨɮɢɥɶ ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ ɨɩɢɫɵɜɚɟɬɫɹ ɮɨɪɦɭɥɨɣ u = u1[lg(z/z0)/lg(z1/z0)], (4.11) ɝɞɟ u1 - ɫɤɨɪɨɫɬɶ ɜɟɬɪɚ ɧɚ ɜɵɫɨɬɟ z1, ɦ/ɫ; z0 - ɲɟɪɨɯɨɜɚɬɨɫɬɶ ɩɨɞɫɬɢɥɚɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ (z0 | 0,01 ɦ). Ɋɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (4.4) ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɫɨɨɬɧɨɲɟɧɢɣ (4.10), (4.11) ɜɨɡɦɨɠɧɨ ɬɨɥɶɤɨ ɱɢɫɥɟɧɧɵɦ ɦɟɬɨɞɨɦ. Ⱥɧɚɥɢɬɢɱɟɫɤɨɟ ɪɟɲɟɧɢɟ ɦɨɠɟɬ ɛɵɬɶ ɩɨɥɭɱɟɧɨ ɫ ɩɨɦɨɳɶɸ ɭɩɪɨɳɟɧɧɵɯ ɡɚɜɢɫɢɦɨɫɬɟɣ: u = u1.zD; (4.12) Dx = D1.zE; (4.13) Dy = l0.u, (4.14) ɝɞɟ D ɢ E - ɛɟɡɪɚɡɦɟɪɧɵɟ ɩɚɪɚɦɟɬɪɵ, ɩɨɞɨɛɪɚɧɧɵɟ ɢɡ ɭɫɥɨɜɢɹ ɧɚɢɥɭɱɲɟɝɨ ɫɨɨɬɜɟɬɫɬɜɢɹ ɮɚɤɬɢɱɟɫɤɢɯ ɢ ɪɚɫɱɟɬɧɵɯ ɩɪɨɮɢɥɟɣ ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ ɢ ɤɨɷɮɮɢɰɢɟɧɬɚ ɨɛɦɟɧɚ (ɨɛɵɱɧɨ D | 1, E | 0,15); l0 - ɯɚɪɚɤɬɟɪɧɵɣ ɪɚɡɦɟɪ, ɤɨɬɨɪɵɣ ɬɚɤɠɟ ɩɨɞɛɢɪɚɟɬɫɹ ɢɡ ɭɫɥɨɜɢɹ ɫɨɨɬɜɟɬɫɬɜɢɹ ɨɩɵɬɧɵɦ ɞɚɧɧɵɦ. Ɂɧɚɱɟɧɢɟ l0 ɫɨɫɬɚɜɥɹɟɬ 0,1…1 ɦ ɢ ɡɚɜɢɫɢɬ ɨɬ ɫɬɟɩɟɧɢ ɭɫɬɨɣɱɢɜɨɫɬɢ ɚɬɦɨɫɮɟɪɵ. ɉɪɢ ɧɟɭɫ- ɬɨɣɱɢɜɨɣ ɫɬɪɚɬɢɮɢɤɚɰɢɢ l0 = 0,5…1 ɦ, ɩɪɢ ɭɫɬɨɣɱɢɜɨɣ ɫɬɪɚɬɢɮɢɤɚɰɢɢ l0 ɭɦɟɧɶɲɚɟɬɫɹ. 4.2. Ɋɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɡɚɝɪɹɡɧɟɧɢɣ ɜ ɚɬɦɨɫɮɟɪɟ ɇɚ ɪɢɫ. 4.1 ɩɨɤɚɡɚɧɚ ɫɯɟɦɚ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɡɚɝɪɹɡɧɟɧɧɨɣ ɫɬɪɭɢ, ɢɫɬɟɤɚɸɳɟɣ ɢɡ ɬɪɭɛɵ ɩɪɢ ɧɚɥɢɱɢɢ ɫɧɨɫɹɳɟɝɨ ɜɟɬɪɨɜɨɝɨ ɩɨɬɨɤɚ. Ⱦɟɣɫɬɜɢɟ ɩɨɫɥɟɞɧɟɝɨ ɩɪɢɜɨɞɢɬ ɤ ɢɫɤɪɢɜɥɟɧɢɸ ɫɬɪɭɢ. ɇɚ ɧɟɤɨɬɨɪɨɣ ɜɵɫɨɬɟ (ɇ+'ɇ) ɜɥɢɹɧɢɟ ɫɧɨɫɹɳɟɝɨ ɩɨɬɨɤɚ ɫɬɚɧɨɜɢɬɫɹ ɩɪɟɨɛɥɚɞɚɸɳɢɦ, ɫɬɪɭɹ ɪɚɡɜɨɪɚɱɢɜɚɟɬɫɹ, ɨɫɶ ɟɟ ɫɬɚɧɨɜɢɬɫɹ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ. Ɏɚɤɟɥ ɞɚɥɟɟ ɩɪɢɨɛɪɟɬɚɟɬ ɮɨɪɦɭ ɩɚɪɚɛɨɥɨɢɞɚ ɫ ɜɟɪɲɢɧɨɣ ɜ ɬɨɱɤɟ Ɋ, ɜ ɤɨɬɨɪɨɣ ɪɚɡɦɟɳɚɸɬ ɮɢɤɬɢɜɧɵɣ ɢɫɬɨɱɧɢɤ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɪɟɚɥɶɧɚɹ ɤɚɪɬɢɧɚ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɡɚɝɪɹɡɧɟɧɢɣ ɡɚɦɟɧɹɟɬɫɹ ɮɚɤɟɥɨɦ ɨɬ ɮɢɤɬɢɜɧɨɝɨ ɢɫɬɨɱɧɢɤɚ, ɪɚɫɩɨɥɨɠɟɧɧɵɦ ɧɚ ɜɵɫɨɬɟ (ɇ+'ɇ). ȼɟɪɲɢɧɚ ɩɚɪɚɛɨɥɨɢɞɚ ɧɟ ɨɛɹɡɚɬɟɥɶɧɨ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɧɚɞ ɰɟɧɬɪɨɦ ɬɪɭɛɵ, ɨɞɧɚɤɨ ɜɨɡɦɨɠɧɨɟ ɫɦɟɳɟɧɢɟ ɧɟ ɭɱɢɬɵɜɚɸɬ, ɩɨɥɚɝɚɹ, ɱɬɨ ɢɫɬɨɱɧɢɤ ɧɚɯɨɞɢɬɫɹ ɜ ɬɨɱɤɟ P(x = 0, y = 0, z = H + 'H). ɉɪɟɜɵɲɟɧɢɟ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɨɫɢ ɮɚɤɟɥɚ ɧɚɞ ɭɫɬɶɟɦ ɬɪɭɛɵ ɡɚɜɢɫɢɬ ɨɬ ɭɫɥɨɜɢɣ ɢɫɬɟɱɟɧɢɹ ɝɚɡɨɜɨɡɞɭɲɧɨɣ ɫɦɟɫɢ ɢ ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ u: 'H = 0,75(w0.D0/u)[2,5 + 1,65 g.D0.'T/(T..u2)]. (4.15) Ɂɞɟɫɶ w0 - ɫɤɨɪɨɫɬɶ ɢɫɬɟɱɟɧɢɹ, ɦ/ɫ; D0 - ɞɢɚɦɟɬɪ ɭɫɬɶɹ ɬɪɭɛɵ, ɦ; Ɍ = Ɍ0 – Ɍɚɬ - ɪɚɡɧɨɫɬɶ ɬɟɦɩɟɪɚɬɭɪ ɝɚɡɨɜɨɡɞɭɲɧɨɣ ɫɦɟɫɢ ɧɚ ɜɵɯɨɞɟ ɢɡ ɬɪɭɛɵ T0 ɢ ɚɬɦɨɫɮɟɪɧɨɝɨ ɜɨɡɞɭɯɚ T ɚɬ ɥɟɬɨɦ, Ʉ. Ɏɚɤɟɥ, ɪɚɫɲɢɪɹɹɫɶ, ɞɨɫɬɢɝɚɟɬ ɡɟɦɥɢ (ɬɨɱɤɚ Ⱥ), ɜ ɧɟɤɨɬɨɪɨɣ ɬɨɱɤɟ Ɇ(ɯM) ɩɪɢɡɟɦɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɞɨɫɬɢɝɚɟɬ ɦɚɤɫɢɦɭɦɚ ɋM, ɫɬɪɟɦɹɫɶ ɡɚɬɟɦ ɤ ɧɭɥɸ ɧɚ ɭɞɚɥɟɧɢɢ (ɤɪɢɜɚɹ 1). ɍɫɥɨɜɢɹ ɢɫɬɟɱɟɧɢɹ ɝɚɡɨɜɨɡɞɭɲɧɨɣ ɫɦɟɫɢ ɞɨɥɠɧɵ ɛɵɬɶ ɬɚɤɢɦɢ, ɱɬɨɛɵ ɦɚɤɫɢɦɚɥɶɧɚɹ ɩɪɢɡɟɦɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɧɟ ɩɪɟɜɵɲɚɥɚ ɦɚɤɫɢɦɚɥɶɧɨɣ ɪɚɡɨɜɨɣ ɉȾɄ. Ɂɧɚɱɟɧɢɟ ɋM ɫɥɨɠɧɵɦ ɨɛɪɚɡɨɦ ɡɚɜɢɫɢɬ ɨɬ ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ. ɉɪɢ ɭɜɟɥɢɱɟɧɢɢ ɩɨɫɥɟɞɧɟɣ ɭɦɟɧɶɲɚɟɬɫɹ 'ɇ, ɬɨ ɟɫɬɶ ɮɚɤɟɥ ɩɪɢɠɢɦɚɟɬɫɹ ɤ ɡɟɦɥɟ, ɱɬɨ ɫɩɨɫɨɛɫɬɜɭɟɬ ɜɨɡɪɚɫɬɚɧɢɸ ɤɨɧɰɟɧɬɪɚɰɢɣ ɧɚ ɟɟ ɩɨɜɟɪɯɧɨɫɬɢ. ɋ ɞɪɭɝɨɣ ɫɬɨɪɨɧɵ ɭɜɟɥɢɱɟɧɢɟ ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ ɭɫɢɥɢɜɚɟɬ ɩɪɨɰɟɫɫ ɪɚɫɫɟɢɜɚɧɢɹ ɮɚɤɟɥɚ ɜ ɜɟɪɬɢɤɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɭɦɟɧɶɲɟɧɢɸ ɤɨɧɰɟɧɬɪɚɰɢɣ. ɋɭɳɟɫɬɜɭɟɬ "ɨɩɚɫɧɚɹ" ɫɤɨɪɨɫɬɶ ɜɟɬɪɚ uM , ɩɪɢ ɤɨɬɨɪɨɣ ɋM ɦɚɤɫɢɦɚɥɶɧɚ. ȼɵɲɟ ɡɨɧɵ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɣ ɬɟɧɢ ɫɨɡɞɚɺɬɫɹ ɨɛɥɚɫɬɶ ɜɨɡɦɭɳɟɧɧɨɝɨ ɩɨɬɨɤɚ (ɩɪɨɦɟɠɭɬɨɱɧɚɹ ɡɨɧɚ), ɞɥɹ ɤɨɬɨɪɨɣ ɯɚɪɚɤɬɟɪɧɚ ɩɨɜɵɲɟɧɧɚɹ ɬɭɪɛɭɥɟɧɬɧɚɹ ɞɢɮɮɭɡɢɹ. ȼɵɛɪɨɫɵ ɢɡ ɩɪɨɦɟɠɭɬɨɱɧɵɯ ɢɫɬɨɱɧɢɤɨɜ, ɩɨɩɚɞɚɸɳɢɟ ɜ ɨɛɥɚɫɬɶ ɜɨɡɦɭɳɟɧɧɵɯ ɩɨɬɨɤɨɜ ɧɚɞ ɡɨɧɨɣ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɣ ɬɟɧɢ, ɪɚɫɫɟɢɜɚɸɬɫɹ ɬɚɤ ɠɟ, ɤɚɤ ɨɬ ɜɵɫɨɤɢɯ ɬɪɭɛ. Ɉɞɧɚɤɨ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɨɣ ɜɟɪɬɢɤɚɥɶɧɨɣ ɞɢɮɮɭɡɢɢ ɧɢɠɧɹɹ ɱɚɫɬɶ ɮɚɤɟɥɚ ɦɨɠɟɬ ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɡɚɬɹɝɢɜɚɬɶɫɹ ɜɧɭɬɪɶ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɣ ɬɟɧɢ, ɜɵɡɵɜɚɹ ɟɺ ɞɨɩɨɥɧɢɬɟɥɶɧɨɟ ɡɚɝɪɹɡɧɟɧɢɟ, ɬɚɤ ɠɟ ɤɚɤ ɢ ɨɬ ɧɢɡɤɢɯ ɢɫɬɨɱɧɢɤɨɜ. ɉɨ ɦɟɪɟ ɭɞɚɥɟɧɢɹ ɨɬ ɧɢɡɤɨɝɨ ɢɫɬɨɱɧɢɤɚ ɤɨɧɰɟɧɬɪɚɰɢɹ ɩɪɢɦɟɫɟɣ ɜ ɚɬɦɨɫɮɟɪɧɨɦ ɜɨɡɞɭɯɟ ɪɟɡɤɨ ɫɧɢɠɚɟɬɫɹ. ɉɪɨɦɟɠɭɬɨɱɧɵɟ ɢɫɬɨɱɧɢɤɢ, ɬɚɤɠɟ ɤɚɤ ɢ ɜɵɫɨɤɢɟ, ɫɨɡɞɚɸɬ ɦɚɤɫɢɦɚɥɶɧɭɸ ɩɪɢɡɟɦɧɭɸ ɤɨɧɰɟɧɬɪɚɰɢɸ ɧɚ ɪɚɫɫɬɨɹɧɢɢ 10…40 ɜɵɫɨɬ ɬɪɭɛɵ ɢ ɨɞɧɨɜɪɟɦɟɧɧɨ ɧɢɠɧɢɦ ɲɥɟɣɮɨɦ ɜɵɛɪɚɫɵɜɚɟɦɨɝɨ ɮɚɤɟɥɚ ɡɚɝɪɹɡɧɹɸɬ ɡɨɧɭ ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɨɣ ɬɟɧɢ, ɝɞɟ ɦɨɝɭɬ ɫɨɡɞɚɜɚɬɶɫɹ ɜɵɫɨɤɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ. ɇɚɢɛɨɥɟɟ ɭɧɢɜɟɪɫɚɥɶɧɵɦ ɦɟɬɨɞɨɦ ɢɡɭɱɟɧɢɹ ɡɚɤɨɧɨɦɟɪɧɨɫɬɟɣ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɩɪɢɦɟɫɟɣ ɜ ɚɬɦɨɫɮɟɪɧɨɦ ɜɨɡɞɭɯɟ ɹɜɥɹɟɬɫɹ ɦɚɬɟɦɚɬɢɱɟɫɤɨɟ ɨɩɢɫɚɧɢɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɫ ɩɨɦɨɳɶɸ ɪɟɲɟɧɢɹ ɭɪɚɜɧɟɧɢɹ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɢ, ɤɨɬɨɪɵɟ ɩɨɡɜɨɥɹɸɬ ɜɵɱɢɫɥɢɬɶ ɭɪɨɜɟɧɶ ɡɚɝɪɹɡɧɟɧɢɹ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɦɟɬɟɨɪɨɥɨɝɢɱɟɫɤɢɯ ɭɫɥɨɜɢɣ ɢ ɪɟɠɢɦɚ ɜɵɛɪɨɫɚ ɢɫɬɨɱɧɢɤɚ. 4.3. ɂɡɦɟɧɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢɦɟɫɟɣ ɜ ɚɬɦɨɫɮɟɪɟ Ɋɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɜ ɚɬɦɨɫɮɟɪɟ ɜɵɛɪɚɫɵɜɚɟɦɵɯ ɢɡ ɜɵɫɨɤɢɯ ɢɫɬɨɱɧɢɤɨɜ (ɬɪɭɛ) ɡɚɝɪɹɡɧɹɸɳɢɯ ɜɟɳɟɫɬɜ ɩɨɞɱɢɧɹɟɬɫɹ ɡɚɤɨɧɚɦ ɬɭɪɛɭɥɟɧɬɧɨɣ ɞɢɮɮɭɡɢɢ. ɇɚ ɩɪɨɰɟɫɫ ɪɚɫɫɟɢɜɚɧɢɹ ɜɵɛɪɨɫɨɜ ɫɭɳɟɫɬɜɟɧɧɨɟ ɜɥɢɹɧɢɟ ɨɤɚɡɵɜɚɟɬ ɫɨɫɬɨɹɧɢɟ ɚɬɦɨɫɮɟɪɵ, ɪɚɫɩɨɥɨɠɟɧɢɟ ɩɪɟɞɩɪɢɹɬɢɣ, ɯɚɪɚɤɬɟɪ ɦɟɫɬɧɨɫɬɢ, ɮɢɡɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɜɵɛɪɨɫɨɜ, ɜɵɫɨɬɚ ɬɪɭɛɵ, ɞɢɚɦɟɬɪ ɟɟ ɭɫɬɶɹ ɢ ɞɪ. Ƚɨɪɢɡɨɧɬɚɥɶɧɨɟ ɩɟɪɟɦɟɳɟɧɢɟ ɩɪɢɦɟɫɟɣ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɫɤɨɪɨɫɬɶɸ ɜɟɬɪɚ, ɚ ɜɟɪɬɢɤɚɥɶɧɨɟ - ɪɚɫɩɪɟɞɟɥɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪ ɜ ɜɟɪɬɢɤɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ. ɇɚ ɪɢɫ. 4.2 ɩɨɤɚɡɚɧɨ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɚɬɦɨɫɮɟɪɟ ɨɬ ɨɪɝɚɧɢɡɨɜɚɧɧɨɝɨ ɜɵɫɨɤɨɝɨ ɢɫɬɨɱɧɢɤɚ ɜɵɛɪɨɫɨɜ. ɉɨ ɦɟɪɟ ɭɞɚɥɟɧɢɹ ɨɬ ɬɪɭ6ɵ ɜ ɧɚɩɪɚɜɥɟɧɢɢ, ɫɨɜɩɚɞɚɸɳɢɦ ɫ ɧɚɩɪɚɜɥɟɧɢɟɦ ɜɟɬɪɚ, ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɪɟɞɧɵɯ ɩɪɢɦɟɫɟɣ ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɚɬɦɨɫɮɟɪɵ ɫɧɚɱɚɥɚ ɧɚɪɚɫɬɚɟɬ, ɞɨɫɬɢɝɚɟɬ ɦɚɤɫɢɦɭɦɚ ɧɚ ɪɚɫɫɬɨɹɧɢɢ 10…40 ɜɵɫɨɬ ɬɪɭɛɵ ɢ ɡɚɬɟɦ ɦɟɞɥɟɧɧɨ ɭɛɵɜɚɟɬ, ɱɬɨ ɩɨɡɜɨɥɹɟɬ ɝɨɜɨɪɢɬɶ ɨ ɧɚɥɢɱɢɢ ɬɪɟɯ ɡɨɧ ɧɟɨɞɢɧɚɤɨɜɨɝɨ ɡɚɝɪɹɡɧɟɧɢɹ ɚɬɦɨɫɮɟɪɵ: ɡɨɧɵ ɩɟɪɟɛɪɨɫɚ ɮɚɤɟɥɚ ɜɵɛɪɨɫɨɜ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɚɹɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɟɜɵɫɨɤɢɦ ɫɨɞɟɪɠɚɧɢɟɦ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɚɬɦɨɫɮɟɪɵ, ɡɨɧɵ ɡɚɞɵɦɥɟɧɢɹ ɫ ɦɚɤɫɢɦɚɥɶɧɵɦ ɫɨɞɟɪɠɚɧɢɟɦ ɜɪɟɞɧɵɯ ɜɟɳɟɫɬɜ ɢ ɡɨɧɵ ɩɨɫɬɟɩɟɧɧɨɝɨ ɫɧɢɠɟɧɢɹ ɭɪɨɜɧɹ ɡɚɝɪɹɡɧɟɧɢɹ. ɋɆ, ɦɝ/ɦ 3 ɇɚɩɪɚɜɥɟɧɢɟ ɜɟɬɪɚ Ⱦɵɦɨɜɨɣ ɮɚɤɟɥ ɇmin ɋɆ Ɂɨɧɚ ɧɟɨɪɝɚɧɢɡɨɜɚɧɧɨɝɨ ɡɚɝɪɹɡɧɟɧɢɹ Ɂɨɧɚ ɩɟɪɟɛɨɫɚ ɮɚɤɟɥɚ d ɉȾɄɆ.Ɋ . ɏɆ = 10-40ɇvin Ɂɨɧɚ ɡɚɞɵɦɥɟɧɢɹ ɏɆ Ɂɨɧɚ ɫɧɢɠɟɧɢɹ ɭɪɨɜɧɹ ɡɚɝɪɹɡɧɟɧɢɹ Ɋɢɫ. 4.2. ɂ ɡɦɟɧ ɟɧɢɟ ɩɪɢɡɟɦɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢɦɟɫɢ ɜ ɚɬɦɨɫɮɟɪɟ ɨɬ ɨɪɝɚɧɢ ɡɨɜɚɧɧɨɝɨ ɜɵɫɨɤɨɝɨ ɢɫɬɨɱɧɢ ɤɚ ɜɵɛɪɨɫɚ. - ɨ ɛɥɚɫɬɶ ɪɚ ɫɩɪɨɫɬɪ ɚɧɟ ɧɢɹ ɡɚɝɪɹɡɧɟɧɢɹ; - ɡɨɧɚ ɚɷɪɨɞɢɧɚɦ ɢɱɟɫɤɨɣ ɬɟɧɢ (ɰɢɪɤɭɥɹɰɢɨ ɧɧɚɹ ɡɨɧɚ); - ɜɟɪɯɧɹɹ ɝɪɚɧɢɰɚ ɩɪɨɦɟɠɭɬɨɱɧɨɣ ɡɨɧɵ. Ⱦɥɹ ɪɟɲɟɧɢɹ ɩɪɚɤɬɢɱɟɫɤɢɯ ɡɚɞɚɱ, ɩpɟɠɞɟ ɜɫɟɝɨ ɪɚɫɱɟɬɚ ɜɟɥɢɱɢɧ ɉȾB, ɧɚɢɛɨɥɶɲɢɣ ɢɧɬɟɪɟɫ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɥɭɱɚɢ ɞɨɫɬɢɠɟɧɢɹ ɩɪɢ ɞɚɧɧɵɯ ɩɚɪɚɦɟɬɪɚɯ ɧɚɢɛɨɥɟɟ ɜɵɫɨɤɢɯ ɭɪɨɜɧɟɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢɦɟɫɢ ɜ ɩɪɢɡɟɦɧɨɦ ɫɥɨɟ ɜɨɡɞɭɯɚ, ɚ ɬɚɤɠɟ ɪɚɫɱɟɬ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɦɢɧɢɦɚɥɶɧɵɯ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɦɟɬɟɨɪɨɥɨɝɢɱɟɫɤɨɝɨ ɪɚɡɛɚɜɥɟɧɢɹ. ȼ ɨɫɧɨɜɭ ɪɚɫɱɟɬɚ ɛɟɪɭɬɫɹ ɷɬɢ ɭɪɚɜɧɟɧɢɹ ɜ ɭɩɪɨɳɟɧɧɨɦ ɜɢɞɟ. Ɋɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (4.4) ɩɪɢ ɫɮɨɪɦɭɥɢɪɨɜɚɧɧɵɯ ɜɵɲɟ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɹɯ, ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɡɚɜɢɫɢɦɨɫɬɟɣ (4.12)-(4.14), ɩɪɢɜɨɞɢɬ ɤ ɫɥɟɞɭɸɳɟɦɭ ɭɪɚɜɧɟɧɢɸ ɞɥɹ ɦɚɤɫɢɦɚɥɶɧɨɣ ɩɪɢɡɟɦɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢ ɧɟɛɥɚɝɨɩɪɢɹɬɧɵɯ ɦɟɬɟɨɪɨɥɨɝɢɱɟɫɤɢɯ ɭɫɥɨɜɢɹɯ: CM = A.M.F.K.m.n/[H2(V.'T)1/3], (4.16) ɝɞɟ Ⱥ - ɩɚɪɚɦɟɬɪ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɣ ɩɟɪɟɧɨɫɧɵɟ ɫɜɨɣɫɬɜɚ ɚɬɦɨɫɮɟɪɵ (ɧɚ ɬɟɪɪɢɬɨɪɢɢ ɋɇȽ ɡɧɚɱɟɧɢɹ Ⱥ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɪɚɣɨɧɨɜ ɢɡɦɟɧɹɸɬɫɹ ɜ ɞɢɚɩɚɡɨɧɟ 140…250 (ɫ2/3.ɦɝ/Ʉ1/3.ɝ); Ɇ - ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɢɫɬɨɱɧɢɤɚ ɩɪɢɦɟɫɢ, ɝ/ɫ; V = SD02w0/4 - ɨɛɴɟɦɧɵɣ ɪɚɫɯɨɞ ɝɚɡɨɜɨɡɞɭɲɧɨɣ ɫɦɟɫɢ, ɦ3/ɫ; F - ɛɟɡɪɚɡɦɟɪɧɵɣ ɦɧɨɠɢɬɟɥɶ, ɭɱɢɬɵɜɚɸɳɢɣ ɨɫɟɞɚɧɢɟ ɡɚɝɪɹɡɧɢɬɟɥɹ ɜ ɚɬɦɨɫɮɟɪɟ (ɞɥɹ ɝɚɡɨɨɛɪɚɡɧɵɯ ɜɟɳɟɫɬɜ ɢ ɦɟɥɤɨɞɢɫɩɟɪɫɧɵɯ ɚɷɪɨɡɨɥɟɣ, ɫɤɨɪɨɫɬɶ ɨɫɟɞɚɧɢɹ ɤɨɬɨɪɵɯ ɩɪɚɤɬɢɱɟɫɤɢ ɪɚɜɧɚ ɧɭɥɸ, F = 1; ɞɥɹ ɢɧɵɯ ɚɷɪɨɡɨɥɟɣ F = 2 ɩɪɢ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ ɜɵɛɪɨɫɨɜ H ɧɟ ɦɟɧɟɟ 90%; F = 2,5 ɩɪɢ H = 75…90% ɢ F = 3 ɩɪɢ H = 0…75%); K - ɛɟɡɪɚɡɦɟɪɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ, ɭɱɢɬɵɜɚɸɳɢɣ ɜɥɢɹɧɢɟ ɪɟɥɶɟɮɚ (ɜ ɫɥɭɱɚɟ ɪɨɜɧɨɣ ɦɟɫɬɧɨɫɬɢ ɢɥɢ ɦɟɫɬɧɨɫɬɢ ɫ ɩɟɪɟɩɚɞɨɦ ɜɵɫɨɬ, ɧɟ ɩɪɟɜɵɲɚɸ- ɳɢɦ 50 ɦ ɧɚ 1 ɤɦ, K = 1); m ɢ n - ɤɨɷɮɮɢɰɢɟɧɬɵ, ɡɧɚɱɟɧɢɹ ɤɨɬɨɪɵɯ ɡɚɜɢɫɹɬ ɨɬ ɩɚɪɚɦɟɬɪɨɜ VM = 0,65(V.'T/H)1/2, ɦ/ɫ (4.17); f = 1000(w02.D0/H2.'T), ɦ /(ɫ2.Ʉ) (4.18), ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɯ ɭɫɥɨɜɢɹ ɢɫɬɟɱɟɧɢɹ ɝɚɡɨɜɨɡɞɭɲɧɨɣ ɫɦɟɫɢ ɢ ɧɚɯɨɞɹɬɫɹ ɩɨ ɝɪɚɮɢɤɚɦ ɧɚ ɪɢɫ.4.3. Ɋɢɫ. 4.3ɚ. Ɂɚɜɢɫɢɦɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ m ɨɬ ɭɫɥɨɜɢɹ ɢɫɬɟɱɟɧɢɹ f. Ⱦɥɹ ɦɚɥɨɦɨɳɧɵɯ ɫɥɚɛɨ ɧɚɝɪɟɬɵɯ (ɯɨɥɨɞɧɵɯ) ɜɵɛɪɨɫɨɜ, ɤ ɤɨɬɨɪɵɦ ɨɬɧɨɫɹɬɫɹ ɛɨɥɶɲɢɧɫɬɜɨ ɜɟɧɬɢɥɹɰɢɨɧɧɵɯ ɜɵɛɪɨɫɨɜ, ɪɚɫɱɟɬ ɦɚɤɫɢɦɚɥɶɧɨɣ ɩɪɢɡɟɦɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢ "ɨɩɚɫɧɨɣ" ɫɤɨɪɨɫɬɢ ɜɟɬɪɚ ɜɟɞɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ CM = A M F n K D0/(8 H4/3.V), (4.19) . 1/3 ɝɞɟ Ⱥ - ɩɚɪɚɦɟɬɪ, ɢɦɟɸɳɢɣ ɪɚɡɦɟɪɧɨɫɬɶ ɦɝ ɦ /ɝ ɢ ɪɚɜɧɵɣ ɩɨ ɜɟɥɢɱɢɧɟ ɩɚɪɚɦɟɬɪɭ Ⱥ ɜ ɮɨɪɦɭɥɟ (4.16). Ɂɧɚɱɟɧɢɟ ɛɟɡɪɚɡɦɟɪɧɨɝɨ ɦɧɨɠɢɬɟɥɹ n ɬɚɤɠɟ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɪɢɫ. 4.3ɛ, ɧɨ ɩɚɪɚɦɟɬɪ Vɦ ɜɵɱɢɫɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ VM = 1,3 (w0.D0/H), ɦ/ɫ. (4.20) Ɋɢɫ. 4.3ɛ. Ɂɚɜɢɫɢɦɨɫɬɶ ɦɧɨɠɢɬɟɥɹ n ɨɬ ɩɚɪɚɦɟɬɪɚ VM Ɋɚɫɫɬɨɹɧɢɟ, ɧɚ ɤɨɬɨɪɨɦ ɞɨɫɬɢɝɚɟɬɫɹ ɦɚɤɫɢɦɚɥɶɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɡɟɦɥɢ, ɧɚɯɨɞɢɬɫɹ ɢɡ ɫɨɨɬɧɨɲɟɧɢɹ XM = (5 - F).d.H/4, (4.21) ɝɞɟ d - ɛɟɡɪɚɡɦɟɪɧɵɣ ɦɧɨɠɢɬɟɥɶ, ɡɧɚɱɟɧɢɟ ɤɨɬɨɪɨɝɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɪɢɫ. 4.4ɚ ɢ 4.4ɛ (ɧɚɝɪɟɬɵɟ ɜɵɛɪɨɫɵ) ɢ ɪɢɫ. 4.5 (ɯɨɥɨɞɧɵɟ ɜɵɛɪɨɫɵ). Ɋɢɫ. 4.4,ɚ. Ɂɚɜɢɫɢɦɨɫɬɶ ɦɧɨɠɢɬɟɥɹ d ɨɬ ɩɚɪɚɦɟɬɪɚ VM ɞɥɹ ɧɚɝɪɟɬɵɯ ɜɵɛɪɨɫɨɜ. Ɋɢɫ. 4.4,ɛ. Ɂɚɜɢɫɢɦɨɫɬɶ ɦɧɨɠɢɬɟɥɹ d ɨɬ ɩɚɪɚɦɟɬɪɚ VM ɞɥɹ ɧɚɝɪɟɬɵɯ ɜɵɛɪɨɫɨɜ. Ɋɢɫ. 4.5. Ɂɚɜɢɫɢɦɨɫɬɶ ɦɧɨɠɢɬɟɥɹ d ɨɬ ɩɚɪɚɦɟɬɪɚ VM ɞɥɹ ɯɨɥɨɞɧɵɯ ɜɵɛɪɨɫɨɜ. Ɂɧɚɱɟɧɢɹ ɩɪɢɡɟɦɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ ɜ ɩɪɨɢɡɜɨɥɶɧɵɯ ɬɨɱɤɚɯ ɧɚ ɨɫɢ Ɉɯ ɩɨɞɫɱɢɬɵɜɚɸɬɫɹ ɩɨ ɮɨɪɦɭɥɟ C = s1.CM, (4.22) ɝɞɟ s1 - ɛɟɡɪɚɡɦɟɪɧɵɣ ɦɧɨɠɢɬɟɥɶ, ɨɩɪɟɞɟɥɹɟɦɵɣ ɩɨ ɪɢɫ. 4.6. Ɋɢɫ. 4.6. Ɂɚɜɢɫɢɦɨɫɬɶ ɦɧɨɠɢɬɟɥɹ s1 ɨɬ ɫɨɨɬɧɨɲɟɧɢɹ x/XM. ɉɪɢɡɟɦɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɬɨɱɤɚɯ ɫ ɤɨɨɪɞɢɧɚɬɚɦɢ ɯ, ɭ ɧɚɯɨɞɹɬɫɹ ɩɨ ɮɨɪɦɭɥɟ Cy = s2.C, (4.23) ɝɞɟ s2 - ɤɨɷɮɮɢɰɢɟɧɬ, ɜɟɥɢɱɢɧɚ, ɤɨɬɨɪɨɝɨ ɧɚɯɨɞɢɬɫɹ ɩɨ ɪɢɫ. 4.7, ɝɞɟ t = u(y/x)2 ɩɪɢ u d 5 ɦ/ɫ; t = 5(y/x)2 ɩɪɢ u > 5ɦ/ɫ. Ɋɢɫ. 4.7. Ɂɚɜɢɫɢɦɨɫɬɶ ɤɨɷɮɮɢɰɢɟɧɬɚ s2 ɨɬ ɩɚɪɚɦɟɬɪɚ t. Ɏɨɪɦɭɥɵ (4.16), (4.19) ɞɚɸɬ ɜɨɡɦɨɠɧɨɫɬɶ ɪɚɫɫɱɢɬɚɬɶ ɧɟɨɛɯɨɞɢɦɭɸ ɜɵɫɨɬɭ ɜɵɛɪɨɫɚ ɇ, ɟɫɥɢ ɢɡɜɟɫɬɧɵ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɢɫɬɨɱɧɢɤɚ ɩɪɢɦɟɫɢ ɢ ɭɫɥɨɜɢɹ ɢɫɬɟɱɟɧɢɹ ɝɚɡɨɜɨɡɞɭɲɧɨɣ ɫɦɟɫɢ. ɉɨɥɚɝɚɹ ɋM = ɉȾɄ, ɩɨɥɭɱɚɟɦ: ɞɥɹ 'T ! 0 - ɧɚɝɪɟɬɵɟ ɜɵɛɪɨɫɵ (4.24) H = [A.M.F.m.n.K/(ɉȾɄ.V1/3.'T1/3)]1/3; ɞɥɹ 'T | 0 – ɯɨɥɨɞɧɵɟ ɜɵɛɪɨɫɵ H = [A.M.F.D0/(8 V.ɉȾɄ)]3/4. (4.25) ɉɨɫɤɨɥɶɤɭ ɡɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ m ɢ n ɡɚɜɢɫɹɬ ɨɬ ɇ, ɡɚɞɚɱɚ ɪɟɲɚɟɬɫɹ ɩɭɬɟɦ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɯ ɩɪɢɛɥɢɠɟɧɢɣ, ɬɨ ɟɫɬɶ ɩɨɞɛɨɪɨɦ ɢɳɭɬɫɹ ɡɧɚɱɟɧɢɹ ɇ, ɩɪɢ ɤɨɬɨɪɵɯ ɭɪɚɜɧɟɧɢɹ (4.24), (4.25) ɛɭɞɭɬ ɭɞɨɜɥɟɬɜɨɪɹɬɶɫɹ. ɉɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɟ ɜɵɛɪɨɫɵ (ɉȾȼ) ɜ ɚɬɦɨɫɮɟɪɭ ɬɚɤɠɟ ɦɨɝɭɬ ɛɵɬɶ ɪɚɫɫɱɢɬɚɧɵ ɫ ɩɨɦɨɳɶɸ ɭɪɚɜɧɟɧɢɣ (4.16), (4.19). ɉɨɥɚɝɚɹ ɜ ɧɢɯ ɋM = ɉȾɄ, Ɇ = ɉȾȼ, ɧɚɯɨɞɢɦ: - ɧɚɝɪɟɬɵɟ ɜɵɛɪɨɫɵ ɉȾȼ = ɉȾɄ.H2(V. 'T)1/2/(A.F.m.n.K); (4.26) - ɯɨɥɨɞɧɵɟ ɜɵɛɪɨɫɵ ɉȾȼ = [ɉȾɄ.H4/3/(A.F.n.K)](8 V/D0). (4.27) ȼ ɮɨɪɦɭɥɚɯ (4.24)-(4.27) ɮɢɝɭɪɢɪɭɟɬ ɦɚɤɫɢɦɚɥɶɧɨ ɪɚɡɨɜɨɟ ɡɧɚɱɟɧɢɟ ɉȾɄ. Ɏɨɪɦɭɥɚ (4.21) ɩɨɡɜɨɥɹɟɬ ɨɩɪɟɞɟɥɢɬɶ ɝɪɚɧɢɰɵ ɫɚɧɢɬɚɪɧɨ-ɡɚɳɢɬɧɨɣ ɡɨɧɵ (ɋɁɁ) ɩɪɟɞɩɪɢɹɬɢɹ. Ɋɚɡɦɟɪɵ ɋɁɁ ɜɵɱɢɫɥɹɸɬɫɹ ɫ ɭɱɟɬɨɦ ɫɪɟɞɧɟɝɨɞɨɜɨɣ ɩɨɜɬɨɪɹɟɦɨɫɬɢ ɧɚɩɪɚɜɥɟɧɢɹ ɜɟɬɪɨɜ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɝɨ ɪɭɦɛɚ Ɋ (%): l = xM(P/P0), (4.28) ɝɞɟ Ɋ0 - ɩɨɜɬɨɪɹɟɦɨɫɬɶ ɧɚɩɪɚɜɥɟɧɢɣ ɜɟɬɪɨɜ ɨɞɧɨɝɨ ɪɭɦɛɚ ɩɪɢ ɤɪɭɝɨɜɨɣ ɪɨɡɟ ɜɟɬɪɨɜ, %. ɇɚɩɪɢɦɟɪ, ɩɪɢ ɜɨɫɶɦɢɪɭɦɛɨɜɨɣ ɪɨɡɟ ɜɟɬɪɨɜ Ɋ0 = 100/8 = 12,5%. ɂɡɥɨɠɟɧɧɚɹ ɦɟɬɨɞɢɤɚ ɪɚɫɱɟɬɚ ɫɩɪɚɜɟɞɥɢɜɚ ɞɥɹ ɧɟɛɥɚɝɨɩɪɢɹɬɧɵɯ ɦɟɬɟɨɪɨɥɨɝɢɱɟɫɤɢɯ ɭɫɥɨɜɢɣ, ɤɨɝɞɚ ɬɭɪɛɭɥɟɧɬɧɵɣ ɩɟɪɟɧɨɫ ɜ ɜɟɪɬɢɤɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɦɚɤɫɢɦɚɥɟɧ. Ɍɚɤɚɹ ɫɢɬɭɚɰɢɹ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɛɨɥɶɲɢɦ ɨɬɪɢɰɚɬɟɥɶɧɵɦ (ɫɜɟɪɯɚɞɢɚɛɚɬɢɱɟɫɤɢɦ) ɝɪɚɞɢɟɧɬɚɦ ɬɟɦɩɟɪɚɬɭɪ, ɫɩɨɫɨɛɫɬɜɭɸɳɢɦ ɪɚɡɜɢɬɢɸ ɟɫɬɟɫɬɜɟɧɧɨɣ ɤɨɧɜɟɤɰɢɢ. Ɇɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɩɪɢɡɟɦɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɜɵɲɟ, ɱɟɦ ɩɪɢ ɪɚɜɧɨɜɟɫɧɨɦ ɫɨɫɬɨɹɧɢɢ ɚɬɦɨɫɮɟɪɵ ɢɥɢ ɩɪɢ ɮɨɪɦɢɪɨɜɚɧɢɢ ɢɧɜɟɪɫɢɨɧɧɨɝɨ ɫɥɨɹ. ɇɚɥɢɱɢɟ ɦɟɫɬɧɵɯ ɚɧɨɦɚɥɢɣ ɞɚɜɥɟɧɢɹ ɢ ɬɟɦɩɟɪɚɬɭɪɵ, ɫɜɹɡɚɧɧɵɯ ɫ ɜɥɢɹɧɢɟɦ ɪɚɡɥɢɱɧɵɯ ɮɚɤɬɨɪɨɜ (ɨɛɬɟɤɚɧɢɟ ɩɪɟɩɹɬɫɬɜɢɣ ɜɟɬɪɨɜɵɦ ɩɨɬɨɤɨɦ, ɝɨɪɢɡɨɧɬɚɥɶɧɵɟ ɝɪɚɞɢɟɧɬɵ ɬɟɦɩɟɪɚɬɭɪɵ, ɩɪɨɰɟɫɫɵ ɢɫɩɚɪɟɧɢɹ ɢ ɞɪ.) ɦɨɠɟɬ ɫɭɳɟɫɬɜɟɧɧɨ ɜɥɢɹɬɶ ɧɚ ɮɨɪɦɭ ɮɚɤɟɥɚ ɢ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɣ. ɋɨɜɟɪɲɟɧɧɨ ɢɧɚɱɟ ɩɪɨɢɫɯɨɞɢɬ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɩɪɢɦɟɫɢ ɨɬ ɧɢɡɤɢɯ ɢɫɬɨɱɧɢɤɨɜ, ɤɨɬɨɪɵɟ ɧɚɯɨɞɹɬɫɹ ɜ ɜɢɯɪɟɜɵɯ (ɨɬɪɵɜɧɵɯ) ɡɨɧɚɯ, ɨɛɪɚɡɭɸɳɢɯɫɹ ɩɪɢ ɨɛɬɟɤɚɧɢɢ ɡɞɚɧɢɣ ɢ ɫɨɨɪɭɠɟɧɢɣ ɜɟɬɪɨɦ. ɉɪɢɦɟɫɶ ɜɨɜɥɟɤɚɟɬɫɹ ɜ ɰɢɪɤɭ- ɥɹɰɢɨɧɧɨɟ ɞɜɢɠɟɧɢɟ, ɤɨɧɰɟɧɬɪɚɰɢɹ ɟɟ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɞɨ ɬɨɝɨ ɦɨɦɟɧɬɚ, ɤɨɝɞɚ ɬɭɪɛɭɥɟɧɬɧɵɣ ɩɟɪɟɧɨɫ ɱɟɪɟɡ ɝɪɚɧɢɰɭ ɜɢɯɪɟɜɨɣ ɡɨɧɵ ɭɪɚɜɧɨɜɟɫɢɬ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɢɫɬɨɱɧɢɤɚ ɩɪɢɦɟɫɢ. Ⱦɚɥɟɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɣ ɜ ɜɢɯɪɟɜɨɣ ɡɨɧɟ ɫɬɚɰɢɨɧɚɪɧɨ. Ɋɚɡɞɟɥ 5. Ɂɚɳɢɬɚ ɝɢɞɪɨɫɮɟɪɵ 5.1. Ƚɢɞɪɨɦɟɯɚɧɢɱɟɫɤɢɟ ɫɩɨɫɨɛɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ⱦɥɹ ɭɞɚɥɟɧɢɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɩɟɪɢɨɞɢɱɟɫɤɢɟ ɢ ɧɟɩɪɟɪɵɜɧɵɟ ɝɢɞɪɨɦɟɯɚɧɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɩɪɨɰɟɠɢɜɚɧɢɹ, ɝɪɚɜɢɬɚɰɢɨɧɧɨɝɨ ɢ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɨɬɫɬɚɢɜɚɧɢɹ ɢ ɮɢɥɶɬɪɨɜɚɧɢɹ. ȼɵɛɨɪ ɦɟɬɨɞɚ ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ ɩɪɢɦɟɫɟɣ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ, ɪɚɫɯɨɞɚ ɫɬɨɱɧɵɯ ɜɨɞ ɢ ɧɟɨɛɯɨɞɢɦɨɣ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ. ɉɟɪɟɞ ɛɨɥɟɟ ɬɨɧɤɨɣ ɨɱɢɫɬɤɨɣ ɫɬɨɱɧɵɟ ɜɨɞɵ ɧɚɩɪɚɜɥɹɸɬ ɧɚ ɩɪɨɰɟɠɢɜɚɧɢɟ ɱɟɪɟɡ ɪɟɲɟɬɤɢ ɢ ɫɢɬɚ, ɤɨɬɨɪɵɟ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɩɟɪɟɞ ɨɬɫɬɨɣɧɢɤɚɦɢ ɫ ɰɟɥɶɸ ɢɡɜɥɟɱɟɧɢɹ ɢɡ ɧɢɯ ɤɪɭɩɧɵɯ ɩɪɢɦɟɫɟɣ. Ɉɫɚɠɞɟɧɢɟɦ ɧɚɡɵɜɚɟɬɫɹ ɪɚɡɞɟɥɟɧɢɟ ɠɢɞɤɢɯ ɧɟɨɞɧɨɪɨɞɧɵɯ ɫɢɫɬɟɦ ɩɭɬɟɦ ɜɵɞɟɥɟɧɢɹ ɢɡ ɠɢɞɤɨɣ ɮɚɡɵ ɬɜɟɪɞɵɯ ɢɥɢ ɠɢɞɤɢɯ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ, ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ. ɋɨɨɬɜɟɬɫɬɜɟɧɧɨ ɪɚɡɥɢɱɚɸɬ ɝɪɚɜɢɬɚɰɢɨɧɧɨɟ ɨɬɫɬɚɢɜɚɧɢɟ ɢ ɨɫɚɞɢɬɟɥɶɧɨɟ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ. Ɉɫɚɠɞɟɧɢɟ ɨɬɫɬɚɢɜɚɧɢɟɦ ɩɪɨɢɫɯɨɞɢɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ. Ⱦɥɹ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɫɚ ɢɫɩɨɥɶɡɭɸɬ ɩɟɫɤɨɥɨɜɤɢ, ɨɬɫɬɨɣɧɢɤɢ ɢ ɨɫɜɟɬɥɢɬɟɥɢ. ȼ ɨɫɜɟɬɥɢɬɟɥɹɯ ɨɞɧɨɜɪɟɦɟɧɧɨ ɫ ɨɬɫɬɚɢɜɚɧɢɟɦ ɩɪɨɢɫɯɨɞɢɬ ɮɢɥɶɬɪɚɰɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɱɟɪɟɡ ɫɥɨɣ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɪɚɡɞɟɥɟɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɩɪɢɦɟɫɟɣ. ɉɪɢ ɨɬɫɭɬɫɬɜɢɢ ɩɨɬɟɪɶ ɜɟɳɟɫɬɜ ɜ ɩɪɨɰɟɫɫɟ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɪɚɡɞɟɥɟɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɩɪɢɦɟɫɟɣ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ ɢɦɟɸɬ ɜɢɞ: - ɩɨ ɨɛɳɟɦɭ ɤɨɥɢɱɟɫɬɜɭ ɜɟɳɟɫɬɜ (5.1) Gɫɦ Gɨɫɜ  Gɨɫ ; - ɩɨ ɞɢɫɩɟɪɫɧɨɣ ɮɚɡɟ Gɫɦ ˜ x ɫɦ Gɨɫɜ ˜ x ɨɫɜ  Gɨɫ ˜ x ɨɫ , (5.2) ɝɞɟ Gɫɦ, Gɨɫɜ, Gɨɫ - ɦɚɫɫɚ ɢɫɯɨɞɧɨɣ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɵ ɢ ɩɨɥɭɱɚɟɦɨɝɨ ɨɫɚɞɤɚ ɩɪɢɦɟɫɟɣ, ɤɝ; xɫɦ, xɨɫɜ, xɨɫ - ɫɨɞɟɪɠɚɧɢɟ ɩɪɢɦɟɫɟɣ ɜ ɢɫɯɨɞɧɨɣ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɟ ɢ ɨɫɚɞɤɟ, ɦɚɫɫ. ɞɨɥɢ. ɋɨɜɦɟɫɬɧɨɟ ɪɟɲɟɧɢɟ ɷɬɢɯ ɭɪɚɜɧɟɧɢɣ ɩɨɡɜɨɥɹɟɬ ɨɩɪɟɞɟɥɢɬɶ ɦɚɫɫɨɜɨɟ ɤɨɥɢɱɟɫɬɜɨ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɵ Gɨɫɜ ɢ ɦɚɫɫɭ ɨɫɚɞɤɚ Gɨɫ, ɩɨɥɭɱɚɟɦɵɯ ɩɪɢ ɡɚɞɚɧɧɨɦ ɫɨɞɟɪɠɚɧɢɢ ɩɪɢɦɟɫɟɣ ɜ ɨɫɚɞɤɟ ɢ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɟ: x  x ɫɦ G ɨɫɜ G ɫɦ ˜ ɨɫ ; (5.3) x ɨɫ  x ɨɫɜ G ɨɫ G ɫɦ ˜ x ɫɦ  x ɨɫɜ . x ɨɫ  x ɨɫɜ (5.4) ɋɨɞɟɪɠɚɧɢɟ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɜ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɟ ɢ ɜ ɨɫɚɞɤɟ ɜɵɛɢɪɚɟɬɫɹ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɤɨɧɤɪɟɬɧɵɯ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɭɫɥɨɜɢɣ ɩɪɨɰɟɫɫɚ ɪɚɡɞɟɥɟɧɢɹ. 5.1.1. Ɉɬɫɬɚɢɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ Ɉɫɧɨɜɧɵɦ ɩɚɪɚɦɟɬɪɨɦ, ɤɨɬɨɪɵɣ ɢɫɩɨɥɶɡɭɸɬ ɩɪɢ ɪɚɫɱɟɬɟ ɨɫɚɠɞɟɧɢɹ, ɹɜɥɹɟɬɫɹ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ (ɝɢɞɪɚɜɥɢɱɟɫɤɚɹ ɤɪɭɩɧɨɫɬɶ). ɉɪɢ ɩɚɞɟɧɢɢ ɱɚɫɬɢɰɵ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ ɫɢɥɚ, ɞɜɢɠɭɳɚɹ ɱɚɫɬɢɰɭ ɞɢɚɦɟɬɪɨɦ dɱ, ɜɵɪɚɠɚɟɬɫɹ ɪɚɡɧɨɫɬɶɸ ɦɟɠɞɭ ɟɟ ɜɟɫɨɦ G mɱ ˜ g S˜ 3 dɱ Uɱ ˜ g 6 (5.5) ɢ ɜɵɬɚɥɤɢɜɚɸɳɟɣ ɚɪɯɢɦɟɞɨɜɨɣ ɫɢɥɨɣ, ɪɚɜɧɨɣ ɜɟɫɭ ɠɢɞɤɨɫɬɢ ɜ ɨɛɴɟɦɟ ɱɚɫɬɢɰɵ 3 d S ɱ U0 ˜ g ; 6 A m0 ˜ g (5.6) 3 d G  A S ˜ ɱ g(Uɱ  U 0 ) , 6 ɝɞɟ Uɱ – ɩɥɨɬɧɨɫɬɶ ɬɜɟɪɞɨɣ ɱɚɫɬɢɰɵ, ɤɝ/ɦ3. ɋɢɥɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɪɟɞɵ ɩɨ ɇɶɸɬɨɧɭ R 9˜ (5.7) 2 S ˜ d ɱ 2 U 0 ˜ wɨɫ ˜ , (5.8) 4 2 ɝɞɟ ȗ - ɤɨɷɮɮɢɰɢɟɧɬ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɜɨɞɧɨɣ ɫɪɟɞɵ, ɤɨɬɨɪɵɣ ɡɚɜɢɫɢɬ ɨɬ ɪɟɠɢɦɚ ɨɫɚɠɞɟɧɢɹ. ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ wɨɫ ɦɨɠɧɨ ɧɚɣɬɢ ɢɡ ɭɫɥɨɜɢɹ ɪɚɜɟɧɫɬɜɚ ɫɢɥɵ, ɞɜɢɠɭɳɟɣ ɱɚɫɬɢɰɭ ɢ ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɜɨɞɧɨɣ ɫɪɟɞɵ: wɨɫ ɤɫɚ 4d ɱ ˜ ( U ɱ  U 0 ) ˜ g . 39 ˜ U 0 (5.9) ȼ ɥɚɦɢɧɚɪɧɨɦ ɪɟɠɢɦɟ ɨɫɚɠɞɟɧɢɹ ɩɪɢ ȗ = 24/Reɱ ɩɨɥɭɱɢɦ ɮɨɪɦɭɥɭ ɋɬɨg ˜ dɱ (Uɱ  U 0 ) . 18P 0 2 wɨɫ (5.10) ɋɭɳɟɫɬɜɭɟɬ ɢ ɦɢɧɢɦɚɥɶɧɵɣ ɪɚɡɦɟɪ ɱɚɫɬɢɰ, ɧɢɠɟ ɤɨɬɨɪɨɝɨ ɧɚɛɥɸɞɚɸɬɫɹ ɨɬɤɥɨɧɟɧɢɹ ɨɬ ɡɚɤɨɧɚ ɋɬɨɤɫɚ ɢ ɩɪɢ Reɱ d10-4 ɧɚ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɨɱɟɧɶ ɦɟɥɤɢɯ ɱɚɫɬɢɰ ɧɚɱɢɧɚɟɬ ɜɥɢɹɬɶ ɬɟɩɥɨɜɨɟ ɞɜɢɠɟɧɢɟ ɦɨɥɟɤɭɥ ɫɪɟɞɵ. ȼ ɬɚɤɢɯ ɭɫɥɨɜɢɹɯ ɪɚɡɦɟɪ d ɱɚɫɬɢɰ ɫɬɚɧɨɜɢɬɫɹ ɫɨɢɡɦɟɪɢɦɵɦ ɫɨ ɫɪɟɞɧɟɣ ɞɥɢɧɨɣ ɫɜɨɛɨɞɧɨɝɨ ɩɪɨɛɟɝɚ ɦɨɥɟɤɭɥ ɫɪɟɞɵ. Ɋɚɫɱɟɬɵ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɩɪɢ d | 0,1 ɦɤɦ ɱɚɫɬɢɰɵ ɧɟ ɨɫɚɠɞɚɸɬɫɹ, ɚ ɧɚɛɥɸɞɚɟɬɫɹ ɥɢɲɶ ɯɚɨɬɢɱɟɫɤɨɟ ɛɪɨɭɧɨɜɫɤɨɟ ɞɜɢɠɟɧɢɟ ɱɚɫɬɢɰ. ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɧɟɲɚɪɨɨɛɪɚɡɧɨɣ ɮɨɪɦɵ ɦɟɧɶɲɟ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɲɚɪɨɨɛɪɚɡɧɵɯ ɱɚɫɬɢɰ. Ⱦɥɹ ɧɟɲɚɪɨɨɛɪɚɡɧɵɯ ɱɚɫɬɢɰ ɜ ɪɚɫɱɟɬɧɵɯ ɮɨɪɦɭɥɚɯ ɢɫɩɨɥɶɡɭɸɬ ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ dɷ, ɤɨɬɨɪɵɣ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɨɛɴɟɦɭ Vɱ ɢɥɢ ɦɚɫɫɟ Gɱ ɱɚɫɬɢɰɵ: 3 dɷ 6Vɱ / S 3 6Gɱ / SU ɱ . (5.11) ɉɪɢ ɨɬɫɬɚɢɜɚɧɢɢ ɫɬɨɱɧɵɯ ɜɨɞ ɧɚɛɥɸɞɚɟɬɫɹ ɫɬɟɫɧɟɧɧɨɟ ɨɫɚɠɞɟɧɢɟ, ɤɨɬɨɪɨɟ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɫɬɨɥɤɧɨɜɟɧɢɟɦ ɱɚɫɬɢɰ, ɬɪɟɧɢɟɦ ɦɟɠɞɭ ɧɢɦɢ ɢ ɢɡɦɟɧɟɧɢɟɦ ɫɤɨɪɨɫɬɟɣ ɛɨɥɶɲɢɯ ɢ ɦɚɥɵɯ ɱɚɫɬɢɰ. ɋɤɨɪɨɫɬɶ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɦɟɧɶɲɟ ɫɤɨɪɨɫɬɢ ɫɜɨɛɨɞɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɜɫɥɟɞɫɬɜɢɟ ɜɨɡɧɢɤɧɨɜɟɧɢɹ ɜɨɫɯɨɞɹɳɟɝɨ ɩɨɬɨɤɚ ɠɢɞɤɨɫɬɢ ɢ ɭɜɟɥɢɱɟɧɢɹ ɜɹɡɤɨɫɬɢ ɫɪɟɞɵ. ɋɤɨɪɨɫɬɶ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɨɞɢɧɚɤɨɜɨɝɨ ɪɚɡɦɟɪɚ ɩɪɢ ɥɚɦɢɧɚɪɧɨɦ ɪɟɠɢɦɟ ɦɨɠɧɨ ɪɚɫɫɱɢɬɚɬɶ ɩɨ ɮɨɪɦɭɥɟ ɋɬɨɤɫɚ ɫ ɩɨɩɪɚɜɨɱɧɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ R (1  M ) ˜ P 0 / P c , ɤɨɬɨɪɵɣ ɭɱɢɬɵɜɚɟɬ ɜɥɢɹɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɜɟɲɚɧɧɵɯ ɱɚɫɬɢɰ ɢ ɪɟɨɥɨɝɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɫɢɫɬɟɦɵ (ɜɹɡɤɨɫɬɶ ɫɢɫɬɟɦɵ ȝɫ): wɨɫ d ɱ g ( U ɱ  U 0 ) R /(18P 0 ) . 2 (5.12) ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɩɨɥɢɞɢɫɩɟɪɫɧɨɣ ɫɢɫɬɟɦɵ ɧɟɩɪɟɪɵɜɧɨ ɢɡɦɟɧɹɟɬɫɹ ɜɨ ɜɪɟɦɟɧɢ. ȼɫɥɟɞɫɬɜɢɟ ɚɝɥɨɦɟɪɚɰɢɢ ɱɚɫɬɢɰ ɨɧɚ ɦɨɠɟɬ ɢɡɦɟɧɹɬɶɫɹ ɜ ɧɟɫɤɨɥɶɤɨ ɪɚɡ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɬɟɨɪɟɬɢɱɟɫɤɨɣ. ɋɩɨɫɨɛɧɨɫɬɶ ɤ ɚɝɥɨɦɟɪɚɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ, ɮɨɪɦɵ, ɪɚɡɦɟɪɚ ɢ ɩɥɨɬɧɨɫɬɢ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ, ɨɬ ɫɨɨɬɧɨɲɟɧɢɹ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ ɢ ɜɹɡɤɨɫɬɢ ɫɪɟɞɵ. Ʉɨɷɮɮɢɰɢɟɧɬ ɚɝɥɨɦɟɪɚɰɢɢ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɫɨɨɬɧɨɲɟɧɢɟɦ K a d ɮ / d ɱ , ɝɞɟ dɮ - ɮɢɤɬɢɜɧɵɣ ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ, ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɬɟɨɪɟɬɢɱɟɫɤɨɣ ɫɤɨɪɨɫɬɢ ɟɟ ɨɫɚɠɞɟɧɢɹ. Ⱦɥɹ ɩɨɥɢɞɢɫɩɟɪɫɧɵɯ ɫɢɫɬɟɦ ɤɢɧɟɬɢɤɭ ɨɫɚɠɞɟɧɢɹ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɨɩɵɬɧɵɦ ɩɭɬɟɦ ɜ ɜɢɞɟ ɤɪɢɜɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɦɚɫɫɵ M ɨɫɚɠɞɟɧɧɵɯ ɱɚɫɬɢɰ ɨɬ ɜɪɟɦɟɧɢ ɨɫɚɠɞɟɧɢɹ IJ (ɪɢɫ. 5.1). Ɇ, % 60 40 20 1 2 3 W, ɱ Ɋɢɫ.5.1. Ʉɢɧɟɬɢɤɚ ɨɫɚɠɞɟɧɢɹ ɩɨɥɢɞɢɫɩɟɪɫɧɵɯ ɱɚɫɬɢɰ. ɍɞɚɥɟɧɢɟ ɜɫɩɥɵɜɚɸɳɢɯ ɩɪɢɦɟɫɟɣ. ɉɪɨɰɟɫɫ ɨɬɫɬɚɢɜɚɧɢɹ ɢɫɩɨɥɶɡɭɸɬ ɬɚɤɠɟ ɞɥɹ ɨɱɢɫɬɤɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɧɟɮɬɢ, ɦɚɫɟɥ, ɫɦɨɥ, ɠɢɪɨɜ. Ɉɱɢɫɬɤɚ ɨɬ ɜɫɩɥɵɜɚɸɳɢɯ ɩɪɢɦɟ- ɫɟɣ ɚɧɚɥɨɝɢɱɧɚ ɨɫɚɠɞɟɧɢɸ ɬɜɟɪɞɵɯ ɜɟɳɟɫɬɜ. Ɋɚɡɥɢɱɢɟ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɩɥɨɬɧɨɫɬɶ ɜɫɩɥɵɜɚɸɳɢɯ ɱɚɫɬɢɰ ɦɟɧɶɲɟ, ɱɟɦ ɩɥɨɬɧɨɫɬɶ ɜɨɞɵ. Ⱦɥɹ ɭɥɚɜɥɢɜɚɧɢɹ ɱɚɫɬɢɰ ɧɟɮɬɢ ɢɫɩɨɥɶɡɭɸɬ ɧɟɮɬɟɥɨɜɭɲɤɢ, ɚ ɞɥɹ ɠɢɪɨɜ - ɠɢɪɨɥɨɜɭɲɤɢ. ɋɤɨɪɨɫɬɶ ɩɨɞɴɟɦɚ ɱɚɫɬɢɰ wɜɫ ɥɟɝɤɨɣ ɠɢɞɤɨɫɬɢ ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ dɱ, ɩɥɨɬɧɨɫɬɢ ɜɫɩɥɵɜɚɸɳɢɯ ɱɚɫɬɢɰ Uɥ ɢ ɜɹɡɤɨɫɬɢ ɫɪɟɞɵ P0, ɬ.ɟ. ɨɬ ɱɢɫɥɚ Reɱ = wɜɫ.dɱ.Uɥ/P0. ȼ ɨɛɥɚɫɬɢ Reɱ 0,25 ɜɫɩɥɵɜɚɧɢɟ ɱɚɫɬɢɰ ɩɪɨɢɫɯɨɞɢɬ ɩɨ ɡɚɜɢɫɢɦɨɫɬɢ ɋɬɨɤɫɚ: wɜɫ d 2 ˜ g ( U 0  U ɥ ) /(18 ˜ P 0 ) . (5.13) Ⱦɜɢɠɟɧɢɟ ɱɚɫɬɢɰɵ ɥɟɝɤɨɣ ɮɚɡɵ ɜɜɟɪɯ ɜɵɡɵɜɚɟɬ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɜɬɨɪɢɱɧɵɟ ɩɨɬɨɤɢ, ɬɨɪɦɨɡɹɳɢɟ ɩɨɞɴɟɦ. ɋɤɨɪɨɫɬɶ ɩɨɞɴɟɦɚ ɫ ɭɱɟɬɨɦ ɬɨɪɦɨɠɟɧɢɹ ɪɚɜɧɚ wɜɫ wɜɫ (3P ɥ  3P 0 ) /(3P ɥ  2 P 0 ) , (5.14) ɝɞɟ Pɥ - ɤɨɷɮɮɢɰɢɟɧɬ ɞɢɧɚɦɢɱɟɫɤɨɣ ɜɹɡɤɨɫɬɢ ɛɨɥɟɟ ɥɟɝɤɨɣ ɜɫɩɥɵɜɚɸɳɟɣ ɠɢɞɤɨɫɬɢ. ɇɚ ɩɪɨɰɟɫɫ ɪɚɡɞɟɥɟɧɢɹ ɨɤɚɡɵɜɚɟɬ ɜɥɢɹɧɢɟ ɬɭɪɛɭɥɟɧɬɧɨɫɬɶ, ɤɨɚɝɭɥɹɰɢɹ ɢ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɨɟ ɤɨɦɩɥɟɤɫɨɨɛɪɚɡɨɜɚɧɢɟ. ɉɪɢ ɜɜɨɞɟ ɫɬɨɱɧɨɣ ɜɨɞɵ ɜ ɥɨɜɭɲɤɢ ɦɨɠɟɬ ɩɪɨɢɡɨɣɬɢ ɢɡɦɟɥɶɱɟɧɢɟ ɥɟɝɤɨɣ ɠɢɞɤɨɫɬɢ ɩɪɢ ɭɞɚɪɟ ɫɬɪɭɢ ɨ ɩɨɜɟɪɯɧɨɫɬɶ, ɱɬɨ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɢɡɦɟɧɟɧɢɟɦ ɞɚɜɥɟɧɢɹ. ɇɚɱɚɥɶɧɵɣ ɪɚɡɦɟɪ ɱɚɫɬɢɰ ɩɨɞɞɟɪɠɢɜɚɟɬɫɹ ɤɚɩɢɥɥɹɪɧɵɦ ɞɚɜɥɟɧɢɟɦ Pɤ 4V / d (V - ɤɨɷɮɮɢɰɢɟɧɬ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɧɚɬɹɠɟɧɢɹ). ɉɪɢ ɭɞɚɪɟ ɫɬɪɭɢ ɜɨɡɧɢɤɚɟɬ ɪɟɡɭɥɶɬɢɪɭɸɳɟɟ ɞɚɜɥɟɧɢɟ Ɋ1. ȿɫɥɢ P1 ! Pɤ , ɬɨ ɩɪɨɢɫɯɨɞɢɬ ɢɡɦɟɥɶɱɟɧɢɟ ɤɚɩɟɥɶ. Ɉɬɧɨɲɟɧɢɟ ɱɢɫɥɚ ɨɬɫɬɨɹɜɲɢɯɫɹ ɱɚɫɬɢɰ ɥɟɝɤɨɣ ɠɢɞɤɨɫɬɢ ɨɩɪɟɞɟɥɟɧɧɨɝɨ ɪɚɡɦɟɪɚ ɤ ɨɛɳɟɦɭ ɱɢɫɥɭ ɱɚɫɬɢɰ ɷɬɨɣ ɠɢɞɤɨɫɬɢ ɧɚɡɵɜɚɸɬ ɷɮɮɟɤɬɨɦ ɨɬɫɬɚɢɜɚɧɢɹ. Ɋɚɫɱɟɬ ɨɬɫɬɨɣɧɢɤɨɜ. Ɉɬɫɬɚɢɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ ɩɪɨɜɨɞɹɬ ɜ ɚɩɩɚɪɚɬɚɯ, ɧɚɡɵɜɚɟɦɵɯ ɨɬɫɬɨɣɧɢɤɚɦɢ ɢɥɢ ɫɝɭɫɬɢɬɟɥɹɦɢ. Ɋɚɡɥɢɱɚɸɬ ɝɨɪɢɡɨɧɬɚɥɶɧɵɟ, ɪɚɞɢɚɥɶɧɵɟ, ɜɟɪɬɢɤɚɥɶɧɵɟ, ɬɪɭɛɱɚɬɵɟ, ɩɥɚɫɬɢɧɱɚɬɵɟ ɨɬɫɬɨɣɧɢɤɢ ɫ ɧɚɤɥɨɧɧɵɦɢ ɩɟɪɟɝɨɪɨɞɤɚɦɢ. Ƚɨɪɢɡɨɧɬɚɥɶɧɵɟ ɨɬɫɬɨɣɧɢɤɢ (ɪɢɫ. 5.2) ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɩɪɹɦɨɭɝɨɥɶɧɵɟ ɪɟɡɟɪɜɭɚɪɵ, ɢɦɟɸɳɢɟ ɞɜɚ ɢɥɢ ɛɨɥɟɟ ɨɞɧɨɜɪɟɦɟɧɧɨ ɪɚɛɨɬɚɸɳɢɯ ɨɬɞɟɥɟɧɢɹ. ȼɨɞɚ ɞɜɢɠɟɬɫɹ ɫ ɨɞɧɨɝɨ ɤɨɧɰɚ ɨɬɫɬɨɣɧɢɤɚ ɤ ɞɪɭɝɨɦɭ. Ƚɥɭɛɢɧɚ ɨɬɫɬɨɣɧɢɤɚ ɪɚɜɧɚ 1,5…4 ɦ, ɞɥɢɧɚ 12…48 ɦ, ɲɢɪɢɧɚ ɤɨɪɢɞɨɪɚ 3…6 ɦ. Ƚɨɪɢɡɨɧɬɚɥɶɧɵɟ ɨɬɫɬɨɣɧɢɤɢ ɩɪɢɦɟɧɹɸɬ ɩɪɢ ɪɚɫɯɨɞɟ ɫɬɨɱɧɨɣ ɜɨɞɵ ɫɜɵɲɟ 15000 ɦ3/ɫɭɬ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɨɬɫɬɚɢɜɚɧɢɹ ɞɨɫɬɢɝɚɟɬ 60%. Ɉɬɫɬɨɣɧɢɤɢ ɩɪɨɟɤɬɢɪɭɸɬɫɹ ɜ ɪɚɫɱɟɬɟ ɧɚ ɨɫɚɠɞɟɧɢɟ ɫɚɦɵɯ ɦɟɥɤɢɯ ɱɚɫɬɢɰ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. ɉɨɷɬɨɦɭ ɜɪɟɦɹ ɩɪɟɛɵɜɚɧɢɹ ɨɛɪɚɛɚɬɵɜɚɟɦɨɣ ɫɬɨɱɧɨɣ ɜɨɞɵ ɜ ɚɩɩɚɪɚɬɟ ɞɨɥɠɧɨ ɛɵɬɶ ɛɨɥɶɲɟ ɜɪɟɦɟɧɢ ɨɫɚɠɞɟɧɢɹ ɦɟɥɤɢɯ ɱɚɫɬɢɰ ɢɥɢ ɜ ɩɪɟɞɟɥɟ ɪɚɜɧɨ ɜɪɟɦɟɧɢ, ɧɟɨɛɯɨɞɢɦɨɦɭ ɞɥɹ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰɵ ɧɚɢɦɟɧɶɲɟɝɨ ɪɚɡɦɟɪɚ ɧɚ ɞɧɨ ɚɩɩɚɪɚɬɚ ɫ ɡɚɞɚɧɧɨɣ ɜɵɫɨɬɵ. ɉɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɨɬɫɬɨɣɧɢɤɚ ɩɨ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɟ Qɨɫɜ (ɦ3/ɫ) ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ (5.15) Qɨɫɜ v n ˜ B ˜ H ; ɝɞɟ vn – ɫɤɨɪɨɫɬɶ ɩɨɬɨɤɚ ɫɬɨɱɧɨɣ ɜɨɞɵ ɜɞɨɥɶ ɚɩɩɚɪɚɬɚ, ɦ/ɫ; ȼ - ɲɢɪɢɧɚ ɨɬɫɬɨɣɧɢɤɚ, ɦ; ɇ - ɜɵɫɨɬɚ ɫɥɨɹ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɵ, ɦ. ȼɪɟɦɹ ɩɪɨɯɨɠɞɟɧɢɹ Wɩ (ɫɟɤ) ɫɬɨɱɧɨɣ ɜɨɞɵ ɨɬɫɬɨɣɧɢɤɚ ɫɨɫɬɚɜɢɬ L Wn , (5.16) vn ɝɞɟ L - ɞɥɢɧɚ ɨɬɫɬɨɣɧɢɤɚ, ɦ. 1 2 3 Ɉɱɢɳɟɧɧɚɹ ɜɨɞɚ ɋɬɨɱɧɚɹ ɜɨɞɚ 4 ɒɥɚɆ 1 - ɜɯɨɞɧɨɣ ɥɨɬɨɤ; 2 - ɨɬɫɬɨɣɧɚɹ ɤɚɦɟɪɚ; 3 - ɜɵɯɨɞɧɨɣ ɥɨɬɨɤ; 4 - ɩɪɢɹɦɨɤ. Ɋɢɫ. 5.2. ɋɯɟɦɚ ɨɬɫɬɨɣɧɢɤɚ Ɂɚ ɷɬɨ ɠɟ ɜɪɟɦɹ ɱɚɫɬɢɰɵ, ɨɫɚɠɞɚɸɳɢɟɫɹ ɫɨ ɫɤɨɪɨɫɬɶɸ wɨɫ (ɦ/ɫ), ɞɨɥɠɧɵ ɩɪɨɣɬɢ ɧɚɢɛɨɥɶɲɢɣ ɩɭɬɶ ɇ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɜɪɟɦɹ ɨɬɫɬɚɢɜɚɧɢɹ ɨɩɪɟɞɟɥɢɬɫɹ ɢɡ ɭɪɚɜɧɟɧɢɹ: H W ɨɫ . (5.17) wɨɫ ɋɥɟɞɨɜɚɬɟɥɶɧɨ H L wɨɫ v n L˜B˜H , Qɨɫɜ (5.18) ɨɬɤɭɞɚ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɨɬɫɬɨɣɧɢɤɚ ɩɨ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɟ ɫɨɫɬɚɜɢɬ: (5.19) Qɨɫɜ wɨɫ ˜ L ˜ B wɨɫ ˜ F , ɝɞɟ F L ˜ B - ɩɨɜɟɪɯɧɨɫɬɶ ɨɬɫɬɨɣɧɢɤɚ ɜ ɩɥɚɧɟ, ɦ2. ɇɟɨɛɯɨɞɢɦɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɧɚɯɨɞɢɦ ɫ ɭɱɟɬɨɦ ɫɤɨɪɨɫɬɢ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ wɫɬ ɢɡ ɜɵɪɚɠɟɧɢɹ F Qɨɫɜ wɫɬ (5.20) ɢɥɢ ɫ ɭɱɟɬɨɦ ɦɚɫɫɨɜɨɝɨ ɪɚɫɯɨɞɚ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɵ Gɨɫɜ (ɤɝ/ɫ) ɢ ɟɟ ɩɥɨɬɧɨɫɬɢ Uɨɫɜ (ɤɝ/ɦ3) Gɨɫɜ F . (5.21) U ɨɫɜ ˜ wɫɬ ɋ ɭɱɟɬɨɦ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ ɦɨɠɧɨ ɩɨɥɭɱɢɬɶ ɨɤɨɧɱɚɬɟɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɩɥɨɳɚɞɢ ɨɫɚɠɞɟɧɢɹ ɨɬɫɬɨɣɧɢɤɚ: § x  x ɫɦ · ¸¸ . ˜ ¨¨ ɨɫ (5.22) x x  ɨɫɜ ¹ © ɨɫ ɉɪɢ ɪɚɫɱɟɬɟ ɨɬɫɬɨɣɧɢɤɚ ɛɵɥɨ ɩɪɢɧɹɬɨ ɞɨɩɭɳɟɧɢɟ ɨɛ ɨɬɫɭɬɫɬɜɢɢ ɡɚɫɬɨɣɧɵɯ ɡɨɧ ɢ ɜɢɯɪɟɨɛɪɚɡɨɜɚɧɢɹ ɠɢɞɤɨɫɬɢ, ɜɵɡɜɚɧɧɨɝɨ ɧɟɪɚɜɧɨɦɟɪɧɨɫɬɶɸ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ, ɱɬɨ ɭɦɟɧɶɲɚɟɬ ɫɤɨɪɨɫɬɶ ɨɬɫɬɚɢɜɚɧɢɹ. ɉɨɷɬɨɦɭ ɜ ɢɧɠɟɧɟɪɧɵɯ ɪɚɫɱɟɬɚɯ ɪɚɫɱɟɬɧɨ-ɬɟɨɪɟɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɨɬɫɬɨɣɧɢɤɚ ɭɜɟɥɢɱɢɜɚɸɬ ɧɚ 30-35%. F G ɫɦ U ɨɫɜ ˜ wɫɬ 5.1.2. ɐɟɧɬɪɨɛɟɠɧɨɟ ɨɫɚɠɞɟɧɢɟ ɩɪɢɦɟɫɟɣ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɋɤɨɪɨɫɬɶ ɪɚɡɞɟɥɟɧɢɹ ɧɟɨɞɧɨɪɨɞɧɵɯ ɫɢɫɬɟɦ ɜ ɩɨɥɟ ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ ɜɵɲɟ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫɨ ɫɤɨɪɨɫɬɶɸ ɪɚɡɞɟɥɟɧɢɹ ɷɬɢɯ ɫɢɫɬɟɦ ɜ ɩɨɥɟ ɫɢɥɵ ɬɹɠɟɫɬɢ. Ɉɬɧɨɲɟɧɢɟ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɤ ɫɢɥɟ ɬɹɠɟɫɬɢ ɦɨɠɧɨ ɫɞɟɥɚɬɶ ɫɪɚɜɧɟɧɢɟɦ ɭɫɤɨɪɟɧɢɣ, ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɱɚɫɬɢɰɵ ɩɪɢɦɟɫɟɣ ɜ ɰɟɧɬɪɨɛɟɠɧɨɦ ɢ ɝɪɚɜɢɬɚɰɢɨɧɧɨɦ ɩɨɥɹɯ, ɬ.ɤ. ɩɪɢɦɟɧɢɬɟɥɶɧɨ ɤ ɱɚɫɬɢɰɟ ɨɩɪɟɞɟɥɟɧɧɨɣ ɦɚɫɫɵ ɫɢɥɵ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɵ ɭɫɤɨɪɟɧɢɹɦ. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɰɟɧɬɪɨɛɟɠɧɚɹ ɫɢɥɚ Pɰ (ɇ) ɜɵɪɚɠɚɟɬɫɹ ɪɚɜɟɧɫɬɜɨɦ Pɰ m ˜ vɨ r 2 G ˜ vɨ , g ˜r 2 (5.23) ɝɞɟ m - ɦɚɫɫɚ ɜɪɚɳɚɸɳɟɣɫɹ ɱɚɫɬɢɰɵ, ɤɝ; G – ɜɟɫ ɱɚɫɬɢɰɵ, ɇ; vɨ – ɨɤɪɭɠɧɚɹ ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ, ɦ/ɫ; r – ɪɚɞɢɭɫ ɜɪɚɳɟɧɢɹ, ɦ. Ɉɤɪɭɠɧɚɹ ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ ɪɚɜɧɚ vo = Z.r = 2 S.n.r/60, (5.24) ɝɞɟ Z - ɭɝɥɨɜɚɹ ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ, ɪɚɞ/ɫ; n – ɱɢɫɥɨ ɨɛɨɪɨɬɨɜ ɜ ɦɢɧɭɬɭ. ɋɨɩɨɫɬɚɜɥɹɹ ɷɬɢ ɪɚɜɟɧɫɬɜɚ, ɧɚɣɞɟɦ 2 G § 2S ˜ n · (5.25) ˜ r¸ Pɰ ¨ r ˜ g © 60 ¹ ɢɥɢ ɩɪɢɛɥɢɠɟɧɧɨ G ˜ r ˜ n2 Pɰ | . 900 (5.26) Ɉɬɧɨɲɟɧɢɟ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɭɫɤɨɪɟɧɢɹ v ɨ r ɤ ɭɫɤɨɪɟɧɢɸ ɫɢɥɵ ɬɹɠɟɫɬɢ g ɧɚɡɵɜɚɸɬ ɮɚɤɬɨɪɨɦ ɪɚɡɞɟɥɟɧɢɹ: 2 2 Kp vɨ . g ˜r (5.27) Ⱦɥɹ ɜɟɥɢɱɢɧɵ G 1 H ɩɨɥɭɱɚɟɦ Kp r ˜ n 2 / 900 . (5.28) Ɏɚɤɬɨɪ ɪɚɡɞɟɥɟɧɢɹ ɹɜɥɹɟɬɫɹ ɜɚɠɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɨɣ ɝɢɞɪɨɰɢɤɥɨɧɨɜ ɢ ɰɟɬɪɢɮɭɝ, ɬ.ɤ., ɩɪɢ ɩɪɨɱɢɯ ɪɚɜɧɵɯ ɭɫɥɨɜɢɹɯ, ɪɚɡɞɟɥɹɸɳɟɟ ɞɟɣɫɬɜɢɟ ɩɪɢ ɨɫɚɞɢɬɟɥɶɧɨɦ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɢ ɜɨɡɪɚɫɬɚɟɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɜɟɥɢɱɢɧɟ Kɪ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɧɚɩɨɪɧɵɟ ɢ ɨɬɤɪɵɬɵɟ (ɧɢɡɤɨɧɚɩɨɪɧɵɟ) ɝɢɞɪɨɰɢɤɥɨɧɵ. ɇɚɩɨɪɧɵɟ ɝɢɞɪɨɰɢɤɥɨɧɵ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɫɚɠɞɟɧɢɹ ɬɜɟɪɞɵɯ ɩɪɢɦɟɫɟɣ, ɚ ɨɬɤɪɵɬɵɟ ɝɢɞɪɨɰɢɤɥɨɧɵ – ɞɥɹ ɭɞɚɥɟɧɢɹ ɨɫɚɠɞɚɸɳɢɯɫɹ ɢ ɜɫɩɥɵɜɚɸɳɢɯ ɩɪɢɦɟɫɟɣ. ɉɪɢ ɜɪɚɳɟɧɢɢ ɠɢɞɤɨɫɬɢ ɜ ɝɢɞɪɨɰɢɤɥɨɧɚɯ (ɪɢɫ. 5.3) ɧɚ ɱɚɫɬɢɰɵ ɞɟɣɫɬɜɭɸɬ ɰɟɧɬɪɨɛɟɠɧɵɟ ɫɢɥɵ, ɨɬɛɪɚɫɵɜɚɸɳɢɟ ɬɹɠɟɥɵɟ ɱɚɫɬɢɰɵ ɤ ɩɟɪɢɮɟɪɢɢ ɩɨɬɨɤɚ, ɫɢɥɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɞɜɢɠɭɳɟɝɨɫɹ ɩɨɬɨɤɚ, ɝɪɚɜɢɬɚɰɢɨɧɧɵɟ ɫɢɥɵ ɢ ɫɢɥɵ ɩɨɬɨɤɚ. ɋɢɥɵ ɢɧɟɪɰɢɢ ɜ ɩɨɬɨɤɟ ɠɢɞɤɨɫɬɢ ɧɟɡɧɚɱɢɬɟɥɶɧɵ ɢ ɢɦɢ ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ. ɉɪɢ ɜɵɫɨɤɢɯ ɫɤɨɪɨɫɬɹɯ ɜɪɚɳɟɧɢɹ ɰɟɧɬɪɨɛɟɠɧɵɟ ɫɢɥɵ ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɶɲɟ ɫɢɥ ɬɹɠɟɫɬɢ. Ɉɱɢɳɟɧɧɚɹ ɜɨɞɚ ɋɬɨɱɧɚɹ ɜɨɞɚ ɒɥɚɦ Ɋɢɫ. 5.3. ɇɚɩɨɪɧɵɣ ɝɢɞɪɨɰɢɤɥɨɧ ɋɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰɵ ɜ ɠɢɞɤɨɫɬɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɡɚɜɢɫɢɬ ɨɬ ɟɟ ɞɢɚɦɟɬɪɚ d ɱ , ɪɚɡɧɨɫɬɢ ɩɥɨɬɧɨɫɬɟɣ ɮɚɡ 'U , ɜɹɡɤɨɫɬɢ P c ɢ ɩɥɨɬɧɨɫɬɢ U c ɫɬɨɱɧɨɣ ɜɨɞɵ ɢ ɨɬ ɭɫɤɨɪɟɧɢɹ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɩɨɥɹ J : vɰ k 0.385 ˜ d ɱ U ɫ m m2 / 3 ˜ 'U m 1 / 3 ˜J m 1 / 3 / Pc 2 m 1 / 3 . (5.29) Ʉɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ k ɢ ɩɨɤɚɡɚɬɟɥɶ ɫɬɟɩɟɧɢ m ɡɚɜɢɫɹɬ ɨɬ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɟɠɢɦɚ. Ⱦɥɹ ɥɚɦɢɧɚɪɧɨɝɨ ɪɟɠɢɦɚ ɩɪɢ ɱɢɫɥɟ Ɋɟɣɧɨɥɶɞɫɚ Reɱ = wɨɫ.dɱ.Uɱ/P0 =1,6; m 2 ; k 1,7 ˜10 4 . Ⱦɥɹ ɩɟɪɟɯɨɞɧɨɝɨ ɪɟɠɢɦɚ ɩɪɢ Reɱ = 16…420; m 1,2 ; k 2,49 ˜ 10 3 . Ⱦɥɹ ɬɭɪɛɭɥɟɧɬɧɨɝɨ ɪɟɠɢɦɚ Rɱ ! 420; m 5,36 ; k 0,5 . Ʉɪɨɦɟ ɮɢɡɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɠɢɞɤɨɫɬɢ ɧɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɪɚɛɨɬɵ ɝɢɞɪɨɰɢɤɥɨɧɨɜ ɜɥɢɹɸɬ ɤɨɧɫɬɪɭɤɬɢɜɧɵɟ ɩɚɪɚɦɟɬɪɵ: ɞɢɚɦɟɬɪ ɚɩɩɚɪɚɬɚ, ɫɨɨɬɧɨɲɟɧɢɟ ɜɯɨɞɧɨɝɨ ɢ ɫɥɢɜɧɵɯ ɩɚɬɪɭɛɤɨɜ. Ƚɢɞɪɨɰɢɤɥɨɧɵ ɢɡɝɨɬɚɜɥɢɜɚɸɬɫɹ ɞɢɚɦɟɬɪɨɦ ɨɬ 10 ɞɨ 700 ɦɦ, ɜɵɫɨɬɚ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɱɚɫɬɢ ɪɚɜɧɚ ɞɢɚɦɟɬɪɭ ɚɩɩɚɪɚɬɚ. ɍɝɨɥ ɤɨɧɭɫɧɨɫɬɢ ɪɚɜɟɧ 10…20q. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɝɢɞɪɨɰɢɤɥɨɧɨɜ ɧɚɯɨɞɢɬɫɹ ɧɚ ɭɪɨɜɧɟ 70%. ɉɪɢ ɢɡɦɟɧɟɧɢɢ ɜɹɡɤɨɫɬɢ ɫɬɨɱɧɨɣ ɜɨɞɵ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɭɜɟɥɢɱɢɜɚɟɬɫɹ. ɋ ɪɨɫɬɨɦ ɩɥɨɬɧɨɫɬɢ ɠɢɞɤɨɫɬɢ ɭɦɟɧɶɲɚɟɬɫɹ ɪɚɡɧɨɫɬɶ ɩɥɨɬɧɨɫɬɢ ɮɚɡ 'U = (Uɱ U0). ɗɬɨ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɫɧɢɠɟɧɢɟɦ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɬɹɠɟɥɟɟ ɜɨɞɵ, ɚ ɞɥɹ ɱɚɫɬɢɰ ɥɟɝɱɟ ɜɨɞɵ – ɭɜɟɥɢɱɟɧɢɟɦ ɫɤɨɪɨɫɬɢ ɜɫɩɥɵɜɚɧɢɹ. ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɤɜɚɞɪɚɬɭ ɫɤɨɪɨɫɬɢ ɜɪɚɳɟɧɢɹ ɱɚɫɬɢɰ, ɤɨɬɨɪɭɸ ɦɨɠɧɨ ɫɱɢɬɚɬɶ ɪɚɜɧɨɣ ɫɤɨɪɨɫɬɢ ɜɨɞɵ ɧɚ ɜɯɨɞɟ ɜ ɚɩɩɚɪɚɬ. Ƚɢɞɪɨɰɢɤɥɨɧɵ ɦɚɥɨɝɨ ɞɢɚɦɟɬɪɚ ɨɛɴɟɞɢɧɹɸɬ ɜ ɨɛɳɢɣ ɚɝɪɟɝɚɬ, ɜ ɤɨɬɨɪɨɦ ɨɧɢ ɪɚɛɨɬɚɸɬ ɩɚɪɚɥɥɟɥɶɧɨ. Ɍɚɤɢɟ ɚɩɩɚɪɚɬɵ ɧɚɡɵɜɚɸɬ ɦɭɥɶɬɢɝɢɞɪɨɰɢɤɥɨɧɚɦɢ. Ɇɭɥɶɬɢɝɢɞɪɨɰɢɤɥɨɧɵ ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɵ ɩɪɢ ɨɱɢɫɬɤɟ ɧɟɛɨɥɶɲɢɯ ɤɨɥɢɱɟɫɬɜ ɜɨɞɵ ɨɬ ɬɨɧɤɨɞɢɫɩɟɪɫɢɪɨɜɚɧɧɵɯ ɩɪɢɦɟɫɟɣ. ɉɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɧɚɩɨɪɧɵɯ ɝɢɞɪɨɰɢɤɥɨɧɨɜ Q k1 ˜ Dɰ ˜ d ɜɯ 2 g ˜ 'H , (5.30) ɝɞɟ k1 - ɛɟɡɪɚɡɦɟɪɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ; Dɰ - ɞɢɚɦɟɬɪ ɝɢɞɪɨɰɢɤɥɨɧɚ, ɦ; d ɜɯ ɞɢɚɦɟɬɪ ɜɯɨɞɧɨɝɨ ɩɚɬɪɭɛɤɚ. ɦ; 'H - ɩɟɪɟɩɚɞ ɞɚɜɥɟɧɢɣ ɦɟɠɞɭ ɫɥɢɜɧɵɦɢ ɢ ɜɵɯɨɞɧɵɦɢ ɩɚɬɪɭɛɤɚɦɢ, ɉɚ. Ɉɬɤɪɵɬɵɟ (ɛɟɡɧɚɩɨɪɵɟ) ɝɢɞɪɨɰɢɤɥɨɧɵ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɤɪɭɩɧɵɯ ɩɪɢɦɟɫɟɣ (ɝɢɞɪɚɜɥɢɱɟɫɤɨɣɨɣ ɤɪɭɩɧɨɫɬɶɸ 5 ɦɦ/ɫ). Ɉɬ ɧɚɩɨɪɧɵɯ ɝɢɞɪɨɰɢɤɥɨɧɨɜ, ɨɧɢ ɨɬɥɢɱɚɸɬɫɹ ɛɨɥɶɲɟɣ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶɸ ɢ ɦɟɧɶɲɢɦ ɝɢɞɪɚɜɥɢɱɟɫɤɢɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ. Ⱦɥɹ ɭɞɚɥɟɧɢɹ ɨɫɚɞɤɨɜ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬɫɹ ɨɬɫɬɨɣɧɵɟ ɢ ɮɢɥɶɬɪɭɸɳɢɟ ɰɟɧɬɪɢɮɭɝɢ. ȼ ɨɬɫɬɨɣɧɵɯ ɰɟɧɬɪɢɮɭɝɚɯ (ɪɢɫ. 5.4) ɫɨ ɫɩɥɨɲɧɵɦɢ ɫɬɟɧɤɚɦɢ ɪɨɬɨɪɚ ɩɪɨɢɡɜɨɞɹɬ ɪɚɡɞɟɥɟɧɢɟ ɫɭɫɩɟɧɡɢɣ ɢ ɷɦɭɥɶɫɢɣ ɩɨ ɩɪɢɧɰɢɩɭ ɨɬɫɬɚɢɜɚɧɢɹ. ɂɫɯɨɞɧɚɹ ɫɭɫɩɟɧɡɢɹ (ɫɬɨɱɧɚɹ ɜɨɞɚ) 2r0 n D h ɨɱɢɳɟɧɧɚɹ ɜɨɞɚ L Ɋɢɫ. 5.4. ɋɯɟɦɚ ɞɟɣɫɬɜɢɹ ɨɬɫɬɨɣɧɨɣ ɰɟɧɬɪɢɮɭɝɢ. Ɋɚɡɞɟɥɟɧɢɟ ɫɭɫɩɟɧɡɢɣ ɜ ɨɬɫɬɨɣɧɵɯ ɰɟɧɬɪɢɮɭɝɚɯ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɫɬɚɞɢɣ ɨɫɚɠɞɟɧɢɹ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ ɧɚ ɫɬɟɧɤɚɯ ɪɨɬɨɪɚ ɢ ɭɩɥɨɬɧɟɧɢɹ ɨɛɪɚɡɨɜɚɜɲɟɝɨɫɹ ɨɫɚɞɤɚ. ɉɟɪɜɚɹ ɢɡ ɷɬɢɯ ɫɬɚɞɢɣ ɩɪɨɬɟɤɚɟɬ ɩɨ ɡɚɤɨɧɚɦ ɝɢɞɪɨɞɢɧɚɦɢɤɢ, ɜɬɨɪɚɹ - ɩɨ ɡɚɤɨɧɨɦɟɪɧɨɫɬɹɦ ɦɟɯɚɧɢɤɢ ɝɪɭɧɬɨɜ (ɩɨɪɢɫɬɵɯ ɫɪɟɞ). ɉɪɢ ɦɚɥɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ (ɧɟ ɛɨɥɟɟ 4% ɨɛ.) ɧɚɛɥɸɞɚɟɬɫɹ ɫɜɨɛɨɞɧɨɟ ɨɫɚɠɞɟɧɢɟ ɢɯ ɜ ɪɨɬɨɪɟ ɛɟɡ ɨɛɪɚɡɨɜɚɧɢɹ ɱɟɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɦɟɠɞɭ ɱɢɫɬɨɣ ɠɢɞɤɨɫɬɶɸ ɢ ɟɳɟ ɧɟ ɪɚɫɫɥɨɢɜɲɟɣɫɹ ɫɭɫɩɟɧɡɢɟɣ. ɉɪɢ ɩɨɜɵɲɟɧɧɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɨɛɪɚɡɭɟɬɫɹ ɹɫɧɚɹ ɝɪɚɧɢɰɚ ɪɚɡɞɟɥɚ ɜɫɥɟɞɫɬɜɢɟ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ. ȼɫɥɟɞɫɬɜɢɟ ɧɟɨɞɧɨɪɨɞɧɨɫɬɢ ɩɨ ɪɚɞɢɭɫɭ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɩɨɥɹ ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ ɢ ɩɥɨɳɚɞɢ ɨɫɚɠɞɟɧɢɹ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɩɪɨɰɟɫɫɨɜ ɨɫɚɠɞɟɧɢɹ ɜ ɨɬɫɬɨɣɧɵɯ ɰɟɧɬɪɢɮɭɝɚɯ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɨɫɚɠɞɟɧɢɹ ɜ ɨɬɫɬɨɣɧɢɤɚɯ. Ɋɚɡɞɟɥɹɸɳɚɹ ɫɩɨɫɨɛɧɨɫɬɶ ɨɬɫɬɨɣɧɵɯ ɰɟɧɬɪɢɮɭɝ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɢɧɞɟɤɫɨɦ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ¦ , ɤɨɬɨɪɵɣ ɹɜɥɹɟɬɫɹ ɩɪɨɢɡɜɟɞɟɧɢɟɦ ɩɥɨɳɚɞɢ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɨɫɚɠɞɟɧɢɹ F ɜ ɪɨɬɨɪɟ ɧɚ ɮɚɤɬɨɪ ɪɚɡɞɟɥɟɧɢɹ Kp: ¦ F ˜Kp , (5.31) ɨɬɤɭɞɚ ¦/ F Kp. ȼɟɥɢɱɢɧɭ ¦ ɫɥɟɞɭɟɬ (5.32) ɫɱɢɬɚɬɶ ɪɚɜɧɨɣ ɩɥɨɳɚɞɢ ɨɬɫɬɨɣɧɢɤɚ, ɷɤɜɢɜɚɥɟɧɬɧɨɝɨ ɩɨ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ (ɞɥɹ ɞɚɧɧɨɣ ɫɭɫɩɟɧɡɢɢ) ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɰɟɧɬɪɢɮɭɝɟ. Ɏɚɤɬɨɪ ɪɚɡɞɟɥɟɧɢɹ ɞɥɹ ɨɬɫɬɨɣɧɨɣ ɰɟɧɬɪɢɮɭɝɢ ɪɚɜɟɧ ɝɞɟ r r ˜ n 2 ( D  h) n 2 , (5.33) Kp 900 2 ˜ 900 ( D  h) 2 - ɫɪɟɞɧɢɣ ɪɚɞɢɭɫ ɫɥɨɹ ɠɢɞɤɨɫɬɢ ɜ ɰɟɧɬɪɢɮɭɝɟ. ɉɥɨɳɚɞɶ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɨɫɚɠɞɟɧɢɹ ɜ ɪɨɬɨɪɟ S ( D  h) ˜ L , F (5.34) ɨɬɤɭɞɚ ɩɨɥɭɱɢɦ ¦ F ˜Kp S ˜ L( D  h) 2 n 2 1800 . (5.35) ɂɧɞɟɤɫ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɡɚɜɢɫɢɬ ɨɬ ɪɟɠɢɦɚ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ: ¦ F ˜ K 0p,715 ; - ɜ ɬɭɪɛɭɥɟɧɬɧɨɦ ɪɟɠɢɦɟ ¦ F ˜ K 0p,5 . - ɜ ɩɟɪɟɯɨɞɧɨɦ ɪɟɠɢɦɟ ɉɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɨɬɫɬɨɣɧɵɯ ɰɟɧɬɪɢɮɭɝ ɫɧɢɠɚɟɬɫɹ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɬɟɨɪɟɬɢɱɟɫɤɨɣ ɜɫɥɟɞɫɬɜɢɟ ɨɬɫɬɚɜɚɧɢɹ ɫɤɨɪɨɫɬɢ ɜɪɚɳɟɧɢɹ ɠɢɞɤɨɫɬɢ ɨɬ ɫɤɨɪɨɫɬɢ ɜɪɚɳɟɧɢɹ ɪɨɬɨɪɚ, ɧɟɪɚɜɧɨɦɟɪɧɨɫɬɢ ɬɟɱɟɧɢɹ ɠɢɞɤɨɫɬɢ ɜɞɨɥɶ ɪɨɬɨɪɚ, ɨɛɪɚɡɨɜɚɧɢɟ ɜɢɯɪɟɜɵɯ ɡɨɧ, ɭɜɥɟɤɚɸɳɢɯ ɨɫɚɠɞɟɧɧɵɟ ɱɚɫɬɢɰɵ. 5.1.3. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ ȼ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɩɪɢɯɨɞɢɬɫɹ ɢɦɟɬɶ ɞɟɥɨ ɫ ɛɨɥɶɲɢɦ ɤɨɥɢɱɟɫɬɜɨɦ ɜɨɞɵ, ɩɨɷɬɨɦɭ ɩɪɢɦɟɧɹɸɬ ɮɢɥɶɬɪɵ, ɞɥɹ ɪɚɛɨɬɵ ɤɨɬɨɪɵɯ ɧɟ ɬɪɟɛɭɟɬɫɹ ɜɵɫɨɤɢɯ ɞɚɜɥɟɧɢɣ. ɂɫɯɨɞɹ ɢɡ ɷɬɨɝɨ, ɢɫɩɨɥɶɡɭɸɬ ɮɢɥɶɬɪɵ ɫ ɫɟɬɱɚɬɵɦɢ ɷɥɟɦɟɧɬɚɦɢ (ɦɢɤɪɨɮɢɥɶɬɪɵ ɢ ɛɚɪɚɛɚɧɧɵɟ ɫɟɬɤɢ) ɢ ɮɢɥɶɬɪɵ ɫ ɮɢɥɶɬɪɭɸɳɢɦ ɡɟɪɧɢɫɬɵɦ ɫɥɨɟɦ. Ɇɟɯɚɧɢɡɦ ɢɡɜɥɟɱɟɧɢɹ ɱɚɫɬɢɰ ɢɡ ɜɨɞɵ ɧɚ ɮɢɥɶɬɪɚɯ ɫ ɡɟɪɧɢɫɬɨɣ ɩɟɪɟɝɨɪɨɞɤɨɣ: 1) ɩɪɨɰɟɠɢɜɚɧɢɟ ɫ ɦɟɯɚɧɢɱɟɫɤɢɦ ɢɡɜɥɟɱɟɧɢɟɦ ɱɚɫɬɢɰ; 2) ɝɪɚɜɢɬɚɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ; 3) ɢɧɟɪɰɢɨɧɧɨɟ ɡɚɯɜɚɬɵɜɚɧɢɟ; 4) ɯɢɦɢɱɟɫɤɚɹ ɚɞɫɨɪɛɰɢɹ; 5) ɮɢɡɢɱɟɫɤɚɹ ɚɞɫɨɪɛɰɢɹ; 6) ɚɞɝɟɡɢɹ; 7) ɤɨɚɝɭɥɹɰɢɨɧɧɨɟ ɨɫɚɠɞɟɧɢɟ; 8) ɛɢɨɥɨɝɢɱɟɫɤɨɟ ɜɵɪɚɳɢɜɚɧɢɟ. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɷɬɢ ɦɟɯɚɧɢɡɦɵ ɦɨɝɭɬ ɞɟɣɫɬɜɨɜɚɬɶ ɫɨɜɦɟɫɬɧɨ ɢ ɩɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ ɫɨɫɬɨɢɬ ɢɡ 3-ɯ ɫɬɚɞɢɣ: 1) ɩɟɪɟɧɨɫ ɱɚɫɬɢɰ ɧɚ ɩɨɜɟɪɯɧɨɫɬɶ ɜɟɳɟɫɬɜɚ, ɨɛɪɚɡɭɸɳɟɝɨ ɫɥɨɣ; 2) ɩɪɢɤɪɟɩɥɟɧɢɟ ɤ ɩɨɜɟɪɯɧɨɫɬɢ; 3) ɨɬɪɵɜ ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ. ɉɨ ɯɚɪɚɤɬɟɪɭ ɦɟɯɚɧɢɡɦɚ ɡɚɞɟɪɠɢɜɚɧɢɹ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɪɚɡɥɢɱɚɸɬ 2 ɜɢɞɚ ɮɢɥɶɬɪɨɜɚɧɢɹ: 1) ɮɢɥɶɬɪɨɜɚɧɢɟ ɱɟɪɟɡ ɩɥɟɧɤɭ (ɨɫɚɞɨɤ) ɡɚɝɪɹɡɧɟɧɢɣ, ɨɛɪɚɡɭɸɳɢɯɫɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɡɟɪɟɧ ɡɚɝɪɭɡɤɢ; 2) ɮɢɥɶɬɪɨɜɚɧɢɟ ɛɟɡ ɨɛɪɚɡɨɜɚɧɢɟ ɩɥɟɧɤɢ ɡɚɝɪɹɡɧɟɧɢɣ. ȼ ɩɟɪɜɨɦ ɫɥɭɱɚɟ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɱɚɫɬɢɰɵ, ɪɚɡɦɟɪ ɤɨɬɨɪɵɯ ɛɨɥɶɲɟ ɩɨɪ ɦɚɬɟɪɢɚɥɚ, ɚ ɡɚɬɟɦ ɨɛɪɚɡɭɟɬɫɹ ɫɥɨɣ ɡɚɝɪɹɡɧɟɧɢɣ, ɤɨɬɨɪɵɣ ɹɜɥɹɟɬɫɹ ɬɚɤɠɟ ɮɢɥɶɬɪɭɸɳɢɦ ɦɚɬɟɪɢɚɥɨɦ. Ɍɚɤɨɣ ɩɪɨɰɟɫɫ ɯɚɪɚɤɬɟɪɟɧ ɞɥɹ ɦɟɞɥɟɧɧɵɯ ɮɢɥɶɬɪɨɜ, ɤɨɬɨɪɵɟ ɪɚɛɨɬɚɸɬ ɩɪɢ ɦɚɥɵɯ ɫɤɨɪɨɫɬɹɯ ɮɢɥɶɬɪɨɜɚɧɢɹ. ȼɨ ɜɬɨɪɨɦ ɫɥɭɱɚɟ ɮɢɥɶɬɪɨɜɚɧɢɟ ɩɪɨɢɫɯɨɞɢɬ ɜ ɬɨɥɳɟ ɫɥɨɹ ɡɚɝɪɭɡɤɢ, ɝɞɟ ɱɚɫɬɢɰɵ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɧɚ ɡɟɪɧɚɯ ɮɢɥɶɬɪɭɸɳɟɝɨ ɦɚɬɟɪɢɚɥɚ ɚɞɝɟɡɢɨɧɧɵɦɢ ɫɢɥɚɦɢ. Ɍɚɤɨɣ ɩɪɨɰɟɫɫ ɯɚɪɚɤɬɟɪɟɧ ɞɥɹ ɫɤɨɪɨɫɬɧɵɯ ɮɢɥɶɬɪɨɜ. ȼɟɥɢɱɢɧɚ ɫɢɥ ɚɞɝɟɡɢɢ ɡɚɜɢɫɢɬ ɨɬ ɤɪɭɩɧɨɫɬɢ ɢ ɮɨɪɦɵ ɡɟɪɟɧ, ɨɬ ɲɟɪɨɯɨɜɚɬɨɫɬɢ ɩɨɜɟɪɯɧɨɫɬɢ ɢ ɟɟ ɯɢɦɢɱɟɫɤɨɝɨ ɫɨɫɬɚɜɚ, ɨɬ ɫɤɨɪɨɫɬɢ ɩɨɬɨɤɚ ɢ ɬɟɦɩɟɪɚɬɭɪɵ ɠɢɞɤɨɫɬɢ, ɨɬ ɫɜɨɣɫɬɜ ɩɪɢɦɟɫɟɣ. ɉɪɢɥɢɩɲɢɟ ɱɚɫɬɢɰɵ ɩɨɫɬɨɹɧɧɨ ɢɫɩɵɬɵɜɚɸɬ ɜɥɢɹɧɢɟ ɞɜɢɠɭɳɟɝɨɫɹ ɩɨɬɨɤɚ, ɤɨɬɨɪɵɣ ɫɪɵɜɚɟɬ ɢɯ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɮɢɥɶɬɪɭɸɳɟɝɨ ɦɚɬɟɪɢɚɥɚ. ɉɪɢ ɪɚɜɟɧɫɬɜɟ ɱɢɫɥɚ ɱɚɫɬɢɰ, ɩɨɫɬɭɩɚɸɳɢɯ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ ɧɚ ɩɨɜɟɪɯɧɨɫɬɶ ɮɢɥɶɬɪɭɸɳɟɝɨ ɫɥɨɹ ɢ ɩɨɤɢɞɚɸɳɢɯ ɟɟ, ɧɚɫɬɭɩɚɟɬ ɧɚɫɵɳɟɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɢ ɨɧɚ ɩɟɪɟɫɬɚɟɬ ɨɫɜɟɬɥɹɬɶ ɫɬɨɱɧɵɟ ɜɨɞɵ. ȼɚɠɧɵɦɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦɢ ɩɨɪɢɫɬɨɣ ɫɪɟɞɵ ɹɜɥɹɸɬɫɹ ɩɨɪɨɡɧɨɫɬɶ ɢ ɭɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ. ɉɨɪɨɡɧɨɫɬɶ (ɩɨɪɢɫɬɨɫɬɶ) ɡɚɜɢɫɢɬ ɨɬ ɫɬɪɭɤɬɭɪɵ ɩɨɪɢɫɬɨɣ ɫɪɟɞɵ ɢ ɫɜɹɡɚɧɚ ɤɚɤ ɫ ɪɚɡɦɟɪɨɦ ɡɟɪɟɧ, ɬɚɤ ɢ ɫ ɢɯ ɮɨɪɦɨɣ ɢ ɭɤɥɚɞɤɨɣ. ȿɫɥɢ ɨɛɨɡɧɚɱɢɦ ɩɨɪɨɡɧɨɫɬɶ ɱɟɪɟɡ İ, ɚ ɞɨɥɸ ɨɛɴɟɦɚ, ɡɚɧɢɦɚɟɦɭɸ ɬɟɥɨɦ ɱɟɪɟɡ v, ɬɨ İ = 1 - v. ɉɪɢ İ = 0 ɩɨɪɢɫɬɚɹ ɫɪɟɞɚ ɩɪɟɜɪɚɳɚɟɬɫɹ ɜ ɫɩɥɨɲɧɨɟ ɬɟɥɨ, ɚ ɩɪɢ İ = 1 ɜ ɦɚɤɫɢɦɚɥɶɧɨɟ ɩɨɪɢɫɬɨɟ ɬɟɥɨ, ɤɨɝɞɚ ɪɚɡɦɟɪɵ ɫɬɟɧɨɤ ɬɜɟɪɞɨɝɨ ɜɟɳɟɫɬɜɚ ɩɪɟɧɟɛɪɟɠɢɦɨ ɦɚɥɵ. ɍɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɫɥɨɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɧɟ ɬɨɥɶɤɨ ɩɨɪɨɡɧɨɫɬɶɸ, ɧɨ ɢ ɩɨɪɢɫɬɨɫɬɶɸ ɨɬɞɟɥɶɧɵɯ ɡɟɪɟɧ, ɚ ɬɚɤɠɟ ɡɚɜɢɫɢɬ ɨɬ ɮɨɪɦɵ ɡɟɪɟɧ. Ʉɨɷɮɮɢɰɢɟɧɬ ɮɨɪɦɵ ɫɭɳɟɫɬɜɟɧɧɨ ɜɥɢɹɟɬ ɧɚ ɟɦɤɨɫɬɶ ɩɨɪɢɫɬɨɝɨ ɮɢɥɶɬɪɭɸɳɟɝɨ ɫɥɨɹ ɢ ɤɨɷɮɮɢɰɢɟɧɬ ɝɢɞɪɚɜɥɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ. ɍɞɟɥɶɧɭɸ ɨɛɴɟɦɧɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɚ (ɦ2/ɦ3) ɩɨɪɢɫɬɨɝɨ (ɡɟɪɧɢɫɬɨɝɨ) ɫɥɨɹ ɜɵɱɢɫɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ a = 6(1- İ)Ɏ/dɷ, (5.35) ɝɞɟ Ɏ – ɤɨɷɮɮɢɰɢɟɧɬ ɮɨɪɦɵ ɡɟɪɟɧ ɫɥɨɹ; dɷ – ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ ɡɟɪɟɧ ɫɥɨɹ, ɦ. ɇɚ ɨɫɧɨɜɟ ɜɧɭɬɪɟɧɧɟɣ ɡɚɞɚɱɢ ɝɢɞɪɨɞɢɧɚɦɢɤɢ, ɪɚɫɫɦɚɬɪɢɜɚɸɳɟɣ ɞɜɢɠɟɧɢɟ ɜɧɭɬɪɢ ɤɚɧɚɥɨɜ, ɨɛɪɚɡɭɟɦɵɯ ɩɭɫɬɨɬɚɦɢ ɢ ɩɨɪɚɦɢ ɦɟɠɞɭ ɷɥɟɦɟɧɬɚɦɢ ɫɥɨɹ, ɩɪɟɞɥɨɠɟɧɨ ɜɵɪɚɠɟɧɢɟ, ɩɨ ɜɧɟɲɧɟɦɭ ɜɢɞɭ ɚɧɚɥɨɝɢɱɧɨɟ ɭɪɚɜɧɟɧɢɸ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɬɟɪɢ ɞɚɜɥɟɧɢɹ ɧɚ ɬɪɟɧɢɟ ɜ ɬɪɭɛɨɩɪɨɜɨɞɚɯ: ¨Ɋɫ = Ȝ.ɇ.ɚ.ȡ0.w02/(8 İ3), (5.36) ɝɞɟ Ȝ - ɨɛɳɢɣ ɤɨɷɮɮɢɰɢɟɧɬ ɫɨɩɪɨɬɢɜɥɟɧɢɹ, ɨɬɪɚɠɚɸɳɢɣ ɜɥɢɹɧɢɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɬɪɟɧɢɹ ɢ ɦɟɫɬɧɵɯ ɫɨɩɪɨɬɢɜɥɟɧɢɣ, ɜɨɡɧɢɤɚɸɳɢɯ ɩɪɢ ɞɜɢɠɟɧɢɢ ɠɢɞɤɨɫɬɢ (ɝɚɡɚ) ɩɨ ɤɚɧɚɥɚɦ ɫɥɨɹ ɢ ɨɛɬɟɤɚɧɢɢ ɨɬɞɟɥɶɧɵɯ ɷɥɟɦɟɧɬɨɜ ɫɥɨɹ; ɇ - ɜɵɫɨɬɚ ɫɥɨɹ, ɦ; a - ɭɞɟɥɶɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ, ɩɪɟɞɫɬɚɜɥɹɸɳɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɱɚɫɬɢɰ ɦɚɬɟɪɢɚɥɚ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɟɞɢɧɢɰɟ ɨɛɴɟɦɚ, ɡɚɧɹɬɨɝɨ ɫɥɨɟɦ, ɦ2/ɦ3; ȡ0 - ɩɥɨɬɧɨɫɬɶ ɠɢɞɤɨɫɬɢ ɢɥɢ ɝɚɡɚ; w0 - ɮɢɤɬɢɜɧɚɹ (ɩɪɢɜɟɞɟɧɧɚɹ) ɫɤɨɪɨɫɬɶ ɠɢɞɤɨɫɬɢ ɢɥɢ ɝɚɡɚ, ɪɚɫɫɱɢɬɵɜɚɟɦɚɹ ɤɚɤ ɨɬɧɨɲɟɧɢɟ ɨɛɴɟɦɧɨɝɨ ɪɚɫɯɨɞɚ ɞɜɢɠɭɳɟɣɫɹ ɫɪɟɞɵ ɤɨ ɜɫɟɣ ɩɥɨɳɚɞɢ ɩɨɩɟɪɟɱɧɨɝɨ ɫɟɱɟɧɢɹ ɫɥɨɹ, ɦ/ɫ; İ - ɩɨɪɨɡɧɨɫɬɶ, ɢɥɢ ɞɨɥɹ ɫɜɨɛɨɞɧɨɝɨ ɨɛɴɟɦɚ, ɬ.ɟ. ɨɬɧɨɲɟɧɢɟ ɨɛɴɟɦɚ ɫɜɨɛɨɞɧɨɝɨ ɩɪɨɫɬɪɚɧɫɬɜɚ ɦɟɠɞɭ ɱɚɫɬɢɰɚɦɢ ɤ ɨɛɴɟɦɭ, ɡɚɧɹɬɨɦɭ ɫɥɨɟɦ: Ɂɧɚɱɟɧɢɟ Ȝ ɧɚɯɨɞɹɬ ɩɨ ɭɪɚɜɧɟɧɢɸ Ȝ = 133/Re + 2,34. (5.37) Ʉɪɢɬɟɪɢɣ Ɋɟɣɧɨɥɶɞɫɚ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ (5.38) Re = 4 w0 ȡ0/(ɚ ȝ0), ɝɞɟ ȝ0 - ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɠɢɞɤɨɫɬɢ ɢɥɢ ɝɚɡɚ. ȿɫɥɢ ɧɟɢɡɜɟɫɬɧɨ ɡɧɚɱɟɧɢɟ ɚ, ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜɵɪɚɠɟɧɢɟ, ɩɨɥɭɱɟɧɧɨɟ ɢɫɯɨɞɹ ɢɡ ɜɧɟɲɧɟɣ ɡɚɞɚɱɢ ɝɢɞɪɨɞɢɧɚɦɢɤɢ ɩɪɢ ɨɛɬɟɤɚɧɢɢ ɨɬɞɟɥɶɧɵɯ ɷɥɟɦɟɧɬɨɜ ɫɥɨɹ: ¨Ɋɫ = 3 Ȝ.ɇ(1- İ)ȡ0.w02/(4 İ3.dɱ.Ɏ), (5.39) ɝɞɟ dɱ - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰ ɩɪɚɜɢɥɶɧɨɣ ɲɚɪɨɜɨɣ ɮɨɪɦɵ; ɞɥɹ ɱɚɫɬɢɰ ɧɟɩɪɚɜɢɥɶɧɨɣ ɮɨɪɦɵ dɱ - ɞɢɚɦɟɬɪ ɷɤɜɢɜɚɥɟɧɬɧɨɝɨ ɲɚɪɚ, ɬ.ɟ. ɲɚɪɚ, ɢɦɟɸɳɟɝɨ ɬɚɤɨɣ ɠɟ ɨɛɴɟɦ, ɤɚɤ ɢ ɱɚɫɬɢɰɚ, ɦ; Ɏ - ɮɚɤɬɨɪ (ɤɨɷɮɮɢɰɢɟɧɬ) ɮɨɪɦɵ ɱɚɫɬɢɰɵ, ɨɩɪɟɞɟɥɹɟɦɵɣ ɫɨɨɬɧɨɲɟɧɢɟɦ Ɏ = Fɲ/Fɱ (Fɲ - ɩɨɜɟɪɯɧɨɫɬɶ ɲɚɪɚ, ɢɦɟɸɳɟɝɨ ɬɨɬ ɠɟ ɨɛɴɟɦ, ɱɬɨ ɢ ɞɚɧɧɚɹ ɱɚɫɬɢɰɚ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ Fɱ). Ʉɪɢɬɟɪɢɣ Ɋɟɣɧɨɥɶɞɫɚ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɮɨɪɦɭɥɟ (5.40) Re = 2/3 [Ɏ/(1 - İ)]Re0, ɝɞɟ Re0 = w0 dɱ ȡ0/ȝ0. ɋɜɹɡɶ ɦɟɠɞɭ ɭɞɟɥɶɧɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ ɢ ɞɪɭɝɢɦɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦɢ ɫɥɨɹ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫ ɩɨɦɨɳɶɸ ɫɨɨɬɧɨɲɟɧɢɹ (5.41) a = 6(1- İ)/(Ɏ dɱ). ɉɪɢ ɫɜɨɛɨɞɧɨɣ ɡɚɫɵɩɤɟ ɲɚɪɨɨɛɪɚɡɧɵɯ ɱɚɫɬɢɰ ɞɨɥɹ ɫɜɨɛɨɞɧɨɝɨ ɨɛɴɟɦɚ ɫɨɫɬɚɜɥɹɟɬ İ = 0,4. Ɏɚɤɬɨɪ ɮɨɪɦɵ ɞɥɹ ɨɤɪɭɝɥɵɯ ɱɚɫɬɢɰ ɡɚɤɥɸɱɟɧ ɜ ɩɪɟɞɟɥɚɯ ɦɟɠɞɭ Ɏ = 1 (ɞɥɹ ɩɪɚɜɢɥɶɧɵɯ ɲɚɪɨɜ) ɢ Ɏ = 0,806 (ɞɥɹ ɩɪɚɜɢɥɶɧɵɯ ɤɭɛɨɜ). Ⱦɥɹ ɰɢɥɢɧɞɪɢɱɟɫɤɢɯ ɱɚɫɬɢɰ ɮɚɤɬɨɪ ɮɨɪɦɵ ɦɟɧɹɟɬɫɹ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɨɬɧɨɲɟɧɢɹ ɜɵɫɨɬɵ ɰɢɥɢɧɞɪɚ hɰ ɤ ɟɝɨ ɞɢɚɦɟɬɪɭ dɰ. ɇɚɩɪɢɦɟɪ, Ɏ = 0,69 ɩɪɢ hɰ/dɰ = 5; Ɏ = 0,32 ɩɪɢ hɰ/dɰ = 0,05. Ʉɢɧɟɬɢɤɚ ɮɢɥɶɬɪɨɜɚɧɢɹ ɢ ɦɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɨɩɢɫɵɜɚɸɬɫɹ ɭɪɚɜɧɟɧɢɹɦɢ: wq wc wc  b ˜ c  a ˜ q; (5.42)  v ɮ ˜ ; (5.43) wx wW wx ɉɪɢ ɪɟɲɟɧɢɢ ɷɬɢɯ ɭɪɚɜɧɟɧɢɣ ɩɨɥɭɱɚɟɬɫɹ ɨɛɳɟɟ ɭɪɚɜɧɟɧɢɟ ɩɪɨɰɟɫɫɚ. w 2c wc wc 0, (5.44)  a ˜ vɮ ˜  b wx ˜ wW wW wx ɝɞɟ c - ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ; x – ɞɥɢɧɚ ɭɱɚɫɬɤɚ ɤɚɧɚɥɚ, ɧɚ ɤɨɬɨɪɨɦ ɩɪɨɢɫɯɨɞɢɬ ɜɵɞɟɥɟɧɢɟ ɩɪɢɦɟɫɢ; a ɢ b – ɤɨɧɫɬɚɧɬɵ ɫɤɨɪɨɫɬɢ ɨɬɪɵɜɚ ɢ ɩɪɢɥɢɩɚɧɢɹ ɱɚɫɬɢɰ; q – ɤɨɧɰɟɧɬɪɚɰɢɹ ɨɫɚɞɤɚ; vɮ – ɫɤɨɪɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ. ɉɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɪɚɛɨɬɵ ɮɢɥɶɬɪɚ ɞɨ “ɩɪɨɫɤɨɤɚ” ɹɜɥɹɟɬɫɹ ɜɪɟɦɟɧɟɦ ɡɚɳɢɬɧɨɝɨ ɞɟɣɫɬɜɢɹ IJɡ. ɉɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɪɚɛɨɬɵ ɮɢɥɶɬɪɚ ɞɨ “ɩɪɨɫɤɨɤɚ” ɱɚɫɬɢɰ ɜ ɮɢɥɶɬɪɚɬ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ s 0 ˜ d ɱ ·¸ 1 §¨ l Wɡ , (5.45)  k ¨ v ɮ 1.7 ˜ d ɱ 0.7 vɮ ¸ ¹ © ɝɞɟ l – ɬɨɥɳɢɧɚ ɮɢɥɶɬɪɭɸɳɟɝɨ ɫɥɨɹ; dɱ – ɪɚɡɦɟɪ ɱɚɫɬɢɰ ɮɢɥɶɬɪɭɸɳɟɝɨ ɫɥɨɹ; k ɢ s0 – ɤɨɧɫɬɚɧɬɵ, ɡɚɜɢɫɹɳɢɟ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ ɜ ɢɫɯɨɞɧɨɣ ɢ ɨɫɜɟɬɥɟɧɧɨɣ ɫɬɨɱɧɨɣ ɜɨɞɟ. ȼɡɜɟɲɟɧɧɵɟ ɜɟɳɟɫɬɜɚ ɩɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɱɟɪɟɡ ɫɥɨɣ ɦɚɬɟɪɢɚɥɚ ɭɦɟɧɶɲɚɸɬ ɩɨɪɨɡɧɨɫɬɶ ɢ ɢɡɦɟɧɹɸɬ ɩɨɜɟɪɯɧɨɫɬɶ. ɋɨɩɪɨɬɢɜɥɟɧɢɟ ɮɢɥɶɬɪɭɸɳɟɝɨ ɫɥɨɹ ɜɨɡɪɚɫɬɚɟɬ ɩɨ ɦɟɪɟ ɩɪɨɯɨɠɞɟɧɢɹ ɫɬɨɱɧɨɣ ɜɨɞɵ. Ɏɢɥɶɬɪɵ ɫ ɡɟɪɧɢɫɬɵɦ ɫɥɨɟɦ ɩɨɞɪɚɡɞɟɥɹɸɬ ɧɚ ɦɟɞɥɟɧɧɵɟ ɢ ɫɤɨɪɨɫɬɧɵɟ, ɨɬɤɪɵɬɵɟ ɢ ɡɚɤɪɵɬɵɟ. ȼɵɫɨɬɚ ɫɥɨɹ ɜ ɨɬɤɪɵɬɵɯ ɮɢɥɶɬɪɚɯ ɪɚɜɧɚ 1…2 ɦ, ɜ ɡɚɤɪɵɬɵɯ 0,5…1 ɦ. ɇɚɩɨɪ ɜɨɞɵ ɜ ɡɚɤɪɵɬɵɯ ɮɢɥɶɬɪɚɯ ɫɨɡɞɚɟɬɫɹ ɧɚɫɨɫɚɦɢ. Ɇɟɞɥɟɧɧɵɟ ɮɢɥɶɬɪɵ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɮɢɥɶɬɪɨɜɚɧɢɹ ɧɟɤɨɚɝɭɥɢɪɭɟɦɵɯ ɫɬɨɱɧɵɯ ɜɨɞ. ɋɤɨɪɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ ɡɚɜɢɫɢɬ ɜ ɧɢɯ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ: ɞɨ 25 ɦɝ/ɥ ɫɤɨɪɨɫɬɶ ɩɪɢɧɢɦɚɸɬ 0,2…0,3 ɦ/ɱ; ɩɪɢ 25…30 ɦɝ/ɥ – 0,1…0,2 ɦ/ɱ. ɋɤɨɪɨɫɬɧɵɟ ɮɢɥɶɬɪɵ ɛɵɜɚɸɬ ɨɞɧɨ ɢ ɦɧɨɝɨɫɥɨɣɧɵɦɢ. ɍ ɨɞɧɨɫɥɨɣɧɨɝɨ ɮɢɥɶɬɪɚ ɫɥɨɣ ɫɨɫɬɨɢɬ ɢɡ ɨɞɧɨɝɨ ɢ ɬɨɝɨ ɠɟ ɦɚɬɟɪɢɚɥɚ, ɭ ɦɧɨɝɨɫɥɨɣɧɵɯ – ɢɡ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ (ɧɚɩɪɢɦɟɪ, ɢɡ ɚɧɬɪɚɰɢɬɚ ɢ ɩɟɫɤɚ). ȼɵɛɨɪ ɬɢɩɚ ɮɢɥɶɬɪɚ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɡɚɜɢɫɢɬ ɨɬ ɤɨɥɢɱɟɫɬɜɚ ɮɢɥɶɬɪɭɟɦɵɯ ɜɨɞ, ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɟɧɢɣ ɢ ɫɬɟɩɟɧɢ ɢɯ ɞɢɫɩɟɪɫɧɨɫɬɢ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɬɜɟɪɞɨɣ ɢ ɠɢɞɤɨɣ ɮɚɡ ɢ ɨɬ ɬɪɟɛɭɟɦɨɣ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ. 5.2. Ɏɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ʉ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɦ ɦɟɬɨɞɚɦ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬɧɨɫɹɬ ɤɨɚɝɭɥɹɰɢɸ, ɮɥɨɬɚɰɢɸ, ɚɞɫɨɪɛɰɢɸ, ɢɨɧɧɵɣ ɨɛɦɟɧ, ɷɤɫɬɪɚɤɰɢɸ, ɪɟɤɬɢɮɢɤɚɰɢɸ, ɜɵɩɚɪɢɜɚɧɢɟ, ɞɢɫɬɢɥɥɹɰɢɸ, ɨɛɪɚɬɧɵɣ ɨɫɦɨɫ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɸ, ɤɪɢɫɬɚɥɥɢɡɚɰɢɸ, ɞɟɫɨɪɛɰɢɸ ɢ ɞɪ. ɗɬɢ ɦɟɬɨɞɵ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɬɨɧɤɨɞɢɫɩɟɪɫɧɵɯ ɜɡɜɟɲɟɧɧɵɯ ɬɜɟɪɞɵɯ ɢ ɠɢɞɤɢɯ ɱɚɫɬɢɰ, ɪɚɫɬɜɨɪɢɦɵɯ ɝɚɡɨɜ, ɦɢɧɟɪɚɥɶɧɵɯ ɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. ɂɫɩɨɥɶɡɨɜɚɧɢɟ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɦɟɬɨɞɨɜ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɛɢɨɯɢɦɢɱɟɫɤɢɦ ɢɦɟɟɬ ɪɹɞ ɩɪɟɢɦɭɳɟɫɬɜ: 1) ɜɨɡɦɨɠɧɨɫɬɶ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɬɨɤɫɢɱɧɵɯ, ɛɢɨɯɢɦɢɱɟɫɤɢ ɧɟɨɤɢɫɥɹɟɦɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɡɚɝɪɹɡɧɟɧɢɣ; 2) ɞɨɫɬɢɠɟɧɢɟ ɛɨɥɟɟ ɝɥɭɛɨɤɨɣ ɢ ɫɬɚɛɢɥɶɧɨɣ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ; 3) ɦɟɧɶɲɢɟ ɪɚɡɦɟɪɵ ɫɨɨɪɭɠɟɧɢɣ; 4) ɦɟɧɶɲɚɹ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶ ɤ ɢɡɦɟɧɟɧɢɹɦ ɧɚɝɪɭɡɨɤ; 5) ɜɨɡɦɨɠɧɨɫɬɶ ɩɨɥɧɨɣ ɚɜɬɨɦɚɬɢɡɚɰɢɢ; 6) ɛɨɥɟɟ ɝɥɭɛɨɤɚɹ ɢɡɭɱɟɧɧɨɫɬɶ ɤɢɧɟɬɢɤɢ ɧɟɤɨɬɨɪɵɯ ɩɪɨɰɟɫɫɨɜ, ɚ ɬɚɤɠɟ ɜɨɩɪɨɫɨɜ ɦɨɞɟɥɢɪɨɜɚɧɢɹ, ɦɚɬɟɦɚɬɢɱɟɫɤɨɝɨ ɨɩɢɫɚɧɢɹ ɢ ɨɩɬɢɦɢɡɚɰɢɢ, ɱɬɨ ɜɚɠɧɨ ɞɥɹ ɩɪɚɜɢɥɶɧɨɝɨ ɜɵɛɨɪɚ ɢ ɪɚɫɱɟɬɚ ɚɩɩɚɪɚɬɭɪɵ; 7) ɦɟɬɨɞɵ ɧɟ ɫɜɹɡɚɧɵ ɫ ɤɨɧɬɪɨɥɟɦ ɡɚ ɞɟɹɬɟɥɶɧɨɫɬɶɸ ɠɢɜɵɯ ɨɪɝɚɧɢɡɦɨɜ; 8) ɜɨɡɦɨɠɧɨɫɬɶ ɪɟɤɭɩɟɪɚɰɢɢ ɪɚɡɥɢɱɧɵɯ ɜɟɳɟɫɬɜ. ȼɵɛɨɪ ɬɨɝɨ ɢɥɢ ɢɧɨɝɨ ɦɟɬɨɞɚ ɨɱɢɫɬɤɢ (ɢɥɢ ɧɟɫɤɨɥɶɤɢɯ ɦɟɬɨɞɨɜ) ɩɪɨɢɡɜɨɞɹɬ ɫ ɭɱɟɬɨɦ ɫɚɧɢɬɚɪɧɵɯ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɬɪɟɛɨɜɚɧɢɣ, ɩɪɟɞɴɹɜɥɹɟɦɵɯ ɤ ɨɱɢɳɟɧɧɵɦ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɦ ɫɬɨɱɧɵɦ ɜɨɞɚɦ ɫ ɰɟɥɶɸ ɞɚɥɶɧɟɣɲɟɝɨ ɢɯ ɢɫɩɨɥɶɡɨɜɚɧɢɹ, ɚ ɬɚɤɠɟ ɫ ɭɱɟɬɨɦ ɤɨɥɢɱɟɫɬɜɚ ɫɬɨɱɧɵɯ ɜɨɞ ɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɟɧɢɣ ɜ ɧɢɯ. 5.2.1. Ʉɨɚɝɭɥɹɰɢɹ ɢ ɮɥɨɤɭɥɹɰɢɹ ɡɚɝɪɹɡɧɟɧɢɣ ɫɬɨɱɧɵɯ ɜɨɞ ɋɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɛɭɞɟɬ ɜɨɡɪɚɫɬɚɬɶ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɪɚɡɦɟɪɚ ɱɚɫɬɢɰ. Ⱦɥɹ ɭɫɤɨɪɟɧɢɹ ɨɬɫɬɚɢɜɚɧɢɹ ɢɫɩɨɥɶɡɭɸɬ ɤɨɚɝɭɥɹɰɢɸ ɱɚɫɬɢɰ, ɬ.ɟ. ɭɤɪɭɩɧɟɧɢɟ ɢɯ ɫ ɩɨɦɨɳɶɸ ɜɜɨɞɢɦɵɯ ɜ ɫɭɫɩɟɧɡɢɸ ɤɨɚɝɭɥɹɧɬɨɜ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɱɟɝɨ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɦɨɥɟɤɭɥɹɪɧɵɯ ɫɢɥ ɫɰɟɩɥɟɧɢɹ ɩɪɨɢɫɯɨɞɢɬ ɫɥɢɩɚɧɢɟ ɦɟɥɤɢɯ ɱɚɫɬɢɰ ɜ ɤɪɭɩɧɵɟ ɤɨɧɝɥɨɦɟɪɚɬɵ (ɯɥɨɩɶɹ, ɮɥɨɤɭɥɵ). Ʉɨɚɝɭɥɹɰɢɹ – ɷɬɨ ɩɪɨɰɟɫɫ ɭɤɪɭɩɧɟɧɢɹ ɞɢɫɩɟɪɫɧɵɯ ɱɚɫɬɢɰ ɜ ɪɟɡɭɥɶɬɚɬɟ ɢɯ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɢ ɨɛɴɟɞɢɧɟɧɢɹ ɜ ɚɝɪɟɝɚɬɵ. ȼ ɨɱɢɫɬɤɟ ɫɬɨɱɧɵɯ ɜɨɞ ɟɟ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɭɫɤɨɪɟɧɢɹ ɩɪɨɰɟɫɫɚ ɨɫɚɠɞɟɧɢɹ ɬɨɧɤɨɞɢɫɩɟɪɫɧɵɯ ɩɪɢɦɟɫɟɣ ɢ ɷɦɭɥɶɝɢɪɨɜɚɧɧɵɯ ɜɟɳɟɫɬɜ. Ʉɨɚɝɭɥɹɰɢɹ ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɚ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɜɨɞɵ ɤɨɥɥɨɢɞɧɨ-ɞɢɫɩɟɪɫɧɵɯ ɱɚɫɬɢɰ, ɬ.ɟ. ɱɚɫɬɢɰ ɪɚɡɦɟɪɨɦ 1…100 ɦɤɦ. Ʉɨɚɝɭɥɹɰɢɹ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɫɚɦɨɩɪɨɢɡɜɨɥɶɧɨ ɢɥɢ ɩɨɞ ɜɥɢɹɧɢɟɦ ɯɢɦɢɱɟɫɤɢɯ ɢ ɮɢɡɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ. ȼ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɤɨɚɝɭɥɹɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɩɨɞ ɜɥɢɹɧɢɟɦ ɞɨɛɚɜɥɹɟɦɵɯ ɤ ɧɢɦ ɫɩɟɰɢɚɥɶɧɵɯ ɜɟɳɟɫɬɜ – ɤɨɚɝɭɥɹɧɬɨɜ. Ʉɨɚɝɭɥɹɧɬɵ ɜ ɜɨɞɟ ɨɛɪɚɡɭɸɬ ɯɥɨɩɶɹ ɝɢɞɪɨɤɫɢɞɨɜ ɦɟɬɚɥɥɨɜ, ɤɨɬɨɪɵɟ ɛɵɫɬɪɨ ɨɫɟɞɚɸɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ. ɏɥɨɩɶɹ ɨɛɥɚɞɚɸɬ ɫɩɨɫɨɛɧɨɫɬɶɸ ɭɥɚɜɥɢɜɚɬɶ ɤɨɥɥɨɢɞɧɵɟ ɢ ɜɡɜɟɲɟɧɧɵɟ ɱɚɫɬɢɰɵ ɢ ɚɝɪɟɝɢɪɨɜɚɬɶ ɢɯ. Ɍɚɤ ɤɚɤ ɤɨɥɥɨɢɞɧɵɟ ɱɚɫɬɢɰɵ ɢɦɟɸɬ ɫɥɚɛɵɣ ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɚɪɹɞ, ɚ ɯɥɨɩɶɹ ɤɨɚɝɭɥɹɧɬɨɜ – ɫɥɚɛɵɣ ɩɨɥɨɠɢɬɟɥɶɧɵɣ ɡɚɪɹɞ, ɬɨ ɦɟɠɞɭ ɧɢɦɢ ɜɨɡɧɢɤɚɟɬ ɜɡɚɢɦɧɨɟ ɩɪɢɬɹɠɟɧɢɟ. Ⱦɥɹ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ ɯɚɪɚɤɬɟɪɧɨ ɨɛɪɚɡɨɜɚɧɢɟ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɱɚɫɬɢɰ ɞɜɨɣɧɨɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɫɥɨɹ. Ɉɞɧɚ ɱɚɫɬɶ ɞɜɨɣɧɨɝɨ ɫɥɨɹ ɮɢɤɫɢɪɨɜɚɧɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɮɚɡ, ɚ ɞɪɭɝɚɹ ɫɨɡɞɚɟɬ ɨɛɥɚɤɨ ɢɨɧɨɜ, ɬ.ɟ. ɨɞɧɚ ɱɚɫɬɶ ɞɜɨɣɧɨɝɨ ɫɥɨɹ ɹɜɥɹɟɬɫɹ ɧɟɩɨɞɜɢɠɧɨɣ, ɚ ɞɪɭɝɚɹ ɩɨɞɜɢɠɧɨɣ (ɞɢɮɮɭɡɧɵɣ ɫɥɨɣ). Ɋɚɡɧɨɫɬɶ ɩɨɬɟɧɰɢɚɥɨɜ, ɜɨɡɧɢɤɚɸɳɚɹ ɦɟɠɞɭ ɧɟɩɨɞɜɢɠɧɨɣ ɢ ɩɨɞɜɢɠɧɨɣ ɱɚɫɬɹɦɢ ɫɥɨɹ (ɜ ɨɛɴɟɦɟ ɠɢɞɤɨɫɬɢ) ɧɚɡɵɜɚɟɬɫɹ ɞɡɟɬɚ-ɩɨɬɟɧɰɢɚɥɨɦ ȟ ɢɥɢ ɷɥɟɤɬɪɨɤɢɧɟɬɢɱɟɫɤɢɦ ɩɨɬɟɧɰɢɚɥɨɦ, ɨɬɥɢɱɧɵɦ ɨɬ ɬɟɪɦɨɞɢɧɚɦɢɱɟɫɤɨɝɨ ɩɨɬɟɧɰɢɚɥɚ ȿ, ɤɨɬɨɪɵɣ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɪɚɡɧɨɫɬɶ ɩɨɬɟɧɰɢɚɥɨɜ ɦɟɠɞɭ ɩɨɜɟɪɯɧɨɫɬɶɸ ɱɚɫɬɢɰ ɢ ɠɢɞɤɨɫɬɶɸ. Ⱦɡɟɬɚ-ɩɨɬɟɧɰɢɚɥ ɡɚɜɢɫɢɬ ɤɚɤ ɨɬ ȿ, ɬɚɤ ɢ ɨɬ ɬɨɥɳɢɧɵ ɞɜɨɣɧɨɝɨ ɫɥɨɹ. ȿɝɨ ɡɧɚɱɟɧɢɟ ɨɩɪɟɞɟɥɹɟɬ ɜɟɥɢɱɢɧɭ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɢɯ ɫɢɥ ɨɬɬɚɥɤɢɜɚɧɢɹ ɱɚɫɬɢɰ, ɤɨɬɨɪɵɟ ɩɪɟɞɨɯɪɚɧɹɸɬ ɱɚɫɬɢɰɵ ɨɬ ɫɥɢɩɚɧɢɹ ɞɪɭɝ ɫ ɞɪɭɝɨɦ. Ɇɚɥɵɣ ɪɚɡɦɟɪ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ ɡɚɝɪɹɡɧɟɧɢɣ ɢ ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɚɪɹɞ, ɪɚɫ- ɩɪɟɞɟɥɟɧɧɵɣ ɧɚ ɢɯ ɩɨɜɟɪɯɧɨɫɬɢ, ɨɛɭɫɥɚɜɥɢɜɚɟɬ ɜɵɫɨɤɭɸ ɫɬɚɛɢɥɶɧɨɫɬɶ ɤɨɥɥɨɢɞɧɨɣ ɫɢɫɬɟɦɵ. ɑɬɨɛɵ ɜɵɡɜɚɬɶ ɤɨɚɝɭɥɹɰɢɸ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ, ɧɟɨɛɯɨɞɢɦɨ ɫɧɢɡɢɬɶ ɜɟɥɢɱɢɧɭ ɢɯ ɞɡɟɬɚ-ɩɨɬɟɧɰɢɚɥɚ ɞɨ ɤɪɢɬɢɱɟɫɤɨɝɨ ɡɧɚɱɟɧɢɹ ɞɨɛɚɜɥɟɧɢɟɦ ɢɨɧɨɜ, ɢɦɟɸɳɢɯ ɩɨɥɨɠɢɬɟɥɶɧɵɣ ɡɚɪɹɞ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɪɢ ɤɨɚɝɭɥɹɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɞɟɫɬɚɛɢɥɢɡɚɰɢɹ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ ɜɫɥɟɞɫɬɜɢɟ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɢɯ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɡɚɪɹɞɚ. ɗɮɮɟɤɬ ɤɨɚɝɭɥɹɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɜɚɥɟɧɬɧɨɫɬɢ ɢɨɧɚ ɤɨɚɝɭɥɹɧɬɚ, ɧɟɫɭɳɟɝɨ ɡɚɪɹɞ, ɩɪɨɬɢɜɨɩɨɥɨɠɧɵɣ ɡɧɚɤɭ ɡɚɪɹɞɚ ɱɚɫɬɢɰ. ɑɟɦ ɜɵɲɟ ɜɚɥɟɧɬɧɨɫɬɶ, ɬɟɦ ɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɨ ɤɨɚɝɭɥɢɪɭɸɳɟɟ ɞɟɣɫɬɜɢɟ. Ⱦɥɹ ɧɚɱɚɥɚ ɤɨɚɝɭɥɹɰɢɢ ɱɚɫɬɢɰɵ ɞɨɥɠɧɵ ɩɪɢɛɥɢɡɢɬɶɫɹ ɞɪɭɝ ɤ ɞɪɭɝɭ ɧɚ ɪɚɫɫɬɨɹɧɢɟ, ɩɪɢ ɤɨɬɨɪɨɦ ɦɟɠɞɭ ɧɢɦɢ ɞɟɣɫɬɜɭɸɬ ɫɢɥɵ ɩɪɢɬɹɠɟɧɢɹ ɢ ɯɢɦɢɱɟɫɤɨɝɨ ɫɪɨɞɫɬɜɚ. ɋɛɥɢɠɟɧɢɟ ɱɚɫɬɢɰ ɩɪɨɢɫɯɨɞɢɬ ɜ ɪɟɡɭɥɶɬɚɬɟ ɛɪɨɭɧɨɜɫɤɨɝɨ ɞɜɢɠɟɧɢɹ, ɚ ɬɚɤɠɟ ɩɪɢ ɥɚɦɢɧɚɪɧɨɦ ɢɥɢ ɬɭɪɛɭɥɟɧɬɧɨɦ ɞɜɢɠɟɧɢɢ ɩɨɬɨɤɚ ɜɨɞɵ. Ʉɨɚɝɭɥɢɪɭɸɳɟɟ ɞɟɣɫɬɜɢɟ ɫɨɥɟɣ ɟɫɬɶ ɪɟɡɭɥɶɬɚɬ ɝɢɞɪɨɥɢɡɚ, ɤɨɬɨɪɵɣ ɩɪɨɯɨɞɢɬ ɜɫɥɟɞ ɡɚ ɪɚɫɬɜɨɪɟɧɢɟɦ. ȼ ɤɚɱɟɫɬɜɟ ɤɨɚɝɭɥɹɧɬɨɜ ɢɫɩɨɥɶɡɭɸɬ ɛɟɧɬɨɧɢɬ, ɷɥɟɤɬɪɨɥɢɬɵ, ɪɚɫɬɜɨɪɢɦɵɟ ɜ ɜɨɞɟ ɫɨɥɢ ɚɥɸɦɢɧɢɹ Al2(SO4)3, ɫɨɥɢ ɠɟɥɟɡɚ FeCl3 ɢɥɢ ɢɯ ɫɦɟɫɢ, ɩɨɥɢɚɤɪɢɥɚɦɢɞ, ɤɨɬɨɪɵɟ ɝɢɞɪɨɥɢɡɭɹɫɶ, ɨɛɪɚɡɭɸɬ ɯɥɨɩɶɟɜɢɞɧɵɟ ɝɢɞɪɚɬɵ ɨɤɢɫɥɨɜ ɦɟɬɚɥɥɨɜ. ȼɵɛɨɪ ɤɨɚɝɭɥɹɧɬɚ ɡɚɜɢɫɢɬ ɨɬ ɟɝɨ ɫɨɫɬɚɜɚ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɢ ɫɬɨɢɦɨɫɬɢ, ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢɦɟɫɟɣ ɜ ɜɨɞɟ, ɨɬ ɪɇ ɢ ɫɨɥɟɜɨɝɨ ɫɨɫɬɚɜɚ ɜɨɞɵ. ɋɨɥɢ ɠɟɥɟɡɚ ɤɚɤ ɤɨɚɝɭɥɹɧɬɵ ɢɦɟɸɬ ɪɹɞ ɩɪɟɢɦɭɳɟɫɬɜ ɩɟɪɟɞ ɫɨɥɹɦɢ ɚɥɸɦɢɧɢɹ: ɥɭɱɲɟɟ ɞɟɣɫɬɜɢɟ ɩɪɢ ɧɢɡɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɜɨɞɵ, ɛɨɥɟɟ ɲɢɪɨɤɚɹ ɨɛɥɚɫɬɶ ɨɩɬɢɦɚɥɶɧɵɯ ɡɧɚɱɟɧɢɣ ɪɇ ɫɪɟɞɵ, ɛɨɥɶɲɚɹ ɩɪɨɱɧɨɫɬɶ ɢ ɝɢɞɪɚɜɥɢɱɟɫɤɚɹ ɤɪɭɩɧɨɫɬɶ ɯɥɨɩɶɟɜ; ɜɨɡɦɨɠɧɨɫɬɶ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɜɨɞ ɫ ɛɨɥɟɟ ɲɢɪɨɤɢɦ ɞɢɚɩɚɡɨɧɨɦ ɫɨɥɟɜɨɝɨ ɫɨɫɬɚɜɚ; ɫɩɨɫɨɛɧɨɫɬɶ ɭɫɬɪɚɧɹɬɶ ɜɪɟɞɧɵɟ ɡɚɩɚɯɢ ɢ ɩɪɢɜɤɭɫɵ, ɨɛɭɫɥɨɜɥɟɧɧɵɟ ɩɪɢɫɭɬɫɬɜɢɟɦ ɫɟɪɨɜɨɞɨɪɨɞɚ. Ɉɞɧɚɤɨ ɢɦɟɸɬɫɹ ɢ ɧɟɞɨɫɬɚɬɤɢ: ɨɛɪɚɡɨɜɚɧɢɟ ɩɪɢ ɪɟɚɤɰɢɢ ɤɚɬɢɨɧɨɜ ɠɟɥɟɡɚ ɫ ɧɟɤɨɬɨɪɵɦɢ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɫɨɟɞɢɧɟɧɢɹɦɢ ɫɢɥɶɧɨ ɨɤɪɚɲɢɜɚɸɳɢɯ ɪɚɫɬɜɨɪɢɦɵɯ ɤɨɦɩɥɟɤɫɨɜ; ɫɢɥɶɧɵɟ ɤɢɫɥɨɬɧɵɟ ɫɜɨɣɫɬɜɚ, ɭɫɢɥɢɜɚɸɳɢɟ ɤɨɪɪɨɡɢɸ ɚɩɩɚɪɚɬɭɪɵ; ɦɟɧɟɟ ɪɚɡɜɢɬɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɯɥɨɩɶɟɜ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɫɦɟɫɟɣ ɫɭɥɶɮɚɬɚ ɚɥɸɦɢɧɢɹ Al2(SO4)3 ɢ ɯɥɨɪɧɨɝɨ ɠɟɥɟɡɚ FeCl3 ɜ ɫɨɨɬɧɨɲɟɧɢɹɯ ɨɬ 1:1 ɞɨ 1:2 ɞɨɫɬɢɝɚɟɬɫɹ ɥɭɱɲɢɣ ɪɟɡɭɥɶɬɚɬ ɤɨɚɝɭɥɢɪɨɜɚɧɢɹ, ɱɟɦ ɩɪɢ ɪɚɡɞɟɥɶɧɨɦ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɪɟɚɝɟɧɬɨɜ. Ⱦɥɹ ɨɛɪɚɛɨɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɬɚɤɠɟ ɦɨɝɭɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ ɪɚɡɥɢɱɧɵɟ ɝɥɢɧɵ, ɚɥɸɦɢɧɢɣɫɨɞɟɪɠɚɳɢɟ ɨɬɯɨɞɵ ɩɪɨɢɡɜɨɞɫɬɜɚ, ɬɪɚɜɢɥɶɧɵɟ ɪɚɫɬɜɨɪɵ, ɩɚɫɬɵ, ɫɦɟɫɢ, ɲɥɚɤɢ, ɫɨɞɟɪɠɚɳɢɟ ɞɢɨɤɫɢɞ ɤɪɟɦɧɢɹ. ɋɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɷɥɟɤɬɪɨɥɢɬɚ (ɪɢɫ. 5.5). ɉɪɢ ɦɚɥɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɷɥɟɤɬɪɨɥɢɬɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ, ɬ.ɟ. ɨɬɧɨɲɟɧɢɟ ɱɢɫɥɚ ɫɬɨɥɤɧɨɜɟɧɢɣ, ɨɤɨɧɱɢɜɲɢɯɫɹ ɫɥɢɩɚɧɢɟɦ, ɤ ɨɛɳɟɦɭ ɱɢɫɥɭ ɫɬɨɥɤɧɨɜɟɧɢɣ, ɛɥɢɡɤɚ ɤ ɧɭɥɸ (ȥ = 0). ɉɨ ɦɟɪɟ ɪɨɫɬɚ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ ɭɜɟɥɢɱɢɜɚɟɬɫɹ, ɧɨ ɧɟ ɜɫɟ ɫɬɨɥɤɧɨɜɟɧɢɹ ɨɤɚɧɱɢɜɚɸɬɫɹ ɫɥɢɩɚɧɢɟɦ ɱɚɫɬɢɰ – ɬɚɤɭɸ ɤɨɚɝɭɥɹɰɢɸ ɧɚɡɵɜɚɸɬ ɦɟɞɥɟɧɧɨɣ. ɉɪɢ ȥ = 0 ɧɚɫɬɭɩɚɟɬ ɛɵɫɬɪɚɹ ɤɨɚɝɭɥɹɰɢɹ, ɩɪɢ ɤɨɬɨɪɨɣ ɜɫɟ ɫɬɨɥɤɧɨɜɟɧɢɹ ɱɚɫɬɢɰ ɡɚɤɚɧɱɢɜɚɸɬɫɹ ɨɛɪɚɡɨɜɚɧɢɟɦ ɚɝɪɟɝɚɬɨɜ. ɋɤɨɪɨɫɬɶ ɛɵɫɬɪɨɣ ɤɨɚɝɭɥɹɰɢɢ ɞɥɹ ɧɟɩɨɞɜɢɠɧɨɣ ɫɪɟɞɵ ɩɪɢ ɛɪɨɭɧɨɜɫɤɨɦ ɞɜɢɠɟɧɢɢ ɱɚɫɬɢɰ ɩɨ ɬɟɨɪɢɢ ɋɦɨɥɭɯɨɜɫɤɨɝɨ ɪɚɜɧɚ: dn x = k(nɨ – nx)2. dW (5.46) dn x dW \ 1 n Ɋɢɫ. 5.5. Ɂɚɜɢɫɢɦɨɫɬɶ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɤɨɚɝɭɥɹɰɢɢ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɷɥɟɤɬɪɨɥɢɬɚ Ʉɨɥɢɱɟɫɬɜɨ ɱɚɫɬɢɰ ɜ ɟɞɢɧɢɰɟ ɨɛɴɟɦɚ ɜɨɞɵ ɡɚ ɜɪɟɦɹ IJ ɞɥɹ ɛɵɫɬɪɨɣ ɢ ɦɟɞɥɟɧɧɨɣ ɤɨɚɝɭɥɹɰɢɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɚɦ: nIJ = no/(1+ IJ/T½); (5.47) nIJ = no/[1+ȥ(IJ/T½)], (5.48) ɝɞɟ k – ɤɨɧɫɬɚɧɬɚ ɤɨɚɝɭɥɹɰɢɢ; nɯ – ɱɢɫɥɨ ɚɝɪɟɝɚɬɨɜ ɱɚɫɬɢɰ; no – ɧɚɱɚɥɶɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɱɚɫɬɢɰ; T½ - ɜɪɟɦɹ ɤɨɚɝɭɥɹɰɢɢ, ɜ ɬɟɱɟɧɢɟ ɤɨɬɨɪɨɝɨ ɤɨɥɢɱɟɫɬɜɨ ɱɚɫɬɢɰ ɜ ɟɞɢɧɢɰɟ ɨɛɴɟɦɚ ɭɦɟɧɶɲɚɟɬɫɹ ɜɞɜɨɟ; ȥ – ɤɨɷɮɮɢɰɢɟɧɬ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɫɬɨɥɤɧɨɜɟɧɢɣ ɱɚɫɬɢɰ. ȼ ɩɨɥɢɞɢɫɩɟɪɫɧɵɯ ɫɢɫɬɟɦɚɯ ɤɨɚɝɭɥɹɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɛɵɫɬɪɟɟ, ɱɟɦ ɜ ɦɨɧɨɞɢɫɩɟɪɫɧɵɯ, ɬ.ɤ. ɤɪɭɩɧɵɟ ɱɚɫɬɢɰɵ ɩɪɢ ɨɫɟɞɚɧɢɢ ɭɜɥɟɤɚɸɬ ɡɚ ɫɨɛɨɣ ɛɨɥɟɟ ɦɟɥɤɢɟ. Ɏɨɪɦɚ ɱɚɫɬɢɰ ɬɚɤɠɟ ɜɥɢɹɟɬ ɧɚ ɫɤɨɪɨɫɬɶ ɤɨɚɝɭɥɹɰɢɢ. ɇɚɩɪɢɦɟɪ, ɭɞɥɢɧɟɧɧɵɟ ɱɚɫɬɢɰɵ ɤɨɚɝɭɥɢɪɭɸɬ ɛɵɫɬɪɟɟ, ɱɟɦ ɲɚɪɨɨɛɪɚɡɧɵɟ. Ɋɚɡɦɟɪ ɯɥɨɩɶɟɜ (ɜ ɩɪɟɞɟɥɚɯ 0,5…3 ɦɦ) ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɨɨɬɧɨɲɟɧɢɟɦ ɦɟɠɞɭ ɦɨɥɟɤɭɥɹɪɧɵɦɢ ɫɢɥɚɦɢ, ɭɞɟɪɠɢɜɚɸɳɢɦɢ ɱɚɫɬɢɰɵ ɜɦɟɫɬɟ, ɢ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɢɦɢ ɫɢɥɚɦɢ ɨɬɪɵɜɚ, ɫɬɪɟɦɹɳɢɯɫɹ ɪɚɡɪɭɲɢɬɶ ɚɝɪɟɝɚɬɵ. Ⱦɥɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɯɥɨɩɶɟɜ ɢɫɩɨɥɶɡɭɸɬ ɷɤɜɢɜɚɥɟɧɬɧɵɣ ɞɢɚɦɟɬɪ. Q 0 ˜ woc dɷ = 0,136 , (5.49) U x  1 kɮ > @ ɝɞɟ Q0 – ɤɢɧɟɦɚɬɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɜɨɞɵ; ȡɯ – ɩɥɨɬɧɨɫɬɶ ɯɥɨɩɶɟɜ; wɨɫ – ɫɤɨɪɨɫɬɶ ɫɜɨɛɨɞɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɯɥɨɩɶɟɜ. ɉɥɨɬɧɨɫɬɶ ɯɥɨɩɶɟɜ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫ ɭɱɟɬɨɦ ɩɥɨɬɧɨɫɬɢ ɜɨɞɵ ȡ0 ɢ ɬɜɟɪɞɨɣ ɮɚɡɵ ȡɬ ɢ ɨɛɴɟɦɚ ɬɜɟɪɞɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɟɞɢɧɢɰɟ ɨɛɴɟɦɚ ɯɥɨɩɶɟɜ įɬ: ȡɯ = ȡ0 + įɬ(ȡɬ – ȡ0). (5.50) ɉɪɨɱɧɨɫɬɶ ɯɥɨɩɶɟɜ ɡɚɜɢɫɢɬ ɨɬ ɝɪɚɧɭɥɨɦɟɬɪɢɱɟɫɤɨɝɨ ɫɨɫɬɚɜɚ ɨɛɪɚɡɭɸɳɢɯɫɹ ɚɝɪɟɝɚɬɨɜ ɱɚɫɬɢɰ ɢ ɩɥɚɫɬɢɱɧɨɫɬɢ. Ⱥɝɥɨɦɟɪɚɬɵ ɱɚɫɬɢɰ, ɧɟɨɞɧɨɪɨɞɧɵɯ ɩɨ ɪɚɡɦɟɪɭ, ɩɪɨɱɧɟɟ, ɱɟɦ ɨɞɧɨɪɨɞɧɵɯ. ȼɫɥɟɞɫɬɜɢɟ ɜɵɞɟɥɟɧɢɹ ɝɚɡɚ ɢɡ ɜɨɞɵ, ɚ ɬɚɤɠɟ ɜ ɪɟɡɭɥɶɬɚɬɟ ɚɷɪɚɰɢɢ ɢ ɮɥɨɬɚɰɢɢ ɩɪɨɢɫɯɨɞɢɬ ɝɚɡɨɧɚɫɵɳɟɧɢɟ ɯɥɨɩɶɟɜ, ɤɨɬɨɪɨɟ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɭɦɟɧɶɲɟɧɢɟɦ ɩɥɨɬɧɨɫɬɢ ɯɥɨɩɶɟɜ ɢ ɭɦɟɧɶɲɟɧɢɟɦ ɫɤɨɪɨɫɬɢ ɨɫɚɠɞɟɧɢɹ. Ⱦɥɹ ɯɥɨɩɶɟɜɢɞɧɵɯ ɱɚɫɬɢɰ ɜ ɩɪɟɞɟɥɚɯ ɨɛɴɟɦɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɣ ɜɡɜɟɫɢ ɋ0 ɨɬ 0 ɞɨ 0,2 ɤɝ/ɦ3 ɫɤɨɪɨɫɬɶ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɦɨɠɧɨ ɪɚɫɫɱɢɬɚɬɶ wɫɬ wɨɫ (1  3,5 C 0 ) /(1  M ) . (5.51) Ɉɬɧɨɲɟɧɢɟ ɫɤɨɪɨɫɬɢ ɫɬɟɫɧɟɧɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɤ ɫɤɨɪɨɫɬɢ ɫɜɨɛɨɞɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɱɚɫɬɢɰ ɪɚɜɧɨ wɫɬ / wɨɫ (1  M ) ˜ 9 0 / 9 c , (5.52) ɝɞɟ ȗ0 ɢ ȗɫ - ɤɨɷɮɮɢɰɢɟɧɬɵ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɱɚɫɬɢɰɵ ɩɪɢ ɫɜɨɛɨɞɧɨɦ ɢ ɫɬɟɫɧɟɧɧɨɦ ɨɫɚɠɞɟɧɢɢ. Ʉɪɨɦɟ ɤɨɚɝɭɥɹɧɬɨɜ ɤ ɨɫɜɟɬɥɹɟɦɨɣ ɠɢɞɤɨɫɬɢ ɞɨɛɚɜɥɹɸɬ ɧɟɛɨɥɶɲɢɟ ɤɨɥɢɱɟɫɬɜɚ ɮɥɨɤɭɥɹɧɬɨɜ, ɫɩɨɫɨɛɫɬɜɭɸɳɢɯ ɫɥɢɩɚɧɢɸ ɚɝɪɟɝɚɬɢɜɧɨ ɧɟɭɫɬɨɣɱɢɜɵɯ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ. Ɏɥɨɤɭɥɹɰɢɹ – ɷɬɨ ɩɪɨɰɟɫɫ ɚɝɪɟɝɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɩɪɢ ɞɨɛɚɜɥɟɧɢɢ ɜ ɫɬɨɱɧɭɸ ɜɨɞɭ ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɧɚɡɵɜɚɟɦɵɯ ɮɥɨɤɭɥɹɧɬɚɦɢ. ȼ ɨɬɥɢɱɢɟ ɨɬ ɤɨɚɝɭɥɹɰɢɢ ɩɪɢ ɮɥɨɤɭɥɹɰɢɢ ɚɝɪɟɝɚɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɧɟ ɬɨɥɶɤɨ ɩɪɢ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɦ ɤɨɧɬɚɤɬɟ ɱɚɫɬɢɰ, ɧɨ ɢ ɜ ɪɟɡɭɥɶɬɚɬɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɨɥɟɤɭɥ ɚɞɫɨɪɛɢɪɨɜɚɧɧɨɝɨ ɧɚ ɱɚɫɬɢɰɚɯ ɮɥɨɤɭɥɹɧɬɚ. Ɏɥɨɤɭɥɹɰɢɸ ɩɪɨɜɨɞɹɬ ɞɥɹ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɩɪɨɰɟɫɫɚ ɨɛɪɚɡɨɜɚɧɢɹ ɯɥɨɩɶɟɜ ɝɢɞɪɨɤɫɢɞɨɜ ɚɥɸɦɢɧɢɹ ɢ ɠɟɥɟɡɚ ɫ ɰɟɥɶɸ ɩɨɜɵɲɟɧɢɹ ɫɤɨɪɨɫɬɢ ɢɯ ɨɫɚɠɞɟɧɢɹ. ɂɫɩɨɥɶɡɨɜɚɧɢɟ ɮɥɨɤɭɥɹɧɬɨɜ ɩɨɡɜɨɥɹɟɬ ɫɧɢɡɢɬɶ ɞɨɡɵ ɤɨɚɝɭɥɹɧɬɨɜ, ɭɦɟɧɶɲɢɬɶ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɤɨɚɝɭɥɹɰɢɢ ɢ ɩɨɜɵɫɢɬɶ ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɨɛɪɚɡɭɸɳɢɯɫɹ ɯɥɨɩɶɟɜ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɩɪɢɪɨɞɧɵɟ ɢ ɫɢɧɬɟɬɢɱɟɫɤɢɟ ɮɥɨɤɭɥɹɧɬɵ. Ʉ ɩɪɢɪɨɞɧɵɦ ɮɥɨɤɭɥɹɧɬɚɦ ɨɬɧɨɫɹɬɫɹ ɤɪɚɯɦɚɥ, ɞɟɤɫɬɪɢɢ, ɷɮɢɪɵ, ɰɟɥɥɸɥɨɡɵ ɢ ɞɪ. Ⱥɤɬɢɜɧɵɣ ɞɢɨɤɫɢɞ ɤɪɟɦɧɢɹ (xSiO2.yH2O) ɹɜɥɹɟɬɫɹ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦ ɧɟɨɪɝɚɧɢɱɟɫɤɢɦ ɮɥɨɤɭɥɹɧɬɨɦ. ɂɡ ɫɢɧɬɟɬɢɱɟɫɤɢɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɮɥɨɤɭɥɹɧɬɨɜ ɧɚɢɛɨɥɶɲɟɟ ɩɪɢɦɟɧɟɧɢɟ ɩɨɥɭɱɢɥ ɩɨɥɢɚɤɪɢɥɚɦɢɞ (ɉȺȺ). ɉɪɢ ɜɵɛɨɪɟ ɫɨɫɬɚɜɚ ɢ ɞɨɡɵ ɮɥɨɤɭɥɹɧɬɚ ɭɱɢɬɵɜɚɸɬ ɫɜɨɣɫɬɜɚ ɟɝɨ ɦɚɤɪɨɦɨɥɟɤɭɥ ɢ ɩɪɢɪɨɞɭ ɞɢɫɩɟɪɫɢɨɧɧɵɯ ɱɚɫɬɢɰ. Ɉɩɬɢɦɚɥɶɧɚɹ ɞɨɡɚ ɉȺȺ ɞɥɹ ɨɱɢɫɬɤɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɤɨɥɟɛɥɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 0,4…1 ɝ/ɦ3. Ɇɟɯɚɧɢɡɦ ɞɟɣɫɬɜɢɹ ɮɥɨɤɭɥɹɧɬɨɜ ɨɫɧɨɜɚɧ ɧɚ ɹɜɥɟɧɢɢ ɚɞɫɨɪɛɰɢɢ ɦɨɥɟɤɭɥ ɮɥɨɤɭɥɹɧɬɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ, ɧɚ ɨɛɪɚɡɨɜɚɧɢɢ ɫɟɬɱɚɬɨɣ ɫɬɪɭɤɬɭɪɵ ɦɨɥɟɤɭɥ ɮɥɨɤɭɥɹɧɬɚ, ɧɚ ɫɥɢɩɚɧɢɢ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ ɡɚ ɫɱɟɬ ɫɢɥ ȼɚɧ–ɞɟɪ–ȼɚɚɥɶɫɚ. ɉɪɢ ɞɟɣɫɬɜɢɢ ɮɥɨɤɭɥɹɧɬɨɜ ɦɟɠɞɭ ɤɨɥɥɨɢɞɧɵɦɢ ɱɚɫɬɢɰɚɦɢ ɨɛɪɚɡɭɸɬɫɹ ɬɪɟɯɦɟɪɧɵɟ ɫɬɪɭɤɬɭɪɵ, ɫɩɨɫɨɛɧɵɟ ɤ ɛɨɥɟɟ ɛɵɫɬɪɨɦɭ ɢ ɩɨɥɧɨɦɭ ɨɬɞɟɥɟɧɢɸ ɨɬ ɠɢɞɤɨɣ ɮɚɡɵ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɥɸɛɨɝɨ ɮɥɨɤɭɥɹɧɬɚ ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɮɨɪɦɭɥɟ wcɮ  w0 Kɮ = , (5.53) w0 ˜ q ɝɞɟ wɫɮ ɢ w0 – ɫɤɨɪɨɫɬɶ ɨɫɚɠɞɟɧɢɹ ɫɮɥɨɤɭɥɢɪɨɜɚɧɧɨɝɨ ɢ ɧɟɫɮɥɨɤɭɥɢɪɨɜɚɧɧɨɝɨ ɲɥɚɦɚ, ɦɦ/ɫ; q – ɪɚɫɯɨɞ ɮɥɨɤɭɥɹɧɬɚ ɧɚ 1 ɬ ɬɜɟɪɞɨɝɨ ɜɟɳɟɫɬɜɚ, ɝ. ɉɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɤɨɚɝɭɥɹɰɢɟɣ ɢ ɮɥɨɤɭɥɹɰɢɟɣ (ɪɢɫ. 5.6) ɫɨɫɬɨɢɬ ɢɡ ɫɬɚɞɢɣ: 1) ɞɨɡɢɪɨɜɚɧɢɟ; 2) ɫɦɟɲɟɧɢɟ ɪɟɚɝɟɧɬɨɜ ɫɨ ɫɬɨɱɧɨɣ ɜɨɞɨɣ; 3) ɨɛɪɚɡɨɜɚɧɢɟ ɯɥɨɩɶɟɜ; 4) ɨɫɚɠɞɟɧɢɟ ɯɥɨɩɶɟɜ. ȼɨɞɚ Ʉɨɚɝɭɥɹɧɬ ɫɬɨɱɧɚɹ ɜɨɞɚ ɨɱɢɳɟɧɧɚɹ ɜɨɞɚ ɨɫɚɞɨɤ Ɋɢɫ. 5.6. ɋɯɟɦɚ ɩɪɨɰɟɫɫɨɜ ɤɨɚɝɭɥɹɰɢɢ ɢ ɮɥɨɤɭɥɹɰɢɢ: 1 – ɟɦɤɨɫɬɶ ɞɥɹ ɩɪɢɝɨɬɨɜɥɟɧɢɹ ɪɚɫɬɜɨɪɚ; 2 – ɞɨɡɚɬɨɪ; 3 – ɫɦɟɫɢɬɟɥɶ; 4 – ɤɚɦɟɪɚ ɨɛɪɚɡɨɜɚɧɢɹ ɯɥɨɩɶɟɜ; 5 – ɨɬɫɬɨɣɧɢɤ. 5.2.2. Ɏɥɨɬɚɰɢɨɧɧɚɹ ɨɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ Ɏɥɨɬɚɰɢɹ - ɩɪɨɰɟɫɫ ɦɨɥɟɤɭɥɹɪɧɨɝɨ ɩɪɢɥɢɩɚɧɢɹ ɱɚɫɬɢɰ ɮɥɨɬɢɪɭɟɦɨɝɨ ɦɚɬɟɪɢɚɥɚ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɞɟɥɚ ɝɚɡɚ ɢ ɠɢɞɤɨɫɬɢ, ɨɛɭɫɥɨɜɥɟɧɧɵɣ ɢɡɛɵɬɤɨɦ ɫɜɨɛɨɞɧɨɣ ɷɧɟɪɝɢɟɣ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɩɨɝɪɚɧɢɱɧɵɯ ɫɥɨɟɜ, ɚ ɬɚɤɠɟ ɩɨɜɟɪɯɧɨɫɬɧɵɦɢ ɹɜɥɟɧɢɹɦɢ ɫɦɚɱɢɜɚɧɢɹ. Ɏɥɨɬɚɰɢɸ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɧɟɪɚɫɬɜɨɪɢɦɵɯ ɞɢɫɩɟɪɫɢɨɧɧɵɯ ɩɪɢɦɟɫɟɣ, ɤɨɬɨɪɵɟ ɫɚɦɨɩɪɨɢɡɜɨɥɶɧɨ ɩɥɨɯɨ ɨɬɫɬɚɢɜɚɸɬɫɹ, ɚ ɬɚɤɠɟ ɞɥɹ ɭɞɚɥɟɧɢɹ ɪɚɫɬɜɨɪɟɧɧɵɯ ɜɟɳɟɫɬɜ, ɧɚɩɪɢɦɟɪ, ɩɨɜɟɪɯɧɨɫɬɧɨ-ɚɤɬɢɜɧɵɯ ɜɟɳɟɫɬɜ (ɉȺȼ). ɉɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɉȺȼ ɧɚɡɵɜɚɸɬ ɩɟɧɧɨɣ ɫɟɩɚɪɚɰɢɟɣ ɢɥɢ ɩɟɧɧɵɦ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟɦ. Ɏɥɨɬɚɰɢɸ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɧɟɮɬɟɩɟɪɟɪɚɛɚɬɵɜɚɸɳɢɯ ɩɪɨɢɡɜɨɞɫɬɜ, ɢɫɤɭɫɫɬɜɟɧɧɨɝɨ ɜɨ- ɥɨɤɧɚ, ɰɟɥɥɸɥɨɡɧɨ-ɛɭɦɚɠɧɨɝɨ, ɤɨɠɟɜɟɧɧɨɝɨ, ɩɢɳɟɜɵɯ, ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɢɡɜɨɞɫɬɜ. ȿɟ ɢɫɩɨɥɶɡɭɸɬ ɬɚɤɠɟ ɞɥɹ ɜɵɞɟɥɟɧɢɹ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɩɨɫɥɟ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ. Ⱦɨɫɬɨɢɧɫɬɜɚɦɢ ɮɥɨɬɚɰɢɢ ɹɜɥɹɸɬɫɹ ɧɟɩɪɟɪɵɜɧɨɫɬɶ ɩɪɨɰɟɫɫɚ, ɲɢɪɨɤɢɣ ɞɢɚɩɚɡɨɧ ɩɪɢɦɟɧɟɧɢɹ, ɧɟɜɵɫɨɤɢɟ ɤɚɩɢɬɚɥɶɧɵɟ ɢ ɷɤɫɩɥɭɚɬɚɰɢɨɧɧɵɟ ɡɚɬɪɚɬɵ, ɩɪɨɫɬɚɹ ɚɩɩɚɪɚɬɭɪɚ, ɫɟɥɟɤɬɢɜɧɨɫɬɶ ɜɵɞɟɥɟɧɢɹ ɩɪɢɦɟɫɟɣ, ɛɨɥɶɲɚɹ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɨɬɫɬɚɢɜɚɧɢɟɦ, ɜɨɡɦɨɠɧɨɫɬɶ ɩɨɥɭɱɟɧɢɹ ɲɥɚɦɚ ɛɨɥɟɟ ɧɢɡɤɨɣ ɜɥɚɠɧɨɫɬɢ, ɜɵɫɨɤɚɹ ɫɬɟɩɟɧɶ ɨɱɢɫɬɤɢ (95…98%), ɜɨɡɦɨɠɧɨɫɬɶ ɪɟɤɭɩɟɪɚɰɢɢ ɭɞɚɥɹɟɦɵɯ ɜɟɳɟɫɬɜ. Ɏɥɨɬɚɰɢɹ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɬɚɤɠɟ ɚɷɪɚɰɢɟɣ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɧɢɠɟɧɢɟɦ ɤɨɧɰɟɧɬɪɚɰɢɢ ɉȺȼ ɢ ɥɟɝɤɨɨɤɢɫɥɹɟɦɵɯ ɜɟɳɟɫɬɜ, ɛɚɤɬɟɪɢɣ ɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ. ɉɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɉȺȼ, ɧɟɮɬɟɩɪɨɞɭɤɬɵ, ɦɚɫɥɚ, ɜɨɥɨɤɧɢɫɬɵɟ ɦɚɬɟɪɢɚɥɵ, ɦɟɬɨɞɨɦ ɮɥɨɬɚɰɢɢ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɨɛɪɚɡɨɜɚɧɢɢ ɤɨɦɩɥɟɤɫɨɜ "ɱɚɫɬɢɰɵ - ɩɭɡɵɪɶɤɢ", ɜɫɩɥɵɜɚɧɢɟ ɷɬɢɯ ɤɨɦɩɥɟɤɫɨɜ ɢ ɭɞɚɥɟɧɢɟ ɨɛɪɚɡɨɜɚɜɲɟɝɨɫɹ ɩɟɧɧɨɝɨ ɫɥɨɹ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɨɛɪɚɛɚɬɵɜɚɟɦɨɣ ɠɢɞɤɨɫɬɢ. ɉɪɢɥɢɩɚɧɢɟ ɱɚɫɬɢɰɵ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɝɚɡɨɜɨɝɨ ɩɭɡɵɪɶɤɚ ɜɨɡɦɨɠɧɨ ɬɨɥɶɤɨ ɬɨɝɞɚ, ɤɨɝɞɚ ɧɚɛɥɸɞɚɟɬɫɹ ɧɟɫɦɚɱɢɜɚɧɢɟ ɢɥɢ ɩɥɨɯɨɟ ɫɦɚɱɢɜɚɧɢɟ ɱɚɫɬɢɰɵ ɠɢɞɤɨɫɬɶɸ. ɋɦɚɱɢɜɚɸɳɚɹɫɹ ɫɩɨɫɨɛɧɨɫɬɶ ɠɢɞɤɨɫɬɢ ɡɚɜɢɫɢɬ ɨɬ ɟɟ ɩɨɥɹɪɧɨɫɬɢ, ɫ ɜɨɡɪɚɫɬɚɧɢɟɦ ɤɨɬɨɪɨɣ ɫɩɨɫɨɛɧɨɫɬɶ ɠɢɞɤɨɫɬɢ ɫɦɚɱɢɜɚɬɶ ɬɜɟɪɞɵɟ ɬɟɥɚ ɭɦɟɧɶɲɚɟɬɫɹ. ȼɧɟɲɧɢɦ ɩɪɨɹɜɥɟɧɢɟɦ ɫɩɨɫɨɛɧɨɫɬɢ ɠɢɞɤɨɫɬɢ ɤ ɫɦɚɱɢɜɚɧɢɸ ɹɜɥɹɟɬɫɹ ɜɟɥɢɱɢɧɚ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɧɚɬɹɠɟɧɢɹ ɧɚ ɝɪɚɧɢɰɟ ɫ ɝɚɡɨɜɨɣ ɮɚɡɨɣ, ɚ ɬɚɤɠɟ ɪɚɡɧɨɫɬɶ ɩɨɥɹɪɧɨɫɬɟɣ ɧɚ ɝɪɚɧɢɰɟ ɠɢɞɤɨɣ ɢ ɬɜɟɪɞɨɣ ɮɚɡ. ɉɪɨɰɟɫɫ ɮɥɨɬɚɰɢɢ ɢɞɟɬ ɷɮɮɟɤɬɢɜɧɨ ɩɪɢ ɩɨɜɟɪɯɧɨɫɬɧɨɦ ɧɚɬɹɠɟɧɢɢ ɜɨɞɵ ɧɟ ɛɨɥɟɟ 60…65 ɦɇ/ɦ. ɋɬɟɩɟɧɶ ɫɦɚɱɢɜɚɟɦɨɫɬɢ ɜɨɞɨɣ ɬɜɟɪɞɵɯ ɢɥɢ ɝɚɡɨɜɵɯ ɱɚɫɬɢɰ, ɜɡɜɟɲɟɧɧɵɯ ɜ ɜɨɞɟ, ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɜɟɥɢɱɢɧɨɣ ɤɪɚɟɜɨɝɨ ɭɝɥɚ ɫɦɚɱɢɜɚɧɢɹ T. ɑɟɦ ɛɨɥɶɲɟ ɭɝɨɥ T, ɬɟɦ ɛɨɥɶɲɟ ɝɢɞɪɨɮɨɛɢɹ ɩɨɜɟɪɯɧɨɫɬɢ ɱɚɫɬɢɰɵ, ɬ.ɟ. ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɜɟɪɨɹɬɧɨɫɬɶ ɩɪɢɥɢɩɚɧɢɹ ɤ ɧɟɣ ɢ ɩɪɨɱɧɨɫɬɶ ɭɞɟɪɠɚɧɢɹ ɧɚ ɟɟ ɩɨɜɟɪɯɧɨɫɬɢ ɜɨɡɞɭɲɧɵɯ ɩɭɡɵɪɶɤɨɜ. Ɍɚɤɢɟ ɱɚɫɬɢɰɵ ɨɛɥɚɞɚɸɬ ɦɚɥɨɣ ɫɦɚɱɢɜɚɟɦɨɫɬɶɸ ɢ ɥɟɝɤɨ ɮɥɨɬɢɪɭɸɬɫɹ. ɗɥɟɦɟɧɬɚɪɧɵɣ ɚɤɬ ɮɥɨɬɚɰɢɢ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɫɥɟɞɭɸɳɟɦ: ɩɪɢ ɫɛɥɢɠɟɧɢɢ ɩɨɞɧɢɦɚɸɳɟɝɨɫɹ ɜ ɜɨɞɟ ɩɭɡɵɪɶɤɚ ɜɨɡɞɭɯɚ ɫ ɬɜɟɪɞɨɣ ɝɢɞɪɨɮɨɛɧɨɣ ɱɚɫɬɢɰɟɣ ɪɚɡɞɟɥɹɸɳɚɹ ɢɯ ɩɪɨɫɥɨɣɤɚ ɜɨɞɵ ɩɪɨɪɵɜɚɟɬɫɹ ɩɪɢ ɧɟɤɨɬɨɪɨɣ ɤɪɢɬɢɱɟɫɤɨɣ ɬɨɥɳɢɧɟ ɢ ɩɪɨɢɫɯɨɞɢɬ ɫɥɢɩɚɧɢɟ ɩɭɡɵɪɶɤɚ ɫ ɱɚɫɬɢɰɟɣ. Ɂɚɬɟɦ ɤɨɦɩɥɟɤɫ “ɩɭɡɵɪɟɤ-ɱɚɫɬɢɰɚ” ɩɨɞɧɢɦɚɟɬɫɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɶ ɜɨɞɵ, ɝɞɟ ɩɭɡɵɪɶɤɢ ɫɨɛɢɪɚɸɬɫɹ ɢ ɜɨɡɧɢɤɚɟɬ ɩɟɧɧɵɣ ɫɥɨɣ ɫ ɛɨɥɟɟ ɜɵɫɨɤɨɣ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɱɚɫɬɢɰ, ɱɟɦ ɜ ɢɫɯɨɞɧɨɣ ɫɬɨɱɧɨɣ ɜɨɞɟ. ɉɪɢ ɡɚɤɪɟɩɥɟɧɢɢ ɩɭɡɵɪɶɤɚ ɨɛɪɚɡɭɟɬɫɹ ɬɪɟɯɮɚɡɧɵɣ ɩɟɪɢɦɟɬɪ-ɥɢɧɢɹ, ɨɝɪɚɧɢɱɢɜɚɸɳɢɣ ɩɥɨɳɚɞɶ ɩɪɢɥɢɩɚɧɢɹ ɩɭɡɵɪɶɤɚ ɢ ɹɜɥɹɸɳɢɣɫɹ ɝɪɚɧɢɰɟɣ ɬɪɟɯ ɮɚɡ – ɬɜɟɪɞɨɣ, ɠɢɞɤɨɣ ɢ ɝɚɡɨɨɛɪɚɡɧɨɣ (ɪɢɫ. 5.7). 1 2 T Ɋɢɫ. 5.7. ɋɯɟɦɚ ɷɥɟɦɟɧɬɚɪɧɨɝɨ ɚɤɬɚ ɮɥɨɬɚɰɢɢ: 1 – ɩɭɡɵɪɟɤ ɝɚɡɚ; 2 – ɬɜɟɪɞɚɹ ɱɚɫɬɢɰɚ. Ʉɚɫɚɬɟɥɶɧɚɹ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɩɭɡɵɪɶɤɚ ɜ ɬɨɱɤɟ ɬɪɟɯɮɚɡɧɨɝɨ ɩɟɪɢɦɟɬɪɚ ɢ ɩɨɜɟɪɯɧɨɫɬɶ ɬɜɟɪɞɨɝɨ ɬɟɥɚ ɨɛɪɚɡɭɸɬ ɨɛɪɚɳɟɧɧɵɣ ɜ ɜɨɞɭ ɭɝɨɥ T, ɧɚɡɵɜɚɟɦɵɣ ɤɪɚɟɜɵɦ ɭɝɥɨɦ ɫɦɚɱɢɜɚɧɢɹ. ȼɟɪɨɹɬɧɨɫɬɶ ɩɪɢɥɢɩɚɧɢɹ ɡɚɜɢɫɢɬ ɨɬ ɫɦɚɱɢɜɚɟɦɨɫɬɢ ɱɚɫɬɢɰɵ, ɤɨɬɨɪɚɹ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɜɟɥɢɱɢɧɨɣ ɤɪɚɟɜɨɝɨ ɭɝɥɚ T. ɑɟɦ ɛɨɥɶɲɟ ɤɪɚɟɜɨɣ ɭɝɨɥ ɫɦɚɱɢɜɚɧɢɹ, ɬɟɦ ɛɨɥɶɲɟ ɜɟɪɨɹɬɧɨɫɬɶ ɩɪɢɥɢɩɚɧɢɹ ɢ ɩɪɨɱɧɨɫɬɶ ɭɞɟɪɠɢɜɚɧɢɹ ɩɭɡɵɪɶɤɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɱɚɫɬɢɰɵ. ɇɚ ɜɟɥɢɱɢɧɭ ɫɦɚɱɢɜɚɟɦɨɫɬɢ ɩɨɜɟɪɯɧɨɫɬɢ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ ɜɥɢɹɸɬ ɚɞɫɨɪɛɰɢɨɧɧɵɟ ɹɜɥɟɧɢɹ ɢ ɩɪɢɫɭɬɫɬɜɢɟ ɜ ɜɨɞɟ ɩɪɢɦɟɫɟɣ ɉȺȼ, ɷɥɟɤɬɪɨɥɢɬɨɜ ɢ ɞɪ. ɉȺȼ – (ɪɟɚɝɟɧɬɵ-ɫɨɛɢɪɚɬɟɥɢ), ɚɞɫɨɪɛɢɪɭɹɫɶ ɧɚ ɱɚɫɬɢɰɚɯ, ɩɨɧɢɠɚɸɬ ɢɯ ɫɦɚɱɢɜɚɟɦɨɫɬɶ, ɬ.ɟ. ɹɜɥɹɸɬɫɹ ɝɢɞɪɨɮɨɛɧɵɦɢ. ȼ ɤɚɱɟɫɬɜɟ ɪɟɚɝɟɧɬɨɜɫɨɛɢɪɚɬɟɥɟɣ ɢɫɩɨɥɶɡɭɸɬ ɦɚɫɥɚ, ɠɢɪɧɵɟ ɤɢɫɥɨɬɵ ɢ ɢɯ ɫɨɥɢ, ɦɟɪɤɚɩɬɚɧɵ, ɤɫɚɧɬɨɝɟɧɚɬɵ, ɚɥɤɢɥɫɭɥɶɮɚɬɵ, ɚɦɢɧɵ. ɉɨɜɵɲɟɧɢɹ ɝɢɞɪɨɮɨɛɧɨɫɬɢ ɱɚɫɬɢɰ ɦɨɠɧɨ ɞɨɫɬɢɱɶ ɬɚɤɠɟ ɚɞɫɨɪɛɰɢɟɣ ɦɨɥɟɤɭɥ ɪɚɫɬɜɨɪɟɧɧɵɯ ɝɚɡɨɜ ɧɚ ɢɯ ɩɨɜɟɪɯɧɨɫɬɢ. ɗɧɟɪɝɢɹ ɨɛɪɚɡɨɜɚɧɢɹ ɤɨɦɩɥɟɤɫɚ “ɩɭɡɵɪɟɤ-ɱɚɫɬɢɰɚ” ɪɚɜɧɚ Ⱥ = ı (1- cos T), (5.54) ɝɞɟ ı – ɩɨɜɟɪɯɧɨɫɬɧɨɟ ɧɚɬɹɠɟɧɢɟ ɜɨɞɵ ɧɚ ɝɪɚɧɢɰɟ ɫ ɜɨɡɞɭɯɨɦ. Ⱦɥɹ ɱɚɫɬɢɰ, ɯɨɪɨɲɨ ɫɦɚɱɢɜɚɟɦɵɯ ɜɨɞɨɣ, T ĺ 0, ɚ cos T ĺ 1, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɩɪɨɱɧɨɫɬɶ ɩɪɢɥɢɩɚɧɢɹ ɦɢɧɢɦɚɥɶɧɚ, ɚ ɞɥɹ ɧɟɫɦɚɱɢɜɚɟɦɵɯ ɱɚɫɬɢɰ – ɦɚɤɫɢɦɚɥɶɧɚ. ɗɮɮɟɤɬ ɪɚɡɞɟɥɟɧɢɹ ɮɥɨɬɚɰɢɟɣ ɡɚɜɢɫɢɬ ɨɬ ɪɚɡɦɟɪɚ ɢ ɤɨɥɢɱɟɫɬɜɚ ɩɭɡɵɪɶɤɨɜ ɜɨɡɞɭɯɚ. Ɉɩɬɢɦɚɥɶɧɵɣ ɪɚɡɦɟɪ ɩɭɡɵɪɶɤɨɜ ɪɚɜɟɧ 15…30 ɦɤɦ. ɉɪɢ ɷɬɨɦ ɧɟɨɛɯɨɞɢɦɚ ɜɵɫɨɤɚɹ ɫɬɟɩɟɧɶ ɧɚɫɵɳɟɧɢɹ ɜɨɞɵ ɩɭɡɵɪɶɤɚɦɢ, ɢɥɢ ɛɨɥɶɲɨɟ ɝɚɡɨɫɨɞɟɪɠɚɧɢɟ. ɉɨɜɵɲɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɪɢɦɟɫɟɣ ɭɜɟɥɢɱɢɜɚɟɬ ɜɟɪɨɹɬɧɨɫɬɶ ɫɬɨɥɤɧɨɜɟɧɢɹ ɢ ɩɪɢɥɢɩɚɧɢɹ ɱɚɫɬɢɰ ɤ ɩɭɡɵɪɶɤɚɦ. Ⱦɥɹ ɫɬɚɛɢɥɢɡɚɰɢɢ ɪɚɡɦɟɪɨɜ ɩɭɡɵɪɶɤɨɜ ɜ ɩɪɨɰɟɫɫɟ ɮɥɨɬɚɰɢɢ ɜɜɨɞɹɬ ɪɚɡɥɢɱɧɵɟ ɩɟɧɨɨɛɪɚɡɨɜɚɬɟɥɢ, ɤɨɬɨɪɵɟ ɭɦɟɧɶɲɚɸɬ ɩɨɜɟɪɯɧɨɫɬɧɭɸ ɷɧɟɪɝɢɸ ɪɚɡɞɟɥɚ ɮɚɡ: ɫɨɫɧɨɜɨɟ ɦɚɫɥɨ, ɤɪɟ- ɡɨɥ, ɮɟɧɨɥɵ, ɚɥɤɢɥɫɭɥɶɮɚɬ ɧɚɬɪɢɹ, ɨɛɥɚɞɚɸɳɢɟ ɫɨɛɢɪɚɬɟɥɶɧɵɦɢ ɢ ɩɟɧɨɨɛɪɚɡɭɸɳɢɦɢ ɫɜɨɣɫɬɜɚɦɢ. ȼɟɫ ɮɥɨɬɢɪɭɟɦɨɣ ɱɚɫɬɢɰɵ ɧɟ ɞɨɥɠɟɧ ɩɪɟɜɵɲɚɬɶ ɫɢɥɵ ɩɪɢɥɢɩɚɧɢɹ ɟɟ ɤ ɩɭɡɵɪɶɤɭ ɢ ɩɨɞɴɟɦɧɨɣ ɫɢɥɵ ɩɭɡɵɪɶɤɨɜ. Ɋɚɡɦɟɪ ɱɚɫɬɢɰ, ɤɨɬɨɪɵɟ ɯɨɪɨɲɨ ɮɥɨɬɢɪɭɸɬɫɹ, ɡɚɜɢɫɢɬ ɨɬ ɩɥɨɬɧɨɫɬɢ ɦɚɬɟɪɢɚɥɚ ɱɚɫɬɢɰ ɢ ɪɚɜɟɧ 0,2…1,5 ɦɦ. Ɏɥɨɬɚɰɢɹ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɚ ɩɪɢ ɫɨɱɟɬɚɧɢɢ ɫ ɮɥɨɤɭɥɹɰɢɟɣ. ȼɟɪɨɹɬɧɨɫɬɶ ɨɛɪɚɡɨɜɚɧɢɹ ɤɨɦɩɥɟɤɫɚ “ɩɭɡɵɪɟɤ-ɱɚɫɬɢɰɚ” ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɚ ɩɨ ɮɨɪɦɭɥɟ: (5.55) Ȧ = [n.4/3 ʌ(Rɩ + rɱ)3 – n.4/3 ʌ Rɩ3]/V = Cɝ[(1 + rɱ/Rɩ)3 - 1], ɝɞɟ n – ɱɢɫɥɨ ɩɭɡɵɪɶɤɨɜ ɪɚɞɢɭɫɚ Rɩ ɜ ɨɛɴɟɦɟ V ɠɢɞɤɨɫɬɢ; rɱ – ɪɚɞɢɭɫ ɱɚɫɬɢɰɵ; ɋɝ = n.4/3 ʌ Rɩ3/V – ɨɛɴɟɦɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɝɚɡɨɜɨɣ ɮɚɡɵ. ɉɥɨɬɧɨɫɬɶ ɮɥɨɬɚɰɢɨɧɧɨɣ ɫɪɟɞɵ, ɫɨɫɬɨɹɳɟɣ ɢɡ ɜɨɞɵ, ɩɭɡɵɪɶɤɨɜ ɜɨɡɞɭɯɚ ɢ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ, ɪɚɜɧɚ (5.56) Uɫ = Uɠ(1- ɋɱ – ɋɝ) + Uɱɋɱ + Uɝ ɋɝ, ɝɞɟ Uɠ, Uɱ, Uɝ – ɩɥɨɬɧɨɫɬɶ ɠɢɞɤɨɫɬɢ, ɱɚɫɬɢɰ ɢ ɝɚɡɚ; ɋɱ, ɋɝ – ɨɛɴɟɦɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɱɚɫɬɢɰ ɢ ɝɚɡɚ ɜ ɜɨɞɟ. ɋɤɨɪɨɫɬɶ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰ wɱ ɢ ɩɭɡɵɪɶɤɨɜ vɩ ɨɬɧɨɫɢɬɟɥɶɧɨ ɫɪɟɞɵ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɚɦ: wɱ = -2/9(g r2/ȝc ȡɠ)[(1- ɋɱ)(ȡɱ/ȡɠ – 1) + ɋɝ]; (5.57) 2 (5.58) vɩ = 1/9(g R /ȝɫ ȡɠ)[1+ɋɱ(ȡɱ/ȡɠ –1) – ɋɝ], ɝɞɟ g – ɭɫɤɨɪɟɧɢɟ ɫɜɨɛɨɞɧɨɝɨ ɩɚɞɟɧɢɹ (ɫɢɥɵ ɬɹɠɟɫɬɢ); ȝɫ – ɞɢɧɚɦɢɱɟɫɤɚɹ ɜɹɡɤɨɫɬɶ ɮɥɨɬɚɰɢɨɧɧɨɣ ɫɪɟɞɵ. ɋɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɜɵɞɟɥɟɧɢɹ ɱɚɫɬɢɰ ɮɥɨɬɚɰɢɟɣ ɨɩɢɫɵɜɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ ɪɟɚɤɰɢɢ ɩɟɪɜɨɝɨ ɩɨɪɹɞɤɚ: (5.59) dCɱ/dIJ = - kɮ.Cɱ, ɝɞɟ kɮ – ɤɨɷɮɮɢɰɢɟɧɬ ɫɤɨɪɨɫɬɢ ɮɥɨɬɚɰɢɢ, ɡɚɜɢɫɹɳɢɣ ɨɬ ɞɢɧɚɦɢɱɟɫɤɢɯ ɢ ɤɨɧɫɬɪɭɤɬɢɜɧɵɯ ɩɚɪɚɦɟɬɪɨɜ. ɇɚɢɥɭɱɲɢɟ ɭɫɥɨɜɢɹ ɪɚɡɞɟɥɟɧɢɹ ɞɨɫɬɢɝɚɸɬɫɹ ɩɪɢ ɫɨɨɬɧɨɲɟɧɢɢ ɦɟɠɞɭ ɬɜɟɪɞɨɣ ɢ ɝɚɡɨɨɛɪɚɡɧɨɣ ɮɚɡɚɦɢ Gɝ/Gɱ = 0,01…0,1. ɗɬɨ ɫɨɨɬɧɨɲɟɧɢɟ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ: Gɝ/Gɱ = 1,3 b(f.P – 1)Q1/(Cɱ.Q), (5.60) ɝɞɟ Gɝ, Gɱ – ɦɚɫɫɚ ɜɨɡɞɭɯɚ ɢ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ, ɝ; b – ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɜɨɡɞɭɯɚ ɜ ɜɨɞɟ ɩɪɢ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ ɢ ɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ, ɫɦ3/ɥ; f – ɫɬɟɩɟɧɶ ɧɚɫɵɳɟɧɢɹ (ɨɛɵɱɧɨ f = 0,5…0,8); Ɋ – ɚɛɫɨɥɸɬɧɨɟ ɞɚɜɥɟɧɢɟ, ɩɪɢ ɤɨɬɨɪɨɦ ɜɨɞɚ ɧɚɫɵɳɚɟɬɫɹ ɜɨɡɞɭɯɨɦ; Q1 – ɤɨɥɢɱɟɫɬɜɨ ɜɨɞɵ, ɧɚɫɵɳɟɧɧɨɣ ɜɨɡɞɭɯɨɦ, ɦ³/ɱ; Q – ɪɚɫɯɨɞ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɦ³/ɱ. Ɋɚɡɥɢɱɚɸɬ ɫɥɟɞɭɸɳɢɟ ɫɩɨɫɨɛɵ ɮɥɨɬɚɰɢɨɧɧɨɣ ɨɛɪɚɛɨɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ: - ɫ ɜɵɞɟɥɟɧɢɟɦ ɜɨɡɞɭɯɚ ɢɡ ɪɚɫɬɜɨɪɨɜ; - ɫ ɦɟɯɚɧɢɱɟɫɤɢɦ ɞɢɫɩɟɪɝɢɪɨɜɚɧɢɟɦ ɜɨɡɞɭɯɚ; - ɫ ɩɨɞɚɱɟɣ ɜɨɡɞɭɯɚ ɱɟɪɟɡ ɩɨɪɢɫɬɵɟ ɦɚɬɟɪɢɚɥɵ; - ɷɥɟɤɬɪɨɮɥɨɬɚɰɢɸ; - ɯɢɦɢɱɟɫɤɭɸ ɮɥɨɬɚɰɢɸ. Ɏɥɨɬɚɰɢɹ ɫ ɜɵɞɟɥɟɧɢɟɦ ɜɨɡɞɭɯɚ ɢɡ ɪɚɫɬɜɨɪɚ. ɗɬɨɬ ɫɩɨɫɨɛ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ, ɤɨɬɨɪɵɟ ɫɨɞɟɪɠɚɬ ɨɱɟɧɶ ɦɟɥɤɢɟ ɱɚɫɬɢɰɵ ɡɚɝɪɹɡɧɟɧɢɣ. ɋɭɳɧɨɫɬɶ ɫɩɨɫɨɛɚ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɫɨɡɞɚɧɢɢ ɩɟɪɟɫɵɳɟɧɧɨɝɨ ɪɚɫɬɜɨɪɚ ɜɨɡɞɭɯɚ ɜ ɫɬɨɱɧɨɣ ɠɢɞɤɨɫɬɢ. ɉɪɢ ɭɦɟɧɶɲɟɧɢɢ ɞɚɜɥɟɧɢɹ ɢɡ ɪɚɫɬɜɨɪɚ ɜɵɞɟɥɹɸɬɫɹ ɩɭɡɵɪɶɤɢ ɜɨɡɞɭɯɚ, ɤɨɬɨɪɵɟ ɮɥɨɬɢɪɭɸɬ ɡɚɝɪɹɡɧɟɧɢɹ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɫɩɨɫɨɛɚ ɫɨɡɞɚɧɢɹ ɩɟɪɟɧɚɫɵɳɟɧɧɨɝɨ ɪɚɫɬɜɨɪɚ ɜɨɡɞɭɯɚ ɜ ɜɨɞɟ ɪɚɡɥɢɱɚɸɬ, ɜɚɤɭɭɦɧɭɸ, ɧɚɩɨɪɧɭɸ ɢ ɷɪɥɢɮɬɧɭɸ ɮɥɨɬɚɰɢɸ. ɉɪɢ ɜɚɤɭɭɦɧɨɣ ɮɥɨɬɚɰɢɢ - ɫɬɨɱɧɭɸ ɜɨɞɭ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ ɧɚɫɵɳɚɸɬ ɜɨɡɞɭɯɨɦ ɩɪɢ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ ɜ ɚɷɪɚɰɢɨɧɧɨɣ ɤɚɦɟɪɟ, ɚ ɡɚɬɟɦ ɧɚɩɪɚɜɥɹɸɬ ɜɨ ɮɥɨɬɚɰɢɨɧɧɭɸ ɤɚɦɟɪɭ, ɝɞɟ ɜɚɤɭɭɦ-ɧɚɫɨɫɨɦ ɩɨɞɞɟɪɠɢɜɚɟɬɫɹ ɪɚɡɪɟɠɟɧɢɟ 29,9…39,3 ɤɉɚ (225…300 ɦɦ ɪɬ.ɫɬ). ȼɵɞɟɥɹɸɳɢɟɫɹ ɜ ɤɚɦɟɪɟ ɦɟɥɶɱɚɣɲɢɟ ɩɭɡɵɪɶɤɢ ɜɵɧɨɫɹɬ ɱɚɫɬɶ ɡɚɝɪɹɡɧɟɧɢɣ. ɉɪɨɰɟɫɫ ɮɥɨɬɚɰɢɢ ɞɥɢɬɫɹ ɨɤɨɥɨ 20 ɦɢɧɭɬ. Ⱦɨɫɬɨɢɧɫɬɜɚɦɢ ɷɬɨɝɨ ɫɩɨɫɨɛɚ ɹɜɥɹɸɬɫɹ: ɨɛɪɚɡɨɜɚɧɢɟ ɩɭɡɵɪɶɤɨɜ ɝɚɡɚ ɢ ɢɯ ɫɥɢɩɚɧɢɟ ɫ ɱɚɫɬɢɰɚɦɢ ɩɪɨɢɫɯɨɞɢɬ ɜ ɫɩɨɤɨɣɧɨɣ ɫɪɟɞɟ, ɱɬɨ ɫɜɨɞɢɬ ɤ ɦɢɧɢɦɭɦɭ, ɜɟɪɨɹɬɧɨɫɬɶ ɪɚɡɪɭɲɟɧɢɹ ɚɝɪɟɝɚɬɨɜ "ɩɭɡɵɪɟɤ-ɱɚɫɬɢɰɚ"; ɡɚɬɪɚɬɚ ɷɧɟɪɝɢɢ ɧɚ ɩɪɨɰɟɫɫ ɦɢɧɢɦɚɥɶɧɚ. ɇɟɞɨɫɬɚɬɤɢ: ɧɟɡɧɚɱɢɬɟɥɶɧɚɹ ɫɬɟɩɟɧɶ ɧɚɫɵɳɟɧɢɹ ɫɬɨɤɨɜ ɩɭɡɵɪɶɤɚɦɢ ɝɚɡɚ, ɩɨɷɬɨɦɭ ɷɬɨɬ ɫɩɨɫɨɛ ɧɟɥɶɡɹ ɩɪɢɦɟɧɹɬɶ ɩɪɢ ɜɵɫɨɤɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ (ɧɟ ɛɨɥɟɟ 250-300 ɦɝ/ɥ); ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɫɨɡɞɚɜɚɬɶ ɝɟɪɦɟɬɢɱɟɫɤɢ ɡɚɤɪɵɬɵɟ ɮɥɨɬɚɬɨɪɵ ɢ ɪɚɡɦɟɳɚɬɶ ɜ ɧɢɯ ɫɤɪɟɛɤɨɜɵɟ ɦɟɯɚɧɢɡɦɵ. ɇɚɩɨɪɧɵɟ ɮɥɨɬɚɰɢɨɧɧɵɟ ɭɫɬɚɧɨɜɤɢ ɢɦɟɸɬ ɛɨɥɶɲɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ, ɱɟɦ ɜɚɤɭɭɦɧɵɟ. Ɉɧɢ ɩɪɨɫɬɵ ɢ ɧɚɞɟɠɧɵ ɜ ɷɤɫɩɥɭɚɬɚɰɢɢ. ɇɚɩɨɪɧɚɹ ɮɥɨɬɚɰɢɹ (ɪɢɫ. 5.8) ɩɨɡɜɨɥɹɟɬ ɨɱɢɳɚɬɶ ɫɬɨɱɧɵɟ ɜɨɞɵ ɫ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɜɡɜɟɫɟɣ ɞɨ 4…5 ɝ/ɥ. Ⱦɥɹ ɭɜɟɥɢɱɟɧɢɹ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ ɜ ɜɨɞɭ ɞɨɛɚɜɥɹɸɬɫɹ ɤɨɚɝɭɥɹɧɬɵ. Ⱥɩɩɚɪɚɬɵ ɧɚɩɨɪɧɨɣ ɮɥɨɬɚɰɢɢ ɨɛɟɫɩɟɱɢɜɚɸɬ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɧɟɮɬɟɥɨɜɭɲɤɚɦɢ ɜ 5…10 ɪɚɡ ɦɟɧɶɲɟ ɨɫɬɚɬɨɱɧɨɟ ɫɨɞɟɪɠɚɧɢɟ ɡɚɝɪɹɡɧɟɧɢɣ ɢ ɢɦɟɸɬ ɜ 5…10 ɪɚɡ ɦɟɧɶɲɢɟ ɝɚɛɚɪɢɬɵ. ɉɪɨɰɟɫɫ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜ ɞɜɟ ɫɬɚɞɢɢ: 1) ɧɚɫɵɳɟɧɢɟ ɜɨɞɵ ɜɨɡɞɭɯɨɦ ɩɨɞ ɞɚɜɥɟɧɢɟɦ; 2) ɜɵɞɟɥɟɧɢɟ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɝɚɡɚ ɩɨɞ ɚɬɦɨɫɮɟɪɧɵɦ ɞɚɜɥɟɧɢɟɦ. Ɋɢɫ. 5.8. ɋɯɟɦɚ ɧɚɩɨɪɧɨɣ ɮɥɨɬɚɰɢɢ: 1 - ɟɦɤɨɫɬɶ; 2 - ɧɚɫɨɫ; 3 - ɧɚɩɨɪɧɵɣ ɛɚɤ; 4 - ɮɥɨɬɚɬɨɪ. ɇɚɩɨɪɧɵɟ ɮɥɨɬɚɰɢɨɧɧɵɟ ɭɫɬɚɧɨɜɤɢ ɢɦɟɸɬ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɨɬ 5…10 ɞɨ 1000…2000 ɦ3/ɱ. Ɉɧɢ ɪɚɛɨɬɚɸɬ ɩɪɢ ɞɚɜɥɟɧɢɢ ɜ ɧɚɩɨɪɧɨɣ ɟɦɤɨɫɬɢ 0,17…0,39 Ɇɉɚ, ɜɪɟɦɹ ɩɪɟɛɵɜɚɧɢɹ ɜ ɧɟɣ 14 ɦɢɧɭɬ, ɚ ɜɨ ɮɥɨɬɚɰɢɨɧɧɨɣ ɤɚɦɟɪɟ (ɟɦɤɨɫɬɢ) 10…20 ɦɢɧɭɬ. Ɉɛɴɟɦ ɡɚɫɚɫɵɜɚɧɢɹ ɜɨɡɞɭɯɚ ɫɨɫɬɚɜɥɹɟɬ 1,5…5% ɨɬ ɨɛɴɟɦɚ ɨɱɢɳɚɟɦɨɣ ɜɨɞɵ. ȼ ɫɥɭɱɚɟ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɨɞɧɨɜɪɟɦɟɧɧɨɝɨ ɨɤɢɫɥɟɧɢɹ ɡɚɝɪɹɡɧɟɧɢɣ ɜɨɞɭ ɧɚɫɵɳɚɸɬ ɜɨɡɞɭɯɨɦ, ɨɛɨɝɚɳɟɧɧɵɦ ɤɢɫɥɨɪɨɞɨɦ ɢɥɢ ɚɡɨɬɨɦ. Ⱦɥɹ ɭɫɬɪɚɧɟɧɢɹ ɩɪɨɰɟɫɫɚ ɨɤɢɫɥɟɧɢɹ ɜɦɟɫɬɨ ɜɨɡɞɭɯɚ ɧɚ ɮɥɨɬɚɰɢɸ ɩɨɞɚɸɬ ɢɧɟɪɬɧɵɟ ɝɚɡɵ. ɗɪɥɢɮɬɧɵɟ ɭɫɬɚɧɨɜɤɢ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɜ ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ (ɪɢɫ. 5.9). Ɉɧɢ ɩɪɨɫɬɵ ɩɨ ɭɫɬɪɨɣɫɬɜɭ, ɡɚɬɪɚɬɚ ɷɧɟɪɝɢɢ ɧɚ ɩɪɨɜɟɞɟɧɢɟ ɩɪɨɰɟɫɫɚ ɜ ɧɢɯ ɜ 2…4 ɪɚɡɚ ɦɟɧɶɲɟ, ɱɟɦ ɜ ɧɚɩɨɪɧɵɯ ɭɫɬɚɧɨɜɤɚɯ. ɇɟɞɨɫɬɚɬɨɤ ɷɬɢɯ ɭɫɬɚɧɨɜɨɤ – ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɪɚɡɦɟɳɟɧɢɹ ɮɥɨɬɚɰɢɨɧɧɵɯ ɤɚɦɟɪ ɧɚ ɛɨɥɶɲɨɣ ɜɵɫɨɬɟ: Ɋɢɫ. 5.9. ɋɯɟɦɚ ɷɪɥɢɮɬɧɨɣ ɮɥɨɬɚɰɢɢ: 1 – ɟɦɤɨɫɬɶ; 2 – ɬɪɭɛɨɩɪɨɜɨɞ; 3 – ɚɷɪɚɬɨɪ; 4 – ɬɪɭɛɚ ɷɪɥɢɮɬɚ; 5 – ɮɥɨɬɚɬɨɪ. Ɏɥɨɬɚɰɢɹ ɫ ɦɟɯɚɧɢɱɟɫɤɢɦ ɞɢɫɩɟɪɝɢɪɨɜɚɧɢɟɦ ɜɨɡɞɭɯɚ. Ɇɟɯɚɧɢɱɟɫɤɨɟ ɞɢɫɩɟɪɝɢɪɨɜɚɧɢɟ ɜɨɡɞɭɯɚ ɜɨ ɮɥɨɬɚɰɢɨɧɧɵɯ ɦɚɲɢɧɚɯ ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɬɭɪɛɢɧɤɚɦɢ ɧɚɫɨɫɧɨɝɨ ɬɢɩɚ – ɢɦɩɟɥɥɟɪɚɦɢ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɦɢ ɫɨɛɨɣ ɞɢɫɤ ɫ ɪɚɞɢɚɥɶɧɵɦɢ, ɨɛɪɚɳɟɧɧɵɦɢ ɜɜɟɪɯ, ɥɨɩɚɬɤɚɦɢ. Ɍɚɤɢɟ ɭɫɬɚɧɨɜɤɢ ɩɪɢɦɟɧɹɸɬɫɹ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɫ ɜɵɫɨɤɢɦ ɫɨɞɟɪɠɚɧɢɟɦ ɜɡɜɟɲɟɧɧɵɯ ɱɚɫɬɢɰ (ɛɨɥɟɟ 2 ɝ/ɥ). ɋɬɟɩɟɧɶ ɢɡɦɟɥɶɱɟɧɢɹ ɜɢɯɪɟɜɵɯ ɝɚɡɨɜɵɯ ɩɨɬɨɤɨɜ ɧɚ ɩɭɡɵɪɶɤɢ ɢ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɨɱɢɫɬɤɢ ɡɚɜɢɫɹɬ ɨɬ ɫɤɨɪɨɫɬɢ ɜɪɚɳɟɧɢɹ ɢɦɩɟɥɥɟɪɚ: ɱɟɦ ɛɨɥɶɲɟ ɫɤɨɪɨɫɬɶ, ɬɟɦ ɦɟɧɶɲɟ ɩɭɡɵɪɟɤ ɢ ɬɟɦ ɛɨɥɶɲɟ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɩɪɨɰɟɫɫɚ. ɉɧɟɜɦɚɬɢɱɟɫɤɢɟ ɭɫɬɚɧɨɜɤɢ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɪɚɫɬɜɨɪɟɧɧɵɟ ɩɪɢɦɟɫɢ, ɚɝɪɟɫɫɢɜɧɵɟ ɤ ɞɜɢɠɭɳɢɦɫɹ ɦɟɯɚɧɢɡɦɚɦ. ɂɡɦɟɥɶɱɟɧɢɟ ɩɭɡɵɪɶɤɨɜ ɜɨɡɞɭɯɚ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɩɪɨɩɭɫɤɚɧɢɢ ɟɝɨ ɱɟɪɟɡ ɫɩɟɰɢɚɥɶɧɵɟ ɫɨɩɥɚ ɫ ɨɬɜɟɪɫɬɢɹɦɢ ɞɢɚɦɟɬɪɨɦ 1…1,2 ɦɦ, ɫ ɞɚɜɥɟɧɢɟɦ ɩɟɪɟɞ ɧɢɦɢ 0,3…0,5 Ɇɉɚ. ɋɤɨɪɨɫɬɶ ɫɬɪɭɢ ɜɨɡɞɭɯɚ ɧɚ ɜɵɯɨɞɟ ɢɡ ɫɨɩɥɚ 100-200 ɦ/ɫ. ɉɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɮɥɨɬɚɰɢɢ – ɜ ɩɪɟɞɟɥɚɯ 15…20 ɦɢɧ. Ɏɥɨɬɚɰɢɹ ɩɪɢ ɩɨɦɨɳɢ ɩɨɪɢɫɬɵɯ ɩɥɚɫɬɢɧ. ɉɪɢ ɩɪɨɩɭɫɤɚɧɢɢ ɜɨɡɞɭɯɚ ɱɟɪɟɡ ɤɟɪɚɦɢɱɟɫɤɢɟ ɩɨɪɢɫɬɵɟ ɩɥɚɫɬɢɧɵ ɢɥɢ ɤɨɥɩɚɱɤɢ ɩɨɥɭɱɚɸɬɫɹ ɦɟɥɤɢɟ ɩɭɡɵɪɶɤɢ, ɪɚɡɦɟɪ ɤɨɬɨɪɵɯ ɪɚɜɟɧ: Rɩ = 6(rɨ2.ı)1/4, (5.61) ɝɞɟ Rɩ, rɨ – ɪɚɞɢɭɫɵ ɩɭɡɵɪɶɤɨɜ ɢ ɨɬɜɟɪɫɬɢɣ; ı – ɩɨɜɟɪɯɧɨɫɬɧɨɟ ɧɚɬɹɠɟɧɢɟ ɜɨɞɵ. Ⱦɚɜɥɟɧɢɟ, ɧɟɨɛɯɨɞɢɦɨɟ ɞɥɹ ɩɪɟɨɞɨɥɟɧɢɹ ɫɢɥ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɧɚɬɹɠɟɧɢɹ, ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ Ʌɚɩɥɚɫɚ: ¨ɪ = 4ı/rɨ. (5.62) ɗɬɨɬ ɦɟɬɨɞ ɢɦɟɟɬ ɫɥɟɞɭɸɳɢɟ ɩɪɟɢɦɭɳɟɫɬɜɚ: ɩɪɨɫɬɚɹ ɤɨɧɫɬɪɭɤɰɢɹ ɮɥɨɬɚɰɢɨɧɧɨɣ ɤɚɦɟɪɵ; ɦɟɧɶɲɢɟ ɡɚɬɪɚɬɵ ɷɧɟɪɝɢɢ ɢɡ-ɡɚ ɨɬɫɭɬɫɬɜɢɹ ɧɚɫɨɫɨɜ, ɢɦɩɟɥɥɟɪɨɜ. ɇɟɞɨɫɬɚɬɤɢ ɫɩɨɫɨɛɚ: ɱɚɫɬɨɟ ɡɚɫɨɪɟɧɢɟ ɢ ɡɚɪɚɫɬɚɧɢɟ ɨɬɜɟɪɫɬɢɣ ɩɨɪɢɫɬɨɝɨ ɦɚɬɟɪɢɚɥɚ; ɧɟɨɞɧɨɪɨɞɧɨɫɬɶ ɪɚɡɦɟɪɨɜ ɨɬɜɟɪɫɬɢɣ ɩɨɪɢɫɬɨɝɨ ɦɚɬɟɪɢɚɥɵ. ɗɮɮɟɤɬ ɮɥɨɬɚɰɢɢ ɷɬɢɦ ɫɩɨɫɨɛɨɦ ɡɚɜɢɫɢɬ ɨɬ ɜɟɥɢɱɢɧɵ ɨɬɜɟɪɫɬɢɣ ɦɚɬɟɪɢɚɥɚ, ɞɚɜɥɟɧɢɹ ɜɨɡɞɭɯɚ, ɪɚɫɯɨɞɚ ɜɨɡɞɭɯɚ, ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɮɥɨɬɚɰɢɢ, ɭɪɨɜɧɹ ɜɨɞɵ ɜɨ ɮɥɨɬɚɬɨɪɟ. Ɋɚɡɦɟɪ ɨɬɜɟɪɫɬɢɣ ɞɨɥɠɟɧ ɛɵɬɶ 4…20 ɦɤɦ, ɞɚɜɥɟɧɢɟ ɜɨɡɞɭɯɚ 0,1…0,2 Ɇɉɚ, ɪɚɫɯɨɞ ɜɨɡɞɭɯɚ 40…70 ɦ3/(ɦ2.ɱ), ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɮɥɨɬɚɰɢɢ 20…30 ɦɢɧ, ɭɪɨɜɟɧɶ ɜɨɞɵ ɜ ɤɚɦɟɪɟ ɞɨ ɮɥɨɬɚɰɢɢ 1,5…2ɦ. 5.2.3. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɚɞɫɨɪɛɰɢɟɣ. Ⱥɞɫɨɪɛɰɢɨɧɧɵɟ ɦɟɬɨɞɵ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɸɬɫɹ ɞɥɹ ɝɥɭɛɨɤɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɪɚɫɬɜɨɪɟɧɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɩɨɫɥɟ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ, ɚ ɬɚɤɠɟ ɜ ɥɨɤɚɥɶɧɵɯ ɭɫɬɚɧɨɜɤɚɯ, ɟɫɥɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɷɬɢɯ ɜɟɳɟɫɬɜ ɜ ɜɨɞɟ ɧɟɜɟɥɢɤɚ ɢ ɨɧɢ ɛɢɨɥɨɝɢɱɟɫɤɢ ɧɟ ɪɚɡɥɚɝɚɸɬɫɹ ɢɥɢ ɹɜɥɹɸɬɫɹ ɫɢɥɶɧɨɬɨɤɫɢɱɧɵɦɢ. Ⱥɞɫɨɪɛɰɢɸ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɮɟɧɨɥɨɜ, ɝɟɪɛɢɰɢɞɨɜ, ɩɟɫɬɢɰɢɞɨɜ, ɚɪɨɦɚɬɢɱɟɫɤɢɯ ɧɢɬɪɨɫɨɟɞɢɧɟɧɢɣ, ɉȺȼ, ɤɪɚɫɢɬɟɥɟɣ. Ⱦɨɫɬɨɢɧɫɬɜɨɦ ɦɟɬɨɞɚ ɹɜɥɹɟɬɫɹ ɜɵɫɨɤɚɹ ɷɮɮɟɤɬɢɜɧɨɫɬɶ, ɜɨɡɦɨɠɧɨɫɬɶ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɧɟɫɤɨɥɶɤɨ ɜɟɳɟɫɬɜ, ɚ ɬɚɤɠɟ ɪɟɤɭɩɟɪɚɰɢɢ ɷɬɢɯ ɜɟɳɟɫɬɜ. Ⱥɞɫɨɪɛɰɢɨɧɧɚɹ ɨɱɢɫɬɤɚ ɜɨɞ ɦɨɠɟɬ ɛɵɬɶ ɪɟɝɟɧɟɪɚɬɢɜɧɨɣ, ɬ.ɟ. ɫ ɢɡɜɥɟɱɟɧɢɟɦ ɜɟɳɟɫɬɜɚ ɢɡ ɚɞɫɨɪɛɟɧɬɚ ɢ ɟɝɨ ɭɬɢɥɢɡɚɰɢɟɣ, ɢ ɞɟɫɬɪɭɤɬɢɜɧɨɣ, ɩɪɢ ɤɨɬɨɪɨɣ ɢɡɜɥɟɱɟɧɧɵɟ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɜɟɳɟɫɬɜɚ ɭɧɢɱɬɨɠɚɸɬɫɹ ɜɦɟɫɬɟ ɫ ɚɞɫɨɪɛɟɧɬɨɦ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɨɱɢɫɬɤɢ ɞɨɫɬɢɝɚɟɬ 80…95 % ɢ ɡɚɜɢɫɢɬ ɨɬ ɯɢɦɢɱɟɫɤɨɣ ɩɪɢɪɨɞɵ ɚɞɫɨɪɛɟɧɬɚ, ɜɟɥɢɱɢɧɵ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɨɬ ɯɢɦɢɱɟɫɤɨɝɨ ɫɬɪɨɟɧɢɹ ɢɡɜɥɟɤɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɢ ɟɝɨ ɫɨɫɬɨɹɧɢɹ ɜ ɪɚɫɬɜɨɪɟ. Ⱥɞɫɨɪɛɟɧɬɵ. ȼ ɤɚɱɟɫɬɜɟ ɫɨɪɛɟɧɬɨɜ ɢɫɩɨɥɶɡɭɸɬ ɚɤɬɢɜɧɵɟ ɭɝɥɢ, ɫɢɧɬɟɬɢɱɟɫɤɢɟ ɫɨɪɛɟɧɬɵ ɢ ɧɟɤɨɬɨɪɵɟ ɨɬɯɨɞɵ ɩɪɨɢɡɜɨɞɫɬɜɚ (ɡɨɥɭ, ɲɥɚɤɢ, ɨɩɢɥɤɢ). ɇɚɢɛɨɥɟɟ ɭɧɢɜɟɪɫɚɥɶɧɵɦɢ ɢɡ ɚɞɫɨɪɛɟɧɬɨɜ ɹɜɥɹɸɬɫɹ ɚɤɬɢɜɧɵɟ ɭɝɥɢ, ɧɨ ɨɧɢ ɞɨɥɠɧɵ ɨɛɥɚɞɚɬɶ ɨɩɪɟɞɟɥɟɧɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ. Ⱥɤɬɢɜɧɵɟ ɭɝɥɢ ɞɨɥɠɧɵ ɫɥɚɛɨ ɜɡɚɢɦɨɞɟɣɫɬɜɨɜɚɬɶ ɫ ɦɨɥɟɤɭɥɚɦɢ ɜɨɞɵ ɢ ɯɨɪɨɲɨ - ɫ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɜɟɳɟɫɬɜɚɦɢ, ɛɵɬɶ ɨɬɧɨɫɢɬɟɥɶɧɨ ɤɪɭɩɧɨɩɨɪɢɫɬɵɦɢ, ɱɬɨɛɵ ɢɯ ɩɨɜɟɪɯɧɨɫɬɶ ɛɵɥɚ ɞɨɫɬɭɩɧɚ ɞɥɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɦɨɥɟɤɭɥ. ɉɪɢ ɦɚɥɨɦ ɜɪɟɦɟɧɢ ɤɨɧɬɚɤɬɚ ɫ ɜɨɞɨɣ ɨɧɢ ɞɨɥɠɧɵ ɢɦɟɬɶ ɜɵɫɨɤɭɸ ɚɞɫɨɪɛɰɢɨɧɧɭɸ ɟɦɤɨɫɬɶ, ɜɵɫɨɤɭɸ ɫɟɥɟɤɬɢɜɧɨɫɬɶ ɢ ɦɚɥɭɸ ɭɞɟɪɠɢɜɚɸɳɭɸ ɫɩɨɫɨɛɧɨɫɬɶ ɩɪɢ ɪɟɝɟɧɟɪɚɰɢɢ. ɍɝɥɢ ɞɨɥɠɧɵ ɛɵɬɶ ɩɪɨɱɧɵɦɢ, ɛɵɫɬɪɨ ɫɦɚɱɢɜɚɬɶɫɹ ɜɨɞɨɣ, ɢɦɟɬɶ ɨɩɪɟɞɟɥɟɧɧɵɣ ɝɪɚɧɭɥɨɦɟɬɪɢɱɟɫɤɢɣ ɫɨɫɬɚɜ. ȼ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɢɫɩɨɥɶɡɭɸɬ ɦɟɥɤɨɡɟɪɧɢɫɬɵɟ ɚɞɫɨɪɛɟɧɬɵ ɫ ɱɚɫɬɢɰɚɦɢ ɪɚɡɦɟɪɨɦ 0,25…0,5 ɦɦ ɢ ɜɵɫɨɤɨɞɢɫɩɟɪɫɧɵɟ ɭɝɥɢ ɫ ɪɚɡɦɟɪɨɦ ɱɚɫɬɢɰ ɦɟɧɟɟ 40 ɦɤɦ. Ɉɫɧɨɜɵ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ. ȼɟɳɟɫɬɜɚ, ɯɨɪɨɲɨ ɚɞɫɨɪɛɢɪɭɟɦɵɟ ɢɡ ɜɨɞɧɵɯ ɪɚɫɬɜɨɪɨɜ ɚɤɬɢɜɧɵɦɢ ɭɝɥɹɦɢ, ɢɦɟɸɬ ɜɵɩɭɤɥɭɸ ɢɡɨɬɟɪɦɭ ɚɞɫɨɪɛɰɢɢ, ɚ ɩɥɨɯɨ ɚɞɫɨɪɛɢɪɭɸɳɢɟɫɹ - ɜɨɝɧɭɬɭɸ. ɂɡɨɬɟɪɦɭ ɚɞɫɨɪɛɰɢɢ ɜɟɳɟɫɬɜɚ, ɧɚɯɨɞɹɳɟɝɨɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɨɩɪɟɞɟɥɹɸɬ ɨɩɵɬɧɵɦ ɩɭɬɟɦ. ȿɟ ɦɨɠɧɨ ɩɪɢɛɥɢɠɟɧɧɨ ɜɵɱɢɫɥɢɬɶ ɩɨ ɫɨɨɬɧɨɲɟɧɢɸ a a f k w C p /(V H* 2O / Vi*  k w C p ), (5.63) ɝɞɟ a - ɭɞɟɥɶɧɚɹ ɚɞɫɨɪɛɰɢɹ, ɦɦɨɥɶ/ɝ; af - ɦɚɤɫɢɦɚɥɶɧɚɹ ɭɞɟɥɶɧɚɹ ɚɞɫɨɪɛɰɢɹ ɜɟɳɟɫɬɜɚ (ɚɞɫɨɪɛɰɢɨɧɧɚɹ ɟɦɤɨɫɬɶ), ɦɦɨɥɶ/ɝ; k w k a / 55,5 - ɢɨɧɧɨɟ ɩɪɨɢɡɜɟɞɟɧɢɟ ɜɨɞɵ; k a - ɤɨɧɫɬɚɧɬɚ ɚɞɫɨɪɛɰɢɨɧɧɨɝɨ ɪɚɜɧɨɜɟɫɢɹ; VH* 2O ɢ Vi* - ɦɨɥɹɪɧɵɟ ɨɛɶɟɦɵ ɜɨɞɵ ɢ ɚɞɫɨɪɛɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ; C p - ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ, ɦɦɨɥɶ/ɥ. ȿɫɥɢ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɩɪɢɫɭɬɫɬɜɭɟɬ ɧɟɫɤɨɥɶɤɨ ɢɡɜɥɟɤɚɟɦɵɯ ɤɨɦɩɨɧɟɧɬɨɜ, ɬɨ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɜɨɡɦɨɠɧɨɫɬɢ ɢɯ ɫɨɜɦɟɫɬɧɨɣ ɚɞɫɨɪɛɰɢɢ ɞɥɹ ɤɚɠɞɨɝɨ ɜɟɳɟɫɬɜɚ ɧɚɯɨɞɹɬ ɡɧɚɱɟɧɢɟ ɫɬɚɧɞɚɪɬɧɨɣ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɣ ɫɜɨɛɨɞɧɨɣ ɷɧɟɪɝɢɢ 'F 0 ɢ ɨɩɪɟɞɟɥɹɸɬ ɪɚɡɧɨɫɬɶ ɦɟɠɞɭ ɦɚɤɫɢɦɚɥɶɧɵɦ ɢ ɦɢɧɢɦɚɥɶɧɵɦ ɡɧɚɱɟɧɢɟɦ. ɉɪɢ ɭɫɥɨɜɢɢ 'Fmax  'Fmin d 10,5 ɤȾɠ/ɦɨɥɶ ɫɨɜɦɟɫɬɧɚɹ ɚɞɫɨɪɛɰɢɹ ɜɫɟɯ ɤɨɦɩɨɧɟɧɬɨɜ ɜɨɡɦɨɠɧɚ. ȿɫɥɢ ɷɬɨ ɭɫɥɨɜɢɟ ɧɟ ɫɨɛɥɸɞɚɟɬɫɹ, ɬɨ ɨɱɢɫɬɤɭ ɩɪɨɜɨɞɹɬ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ ɜ ɧɟɫɤɨɥɶɤɨ ɫɬɭɩɟɧɟɣ. ɋɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ, ɮɢɡɢɤɨɯɢɦɢɱɟɫɤɨɣ ɩɪɢɪɨɞɵ ɢ ɫɬɪɭɤɬɭɪɵ ɪɚɫɬɜɨɪɟɧɧɵɯ ɜɟɳɟɫɬɜ, ɬɟɦɩɟɪɚɬɭɪɵ ɜɨɞɵ, ɜɢɞɚ ɢ ɫɜɨɣɫɬɜ ɚɞɫɨɪɛɟɧɬɚ. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɩɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɢ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ 3-ɯ ɫɬɚɞɢɣ: ɩɟɪɟɧɨɫɚ ɜɟɳɟɫɬɜɚ ɢɡ ɫɬɨɱɧɨɣ ɜɨɞɵ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɡɟɪɟɧ ɚɞɫɨɪɛɟɧɬɚ (ɜɧɟɲɧɟɞɢɮɮɭɡɢɨɧɧɚɹ ɨɛɥɚɫɬɶ), ɫɨɛɫɬɜɟɧɧɨ ɚɞɫɨɪɛɰɢɨɧɧɵɣ ɩɪɨɰɟɫɫ, ɩɟɪɟɧɨɫ ɜɟɳɟɫɬɜɚ ɜɧɭɬɪɢ ɡɟɪɟɧ ɚɞɫɨɪɛɟɧɬɚ (ɜɧɭɬɪɢɞɢɮɮɭɡɢɨɧɧɚɹ ɨɛɥɚɫɬɶ). Ʌɢɦɢɬɢɪɭɸɳɢɦɢ ɫɬɚɞɢɹɦɢ ɩɪɨɰɟɫɫɚ ɦɨɠɟɬ ɛɵɬɶ ɜɧɟɲɧɹɹ ɢɥɢ ɜɧɭɬɪɟɧɧɹɹ ɞɢɮɮɭɡɢɹ, ɥɢɛɨ ɨɛɟ ɷɬɢ ɫɬɚɞɢɢ. ȼɨ ɜɧɟɲɧɟɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ ɫɤɨɪɨɫɬɶ ɦɚɫɫɨɩɟɪɟɧɨɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɬɭɪɛɭɥɟɧɬɧɨɫɬɶɸ ɩɨɬɨɤɚ ɠɢɞɤɨɫɬɢ, ɤɨɬɨɪɚɹ ɡɚɜɢɫɢɬ ɨɬ ɫɤɨɪɨɫɬɢ ɠɢɞɤɨɫɬɢ. ȼɨ ɜɧɭɬɪɢɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɦɚɫɫɨɩɟɪɟɧɨɫɚ ɡɚɜɢɫɢɬ ɨɬ ɜɢɞɚ ɢ ɪɚɡɦɟɪɨɜ ɩɨɪ ɚɞɫɨɪɛɟɧɬɚ, ɨɬ ɮɨɪɦ ɢ ɪɚɡɦɟɪɚ ɟɝɨ ɡɟɪɟɧ, ɨɬ ɪɚɡɦɟɪɚ ɦɨɥɟɤɭɥ ɚɞɫɨɪɛɢɪɭɸɳɢɯɫɹ ɜɟɳɟɫɬɜ, ɨɬ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɩɪɨɜɨɞɧɨɫɬɢ. Ɉɩɬɢɦɚɥɶɧɵɣ ɩɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɢ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɩɪɨɜɨɞɢɬɶ ɩɪɢ ɢɧɬɟɧɫɢɜɧɵɯ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɢɯ ɪɟɠɢɦɚɯ, ɱɬɨɛɵ ɨɧ ɥɢɦɢɬɢɪɨɜɚɥɫɹ ɜɨ ɜɧɭɬɪɢɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ, ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɤɨɬɨɪɨɣ ɦɨɠɧɨ ɫɧɢɡɢɬɶ, ɢɡɦɟɧɹɹ ɫɬɪɭɤɬɭɪɭ ɚɞɫɨɪɛɟɧɬɚ, ɭɦɟɧɶɲɚɹ ɪɚɡɦɟɪɵ ɡɟɪɧɚ. Ⱦɥɹ ɨɪɢɟɧɬɢɪɨɜɨɱɧɵɯ ɪɚɫɱɟɬɨɜ ɪɟɤɨɦɟɧɞɭɟɬɫɹ ɩɪɢɧɢɦɚɬɶ ɡɧɚɱɟɧɢɹ ɫɤɨɪɨɫɬɢ wɠ 1,8 ɦ/ɱ ɢ ɞɢɚɦɟɬɪɚ ɡɟɪɧɚ 2,5 ɦɦ. ɉɪɢ ɡɧɚɱɟɧɢɹɯ ɦɟɧɶɲɟ ɭɤɚɡɚɧɧɵɯ, ɩɪɨɰɟɫɫ ɥɢɦɢɬɢɪɭɟɬɫɹ ɜɨ ɜɧɟɲɧɟɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ, ɩɪɢ ɛɨɥɶɲɢɯ ɡɧɚɱɟɧɢɹɯ - ɜɨ ɜɧɭɬɪɢɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ. Ⱥɞɫɨɪɛɰɢɨɧɧɵɟ ɭɫɬɚɧɨɜɤɢ. ɉɪɨɰɟɫɫ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɨɣ ɜɨɞɵ ɜɟɞɭɬ ɩɪɢ ɢɧɬɟɧɫɢɜɧɨɦ ɩɟɪɟɦɟɲɢɜɚɧɢɢ ɚɞɫɨɪɛɟɧɬɚ ɫ ɜɨɞɨɣ, ɩɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɜɨɞɵ ɱɟɪɟɡ ɫɥɨɣ ɚɞɫɨɪɛɟɧɬɚ ɢɥɢ ɩɫɟɜɞɨɨɠɢɠɟɧɧɨɦ ɫɥɨɟ ɧɚ ɭɫɬɚɧɨɜɤɚɯ ɩɟɪɢɨɞɢɱɟɫɤɨɝɨ ɢ ɧɟɩɪɟɪɵɜɧɨɝɨ ɞɟɣɫɬɜɢɹ. ɉɪɢ ɫɦɟɲɢɜɚɧɢɢ ɚɞɫɨɪɛɟɧɬɚ ɫ ɜɨɞɨɣ ɢɫɩɨɥɶɡɭɸɬ ɚɤɬɢɜɧɵɣ ɭɝɨɥɶ ɜ ɜɢɞɟ ɱɚɫɬɢɰ 0,1 ɦɦ ɢ ɦɟɧɶɲɟ. ɉɪɨɰɟɫɫ ɩɪɨɜɨɞɹɬ ɜ ɨɞɧɭ ɢɥɢ ɧɟɫɤɨɥɶɤɨ ɫɬɭɩɟɧɟɣ. ɋɬɚɬɢɱɟɫɤɚɹ ɨɞɧɨɫɬɭɩɟɧɱɚɬɚɹ ɚɞɫɨɪɛɰɢɹ ɧɚɯɨɞɢɬ ɩɪɢɦɟɧɟɧɢɟ ɜ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɚɞɫɨɪɛɟɧɬ ɨɱɟɧɶ ɞɟɲɟɜ ɢɥɢ ɹɜɥɹɟɬɫɹ ɨɬɯɨɞɨɦ ɩɪɨɢɡɜɨɞɫɬɜɚ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɨɣ ɭɫɬɚɧɨɜɤɢ ɩɪɨɰɟɫɫ ɩɪɨɬɟɤɚɟɬ ɩɪɢ ɦɟɧɶɲɟɦ ɪɚɫɯɨɞɟ ɚɞɫɨɪɛɟɧɬɚ. ɉɪɢ ɷɬɨɦ ɜ ɩɟɪɜɭɸ ɫɬɭɩɟɧɶ ɜɜɨɞɹɬ ɫɬɨɥɶɤɨ ɚɞɫɨɪɛɟɧɬɚ, ɫɤɨɥɶɤɨ ɧɟɨɛɯɨɞɢɦɨ ɞɥɹ ɫɧɢɠɟɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɟɧɢɣ ɨɬ Cɧ ɞɨ ɋ1 , ɡɚɬɟɦ ɚɞɫɨɪɛɟɧɬ ɨɬɞɟɥɹɸɬ ɨɬɫɬɚɢɜɚɧɢɟɦ ɢɥɢ ɮɢɥɶɬɪɨɜɚɧɢɟɦ, ɚ ɫɬɨɱɧɭɸ ɜɨɞɭ ɧɚɩɪɚɜɥɹɸɬ ɜɨ ɜɬɨɪɭɸ ɫɬɭɩɟɧɶ, ɤɭɞɚ ɜɜɨɞɹɬ ɫɜɟɠɢɣ ɚɞɫɨɪɛɟɧɬ. ɉɨ ɨɤɨɧɱɚɧɢɢ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ ɜɨ ɜɬɨɪɨɣ ɫɬɭɩɟɧɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɡɚɝɪɹɡɧɟɧɢɣ ɜ ɜɨɞɟ ɭɦɟɧɶɲɚɟɬɫɹ ɨɬ C1 ɞɨ C2 ɢ ɬ.ɞ. Ɋɚɫɯɨɞ ɚɞɫɨɪɛɟɧɬɚ ɞɥɹ ɨɞɧɨɫɬɭɩɟɧɱɚɬɨɝɨ ɩɪɨɰɟɫɫɚ ɨɩɪɟɞɟɥɹɸɬ ɢɡ ɭɪɚɜɧɟɧɢɹ ɦɚɬɟɪɢɚɥɶɧɨɝɨ ɛɚɥɚɧɫɚ: m Q(Cɧ  ɋɤ ) / a, (5.64) ɝɞɟ m - ɪɚɫɯɨɞ ɚɞɫɨɪɛɟɧɬɚ; Q - ɨɛɴɟɦɧɵɣ ɪɚɫɯɨɞ ɫɬɨɱɧɵɯ ɜɨɞ; Cɧ ɢ ɋɤ ɧɚɱɚɥɶɧɚɹ ɢ ɤɨɧɟɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɡɚɝɪɹɡɧɟɧɧɨɣ ɫɬɨɱɧɨɣ ɜɨɞɵ; a - ɤɨɷɮɮɢɰɢɟɧɬ ɚɞɫɨɪɛɰɢɢ. Ʉɨɧɟɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɡɚɝɪɹɡɧɟɧɢɣ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɩɨɫɥɟ ɨɱɢɫɬɤɢ ɜ ɭɫɬɚɧɨɜɤɟ ɫ n ɫɬɭɩɟɧɹɦɢ ɪɚɜɧɚ: Cn >Q / Q  km @n Cɧ , (5.65) ɝɞɟ k - ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɫɩɪɟɞɟɥɟɧɢɹ, ɪɚɜɧɵɣ k aW / a (Cɧ  ɋɤ ) /(ɋɧ  ɋ ɪ ) | 0.7 y 0.8, (5.66) ɝɞɟ aW - ɡɧɚɱɟɧɢɟ ɭɞɟɥɶɧɨɣ ɚɞɫɨɪɛɰɢɢ ɡɚ ɜɪɟɦɹ W; C p - ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɟɳɟɫɬɜɚ. Ɋɚɫɯɨɞ ɚɞɫɨɪɛɟɧɬɚ ɧɚ ɤɚɠɞɭɸ ɫɬɭɩɟɧɶ ɧɚɯɨɞɹɬ ɩɨ ɮɨɪɦɭɥɟ m Q / k ( Cɧ / Cn  1), (5.67) ɚ ɧɟɨɛɯɨɞɢɦɨɟ ɱɢɫɥɨ ɫɬɭɩɟɧɟɣ n lg Cɧ  lg Cn /[lg(Q  km)  lg Q]. (5.68) ȼ ɞɢɧɚɦɢɱɟɫɤɢɯ ɭɫɥɨɜɢɹɯ ɩɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɩɪɨɜɨɞɹɬ ɩɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɫɬɨɱɧɨɣ ɜɨɞɵ ɱɟɪɟɡ ɫɥɨɣ ɚɞɫɨɪɛɟɧɬɚ. ɋɤɨɪɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɬɜɨɪɟɧɧɵɯ ɜɟɳɟɫɬɜ ɢ ɤɨɥɟɛɥɟɬɫɹ ɨɬ 2…4 ɞɨ 5…6 ɦ3/(ɦ2*ɱ). Ⱥɞɫɨɪɛɟɧɬ ɩɪɢɦɟɧɹɸɬ ɜ ɜɢɞɟ ɱɚɫɬɢɰ ɪɚɡɦɟɪɨɦ 1,5…5 ɦɦ. ȼɨɞɚ ɜ ɤɨɥɨɧɧɟ ɞɜɢɠɟɬɫɹ ɫɧɢɡɭ ɜɜɟɪɯ, ɡɚɩɨɥɧɹɹ ɜɫɟ ɫɟɱɟɧɢɟ. ȼ ɨɞɧɨɣ ɤɨɥɨɧɧɟ ɩɪɢ ɧɟɩɨɞɜɢɠɧɨɦ ɫɥɨɟ ɭɝɥɹ ɩɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɜɟɞɭɬ ɩɟɪɢɨɞɢɱɟɫɤɢ ɞɨ ɩɪɨɫɤɨɤɚ, ɚ ɡɚɬɟɦ ɚɞɫɨɪɛɟɧɬ ɜɵɝɪɭɠɚɸɬ ɢ ɪɟɝɟɧɟɪɢɪɭɸɬ. ɉɪɢ ɧɟɩɪɟɪɵɜɧɨɦ ɩɪɨɰɟɫɫɟ ɢɫɩɨɥɶɡɭɸɬ ɧɟɫɤɨɥɶɤɨ ɤɨɥɨɧɧ. ɉɨ ɬɚɤɨɣ ɫɯɟɦɟ ɞɜɟ ɤɨɥɨɧɧɵ ɪɚɛɨɬɚɸɬ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɚ ɬɪɟɬɶɹ ɨɬɤɥɸɱɟɧɚ ɧɚ ɪɟɝɟɧɟɪɚɰɢɸ. ɉɪɢ ɩɪɨɫɤɨɤɟ ɜɨ ɜɬɨɪɨɣ (ɫɪɟɞɧɟɣ) ɤɨɥɨɧɧɟ ɧɚ ɪɟɝɟɧɟɪɚɰɢɸ ɨɬɤɥɸɱɚɸɬ ɩɟɪɜɭɸ ɤɨɥɨɧɧɭ. ȼ ɦɨɦɟɧɬ ɩɪɨɫɤɨɤɚ ɜ ɤɨɥɨɧɧɟ ɩɨɹɜɥɹɟɬɫɹ ɫɥɨɣ ɚɞɫɨɪɛɟɧɬɚ L0 , ɤɨɬɨɪɵɣ ɧɟ ɪɚɛɨɬɚɟɬ. ɗɬɨɬ ɫɥɨɣ ɧɚɡɵɜɚɸɬ “ɦɟɪɬɜɵɦ” ɫɥɨɟɦ. ȿɫɥɢ ɨɞɧɨɜɪɟɦɟɧɧɨ ɜɵɜɨɞɢɬɶ ɢɡ ɤɨɥɨɧɧɵ “ɦɟɪɬɜɵɣ” ɫɥɨɣ ɢ ɜɜɨɞɢɬɶ ɜ ɧɟɟ ɬɚɤɨɣ ɠɟ ɫɥɨɣ ɫɜɟɠɟɝɨ ɚɞɫɨɪɛɟɧɬɚ, ɬɨ ɤɨɥɨɧɧɚ ɛɭɞɟɬ ɪɚɛɨɬɚɬɶ ɧɟɩɪɟɪɵɜɧɨ. ɋɤɨɪɨɫɬɶ ɩɟɪɟɦɟɳɟɧɢɹ ɪɚɛɨɬɚɸɳɟɝɨ ɫɥɨɹ ɪɚɜɧɚ U C ɧ wɫɪ / a 0ɞ , (5.69) ɝɞɟ wɫɪ - ɫɪɟɞɧɹɹ ɫɤɨɪɨɫɬɶ ɜɨɞɵ ɜ ɤɨɥɨɧɧɟ; a0ɞ - ɞɢɧɚɦɢɱɟɫɤɚɹ ɟɦɤɨɫɬɶ ɚɞɫɨɪɛɟɧɬɚ. Ⱦɥɢɧɚ (ɜɵɫɨɬɚ) ɪɚɛɨɬɚɸɳɟɝɨ ɫɥɨɹ L p M /( S E 'C cp ), (5.70) ɝɞɟ M - ɤɨɥɢɱɟɫɬɜɨ ɩɨɝɥɨɳɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ; S - ɩɥɨɳɚɞɶ ɩɨɩɟɪɟɱɧɨɝɨ ɫɟɱɟɧɢɹ ɫɥɨɹ; E - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ; 'Ccp - ɫɪɟɞɧɹɹ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɚɞɫɨɪɛɰɢɢ. ɉɪɢ ɧɟɛɨɥɶɲɢɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɡɚɝɪɹɡɧɟɧɢɣ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɫɪɟɞɧɹɹ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ ɦɨɠɟɬ ɛɵɬɶ ɜɵɱɢɫɥɟɧɚ ɤɚɤ ɫɪɟɞɧɹɹ ɥɨɝɚɪɢɮɦɢɱɟɫɤɚɹ ɢɡ ɞɜɢɠɭɳɢɯ ɫɢɥ ɧɚ ɤɨɧɰɚɯ ɚɞɫɨɪɛɟɪɚ. ɍɫɬɚɧɨɜɤɢ ɫ ɩɫɟɜɞɨɨɠɢɠɟɧɧɵɦ ɫɥɨɟɦ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɩɪɢɦɟɧɹɬɶ ɩɪɢ ɜɵɫɨɤɨɦ ɫɨɞɟɪɠɚɧɢɢ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. Ɋɚɡɦɟɪ ɱɚɫɬɢɰ ɚɞɫɨɪɛɟɧɬɚ ɞɨɥɠɟɧ ɛɵɬɶ ɪɚɜɧɵɦ 0,5…1 ɦɦ. ɋɤɨɪɨɫɬɶ ɩɨɬɨɤɚ ɩɪɢ ɷɬɨɦ ɧɚɯɨɞɢɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 8…12 ɦ/ɱ. Ɋɟɝɟɧɟɪɚɰɢɹ ɚɞɫɨɪɛɟɧɬɚ. Ⱥɞɫɨɪɛɢɪɨɜɚɧɧɵɟ ɜɟɳɟɫɬɜɚ ɢɡ ɭɝɥɹ ɢɡɜɥɟɤɚɸɬ ɞɟɫɨɪɛɰɢɟɣ ɧɚɫɵɳɟɧɧɵɦ ɢɥɢ ɩɟɪɟɝɪɟɬɵɦ ɜɨɞɹɧɵɦ ɩɚɪɨɦ, ɥɢɛɨ ɧɚɝɪɟɬɵɦ ɢɧɟɪɬɧɵɦ ɝɚɡɨɦ. Ɍɟɦɩɟɪɚɬɭɪɚ ɩɟɪɟɝɪɟɬɨɝɨ ɩɚɪɚ ɩɪɢ ɢɡɛɵɬɨɱɧɨɦ ɞɚɜɥɟɧɢɢ 0,3…0,6 Ɇɉɚ ɪɚɜɧɚ 200…3000ɋ, ɚ ɬɟɦɩɟɪɚɬɭɪɚ ɢɧɟɪɬɧɵɯ ɝɚɡɨɜ 120…1400ɋ. Ɋɚɫɯɨɞ ɩɚɪɚ ɩɪɢ ɨɬɝɨɧɤɟ ɥɟɝɤɨɥɟɬɭɱɢɯ ɜɟɳɟɫɬɜ ɪɚɜɟɧ 2,5…3 ɤɝ ɧɚ 1 ɤɝ ɨɬɝɨɧɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ, ɞɥɹ ɜɵɫɨɤɨɤɢɩɹɳɢɯ - ɜ 5…10 ɪɚɡ ɛɨɥɶɲɟ. ɉɨɫɥɟ ɞɟɫɨɪɛɰɢɢ ɩɚɪɵ ɤɨɧɞɟɧɫɢɪɭɸɬ ɢ ɜɟɳɟɫɬɜɨ ɢɡɜɥɟɤɚɸɬ ɢɡ ɤɨɧɞɟɧɫɚɬɚ. 5.2.4. ɂɨɧɧɵɣ ɨɛɦɟɧ ɜ ɪɚɫɬɜɨɪɚɯ ɫɬɨɱɧɵɯ ɜɨɞ ɂɨɧɨɨɛɦɟɧɧɚɹ ɨɱɢɫɬɤɚ ɩɪɢɦɟɧɹɟɬɫɹ ɞɥɹ ɢɡɜɥɟɱɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ (ɰɢɧɤɚ, ɦɟɞɢ, ɯɪɨɦɚ, ɧɢɤɟɥɹ, ɫɜɢɧɰɚ, ɪɬɭɬɢ, ɤɚɞɦɢɹ, ɜɚɧɚɞɢɹ, ɦɚɪɝɚɧɰɚ), ɚ ɬɚɤɠɟ ɫɨɟɞɢɧɟɧɢɣ ɦɵɲɶɹɤɚ, ɮɨɫɮɨɪɚ, ɰɢɚɧɢɫɬɵɯ ɫɨɟɞɢɧɟɧɢɣ ɢ ɪɚɞɢɨɚɤɬɢɜɧɵɯ ɜɟɳɟɫɬɜ. Ɇɟɬɨɞ ɩɨɡɜɨɥɹɟɬ ɪɟɤɭɩɟɪɢɪɨɜɚɬɶ ɰɟɧɧɵɟ ɜɟɳɟɫɬɜɚ ɩɪɢ ɜɵɫɨɤɨɣ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ ɜɨɞɵ. ɂɨɧɧɵɣ ɨɛɦɟɧ ɲɢɪɨɤɨ ɪɚɫɩɪɨɫɬɪɚɧɟɧ ɩɪɢ ɨɛɟɫɫɨɥɢɜɚɧɢɢ ɜ ɩɪɨɰɟɫɫɟ ɜɨɞɨɩɨɞɝɨɬɨɜɤɢ. ɋɭɳɧɨɫɬɶ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ. ɂɨɧɧɵɣ ɨɛɦɟɧ ɩɪɟɞɫɬɚɜɥɹɟɬ ɩɪɨɰɟɫɫ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɪɚɫɬɜɨɪɚ ɫ ɬɜɟɪɞɨɣ ɮɚɡɨɣ, ɨɛɥɚɞɚɸɳɟɣ ɫɜɨɣɫɬɜɚɦɢ ɨɛɦɟɧɢɜɚɬɶ ɢɨɧɵ, ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɧɟɣ, ɧɚ ɞɪɭɝɢɟ ɢɨɧɵ, ɩɪɢɫɭɬɫɬɜɭɸɳɢɟ ɜ ɪɚɫɬɜɨɪɟ. ȼɟɳɟɫɬɜɚ, ɫɨɫɬɚɜɥɹɸɳɢɟ ɷɬɭ ɬɜɟɪɞɭɸ ɮɚɡɭ, ɧɚɡɵɜɚɸɬɫɹ ɢɨɧɢɬɚɦɢ. Ɉɧɢ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɪɚɫɬɜɨɪɢɦɵ ɜ ɜɨɞɟ. Ɍɟ ɢɡ ɧɢɯ, ɤɨɬɨɪɵɟ ɫɩɨɫɨɛɧɵ ɩɨɝɥɨɳɚɬɶ ɢɡ ɪɚɫɬɜɨɪɨɜ ɷɥɟɤɬɪɨɥɢɬɨɜ ɩɨɥɨɠɢɬɟɥɶɧɵɟ ɢɨɧɵ, ɹɜɥɹɸɬɫɹ ɤɚɬɢɨɧɢɬɚɦɢ, ɩɨɝɥɨɳɚɬɶ ɨɬɪɢɰɚɬɟɥɶɧɵɟ ɢɨɧɵ – ɚɧɢɨɧɢɬɚɦɢ. Ʉɚɬɢɨɧɢɬɵ ɨɛɥɚɞɚɸɬ ɤɢɫɥɨɬɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ, ɚ ɚɧɢɨɧɢɬɵ – ɨɫɧɨɜɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ. ȿɫɥɢ ɢɨɧɢɬɵ ɨɛɦɟɧɢɜɚɸɬ ɢ ɤɚɬɢɨɧɵ, ɢ ɚɧɢɨɧɵ, ɢɯ ɧɚɡɵɜɚɸɬ ɚɦɮɨɬɟɪɧɵɦɢ. ɉɨɝɥɨɬɢɬɟɥɶɧɚɹ ɫɩɨɫɨɛɧɨɫɬɶ ɢɨɧɢɬɨɜ ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɨɛɦɟɧɧɨɣ ɟɦɤɨɫɬɶɸ, ɤɨɬɨɪɚɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɱɢɫɥɨɦ ɷɤɜɢɜɚɥɟɧɬɨɜ ɢɨɧɨɜ, ɩɨɝɥɨɳɚɟɦɵɯ ɟɞɢɧɢɰɟɣ ɦɚɫɫɵ ɢɥɢ ɨɛɴɟɦɚ ɢɨɧɢɬɚ. Ɋɚɡɥɢɱɚɸɬ ɩɨɥɧɭɸ, ɫɬɚɬɢɱɟɫɤɭɸ ɢ ɞɢɧɚɦɢɱɟɫɤɭɸ ɨɛɦɟɧɧɵɟ ɟɦɤɨɫɬɢ. ɉɨɥɧɚɹ ɟɦɤɨɫɬɶ – ɷɬɨ ɤɨɥɢɱɟɫɬɜɨ ɩɨɝɥɨɳɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɩɪɢ ɩɨɥɧɨɦ ɧɚɫɵɳɟɧɢɢ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɢɥɢ ɦɚɫɫɵ ɢɨɧɢɬɚ. ɋɬɚɬɢɱɟɫɤɚɹ ɟɦɤɨɫɬɶ – ɷɬɨ ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ ɢɨɧɢɬɚ ɩɪɢ ɪɚɜɧɨɜɟɫɢɢ ɜ ɞɚɧɧɵɯ ɪɚɛɨɱɢɯ ɭɫɥɨɜɢɹɯ. ɋɬɚɬɢɱɟɫɤɚɹ ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ ɨɛɵɱɧɨ ɦɟɧɶɲɟ ɩɨɥɧɨɣ. Ⱦɢɧɚɦɢɱɟɫɤɚɹ ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ – ɷɬɨ ɟɦɤɨɫɬɶ ɢɨɧɢɬɚ ɞɨ “ɩɪɨɫɤɨɤɚ” ɢɨɧɨɜ ɜ ɮɢɥɶɬɪɚɬ, ɨɩɪɟɞɟɥɹɟɦɚɹ ɜ ɭɫɥɨɜɢɹɯ ɮɢɥɶɬɪɚɰɢɢ. Ⱦɢɧɚɦɢɱɟɫɤɚɹ ɟɦɤɨɫɬɶ ɦɟɧɶɲɟ ɫɬɚɬɢɱɟɫɤɨɣ. ɉɪɢɪɨɞɧɵɟ ɢ ɫɢɧɬɟɬɢɱɟɫɤɢɟ ɢɨɧɢɬɵ. ɂɨɧɢɬɵ ɛɵɜɚɸɬ ɧɟɨɪɝɚɧɢɱɟɫɤɢɟ (ɦɢɧɟɪɚɥɶɧɵɟ) ɢ ɨɪɝɚɧɢɱɟɫɤɢɟ. ɗɬɨ ɦɨɝɭɬ ɛɵɬɶ ɩɪɢɪɨɞɧɵɟ ɜɟɳɟɫɬɜɚ ɢɥɢ ɢɫɤɭɫɫɬɜɟɧɧɨ ɩɨɥɭɱɟɧɧɵɟ ɜɟɳɟɫɬɜɚ. Ʉ ɧɟɨɪɝɚɧɢɱɟɫɤɢɦ ɩɪɢɪɨɞɧɵɦ ɢɨɧɢɬɚɦ ɨɬɧɨɫɹɬɫɹ ɰɟɨɥɢɬɵ, ɝɥɢɧɢɫɬɵɟ ɦɢɧɟɪɚɥɵ, ɩɨɥɟɜɵɟ ɲɩɚɬɵ, ɪɚɡɥɢɱɧɵɟ ɫɥɸɞɵ. ɂɯ ɤɚɬɢɨɧɨɨɛɦɟɧɧɵɟ ɫɜɨɣɫɬɜɚ ɨɛɭɫɥɨɜɥɟɧɵ ɫɨɞɟɪɠɚɧɢɟɦ ɚɥɸɦɨɫɢɥɢɤɚɬɨɜ ɬɢɩɚ Na2O˜Al2O3˜nSiO2˜mH2O. ɂɨɧɨɨɛɦɟɧɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ ɨɛɥɚɞɚɟɬ ɬɚɤɠɟ ɮɬɨɪɚɩɚɬɢɬ [Ca5(PO4)3]F ɢ ɝɢɞɪɨɤɫɢɞɚɩɚɬɢɬ. Ʉ ɧɟɨɪɝɚɧɢɱɟɫɤɢɦ ɫɢɧɬɟɬɢɱɟɫɤɢɦ ɢɨɧɢɬɚɦ ɨɬɧɨɫɹɬɫɹ ɫɢɥɢɤɚɝɟɥɢ, ɩɟɪɦɭɬɢɬɵ, ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɟ ɨɤɫɢɞɵ ɢ ɝɢɞɪɨɤɫɢɞɵ ɧɟɤɨɬɨɪɵɯ ɦɟɬɚɥɥɨɜ (ɚɥɸɦɢɧɢɹ, ɯɪɨɦɚ, ɰɢɪɤɨɧɢɹ). Ʉɚɬɢɨɧɨɨɛɦɟɧɧɵɟ ɫɜɨɣɫɬɜɚ, ɧɚɩɪɢɦɟɪ ɫɢɥɢɤɚɝɟɥɹ, ɨɛɭɫɥɨɜɥɟɧɵ ɨɛɦɟɧɨɦ ɢɨɧɨɜ ɜɨɞɨɪɨɞɚ ɝɢɞɪɨɤɫɢɞɧɵɯ ɝɪɭɩɩ ɧɚ ɤɚɬɢɨɧɵ ɦɟɬɚɥɥɨɜ, ɩɪɨɹɜɥɹɸɳɢɟɫɹ ɜ ɳɟɥɨɱɧɨɣ ɫɪɟɞɟ. Ʉɚɬɢɨɧɨɨɛɦɟɧɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ ɨɛɥɚɞɚɸɬ ɢ ɩɟɪɦɭɬɢɬɵ, ɩɨɥɭɱɚɟɦɵɟ ɫɩɥɚɜɥɟɧɢɟɦ ɫɨɟɞɢɧɟɧɢɣ, ɫɨɞɟɪɠɚɳɢɯ ɚɥɸɦɢɧɢɣ ɢ ɤɪɟɦɧɢɣ. Ɉɪɝɚɧɢɱɟɫɤɢɟ ɩɪɢɪɨɞɧɵɟ ɢɨɧɢɬɵ – ɷɬɨ ɝɭɦɢɧɨɜɵɟ ɤɢɫɥɨɬɵ ɩɨɱɜ ɢ ɭɝɥɟɣ. Ɉɧɢ ɩɪɨɹɜɥɹɸɬ ɫɥɚɛɨɤɢɫɥɨɬɧɵɟ ɫɜɨɣɫɬɜɚ. Ⱦɥɹ ɭɫɢɥɟɧɢɹ ɤɢɫɥɨɬɧɵɣ ɫɜɨɣɫɬɜ ɢ ɨɛɦɟɧɧɨɣ ɟɦɤɨɫɬɢ ɭɝɥɢ ɢɡɦɟɥɶɱɚɸɬ ɢ ɫɭɥɶɮɢɪɭɸɬ ɜ ɢɡɛɵɬɤɟ ɨɥɟɭɦɚ. ɋɭɥɶɮɨɭɝɥɢ ɹɜɥɹɸɬɫɹ ɞɟɲɟɜɵɦɢ ɩɨɥɢɷɥɟɤɬɪɨɥɢɬɚɦɢ, ɫɨɞɟɪɠɚɳɢɦɢ ɫɢɥɶɧɨ- ɢ ɫɥɚɛɨɤɢɫɥɨɬɧɵɟ ɝɪɭɩɩɵ. Ʉ ɧɟɞɨɫɬɚɬɤɚɦ ɬɚɤɢɯ ɢɨɧɢɬɨɜ ɨɬɧɨɫɢɬɫɹ ɢɯ ɦɚɥɚɹ ɯɢɦɢɱɟɫɤɚɹ ɫɬɨɣɤɨɫɬɶ ɢ ɧɢɡɤɚɹ ɦɟɯɚɧɢɱɟɫɤɚɹ ɩɪɨɱɧɨɫɬɶ ɡɟɪɟɧ, ɚ ɬɚɤɠɟ ɧɟɛɨɥɶɲɚɹ ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ, ɨɫɨɛɟɧɧɨ ɜ ɧɟɣɬɪɚɥɶɧɵɯ ɫɪɟɞɚɯ. Ʉ ɨɪɝɚɧɢɱɟɫɤɢɦ ɢɫɤɭɫɫɬɜɟɧɧɵɦ ɢɨɧɢɬɚɦ ɨɬɧɨɫɹɬɫɹ ɢɨɧɨɨɛɦɟɧɧɵɟ ɫɦɨɥɵ ɫ ɪɚɡɜɢɬɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ. Ɉɧɢ ɢɦɟɸɬ ɧɚɢɛɨɥɶɲɟɟ ɩɪɚɤɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ. ɋɢɧɬɟɬɢɱɟɫɤɢɟ ɢɨɧɨɨɛɦɟɧɧɵɟ ɫɦɨɥɵ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɟ ɫɨɟɞɢɧɟɧɢɹ, ɭɝɥɟɜɨɞɨɪɨɞɧɵɟ ɪɚɞɢɤɚɥɵ ɤɨɬɨɪɵɯ ɨɛɪɚɡɭɸɬ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɭɸ ɫɟɬɤɭ ɫ ɮɢɤɫɢɪɨɜɚɧɧɵɦɢ ɧɚ ɧɟɣ ɢɨɧɨɨɛɦɟɧɧɵɦɢ ɮɭɧɤɰɢɨɧɚɥɶɧɵɦɢ ɝɪɭɩɩɚɦɢ. ɉɪɨɫɬɪɚɧɫɬɜɟɧɧɚɹ ɭɝɥɟɜɨɞɨɪɨɞɧɚɹ ɫɟɬɤɚ (ɤɚɪɤɚɫ) ɧɚɡɵɜɚɟɬɫɹ ɦɚɬɪɢɰɟɣ, ɚ ɨɛɦɟɧɢɜɚɸɳɢɟɫɹ ɢɨɧɵ – ɩɪɨɬɢɜɨɢɨɧɚɦɢ. Ʉɚɠɞɵɣ ɩɪɨɬɢɜɨɢɨɧ ɫɨɟɞɢɧɟɧ ɫ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ ɡɚɪɹɠɟɧɧɵɦɢ ɢɨɧɚɦɢ, ɧɚɡɵɜɚɟɦɵɦɢ ɮɢɤɫɢɪɨɜɚɧɧɵɦɢ, ɢɥɢ ɚɧɤɟɪɧɵɦɢ. ɉɨɥɢɦɟɪɧɵɟ ɭɝɥɟɜɨɞɨɪɨɞɧɵɟ ɰɟɩɢ, ɹɜɥɹɸɳɢɟɫɹ ɨɫɧɨɜɨɣ ɦɚɬɪɢɰɵ, ɫɜɹɡɚɧɵ (ɫɲɢɬɵ) ɦɟɠɞɭ ɫɨɛɨɣ ɩɨɩɟɪɟɱɧɵɦɢ ɫɜɹɡɹɦɢ, ɱɬɨ ɩɪɢɞɚɟɬ ɩɪɨɱɧɨɫɬɶ ɤɚɪɤɚɫɭ. ɉɪɢ ɫɨɤɪɚɳɟɧɧɨɦ ɧɚɩɢɫɚɧɢɢ ɢɨɧɢɬɚ ɦɚɬɪɢɰɭ ɨɛɨɡɧɚɱɚɸɬ ɜ ɨɛɳɟɦ ɜɢɞɟ ( R ), ɚ ɚɤɬɢɜɧɭɸ ɝɪɭɩɩɭ ɭɤɚɡɵɜɚɸɬ ɩɨɥɧɨɫɬɶɸ. ɇɚɩɪɢɦɟɪ, ɫɭɥɶɮɨɤɚɬɢɨɧɢɬɵ ɡɚɩɢɫɵɜɚɸɬ ɤɚɤ RSO3H. Ɂɞɟɫɶ R – ɦɚɬɪɢɰɚ, H – ɩɪɨɬɢɜɨɢɨɧ, SO3 – ɚɧɤɟɪɧɵɣ ɢɨɧ. ɂɨɧɢɬɵ, ɫɨɞɟɪɠɚɳɢɟ ɨɞɢɧɚɤɨɜɵɟ ɚɤɬɢɜɧɵɟ ɝɪɭɩɩɵ, ɧɚɡɵɜɚɸɬɫɹ ɦɨɧɨɮɭɧɤɰɢɨɧɚɥɶɧɵɦɢ, ɚ ɢɨɧɢɬɵ, ɤɨɬɨɪɵɟ ɫɨɞɟɪɠɚɬ ɮɭɧɤɰɢɨɧɚɥɶɧɵɟ ɝɪɭɩɩɵ ɪɚɡɥɢɱɧɨɣ ɯɢɦɢɱɟɫɤɨɣ ɩɪɢɪɨɞɵ – ɩɨɥɢɮɭɧɤɰɢɨɧɚɥɶɧɵɦɢ. Ɉɧɢ ɦɨɝɭɬ ɨɛɥɚɞɚɬɶ ɫɦɟɲɚɧɧɵɦɢ ɫɢɥɶɧɨ- ɢ ɫɥɚɛɨɨɫɧɨɜɧɵɦɢ ɫɜɨɣɫɬɜɚɦɢ. Ʉɚɬɢɨɧɢɬɵ ɜ ɤɚɱɟɫɬɜɟ ɩɪɨɬɢɜɨɢɨɧɨɜ ɦɨɝɭɬ ɫɨɞɟɪɠɚɬɶ ɧɟ ɢɨɧɵ ɜɨɞɨɪɨɞɚ, ɚ ɢɨɧɵ ɦɟɬɚɥɥɨɜ, ɬ.ɟ. ɧɚɯɨɞɢɬɶɫɹ ɜ ɫɨɥɟɜɨɣ ɮɨɪɦɟ. Ɍɨɱɧɨ ɬɚɤ ɠɟ ɢ ɚɧɢɨɧɢɬɵ ɦɨɝɭɬ ɛɵɬɶ ɜ ɫɨɥɟɜɨɣ ɮɨɪɦɟ, ɟɫɥɢ ɜ ɤɚɱɟɫɬɜɟ ɩɪɨɬɢɜɨɢɨɧɨɜ ɨɧɢ ɫɨɞɟɪɠɚɬ ɧɟ ɢɨɧɵ ɝɢɞɪɨɤɫɢɞɚ, ɚ ɢɨɧɵ ɤɢɫɥɨɬ. ɋɜɨɣɫɬɜɚ ɢɨɧɢɬɨɜ. ɉɪɢ ɧɚɝɪɟɜɚɧɢɢ ɢɨɧɢɬɨɜ ɜ ɜɨɞɟ ɢ ɧɚ ɜɨɡɞɭɯɟ ɜɨɡɦɨɠɧɨ ɪɚɡɪɭɲɟɧɢɟ ɢɯ ɡɟɪɟɧ, ɨɬɳɟɩɥɟɧɢɟ ɚɤɬɢɜɧɵɯ ɝɪɭɩɩ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɭɦɟɧɶɲɟɧɢɸ ɢɯ ɟɦɤɨɫɬɢ. Ⱦɥɹ ɤɚɠɞɨɣ ɫɦɨɥɵ ɢɦɟɟɬɫɹ ɬɟɦɩɟɪɚɬɭɪɧɵɣ ɩɪɟɞɟɥ, ɜɵɲɟ ɤɨɬɨɪɨɝɨ ɟɟ ɢɫɩɨɥɶɡɨɜɚɬɶ ɧɟɥɶɡɹ. Ɍɟɪɦɢɱɟɫɤɚɹ ɭɫɬɨɣɱɢɜɨɫɬɶ ɚɧɢɨɧɢɬɨɜ ɧɢɠɟ, ɱɟɦ ɤɚɬɢɨɧɢɬɨɜ. ȼɟɥɢɱɢɧɚ ɪɇ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɩɪɢ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɨɛɦɟɧ ɢɨɧɚɦɢ, ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɫɬɚɧɬɵ ɞɢɫɫɨɰɢɚɰɢɢ ɢɨɧɨɨɛɦɟɧɧɵɯ ɝɪɭɩɩ ɫɦɨɥɵ. ɋɢɥɶɧɨɤɢɫɥɨɬɧɵɟ ɤɚɬɢɨɧɢɬɵ ɩɨɡɜɨɥɹɸɬ ɩɪɨɜɨɞɢɬɶ ɩɪɨɰɟɫɫ ɜ ɥɸɛɵɯ ɫɪɟɞɚɯ, ɚ ɫɥɚɛɨɤɢɫɥɨɬɧɵɟ – ɜ ɳɟɥɨɱɧɵɯ ɢ ɧɟɣɬɪɚɥɶɧɵɯ ɫɪɟɞɚɯ. ɂɨɧɢɬɵ ɜ ɤɨɧɬɚɤɬɟ ɫ ɜɨɞɨɣ ɧɟ ɪɚɫɬɜɨɪɹɸɬɫɹ, ɧɨ ɩɨɝɥɨɳɚɸɬ ɧɟɤɨɬɨɪɨɟ ɤɨɥɢɱɟɫɬɜɨ ɜɨɞɵ ɢ ɧɚɛɭɯɚɸɬ, ɹɜɥɹɹɫɶ ɝɟɥɹɦɢ ɫ ɨɝɪɚɧɢɱɟɧɧɨɣ ɧɚɛɭɯɚɟɦɨɫɬɶɸ. ɉɪɢ ɷɬɨɦ ɪɚɡɦɟɪ ɦɢɤɪɨɩɨɪ ɜɨɡɪɚɫɬɚɟɬ, ɨɛɴɟɦ ɢɨɧɢɬɨɜ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɜ 1,5…3 ɪɚɡɚ. ɋɬɟɩɟɧɶ ɧɚɛɭɯɚɧɢɹ ɡɚɜɢɫɢɬ ɨɬ ɫɬɪɨɟɧɢɹ ɫɦɨɥɵ, ɩɪɢɪɨɞɵ ɩɪɨɬɢɜɨɢɨɧɨɜ, ɨɬ ɫɨɫɬɚɜɚ ɪɚɫɬɜɨɪɚ. ɇɚɛɭɯɚɧɢɟ ɢɨɧɢɬɨɜ ɜɥɢɹɟɬ ɧɚ ɫɤɨɪɨɫɬɶ ɢ ɩɨɥɧɨɬɭ ɨɛɦɟɧɚ ɢɨɧɨɜ, ɚ ɬɚɤɠɟ ɧɚ ɫɟɥɟɤɬɢɜɧɨɫɬɶ ɢɨɧɢɬɚ. Ɉɧɨ ɩɪɟɤɪɚɳɚɟɬɫɹ ɩɨɫɥɟ ɬɨɝɨ, ɤɚɤ ɪɚɡɧɨɫɬɶ ɨɫɦɨɬɢɱɟɫɤɢɯ ɞɚɜɥɟɧɢɣ ɞɨ ɢ ɩɨɫɥɟ ɨɛɦɟɧɚ ɭɪɚɜɧɨɜɟɫɢɬɫɹ ɫɢɥɚɦɢ ɪɚɫɬɹɠɟɧɢɹ ɢ ɫɠɚɬɢɹ ɢɨɧɢɬɚ. ɋɢɥɶɧɨ ɧɚɛɭɯɚɸɳɢɟ ɫɦɨɥɵ, ɧɚɡɵɜɚɟɦɵɟ ɝɟɥɟɨɛɪɚɡɧɵɦɢ, ɢɦɟɸɬ ɭɞɟɥɶɧɭɸ ɨɛɦɟɧɧɭɸ ɩɨɜɟɪɯɧɨɫɬɶ 0,1…0,2 ɦ2/ɝ. Ɇɚɤɪɨɩɨɪɢɫɬɵɟ ɢɨɧɢɬɵ ɨɛɥɚɞɚɸɬ ɪɚɡɜɢɬɨɣ ɨɛɦɟɧɧɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ, ɪɚɜɧɨɣ 60…80 ɦ2/ɝ. ɋɢɧɬɟɬɢɱɟɫɤɢɟ ɢɨɧɢɬɵ ɧɚɛɭɯɚɸɬ ɜ ɜɨɞɟ ɛɨɥɶɲɟ ɢ ɢɦɟɸɬ ɛɨɥɶɲɭɸ ɨɛɦɟɧɧɭɸ ɟɦɤɨɫɬɶ, ɱɟɦ ɩɪɢɪɨɞɧɵɟ. ɋɪɨɤ ɫɥɭɠɛɵ ɫɢɧɬɟɬɢɱɟɫɤɢɯ ɤɚɬɢɨɧɢɬɨɜ ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɶɲɟ, ɱɟɦ ɚɧɢɨɧɢɬɨɜ. ɋɟɥɟɤɬɢɜɧɨɫɬɶ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ ɡɚɜɢɫɢɬ ɨɬ ɜɟɥɢɱɢɧɵ ɞɚɜɥɟɧɢɹ ɧɚɛɭɯɚɧɢɹ ɜ ɩɨɪɚɯ ɫɦɨɥɵ ɢ ɨɬ ɪɚɡɦɟɪɚ ɩɨɪ ɢɨɧɢɬɚ. ɉɪɢ ɦɚɥɨɦ ɪɚɡɦɟɪɟ ɩɨɪ ɛɨɥɶɲɢɟ ɢɨɧɵ ɧɟ ɦɨɝɭɬ ɞɨɫɬɢɱɶ ɜɧɭɬɪɟɧɧɢɯ ɚɤɬɢɜɧɵɯ ɝɪɭɩɩ. ȼ ɰɟɥɹɯ ɩɨɜɵɲɟɧɢɹ ɫɟɥɟɤɬɢɜɧɨɫɬɢ ɢɨɧɢɬɨɜ ɤ ɨɩɪɟɞɟɥɟɧɧɵɦ ɦɟɬɚɥɥɚɦ ɜ ɫɨɫɬɚɜ ɫɦɨɥɵ ɜɜɨɞɹɬ ɜɟɳɟɫɬɜɚ, ɫɩɨɫɨɛɧɵɟ ɨɛɪɚɡɨɜɵɜɚɬɶ ɫ ɢɨɧɚɦɢ ɷɬɢɯ ɦɟɬɚɥɥɨɜ ɜɧɭɬɪɢɤɨɦɩɥɟɤɫɧɵɟ ɫɨɟɞɢɧɟɧɢɹ (ɯɟɥɚɬɵ). Ɉɫɧɨɜɵ ɩɪɨɰɟɫɫɚ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ. ɂɨɧɧɵɣ ɨɛɦɟɧ ɩɪɨɢɫɯɨɞɢɬ ɜ ɷɤɜɢɜɚɥɟɧɬɧɵɯ ɨɬɧɨɲɟɧɢɹɯ ɢ ɹɜɥɹɟɬɫɹ ɱɚɳɟ ɜɫɟɝɨ ɨɛɪɚɬɢɦɵɦ. Ɋɟɚɤɰɢɢ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ ɩɪɨɬɟɤɚɸɬ ɜɫɥɟɞɫɬɜɢɟ ɪɚɡɧɨɫɬɢ ɯɢɦɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ ɨɛɦɟɧɢɜɚɸɳɢɯɫɹ ɢɨɧɨɜ. ȼ ɨɛɳɟɦ ɜɢɞɟ ɷɬɢ ɪɟɚɤɰɢɢ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɤɚɤ: mA+RmB mRA+B. (5.71) Ɋɟɚɤɰɢɹ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ ɩɪɨɬɟɤɚɟɬ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: - ɩɪɢ ɤɨɧɬɚɤɬɟ ɫ ɤɚɬɢɨɧɢɬɨɦ RSO3H+NaCl RSO3Na+HCl (5.72) - ɩɪɢ ɤɨɧɬɚɤɬɟ ɫ ɚɧɢɨɧɢɬɨɦ ROH+NaCl Rɋl+NaOH. (5.73) Ɋɟɚɤɰɢɹ ɢɞɟɬ ɞɨ ɭɫɬɚɧɨɜɥɟɧɢɹ ɢɨɧɨɨɛɦɟɧɧɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. ɋɤɨɪɨɫɬɶ ɭɫɬɚɧɨɜɥɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɡɚɜɢɫɢɬ ɨɬ ɜɧɟɲɧɢɯ ɢ ɜɧɭɬɪɟɧɧɢɯ ɮɚɤɬɨɪɨɜ: ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɟɠɢɦɚ ɠɢɞɤɨɫɬɢ; ɤɨɧɰɟɧɬɪɚɰɢɢ ɨɛɦɟɧɢɜɚɸɳɢɯɫɹ ɢɨɧɨɜ; ɫɬɪɭɤɬɭɪɵ ɡɟɪɟɧ ɢɨɧɢɬɚ; ɟɝɨ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɞɥɹ ɢɨɧɨɜ. ɉɪɨɰɟɫɫ ɩɟɪɟɧɨɫɚ ɜɟɳɟɫɬɜɚ ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧ ɜ ɜɢɞɟ ɧɟɫɤɨɥɶɤɢɯ ɫɬɚɞɢɣ: 1) ɩɟɪɟɧɨɫ ɢɨɧɨɜ Ⱥ ɢɡ ɹɞɪɚ ɩɨɬɨɤɚ ɠɢɞɤɨɫɬɢ ɤ ɜɧɟɲɧɟɣ ɩɨɜɟɪɯɧɨɫɬɢ ɩɨɝɪɚɧɢɱɧɨɣ ɠɢɞɤɨɣ ɩɥɟɧɤɢ, ɨɤɪɭɠɚɸɳɟɣ ɡɟɪɧɨ ɢɨɧɢɬɚ; 2) ɞɢɮɮɭɡɢɹ ɢɨɧɨɜ ɱɟɪɟɡ ɩɨɝɪɚɧɢɱɧɵɣ ɫɥɨɣ; 3) ɩɟɪɟɯɨɞ ɢɨɧɚ ɱɟɪɟɡ ɝɪɚɧɢɰɭ ɪɚɡɞɟɥɚ ɮɚɡ ɜ ɡɟɪɧɨ ɫɦɨɥɵ; 4) ɞɢɮɮɭɡɢɹ ɢɨɧɨɜ Ⱥ ɜɧɭɬɪɢ ɡɟɪɧɚ ɫɦɨɥɵ ɤ ɢɨɧɨɨɛɦɟɧɧɵɦ ɮɭɧɤɰɢɨɧɚɥɶɧɵɦ ɝɪɭɩɩɚɦ; 5) ɯɢɦɢɱɟɫɤɚɹ ɪɟɚɤɰɢɹ ɞɜɨɣɧɨɝɨ ɨɛɦɟɧɚ ɢɨɧɨɜ Ⱥ ɢ ȼ; 6) ɞɢɮɮɭɡɢɹ ɢɨɧɨɜ ȼ ɜɧɭɬɪɢ ɡɟɪɧɚ ɢɨɧɢɬɚ ɤ ɝɪɚɧɢɰɟ ɪɚɡɞɟɥɚ ɮɚɡ; 7) ɩɟɪɟɯɨɞ ɢɨɧɨɜ ȼ ɱɟɪɟɡ ɝɪɚɧɢɰɭ ɪɚɡɞɟɥɚ ɮɚɡ ɧɚ ɜɧɭɬɪɟɧɧɸɸ ɩɨɜɟɪɯɧɨɫɬɶ ɩɥɟɧɤɢ ɠɢɞɤɨɫɬɢ; 8) ɞɢɮɮɭɡɢɹ ɢɨɧɨɜ ȼ ɱɟɪɟɡ ɩɥɟɧɤɭ; 9) ɞɢɮɮɭɡɢɹ ɢɨɧɨɜ ȼ ɜ ɹɞɪɨ ɩɨɬɨɤɚ ɠɢɞɤɨɫɬɢ. ɋɤɨɪɨɫɬɶ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɚɦɨɣ ɦɟɞɥɟɧɧɨɣ ɢɡ ɷɬɢɯ ɫɬɚɞɢɣ – ɞɢɮɮɭɡɢɟɣ ɜ ɩɥɟɧɤɟ ɠɢɞɤɨɫɬɢ ɥɢɛɨ ɞɢɮɮɭɡɢɟɣ ɜ ɡɟɪɧɟ ɢɨɧɢɬɚ. ɏɢɦɢɱɟɫɤɚɹ ɪɟɚɤɰɢɹ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ ɩɪɨɢɫɯɨɞɢɬ ɛɵɫɬɪɨ ɢ ɧɟ ɨɩɪɟɞɟɥɹɟɬ ɫɭɦɦɚɪɧɭɸ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ. ɂɨɧɨɨɛɦɟɧɧɨɟ ɪɚɜɧɨɜɟɫɢɟ. Ɏɭɧɤɰɢɨɧɚɥɶɧɭɸ ɡɚɜɢɫɢɦɨɫɬɶ ɩɪɨɬɢɜɨɢɨɧɧɨɝɨ ɫɨɫɬɚɜɚ ɢɨɧɢɬɚ ɨɬ ɩɪɨɬɢɜɨɢɨɧɧɨɝɨ ɫɨɫɬɚɜɚ ɜɧɟɲɧɟɝɨ ɪɚɫɬɜɨɪɚ ɩɪɢ ɩɨɫɬɨɹɧɧɵɯ ɬɟɦɩɟɪɚɬɭɪɟ ɢ ɞɚɜɥɟɧɢɢ ɧɚɡɵɜɚɸɬ ɢɡɨɬɟɪɦɨɣ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ. ɂɡɨɬɟɪɦɵ ɢɡɨɛɪɚɠɚɸɬɫɹ ɝɪɚɮɢɱɟɫɤɢ ɜ ɛɟɡɪɚɡɦɟɪɧɵɯ ɤɨɨɪɞɢɧɚɬɚɯ a i - ai : n zi ˜ ci / ¦ zi ˜ ci ; ai n (5.74) i 1 ai zi ˜ ci / ¦ zi ˜ ci , (5.75) i 1 ɝɞɟ a i ɢ ai - ɷɤɜɢɜɚɥɟɧɬɧɵɟ ɞɨɥɢ i - ɝɨ ɢɨɧɚ ɜ ɮɚɡɟ ɢɨɧɢɬɚ ɢ ɜ ɪɚɫɬɜɨɪɟ; ci ɢ ci - ɤɨɧɰɟɧɬɪɚɰɢɢ i- ɝɨ ɢɨɧɚ ɜ ɢɨɧɢɬɟ ɢ ɜ ɪɚɫɬɜɨɪɟ ɜ ɭɫɥɨɜɢɹɯ ɪɚɜɧɨɜɟɫɢɹ ɫɢɫɬɟɦɵ, ɦɨɥɶ ɢɨɧɨɜ ɧɚ 1 ɝ ɢɨɧɢɬɚ; zi - ɡɚɪɹɞ i- ɝɨ ɢɨɧɚ. ȼɟɥɢɱɢɧɵ a i ɢ ai ɢɡɦɟɧɹɸɬɫɹ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 0 ɞɨ 1, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɢɡɨɬɟɪɦɵ ɨɛɦɟɧɚ ai ɧɚ ɟɞɢɧɢɰɟ. f (ai ) ɢɡɨɛɪɚɠɚɸɬɫɹ ɜ ɤɜɚɞɪɚɬɟ, ɫɬɨɪɨɧɚ ɤɨɬɨɪɨɝɨ ɪɚɜ- Ɉɬɧɨɲɟɧɢɟ ai / ai ɧɚɡɵɜɚɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɪɚɫɩɪɟɞɟɥɟɧɢɹ i-ɝɨ ɢɨɧɚ ɩɪɢ ɫɨɪɛɰɢɢ Kpi. ɗɬɨɬ ɤɨɷɮɮɢɰɢɟɧɬ ɹɜɥɹɟɬɫɹ ɦɟɪɨɣ ɨɛɨɝɚɳɟɧɢɹ ɢɥɢ ɨɛɟɞɧɟɧɢɹ ɢɨɧɢɬɚ ɞɚɧɧɵɦ ɜɟɳɟɫɬɜɨɦ. ɉɪɢ Kpi <1 ɢɨɧɢɬ ɨɛɟɞɧɟɧ, ɚ ɩɪɢ Kpi >1 ɨɛɨɝɚɳɟɧ ɤɨɦɩɨɧɟɧɬɨɦ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɪɚɜɧɨɜɟɫɧɵɦ ɪɚɫɬɜɨɪɨɦ. ȿɫɥɢ ɜ ɪɚɫɬɜɨɪɟ ɫɨɞɟɪɠɢɬɫɹ ɧɟ ɨɞɢɧ, ɚ ɧɟɫɤɨɥɶɤɨ ɢɨɧɨɜ, ɧɚɩɪɢɦɟɪ Ⱥ ɢ ȼ, ɬɨ ɫɟɥɟɤɬɢɜɧɨɫɬɶ ɢɨɧɢɬɚ ɨɰɟɧɢɜɚɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɫɟɥɟɤɬɢɜɧɨɫɬɢ (ɢɡɛɢɪɚɬɟɥɶɧɨɫɬɢ) KȺ,ȼ, ɪɚɜɧɵɦ ɨɬɧɨɲɟɧɢɸ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɤɨɧɤɭɪɢɪɭɸɳɢɯ ɢɨɧɨɜ: K A, B K PA / K PB a AaB / a A ˜ aB c AcB / c A ˜ cB . (5.76) ɉɪɢ KȺ,ȼ >1 ɢɨɧɢɬ ɫɟɥɟɤɬɢɜɟɧ ɤ ɢɨɧɭ Ⱥ; ɩɪɢ KȺ,ȼ >1 ɢɡɛɢɪɚɬɟɥɶɧɨ ɫɨɪɛɢɪɭɟɬɫɹ ɢɨɧ ȼ; ɩɪɢ KȺ,ȼ = 1 ɢɨɧɢɬ ɧɟ ɩɪɨɹɜɥɹɟɬ ɫɟɥɟɤɬɢɜɧɨɫɬɢ ɧɢ ɤ ɨɞɧɨɦɭ ɢɡ ɢɨɧɨɜ. ȿɫɥɢ ɨɛɦɟɧɧɚɹ ɪɟɚɤɰɢɹ ɨɩɢɫɵɜɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ ɜ ɨɛɳɟɦ ɜɢɞɟ, ɬɨ ɪɚɜɧɨɜɟɫɢɟ ɢɨɧɨɨɛɦɟɧɧɵɯ ɩɪɨɰɟɫɫɨɜ ɜɵɪɚɠɚɟɬɫɹ ɮɨɪɦɭɥɨɣ: K A, B (c A / c A ) n (c B / c B ) ( y A / x A ) n ( x B / y B )(T / c0 ) n 1 , (5.77) ɝɞɟ KȺ,ȼ – ɤɨɧɫɬɚɧɬɚ ɪɚɜɧɨɜɟɫɢɹ; c - ɤɨɧɰɟɧɬɪɚɰɢɹ ɢɨɧɨɜ ɜ ɬɜɟɪɞɨɣ ɮɚɡɟ; ɫ ɤɨɧɰɟɧɬɪɚɰɢɹ ɢɨɧɨɜ ɜ ɠɢɞɤɨɣ ɮɚɡɟ; x = c/c0 – ɛɟɡɪɚɡɦɟɪɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɠɢɞɤɨɣ ɮɚɡɟ; y= c /T - ɛɟɡɪɚɡɦɟɪɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜ ɬɜɟɪɞɨɣ ɮɚɡɟ; ɫ0 – ɨɛɳɚɹ “ɷɤɜɢɜɚɥɟɧɬɧɚɹ” ɤɨɧɰɟɧɬɪɚɰɢɹ ɢɨɧɨɜ ɜ ɠɢɞɤɨɫɬɢ; T - ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ ɫɦɨɥɵ (ɡɧɚɱɟɧɢɟ T ɧɚɯɨɞɢɬɫɹ ɜ ɩɪɟɞɟɥɚɯ n ɢ 1). Ɏɨɪɦɚ ɢɡɨɬɟɪɦɵ ɢɨɧɧɨɝɨ ɨɛɦɟɧɚ ɡɚɜɢɫɢɬ ɨɬ ɜɟɥɢɱɢɧɵ ɤɨɷɮɮɢɰɢɟɧɬɚ ɫɟɥɟɤɬɢɜɧɨɫɬɢ KȺ,ȼ: ɩɪɢ KȺ,ȼ >1 ɢɡɨɬɟɪɦɚ ɜɵɩɭɤɥɚɹ; ɩɪɢ KȺ,ȼ <1 – ɜɨɝɧɭɬɚɹ; ɚ ɩɪɢ KȺ,ȼ = 1- ɥɢɧɟɣɧɚɹ ɢ ɫɨɜɩɚɞɚɟɬ ɫ ɞɢɚɝɨɧɚɥɶɸ. ɉɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɟɳɟɫɬɜɚ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ ɦɟɧɟɟ 0,003 ɦɨɥɶ/ɥ, ɢɥɢ ɩɪɢ ɡɧɚɱɟɧɢɢ ɱɢɫɥɚ Ȼɢɨ: Bi = E.r0/(kȽ˜D)<<1, ɫɤɨɪɨɫɬɶ ɨɛɦɟɧɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɞɢɮɮɭɡɢɟɣ ɢɨɧɨɜ ɱɟɪɟɡ ɩɥɟɧɤɭ ɠɢɞɤɨɫɬɢ (ɩɥɟɧɨɱɧɚɹ ɤɢɧɟɬɢɤɚ). Ɂɞɟɫɶ E - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ; r0 - ɪɚɞɢɭɫ ɡɟɪɧɚ ɢɨɧɢɬɚ; kȽ - ɤɨɧɫɬɚɧɬɚ Ƚɟɧɪɢ; D - ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɪɨɜɨɞɧɨɫɬɢ (ɞɢɮɮɭɡɢɢ). ɉɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ 0,1 ɦɨɥɶ/ɥ (ɢɥɢ ȼi >>1) ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɞɢɮɮɭɡɢɟɣ ɢɨɧɨɜ ɜɧɭɬɪɢ ɡɟɪɧɚ (ɝɟɥɟɜɚɹ ɤɢɧɟɬɢɤɚ). ȼ ɨɛɥɚɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɣ 0,003…0,1 ɦɨɥɶ/ɥ ɨɩɪɟɞɟɥɹɸɳɢɦɢ ɹɜɥɹɸɬɫɹ ɨɛɚ ɜɢɞɚ ɞɢɮɮɭɡɢɢ. Ʉɨɷɮɮɢɰɢɟɧɬɵ ɞɢɮɮɭɡɢɢ ɪɚɡɥɢɱɧɵɯ ɢɨɧɨɜ ɜ ɫɦɨɥɟ ɢɦɟɸɬ ɩɨɪɹɞɨɤ 10-6…10-9 ɫɦ2/ɫ, ɚ ɜ ɜɨɞɟ 10-4…10-5 ɫɦ2/ɫ. Ʉɨɷɮɮɢɰɢɟɧɬ ɞɢɮɮɭɡɢɢ ɫɧɢɠɚɟɬɫɹ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɪɚɡɦɟɪɚ ɝɢɞɪɚɬɢɪɨɜɚɧɧɵɯ ɢɨɧɨɜ ɜ ɪɚɫɬɜɨɪɟ ɢ ɪɨɫɬɟ ɡɚɪɹɞɚ ɨɛɦɟɧɢɜɚɸɳɢɯɫɹ ɩɪɨɬɢɜɨɢɨɧɨɜ ɫɦɨɥɵ. Ⱦɥɹ ɜɧɟɲɧɟɞɢɮɮɭɡɢɨɧɧɨɣ ɨɛɥɚɫɬɢ ɩɪɢ ɡɧɚɱɟɧɢɹɯ ɱɢɫɥɚ Re ɨɬ 2 ɞɨ 30 ɞɥɹ ɪɚɫɱɟɬɚ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɨɬɞɚɱɢ ɢɫɩɨɥɶɡɭɟɬɫɹ ɫɥɟɞɭɸɳɚɹ ɡɚɜɢɫɢɦɨɫɬɶ: Nu 0,725 ˜ Re 0, 47 ˜ PrD 1/ 3 , (5.78) ɝɞɟ Nu = E.dɷ/D – ɱɢɫɥɨ ɇɭɫɫɟɥɶɬɚ; Re = w.dɷ/U - ɱɢɫɥɨ Ɋɟɣɧɨɥɶɞɫɚ; PrD = Q/D – ɱɢɫɥɨ ɉɪɚɧɞɬɥɹ. Ɋɟɝɟɧɟɪɚɰɢɹ ɢɨɧɢɬɨɜ. Ʉɚɬɢɨɧɢɬɵ ɪɟɝɟɧɟɪɢɪɭɸɬ 2…8%-ɦɢ ɪɚɫɬɜɨɪɚɦɢ ɤɢɫɥɨɬ. Ɋɟɝɟɧɟɪɚɰɢɨɧɧɵɟ ɪɚɫɬɜɨɪɵ - ɷɥɸɚɬɵ ɫɨɞɟɪɠɚɬ ɤɚɬɢɨɧɵ. Ɂɚɬɟɦ ɩɨɫɥɟ ɪɵɯɥɟɧɢɹ ɢ ɩɪɨɦɵɜɤɢ ɤɚɬɢɨɧɢɬɵ ɡɚɪɹɠɚɸɬɫɹ ɩɭɬɟɦ ɩɪɨɩɭɫɤɚɧɢɹ ɱɟɪɟɡ ɧɢɯ ɪɚɫɬɜɨɪɚ ɩɨɜɚɪɟɧɧɨɣ ɫɨɥɢ. Ɉɬɪɚɛɨɬɚɧɧɵɟ ɚɧɢɨɧɢɬɵ ɪɟɝɟɧɟɪɢɪɭɸɬ 2…6%-ɦɢ ɪɚɫɬɜɨɪɚɦɢ ɳɟɥɨɱɢ. Ⱥɧɢɨɧɢɬɵ ɩɪɢ ɷɬɨɦ ɩɟɪɟɯɨɞɹɬ ɜ Ɉɇ-ɮɨɪɦɭ. ɗɥɸɚɬɵ ɫɨɞɟɪɠɚɬ ɜ ɫɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɨɦ ɜɢɞɟ ɜɫɟ ɢɡɜɥɟɱɟɧɧɵɟ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɚɧɢɨɧɵ. ɗɥɸɚɬɵ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɟ ɫɨɛɨɣ ɪɚɫɬɜɨɪɵ ɤɢɫɥɨɬ ɢ ɳɟɥɨɱɟɣ, ɧɟɣɬɪɚɥɢɡɭɸɬ ɢɥɢ ɨɛɪɚɛɚɬɵɜɚɸɬ ɫ ɰɟɥɶɸ ɪɟɤɭɩɟɪɚɰɢɢ ɰɟɧɧɵɯ ɩɪɨɞɭɤɬɨɜ. ɇɟɣɬɪɚɥɢɡɚɰɢɸ ɩɪɨɜɨɞɹɬ ɫɦɟɲɟɧɢɟɦ ɤɢɫɥɵɯ ɢ ɳɟɥɨɱɧɵɯ ɷɥɸɚɬɨɜ, ɚ ɬɚɤɠɟ ɞɨɩɨɥɧɢɬɟɥɶɧɵɦ ɜɜɟɞɟɧɢɟɦ ɤɢɫɥɨɬɵ ɢɥɢ ɳɟɥɨɱɢ. ɋɬɟɩɟɧɶ ɪɟɝɟɧɟɪɚɰɢɢ ɢɨɧɢɬɨɜ (ɜ %) ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ: D 100 ˜ T B / T ɉ , (5.79) ɝɞɟ Tɜ - ɜɨɫɫɬɚɧɨɜɥɟɧɧɚɹ ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ; Tɩ - ɩɨɥɧɚɹ ɨɛɦɟɧɧɚɹ ɟɦɤɨɫɬɶ. ɇɚ ɫɬɟɩɟɧɶ ɪɟɝɟɧɟɪɚɰɢɢ ɜɥɢɹɟɬ ɬɢɩ ɢɨɧɢɬɚ, ɫɨɫɬɚɜ ɧɚɫɵɳɟɧɧɨɝɨ ɫɥɨɹ, ɩɪɢɪɨɞɚ, ɤɨɧɰɟɧɬɪɚɰɢɹ ɢ ɪɚɫɯɨɞ ɪɟɝɟɧɟɪɢɪɭɸɳɟɝɨ ɜɟɳɟɫɬɜɚ, ɬɟɦɩɟɪɚɬɭɪɚ, ɜɪɟɦɹ ɤɨɧɬɚɤɬɚ ɢ ɪɚɫɯɨɞ ɪɟɚɝɟɧɬɨɜ. 5.2.5. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɷɤɫɬɪɚɤɰɢɟɣ ɡɚɝɪɹɡɧɟɧɢɣ ɀɢɞɤɨɫɬɧɭɸ ɷɤɫɬɪɚɤɰɢɸ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɮɟɧɨɥɵ, ɦɚɫɥɚ, ɨɪɝɚɧɢɱɟɫɤɢɟ ɤɢɫɥɨɬɵ, ɢɨɧɵ ɦɟɬɚɥɥɨɜ. ɐɟɥɟɫɨɨɛɪɚɡɧɨɫɬɶ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɷɤɫɬɪɚɤɰɢɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɨɪɝɚɧɢɱɟɫɤɢɯ ɩɪɢɦɟɫɟɣ. Ⱦɥɹ ɤɚɠɞɨɝɨ ɜɟɳɟɫɬɜɚ ɫɭɳɟɫɬɜɭɟɬ ɤɨɧɰɟɧɬɪɚɰɢɨɧɧɵɣ ɩɪɟɞɟɥ ɪɟɧɬɚɛɟɥɶɧɨɫɬɢ ɢɡɜɥɟɱɟɧɢɹ ɟɝɨ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɞɥɹ ɛɨɥɶɲɢɧɫɬɜɚ ɜɟɳɟɫɬɜ ɦɨɠɧɨ ɫɱɢɬɚɬɶ, ɱɬɨ ɩɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɵɲɟ 3…4 ɝ/ɥ ɩɪɢɦɟɫɢ ɪɚɰɢɨɧɚɥɶɧɟɟ ɢɡɜɥɟɤɚɬɶ ɷɤɫɬɪɚɤɰɢɟɣ, ɱɟɦ ɚɞɫɨɪɛɰɢɟɣ. ɉɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɦɟɧɶɲɟ 1 ɝ/ɥ ɷɤɫɬɪɚɤɰɢɸ ɫɥɟɞɭɟɬ ɩɪɢɦɟɧɹɬɶ ɬɨɥɶɤɨ ɜ ɨɫɨɛɵɯ ɫɥɭɱɚɹɯ. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɷɤɫɬɪɚɤɰɢɟɣ ɫɨɫɬɨɢɬ ɢɡ ɬɪɟɯ ɫɬɚɞɢɣ. ɉɟɪɜɚɹ ɫɬɚɞɢɹ – ɫɦɟɲɟɧɢɟ ɫɬɨɱɧɨɣ ɜɨɞɵ ɫ ɷɤɫɬɪɚɝɟɧɬɨɦ (ɨɪɝɚɧɢɱɟɫɤɢɦ ɪɚɫɬɜɨɪɢɬɟɥɟɦ). ɉɪɢ ɷɬɨɦ ɨɛɪɚɡɭɸɬɫɹ ɞɜɟ ɠɢɞɤɢɟ ɮɚɡɵ. Ɉɞɧɚ ɮɚɡɚ – ɷɤɫɬɪɚɤɬ ɫɨɞɟɪɠɢɬ ɢɡɜɥɟɤɚɟɦɨɟ ɜɟɳɟɫɬɜɨ ɢ ɷɤɫɬɪɚɝɟɧɬ, ɞɪɭɝɚɹ ɮɚɡɚ – ɪɚɮɢɧɚɬ ɫɨɞɟɪɠɢɬ ɫɬɨɱɧɭɸ ɜɨɞɭ ɢ ɷɤɫɬɪɚɝɟɧɬ. ȼɬɨɪɚɹ ɫɬɚɞɢɹ – ɪɚɡɞɟɥɟɧɢɟ ɷɤɫɬɪɚɤɬɚ ɢ ɪɚɮɢɧɚɬɚ; ɬɪɟɬɶɹ ɫɬɚɞɢɹ – ɪɟɝɟɧɟɪɚɰɢɹ ɷɤɫɬɪɚɝɟɧɬɚ ɢɡ ɷɤɫɬɪɚɤɬɚ ɢ ɪɚɮɢɧɚɬɚ. ɉɪɢ ɜɵɛɨɪɟ ɪɚɫɬɜɨɪɢɬɟɥɹ ɫɥɟɞɭɟɬ ɭɱɢɬɵɜɚɬɶ ɟɝɨ ɫɟɥɟɤɬɢɜɧɨɫɬɶ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ, ɫɬɨɢɦɨɫɬɶ ɢ ɜɨɡɦɨɠɧɵɟ ɫɩɨɫɨɛɵ ɪɟɝɟɧɟɪɚɰɢɢ. ɗɤɬɪɚɝɟɧɬ ɞɨɥɠɟɧ: - ɪɚɫɬɜɨɪɹɬɶ ɢɡɜɥɟɤɚɟɦɨɟ ɜɟɳɟɫɬɜɨ ɡɧɚɱɢɬɟɥɶɧɨ ɥɭɱɲɟ, ɱɟɦ ɜɨɞɚ, ɬ.ɟ. ɨɛɥɚɞɚɬɶ ɜɵɫɨɤɢɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɪɚɫɩɪɟɞɟɥɟɧɢɹ; - ɨɛɥɚɞɚɬɶ ɛɨɥɶɲɨɣ ɫɟɥɟɤɬɢɜɧɨɫɬɶɸ ɪɚɫɬɜɨɪɟɧɢɹ, ɬ.ɟ. ɱɟɦ ɦɟɧɶɲɟ ɷɤɫɬɪɚɝɟɧɬ ɛɭɞɟɬ ɪɚɫɬɜɨɪɹɬɶ ɤɨɦɩɨɧɟɧɬɵ, ɤɨɬɨɪɵɟ ɞɨɥɠɧɵ ɨɫɬɚɬɶɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɬɟɦ ɛɨɥɟɟ ɩɨɥɧɨ ɛɭɞɭɬ ɢɡɜɥɟɤɚɬɶɫɹ ɜɟɳɟɫɬɜɚ, ɤɨɬɨɪɵɟ ɧɟɨɛɯɨɞɢɦɨ ɭɞɚɥɢɬɶ; - ɢɦɟɬɶ, ɩɨ ɜɨɡɦɨɠɧɨɫɬɢ, ɧɚɢɛɨɥɶɲɭɸ ɪɚɫɬɜɨɪɹɸɳɭɸ ɫɩɨɫɨɛɧɨɫɬɶ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɢɡɜɥɟɤɚɟɦɨɦɭ ɤɨɦɩɨɧɟɧɬɭ, ɬ.ɤ. ɱɟɦ ɨɧɚ ɜɵɲɟ, ɬɟɦ ɦɟɧɶɲɟ ɩɨɬɪɟɛɭɟɬɫɹ ɷɤɫɬɪɚɝɟɧɬɚ; - ɢɦɟɬɶ ɧɢɡɤɭɸ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɢ ɧɟ ɨɛɪɚɡɨɜɵɜɚɬɶ ɭɫɬɨɣɱɢɜɵɯ ɷɦɭɥɶɫɢɣ, ɬ.ɤ. ɡɚɬɪɭɞɧɹɟɬɫɹ ɪɚɡɞɟɥɟɧɢɟ ɷɤɫɬɪɚɤɬɚ ɢ ɪɚɮɢɧɚɬɚ; - ɡɧɚɱɢɬɟɥɶɧɨ ɨɬɥɢɱɚɬɶɫɹ ɩɨ ɩɥɨɬɧɨɫɬɢ ɨɬ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɞɥɹ ɨɛɟɫɩɟɱɟɧɢɹ ɛɵɫɬɪɨɝɨ ɢ ɩɨɥɧɨɝɨ ɪɚɡɞɟɥɟɧɢɹ ɮɚɡ; - ɨɛɥɚɞɚɬɶ ɛɨɥɶɲɢɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɞɢɮɮɭɡɢɢ; ɱɟɦ ɨɧ ɛɨɥɶɲɟ, ɬɟɦ ɜɵɲɟ ɫɤɨɪɨɫɬɶ ɦɚɫɫɨɨɛɦɟɧɚ; - ɪɟɝɟɧɟɪɢɪɨɜɚɬɶɫɹ ɩɪɨɫɬɵɦ ɢ ɞɟɲɟɜɵɦ ɫɩɨɫɨɛɨɦ; - ɢɦɟɬɶ ɬɟɦɩɟɪɚɬɭɪɭ ɤɢɩɟɧɢɹ, ɨɬɥɢɱɚɸɳɭɸɫɹ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɷɤɫɬɪɚɝɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ; - ɢɦɟɬɶ ɧɟɛɨɥɶɲɭɸ ɭɞɟɥɶɧɭɸ ɬɟɩɥɨɬɭ ɢɫɩɚɪɟɧɢɹ ɢ ɧɟɛɨɥɶɲɭɸ ɬɟɩɥɨɟɦɤɨɫɬɶ; - ɧɟ ɜɡɚɢɦɨɞɟɣɫɬɜɨɜɚɬɶ ɫ ɢɡɜɥɟɤɚɟɦɵɦ ɜɟɳɟɫɬɜɨɦ, ɬ.ɤ. ɷɬɨ ɦɨɠɟɬ ɡɚɬɪɭɞɧɢɬɶ ɪɟɝɟɧɟɪɚɰɢɸ ɷɤɫɬɪɚɝɟɧɬɚ; - ɧɟ ɛɵɬɶ ɜɪɟɞɧɵɦ, ɜɡɪɵɜɨ- ɢ ɨɝɧɟɨɩɚɫɧɵɦ ɢ ɧɟ ɜɵɡɵɜɚɬɶ ɤɨɪɪɨɡɢɸ ɦɚɬɟɪɢɚɥɚ ɚɩɩɚɪɚɬɨɜ; - ɢɦɟɬɶ ɧɟɛɨɥɶɲɭɸ ɫɬɨɢɦɨɫɬɶ. ɋɤɨɪɨɫɬɶ ɩɨɞɚɱɢ ɷɤɫɬɪɚɝɟɧɬɚ ɜ ɫɬɨɱɧɭɸ ɜɨɞɭ ɞɨɥɠɧɚ ɛɵɬɶ ɦɢɧɢɦɚɥɶɧɨɣ. Ɉɧɚ ɡɚɜɢɫɢɬ ɨɬ ɫɬɟɩɟɧɢ ɨɱɢɫɬɤɢ ɢ ɤɨɷɮɮɢɰɢɟɧɬɚ ɪɚɫɩɪɟɞɟɥɟɧɢɹ, ɤɨɬɨɪɵɣ ɜɵɪɚɠɚɟɬɫɹ ɨɬɧɨɲɟɧɢɟɦ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɷɤɫɬɪɚɝɟɧɬɟ ɢ ɜɨɞɟ. ɗɬɨ ɜɵɪɚɠɟɧɢɟ ɹɜɥɹɟɬɫɹ ɡɚɤɨɧɨɦ ɪɚɜɧɨɜɟɫɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɢ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɞɢɧɚɦɢɱɟɫɤɨɟ ɪɚɜɧɨɜɟɫɢɟ ɦɟɠɞɭ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɷɤɫɬɪɚɝɢɪɭɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɷɤɫɬɪɚɝɟɧɬɟ ɢ ɜɨɞɟ ɩɪɢ ɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ. Ʉɨɷɮɮɢɰɢɟɧɬ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɨɩɵɬɧɵɦ ɩɭɬɟɦ, ɨɧ ɡɚɜɢɫɢɬ ɨɬ ɩɪɢɪɨɞɵ ɤɨɦɩɨɧɟɧɬɨɜ ɫɢɫɬɟɦɵ, ɫɨɞɟɪɠɚɧɢɹ ɩɪɢɦɟɫɟɣ ɜ ɜɨɞɟ ɢ ɷɤɫɬɪɚɝɟɧɬɟ ɢ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɨ ɫɨɨɬɧɨɲɟɧɢɟ ɫɩɪɚɜɟɞɥɢɜɨ, ɟɫɥɢ ɷɤɫɬɪɚɝɟɧɬ ɫɨɜɟɪɲɟɧɧɨ ɧɟɪɚɫɬɜɨɪɢɦ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. Ɉɞɧɚɤɨ ɷɤɫɬɪɚɝɟɧɬ ɱɚɫɬɢɱɧɨ ɪɚɫɬɜɨɪɹɟɬɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɩɨɷɬɨɦɭ ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɛɭɞɟɬ ɡɚɜɢɫɟɬɶ ɧɟ ɬɨɥɶɤɨ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ, ɧɨ ɢ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɢɡɜɥɟɤɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɪɚɮɢɧɚɬɟ, ɬ.ɟ. ɛɭɞɟɬ ɜɟɥɢɱɢɧɨɣ ɩɟɪɟɦɟɧɧɨɣ. ɉɪɢ ɱɚɫɬɢɱɧɨɣ ɜɡɚɢɦɧɨɣ ɪɚɫɬɜɨɪɢɦɨɫɬɢ ɮɚɡ G ɢ L ɤɚɠɞɚɹ ɢɡ ɮɚɡ ɩɪɢ ɷɤɫɬɪɚɤɰɢɢ ɛɭɞɟɬ ɩɪɟɞɫɬɚɜɥɹɬɶ ɫɨɛɨɣ ɬɪɟɯɤɨɦɩɨɧɟɧɬɧɵɣ ɪɚɫɬɜɨɪ, ɫɨɫɬɚɜ ɤɨɬɨɪɨɝɨ ɧɟɜɨɡɦɨɠɧɨ ɨɬɥɨɠɢɬɶ ɧɚ ɞɢɚɝɪɚɦɦɟ ɫ ɤɨɨɪɞɢɧɚɬɚɦɢ x ɢ y. ɋɨɫɬɚɜɵ ɬɚɤɢɯ ɬɪɟɯɤɨɦɩɨɧɟɧɬɧɵɯ ɮɚɡ ɭɞɨɛɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɜ ɬɪɟɭɝɨɥɶɧɨɣ ɞɢɚɝɪɚɦɦɟ (ɪɢɫ.5.10). ȼɟɪɲɢɧɵ ɪɚɜɧɨɫɬɨɪɨɧɧɟɝɨ ɬɪɟɭɝɨɥɶɧɢɤɚ L, G ɢ M ɨɛɨɡɧɚɱɚɸɬ ɱɢɫɬɵɟ ɤɨɦɩɨɧɟɧɬɵ: ɪɚɫɬɜɨɪɢɬɟɥɶ ɢɫɯɨɞɧɨɝɨ ɪɚɫɬɜɨɪɚ L, ɷɤɫɬɪɚɝɟɧɬ G ɢ ɪɚɫɩɪɟɞɟɥɹɟɦɨɟ ɜɟɳɟɫɬɜɨ M. Ʉɚɠɞɚɹ ɬɨɱɤɚ ɧɚ ɫɬɨɪɨɧɚɯ LM, MG ɢ GL ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɫɨɫɬɚɜɭ ɞɜɭɯɤɨɦɩɨɧɟɧɬɧɵɯ ɪɚɫɬɜɨɪɨɜ. Ʉɚɠɞɚɹ ɬɨɱɤɚ ɧɚ ɩɥɨɳɚɞɢ ɜɧɭɬɪɢ ɞɢɚɝɪɚɦɦɵ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɫɨɫɬɚɜɭ ɬɪɟɯɤɨɦɩɨɧɟɧɬɧɨɝɨ ɪɚɫɬɜɨɪɚ (ɢɥɢ ɬɪɨɣɧɨɣ ɫɦɟɫɢ). Ⱦɥɹ ɨɬɫɱɟɬɚ ɫɨɞɟɪɠɚɧɢɹ ɤɚɠɞɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɜ ɪɚɫɬɜɨɪɟ ɧɚ ɫɬɨɪɨɧɚɯ ɞɢɚɝɪɚɦɦɵ ɧɚɧɟɫɟɧɵ ɲɤɚɥɵ, ɩɪɢɱɟɦ ɞɥɢɧɚ ɤɚɠɞɨɣ ɫɬɨɪɨɧɵ ɩɪɢɧɹɬɚ ɡɚ 100% (ɦɚɫɫɨɜɵɯ, ɨɛɴɟɦɧɵɯ ɢɥɢ ɦɨɥɶɧɵɯ) ɢɥɢ ɡɚ ɟɞɢɧɢɰɭ. ɋɨɫɬɚɜ ɪɚɫɬɜɨɪɚ ɢɥɢ ɫɦɟɫɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɞɥɢɧɨɣ ɨɬɪɟɡɤɨɜ, ɩɪɨɜɟɞɟɧɧɵɯ ɩɚɪɚɥɥɟɥɶɧɨ ɤɚɠɞɨɣ ɢɡ ɫɬɨɪɨɧ ɬɪɟɭɝɨɥɶɧɢɤɚ ɞɨ ɩɟɪɟɫɟɱɟɧɢɹ ɫ ɞɜɭɦɹ ɞɪɭɝɢɦɢ. Ɍɚɤ, ɬɨɱɤɚ N ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɬɪɨɣɧɭɸ ɫɦɟɫɶ, ɫɨɫɬɨɹɳɭɸ ɢɡ 20% ɪɚɫɬɜɨɪɢɬɟɥɹ L, 50% ɪɚɫɬɜɨɪɢɬɟɥɹ G ɢ 30% ɪɚɫɩɪɟɞɟɥɹɟɦɨɝɨ ɜɟɳɟɫɬɜɚ M. Ɋɢɫ. 5.10. Ɍɪɟɭɝɨɥɶɧɚɹ ɞɢɚɝɪɚɦɦɚ ɪɚɫɬɜɨɪɢɦɨɫɬɢ ɤɨɦɩɨɧɟɧɬɚ ȿɫɥɢ ɭɱɚɫɬɜɭɸɳɢɟ ɜ ɩɪɨɰɟɫɫɟ ɷɤɫɬɪɚɤɰɢɢ ɮɚɡɵ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɪɚɫɬɜɨɪɢɦɵ, ɬɨ ɦɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɩɪɨɰɟɫɫɚ ɨɩɢɫɵɜɚɟɬɫɹ ɨɛɳɢɦ ɭɪɚɜɧɟɧɢɟɦ 6Gɧ = 6Gɤ. (5.80) ɉɪɢ ɨɞɧɨɤɪɚɬɧɨɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɮɚɡ (ɩɟɪɢɨɞɢɱɟɫɤɚɹ ɷɤɫɬɪɚɤɰɢɹ) ɦɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɩɪɨɰɟɫɫɚ ɩɨ ɩɨɬɨɤɚɦ ɩɪɢɧɢɦɚɟɬ ɜɢɞ ɭɪɚɜɧɟɧɢɹ Gɧ + L ɧ = Gɤ + L ɤ (5.81) ɢɥɢ ɜ ɩɪɢɧɹɬɵɯ ɨɛɨɡɧɚɱɟɧɢɹɯ F + S = E + R, (5.82) ɝɞɟ F, S - ɤɨɥɢɱɟɫɬɜɚ ɢɫɯɨɞɧɨɝɨ ɪɚɫɬɜɨɪɚ ɢ ɷɤɫɬɪɚɝɟɧɬɚ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɤɝ; E, R – ɤɨɥɢɱɟɫɬɜɨ ɷɤɫɬɪɚɤɬɚ ɢ ɪɚɮɢɧɚɬɚ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɤɝ. ɍɪɚɜɧɟɧɢɟ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɨ ɢ ɞɥɹ ɧɟɩɪɟɪɵɜɧɨɝɨ ɩɪɨɰɟɫɫɚ ɩɪɢ ɭɫɥɨɜɢɢ, ɱɬɨ ɜɫɟ ɜɯɨɞɹɳɟɟ ɜ ɧɟɝɨ ɜɟɥɢɱɢɧɵ ɜɵɪɚɠɚɸɬɫɹ ɜ ɟɞɢɧɢɰɚɯ ɪɚɫɯɨɞɚ, ɧɚɩɪɢɦɟɪ ɜ ɤɝ/ɫ. Ⱦɥɹ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɝɨ ɫɥɭɱɚɹ ɭɪɚɜɧɟɧɢɟ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɩɪɨɰɟɫɫɚ ɷɤɫɬɪɚɤɰɢɢ ɨɩɢɫɵɜɚɟɬɫɹ ɨɛɳɢɦ ɞɥɹ ɦɚɫɫɨɨɛɦɟɧɧɵɯ ɩɪɨɰɟɫɫɨɜ ɭɪɚɜɧɟɧɢɟɦ: Yɤ = Yɧ + (L/G)(Xɧ – Xɤ). (5.83) Ⱦɥɹ ɚɧɚɥɢɡɚ ɢ ɪɚɫɱɟɬɚ ɩɪɨɰɟɫɫɚ ɷɤɫɬɪɚɤɰɢɢ ɜ ɭɫɥɨɜɢɹɯ ɜɡɚɢɦɧɨɣ ɧɟɪɚɫɬɜɨɪɢɦɨɫɬɢ ɮɚɡ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɢɡɜɟɫɬɧɵɣ ɦɟɬɨɞ ɝɪɚɮɢɱɟɫɤɨɝɨ ɩɨɫɬɪɨɟɧɢɹ ɪɚɜɧɨɜɟɫɧɨɣ ɢ ɪɚɛɨɱɟɣ ɥɢɧɢɢ ɧɚ ɮɚɡɨɜɨɣ ɞɢɚɝɪɚɦɦɟ y - x, ɫ ɩɨɦɨɳɶɸ ɤɨɬɨɪɨɝɨ ɨɩɪɟɞɟɥɹɸɬ ɞɜɢɠɭɳɭɸ ɫɢɥɭ ɩɪɨɰɟɫɫɚ ɢ ɜɵɫɨɬɭ ɷɤɫɬɪɚɤɬɨɪɚ. Ɉɞɧɚɤɨ ɱɚɫɬɨ ɭɱɚɫɬɜɭɸɳɢɟ ɜ ɢɫɯɨɞɧɨɣ ɷɤɫɬɪɚɤɰɢɢ ɮɚɡɵ ɨɛɥɚɞɚɸɬ ɱɚɫɬɢɱɧɨɣ ɜɡɚɢɦɧɨɣ ɪɚɫɬɜɨɪɢɦɨɫɬɶɸ. ɉɨɷɬɨɦɭ ɤɨɥɢɱɟɫɬɜɚ ɩɨɬɨɤɨɜ ɩɨ ɜɵɫɨɬɟ ɷɤɫɬɪɚɤɬɨɪɚ ɛɭɞɭɬ ɢɡɦɟɧɹɬɶɫɹ, ɚ ɡɧɚɱɢɬ ɨɬɧɨɲɟɧɢɟ L/G ɜ ɭɪɚɜɧɟɧɢɢ Yiɤ = Yiɧ + (L/G)(Xiɧ – Xiɤ) (5.84) ɧɟ ɛɭɞɟɬ ɩɨɫɬɨɹɧɧɵɦ. Ɍɨɝɞɚ ɧɚ ɞɢɚɝɪɚɦɦɟ y - x ɪɚɛɨɱɚɹ ɥɢɧɢɹ ɛɭɞɟɬ ɤɪɢɜɨɥɢɧɟɣɧɨɣ. ɉɨɫɤɨɥɶɤɭ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɫɢɫɬɟɦɚ ɹɜɥɹɟɬɫɹ ɤɚɤ ɦɢɧɢɦɭɦ ɬɪɟɯɤɨɦɩɨɧɟɧɬɧɨɣ, ɬɨ ɞɥɹ ɚɧɚɥɢɡɚ ɬɚɤɢɯ ɫɢɫɬɟɦ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɜɨɫɩɨɥɶɡɨ- ɜɚɬɶɫɹ ɬɪɟɭɝɨɥɶɧɨɣ ɞɢɚɝɪɚɦɦɨɣ ɞɥɹ ɩɨɫɬɪɨɟɧɢɹ ɧɟ ɬɨɥɶɤɨ ɪɚɜɧɨɜɟɫɧɵɯ, ɧɨ ɢ ɪɚɛɨɱɢɯ ɤɨɧɰɟɧɬɪɚɰɢɨɧɧɵɯ ɡɚɜɢɫɢɦɨɫɬɟɣ. Ⱦɥɹ ɷɬɨɝɨ ɩɟɪɟɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ (5.82) ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: F + S = M = E + R. (5.85) ȼɵɪɚɠɟɧɢɟ ɩɨɡɜɨɥɹɟɬ ɩɪɟɞɫɬɚɜɢɬɶ ɦɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɧɚ ɬɪɟɭɝɨɥɶɧɨɣ ɞɢɚɝɪɚɦɦɟ (ɪɢɫ. 5.10), ɧɚɩɪɢɦɟɪ, ɤɚɤ ɩɪɨɰɟɫɫ ɫɦɟɲɟɧɢɹ ɩɨɬɨɤɨɜ F + S = M ɢ ɡɚɬɟɦ ɪɚɡɞɟɥɟɧɢɹ ɷɬɨɣ ɬɪɨɣɧɨɣ ɫɦɟɫɢ ɫɨɫɬɚɜɚ Ɇ ɧɚ ɩɨɬɨɤɢ R + E. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɤɨɦɩɨɧɟɧɬɨɜ Ⱥ ɢ ȼ ɜ ɩɨɬɨɤɚɯ, ɧɚɩɪɢɦɟɪ ɷɤɫɬɪɚɤɬɚ ȿ ɢ ɪɚɮɢɧɚɬɚ R ɜɵɪɚɡɢɬɫɹ: R.XAR + R.XAE = M.XAM; (5.86) R.XBR + R.XBE = M.XBM. (5.87) ɉɪɢ ɫɨɞɟɪɠɚɧɢɢ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɧɟɫɤɨɥɶɤɢɯ ɩɪɢɦɟɫɟɣ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɢɡɜɥɟɤɚɬɶ ɷɤɫɬɪɚɤɰɢɟɣ ɫɧɚɱɚɥɚ ɨɞɧɢ ɢɡ ɤɨɦɩɨɧɟɧɬɨɜ – ɧɚɢɛɨɥɟɟ ɰɟɧɧɵɣ ɢɥɢ ɬɨɤɫɢɱɧɵɣ, ɚ ɡɚɬɟɦ ɞɪɭɝɨɣ ɢ ɬ.ɞ. ɉɪɢ ɷɬɨɦ ɞɥɹ ɤɚɠɞɨɝɨ ɤɨɦɩɨɧɟɧɬɚ ɦɨɠɟɬ ɛɵɬɶ ɪɚɡɧɵɣ ɷɤɫɬɪɚɝɟɧɬ. ɉɪɢ ɨɞɧɨɜɪɟɦɟɧɧɨɣ ɷɤɫɬɪɚɤɰɢɢ ɧɟɫɤɨɥɶɤɢɯ ɜɟɳɟɫɬɜ ɢɡ ɫɬɨɱɧɨɣ ɜɨɞɵ ɷɤɫɬɪɚɝɟɧɬ ɧɟ ɞɨɥɠɟɧ ɨɛɥɚɞɚɬɶ ɫɟɥɟɤɬɢɜɧɨɫɬɶɸ ɢɡɜɥɟɱɟɧɢɹ, ɚ ɢɦɟɬɶ ɛɥɢɡɤɢɟ ɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵɫɨɤɢɟ ɤɨɷɮɮɢɰɢɟɧɬɵ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɜɫɟɯ ɢɡɜɥɟɤɚɟɦɵɯ ɜɟɳɟɫɬɜ. ɉɪɨɜɟɞɟɧɢɟ ɬɚɤɨɝɨ ɩɪɨɰɟɫɫɚ ɨɱɢɫɬɤɢ ɡɚɬɪɭɞɧɹɟɬ ɜɵɛɨɪ ɷɤɫɬɪɚɝɟɧɬɚ ɢ ɟɝɨ ɪɟɝɟɧɟɪɚɰɢɸ. Ɋɟɝɟɧɟɪɚɰɢɹ ɷɤɫɬɪɚɝɟɧɬɚ ɦɨɠɟɬ ɛɵɬɶ ɩɪɨɜɟɞɟɧɚ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɜɬɨɪɢɱɧɨɣ ɷɤɫɬɪɚɤɰɢɢ – ɫ ɞɪɭɝɢɦ ɪɚɫɬɜɨɪɢɬɟɥɟɦ, ɚ ɬɚɤɠɟ ɜɵɩɚɪɢɜɚɧɢɟɦ, ɞɢɫɬɢɥɥɹɰɢɟɣ, ɯɢɦɢɱɟɫɤɢɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɟɦ ɢɥɢ ɨɫɚɠɞɟɧɢɟɦ. Ɍɚɤ ɤɚɤ ɫɨɜɟɪɲɟɧɧɨ ɧɟɪɚɫɬɜɨɪɢɦɵɯ ɜ ɜɨɞɟ ɠɢɞɤɨɫɬɟɣ ɧɟɬ, ɬɨ ɜ ɩɪɨɰɟɫɫɟ ɷɤɫɬɪɚɤɰɢɢ ɱɚɫɬɶ ɷɤɫɬɪɚɝɟɧɬɚ ɪɚɫɬɜɨɪɹɟɬɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɬ.ɟ. ɨɧ ɫɬɚɧɨɜɢɬɫɹ ɧɨɜɵɦ ɡɚɝɪɹɡɧɢɬɟɥɟɦ ɟɟ, ɩɨɷɬɨɦɭ ɧɟɨɛɯɨɞɢɦɨ ɭɞɚɥɹɬɶ ɷɤɫɬɪɚɝɟɧɬ ɢɡ ɪɚɮɢɧɚɬɚ. ɉɨɬɟɪɢ ɪɚɫɬɜɨɪɢɬɟɥɹ ɫ ɪɚɮɢɧɚɬɨɦ ɞɨɩɭɫɬɢɦɵ ɥɢɲɶ ɩɪɢ ɭɫɥɨɜɢɢ ɟɝɨ ɪɚɫɬɜɨɪɢɦɨɫɬɢ ɜ ɜɨɞɟ ɧɟ ɜɵɲɟ ɉȾɄ, ɧɨ ɬɨɥɶɤɨ ɩɪɢ ɟɝɨ ɨɱɟɧɶ ɧɢɡɤɨɣ ɫɬɨɢɦɨɫɬɢ. ɇɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦ ɫɩɨɫɨɛɨɦ ɢɡɜɥɟɱɟɧɢɹ ɪɚɫɬɜɨɪɢɬɟɥɹ ɢɡ ɪɚɮɢɧɚɬɚ ɹɜɥɹɟɬɫɹ ɚɞɫɨɪɛɰɢɹ ɢɥɢ ɨɬɝɨɧɤɚ ɩɚɪɨɦ (ɝɚɡɨɦ). Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɧɚɢɛɨɥɟɟ ɱɚɫɬɨ ɩɪɢɦɟɧɹɸɬ ɩɪɨɰɟɫɫɵ ɩɪɨɬɢɜɨɬɨɱɧɨɣ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɨɣ ɷɤɫɬɪɚɤɰɢɢ (ɪɢɫ. 5.11) ɢ ɧɟɩɪɟɪɵɜɧɨɣ ɩɪɨɬɢɜɨɬɨɱɧɨɣ ɷɤɫɬɪɚɤɰɢɢ (ɪɢɫ. 5.12). ɋɯɟɦɚ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɨɣ ɷɤɫɬɪɚɤɰɢɨɧɧɨɣ ɭɫɬɚɧɨɜɤɢ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɛɚɬɚɪɟɸ ɫɦɟɫɢɬɟɥɟɣ ɢ ɨɬɫɬɨɣɧɢɤɨɜ. Ʉɚɠɞɚɹ ɫɬɭɩɟɧɶ ɫɨɫɬɨɢɬ ɢɡ ɫɦɟɫɢɬɟɥɹ ɜɨɞɵ ɫ ɷɤɫɬɪɚɝɟɧɬɨɦ ɢ ɨɬɫɬɨɣɧɢɤɚ. Ʉɨɧɟɱɧɵɣ ɷɤɫɬɪɚɝɟɧɬ 3 3c 2c 2 3 1 1c ɋɬɨɱɧɚɹ ɜɨɞɚ ɋɜɟɠɢɣ ɷɤɫɬɪɚɝɟɧɬ Ɋɚɮɢɧɚɬ Ɉɱɢɳɟɧɧɚɹ ɷɤɫɬɪɚɤɬ ɷɤɫɬɪɚɤɬ Ɋɢɫ. 5.11. ɋɯɟɦɚ ɦɧɨɝɨɫɬɭɩɟɧɱɚɬɨɣ ɩɪɨɬɢɜɨɬɨɱɧɨɣ ɷɤɫɬɪɚɤɰɢɢ: 1-3 – ɫɦɟɫɢɬɟɥɢ; 1c - 3c - ɨɬɫɬɨɣɧɢɤɢ. ɋɜɟɠɢɣ ɷɤɫɬɪɚɝɟɧɬ ɢ ɫɬɨɱɧɚɹ ɜɨɞɚ ɩɨɫɬɭɩɚɸɬ ɫ ɩɪɨɬɢɜɨɩɨɥɨɠɧɵɯ ɫɬɨɪɨɧ. ȼ ɩɟɪɜɨɣ ɫɬɭɩɟɧɢ ɫɬɨɱɧɚɹ ɜɨɞɚ ɫ ɧɟɛɨɥɶɲɢɦ ɫɨɞɟɪɠɚɧɢɟɦ ɩɪɢɦɟɫɟɣ ɩɟɪɟɦɟɲɢɜɚɟɬɫɹ ɫɨ ɫɜɟɠɢɦ ɷɤɫɬɪɚɝɟɧɬɨɦ, ɚ ɜ ɩɨɫɥɟɞɧɟɣ ɫɬɭɩɟɧɢ ɢɫɯɨɞɧɚɹ ɫɬɨɱɧɚɹ ɜɨɞɚ ɫɦɟɲɢɜɚɟɬɫɹ ɫ ɷɤɫɬɪɚɝɟɧɬɨɦ, ɤɨɬɨɪɵɣ ɭɠɟ ɫɨɞɟɪɠɢɬ ɡɧɚɱɢɬɟɥɶɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɢɡɜɥɟɤɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ. Ɍɚɤɨɟ ɞɜɢɠɟɧɢɟ ɩɨɬɨɤɨɜ ɫɩɨɫɨɛɫɬɜɭɟɬ ɫɨɡɞɚɧɢɸ ɛɨɥɶɲɨɣ ɞɜɢɠɭɳɟɣ ɫɢɥɵ ɩɪɨɰɟɫɫɚ ɷɤɫɬɪɚɤɰɢɢ ɢ ɷɮɮɟɤɬɢɜɧɨɣ ɨɱɢɫɬɤɟ ɫɬɨɱɧɵɯ ɜɨɞ. ɋɬɨɱɧɚɹ ɜɨɞɚ Ɋɚɮɢɧɚɬ Ɉɱɢɳɟɧɧɚɹ ɜɨɞɚ 1 ɗɤɫɬɪɚɤɬ 2 3 ɂɡɜɥɟɱɟɧɧɵɣ ɤɨɦɩɨɧɟɧɬ ɗɤɫɬɪɚɝɟɧɬ Ɋɢɫ. 5.12. ɋɯɟɦɚ ɧɟɩɪɟɪɵɜɧɨɣ ɩɪɨɬɢɜɨɬɨɱɧɨɣ ɷɤɫɬɪɚɤɰɢɢ ɫ ɪɟɝɟɧɟɪɚɰɢɟɣ ɷɤɫɬɪɚɝɟɧɬɚ ɢɡ ɷɤɫɬɪɚɤɬɚ ɢ ɪɚɮɢɧɚɬɚ: 1 – ɫɢɫɬɟɦɚ ɞɥɹ ɭɞɚɥɟɧɢɹ ɷɤɫɬɪɚɝɟɧɬɚ ɢɡ ɪɚɮɢɧɚɬɚ; 2 – ɤɨɥɨɧɧɚ; 3 – ɫɢɫɬɟɦɚ ɞɥɹ ɭɞɚɥɟɧɢɹ ɷɤɫɬɪɚɝɟɧɬɚ ɢɡ ɷɤɫɬɪɚɤɬɚ. ɗɤɫɬɪɚɤɰɢɹ ɩɪɨɢɡɜɨɞɢɬɫɹ ɜ ɚɩɩɚɪɚɬɚɯ ɪɚɡɥɢɱɧɨɣ ɤɨɧɫɬɪɭɤɰɢɢ: ɪɚɫɩɵɥɢɬɟɥɶɧɵɯ, ɧɚɫɚɞɨɱɧɵɯ, ɬɚɪɟɥɶɱɚɬɵɯ ɤɨɥɨɧɧɚɯ, ɚ ɬɚɤɠɟ ɜ ɰɟɧɬɪɨɛɟɠɧɵɯ ɷɤɫɬɪɚɤɬɨɪɚɯ. 5.2.6. Ɉɛɪɚɬɧɵɣ ɨɫɦɨɫ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɹ ɜ ɪɚɫɬɜɨɪɚɯ ɫɬɨɱɧɵɯ ɜɨɞ Ɉɛɪɚɬɧɵɦ ɨɫɦɨɫɨɦ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɟɣ ɧɚɡɵɜɚɸɬ ɩɪɨɰɟɫɫɵ ɮɢɥɶɬɪɨɜɚɧɢɹ ɪɚɫɬɜɨɪɨɜ ɱɟɪɟɡ ɩɨɥɭɩɪɨɧɢɰɚɟɦɵɟ ɦɟɦɛɪɚɧɵ, ɢɡɛɢɪɚɬɟɥɶɧɨ ɩɪɨɩɭɫɤɚɸɳɢɟ ɪɚɫɬɜɨɪɢɬɟɥɶ ɢ ɩɨɥɧɨɫɬɶɸ ɢɥɢ ɱɚɫɬɢɱɧɨ ɡɚɞɟɪɠɢɜɚɸɳɢɟ ɦɨɥɟɤɭɥɵ ɪɚɫɬɜɨɪɟɧɧɵɯ ɜ ɧɢɯ ɜɟɳɟɫɬɜ, ɩɨɞ ɞɚɜɥɟɧɢɟɦ, ɩɪɟɜɵɲɚɸɳɢɦ ɨɫɦɨɬɢɱɟɫɤɨɟ ɞɚɜɥɟɧɢɟ. ȼ ɨɫɧɨɜɟ ɷɬɢɯ ɫɩɨɫɨɛɨɜ ɥɟɠɢɬ ɹɜɥɟɧɢɟ ɨɫɦɨɫɚ – ɫɚɦɨɩɪɨɢɡɜɨɥɶɧɨɝɨ ɩɟɪɟɯɨɞɚ ɪɚɫɬɜɨɪɢɬɟɥɹ (ɜɨɞɵ) ɜ ɪɚɫɬɜɨɪ ɱɟɪɟɡ ɩɨɥɭɩɪɨɧɢɰɚɟɦɭɸ ɦɟɦɛɪɚɧɭ. Ⱦɚɜɥɟɧɢɟ S ɜ ɪɚɫɬɜɨɪɟ, ɡɚɫɬɚɜɥɹɸɳɟɟ ɪɚɫɬɜɨɪɢɬɟɥɶ ɩɟɪɟɯɨɞɢɬɶ ɱɟɪɟɡ ɦɟɦɛɪɚɧɭ, ɧɚɡɵɜɚɸɬ ɨɫɦɨɬɢɱɟɫɤɢɦ. ɋɨɡɞɚɜ ɧɚɞ ɪɚɫɬɜɨɪɨɦ ɞɚɜɥɟɧɢɟ p1, ɪɚɜɧɨɟ ɨɫɦɨɬɢɱɟɫɤɨɦɭ, ɨɫɦɨɫ ɩɪɟɤɪɚɳɚɟɬɫɹ ɢ ɧɚɫɬɭɩɚɟɬ ɫɨɫɬɨɹɧɢɟ ɪɚɜɧɨɜɟɫɢɹ. ȿɫɥɢ ɠɟ ɧɚɞ ɪɚɫɬɜɨɪɨɦ ɫɨɡɞɚɬɶ ɢɡɛɵɬɨɱɧɨɟ ɞɚɜɥɟɧɢɟ p2, ɩɪɟɜɵɲɚɸɳɟɟ ɨɫɦɨɬɢɱɟɫɤɨɟ ɞɚɜɥɟɧɢɟ S ɧɚ ɜɟɥɢɱɢɧɭ 'p, ɬɨ ɩɟɪɟɯɨɞ ɪɚɫɬɜɨɪɢɬɟɥɹ ɛɭɞɟɬ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɜ ɨɛɪɚɬɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɢ ɬɨɝɞɚ ɩɪɨɰɟɫɫ ɧɚɡɵɜɚɸɬ ɨɛɪɚɬɧɵɦ ɨɫɦɨɫɨɦ. ȼɟɥɢɱɢɧɚ ɨɫɦɨɬɢɱɟɫɤɨɝɨ ɞɚɜɥɟɧɢɹ S (ɜ ɉɚ) ɞɥɹ ɪɚɫɬɜɨɪɨɜ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɭɪɚɜɧɟɧɢɸ ȼɚɧɬ-Ƚɨɮɮɚ S = ȕ.R.T.C/M, (5.88) ɝɞɟ ȕ = (1 + D) – ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ; D - ɫɬɟɩɟɧɶ ɞɢɫɫɨɰɢɚɰɢɢ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ; R – ɝɚɡɨɜɚɹ ɩɨɫɬɨɹɧɧɚɹ; T – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɪɚɫɬɜɨɪɚ, Ʉ; c – ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ, ɝ/ɥ; M – ɦɨɥɟɤɭɥɹɪɧɚɹ ɦɚɫɫɚ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ, ɝ/ɦɨɥɶ. Ɇɟɯɚɧɢɡɦ ɮɢɥɶɬɪɨɜɚɧɢɹ ɱɟɪɟɡ ɩɨɪɢɫɬɭɸ ɦɟɦɛɪɚɧɭ ɨɛɴɹɫɧɹɟɬɫɹ ɬɟɦ, ɱɬɨ ɩɨɪɵ ɬɚɤɨɣ ɦɟɦɛɪɚɧɵ ɞɨɫɬɚɬɨɱɧɨ ɜɟɥɢɤɢ, ɱɬɨɛɵ ɩɪɨɩɭɫɤɚɬɶ ɦɨɥɟɤɭɥɵ ɪɚɫɬɜɨɪɢɬɟɥɹ, ɧɨ ɫɥɢɲɤɨɦ ɦɚɥɵ, ɱɬɨɛɵ ɩɪɨɩɭɫɤɚɬɶ ɦɨɥɟɤɭɥɵ ɪɚɫɬɜɨɪɟɧɧɵɯ ɜɟɳɟɫɬɜ. ɉɪɢ ɨɛɪɚɬɧɨɦ ɨɫɦɨɫɟ ɨɬɞɟɥɹɸɬɫɹ ɱɚɫɬɢɰɵ (ɦɨɥɟɤɭɥɵ, ɝɢɞɪɚɬɢɪɨɜɚɧɧɵɟ ɢɨɧɵ), ɪɚɡɦɟɪɵ ɤɨɬɨɪɵɯ ɧɟ ɩɪɟɜɵɲɚɸɬ ɪɚɡɦɟɪɨɜ ɦɨɥɟɤɭɥ ɪɚɫɬɜɨɪɢɬɟɥɹ. ɉɪɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɢ ɪɚɡɦɟɪ ɨɬɞɟɥɹɟɦɵɯ ɱɚɫɬɢɰ dɱ ɧɚ ɩɨɪɹɞɨɤ ɛɨɥɶɲɟ. ȼ ɩɪɨɰɟɫɫɟ ɭɥɶɬɪɚɮɢɥɶɬɪɨɜɚɧɢɹ ɦɟɦɛɪɚɧɨɣ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɟ ɜɟɳɟɫɬɜɚ, ɚ ɧɢɡɤɨɦɨɥɟɤɭɥɹɪɧɵɟ ɜɟɳɟɫɬɜɚ ɢ ɪɚɫɬɜɨɪɢɬɟɥɶ ɫɜɨɛɨɞɧɨ ɩɪɨɯɨɞɹɬ ɱɟɪɟɡ ɩɨɪɵ ɦɟɦɛɪɚɧɵ. ɉɪɢ ɨɛɪɚɬɧɨɦ ɨɫɦɨɫɟ ɦɟɦɛɪɚɧɨɣ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɤɚɤ ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɟ ɜɟɳɟɫɬɜɚ, ɬɚɤ ɢ ɛɨɥɶɲɚɹ ɱɚɫɬɶ ɧɢɡɤɨɦɨɥɟɤɭɥɹɪɧɵɯ ɜɟɳɟɫɬɜ, ɚ ɩɪɨɯɨɞɢɬ ɱɟɪɟɡ ɩɨɪɵ ɦɟɦɛɪɚɧɵ ɬɨɥɶɤɨ ɩɨɱɬɢ ɱɢɫɬɵɣ ɪɚɫɬɜɨɪɢɬɟɥɶ. ɍɫɥɨɜɧɵɟ ɝɪɚɧɢɰɵ ɩɪɢɦɟɧɟɧɢɹ ɷɬɢɯ ɩɪɨɰɟɫɫɨɜ: ɨɛɪɚɬɧɵɣ ɨɫɦɨɫ: dɱ = 0,0001…0,001 ɦɤɦ; ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɹ: dɱ = 0,001…0,02 ɦɤɦ; ɦɚɤɪɨɮɢɥɶɬɪɚɰɢɹ: dɱ = 0,02…10 ɦɤɦ. Ɉɬ ɨɛɵɱɧɨɣ ɮɢɥɶɬɪɚɰɢɢ ɬɚɤɢɟ ɩɪɨɰɟɫɫɵ ɨɬɥɢɱɚɸɬɫɹ ɨɬɞɟɥɟɧɢɟɦ ɱɚɫɬɢɰ ɦɟɧɶɲɢɯ ɪɚɡɦɟɪɨɜ. Ⱦɚɜɥɟɧɢɟ, ɧɟɨɛɯɨɞɢɦɨɟ ɞɥɹ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɫɚ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ (6…10 Ɇɉɚ), ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɶɲɟ, ɱɟɦ ɞɥɹ ɩɪɨɰɟɫɫɚ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɢ (0,1…0,5 Ɇɉɚ). Ɉɛɪɚɬɧɵɣ ɨɫɦɨɫ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɨɜɚɧɢɟ ɩɪɢɧɰɢɩɢɚɥɶɧɨ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɨɛɵɱɧɨɝɨ ɮɢɥɶɬɪɨɜɚɧɢɹ. ȿɫɥɢ ɩɪɢ ɨɛɵɱɧɨɦ ɮɢɥɶɬɪɨɜɚɧɢɢ ɨɫɚɞɨɤ ɨɬɤɥɚɞɵɜɚɟɬɫɹ ɧɚ ɮɢɥɶɬɪɨɜɚɥɶɧɨɣ ɩɟɪɟɝɨɪɨɞɤɟ, ɬɨ ɩɪɢ ɨɛɪɚɬɧɨɦ ɨɫɦɨɫɟ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɨɜɚɧɢɢ ɨɛɪɚɡɭɸɬɫɹ ɞɜɚ ɪɚɫɬɜɨɪɚ, ɨɞɢɧ ɢɡ ɤɨɬɨɪɵɯ ɨɛɨɝɚɳɟɧ ɪɚɫɬɜɨɪɟɧɧɵɦ ɜɟɳɟɫɬɜɨɦ. Ɉɛɪɚɬɧɵɣ ɨɫɦɨɫ ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɟɬɫɹ ɞɥɹ ɨɛɟɫɫɨɥɢɜɚɧɢɹ ɜɨɞɵ ɜ ɫɢɫɬɟɦɚɯ ɜɨɞɨɩɨɞɝɨɬɨɜɤɢ ɬɟɩɥɨɷɥɟɤɬɪɨɰɟɧɬɪɚɥɟɣ (Ɍɗɐ) ɢ ɩɪɟɞɩɪɢɹɬɢɣ ɩɨ ɩɪɨɢɡɜɨɞɫɬɜɭ ɩɨɥɭɩɪɨɜɨɞɧɢɤɨɜ, ɤɢɧɟɫɤɨɩɨɜ, ɦɟɞɢɤɚɦɟɧɬɨɜ, ɞɥɹ ɨɱɢɫɬɤɢ ɧɟɤɨɬɨɪɵɯ ɩɪɨɦɵɲɥɟɧɧɵɯ ɢ ɝɨɪɨɞɫɤɢɯ ɫɬɨɱɧɵɯ ɜɨɞ. ɍɫɬɚɧɨɜɤɚ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ (ɪɢɫ. 5.13) ɫɨɫɬɨɢɬ ɢɡ ɧɚɫɨɫɚ ɜɵɫɨɤɨɝɨ ɞɚɜɥɟɧɢɹ ɢ ɦɨɞɭɥɹ (ɦɟɦɛɪɚɧɧɨɝɨ ɷɥɟɦɟɧɬɚ), ɫɨɟɞɢɧɟɧɧɵɯ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ. 2 ɋɬɨɱɧɚɹ ɜɨɞɚ 3 4 1 Ʉɨɧɰɟɧɬɪɚɬ Ɉɱɢɳɟɧɧɚɹ ɜɨɞɚ Ɋɢɫ. 5.13. ɋɯɟɦɚ ɭɫɬɚɧɨɜɤɢ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ: 1 – ɧɚɫɨɫ; 2 – ɦɨɞɭɥɶ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ; 3 – ɦɟɦɛɪɚɧɚ; 4 – ɜɵɩɭɫɤɧɨɣ ɤɥɚɩɚɧ. Ɇɟɯɚɧɢɡɦ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɦɟɦɛɪɚɧɵ ɫɨɛɢɪɚɸɬ ɜɨɞɭ, ɤɨɬɨɪɚɹ ɜ ɩɨɜɟɪɯɧɨɫɬɧɨɦ ɫɥɨɟ ɧɟ ɨɛɥɚɞɚɟɬ ɪɚɫɬɜɨɪɹɸɳɟɣ ɫɩɨɫɨɛɧɨɫɬɶɸ, ɢ ɱɟɪɟɡ ɩɨɪɵ ɦɟɦɛɪɚɧɵ ɛɭɞɟɬ ɩɪɨɯɨɞɢɬɶ ɬɨɥɶɤɨ ɱɢɫɬɚɹ ɜɨɞɚ, ɧɟɫɦɨɬɪɹ ɧɚ ɬɨ, ɱɬɨ ɪɚɡɦɟɪ ɦɧɨɝɢɯ ɢɨɧɨɜ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɦɟɧɶɲɟ, ɱɟɦ ɪɚɡɦɟɪ ɦɨɥɟɤɭɥ ɜɨɞɵ. ɗɬɨ ɨɛɴɹɫɧɹɟɬɫɹ ɹɜɥɟɧɢɟɦ ɚɞɫɨɪɛɰɢɢ ɦɨɥɟɤɭɥ ɜɨɞɵ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɦɟɦɛɪɚɧɵ. ɉɪɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɢ ɪɚɫɬɜɨɪɟɧɧɵɟ ɜɟɳɟɫɬɜɚ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɧɚ ɦɟɦɛɪɚɧɟ ɩɨɬɨɦɭ, ɱɬɨ ɪɚɡɦɟɪ ɦɨɥɟɤɭɥ ɢɯ ɛɨɥɶɲɟ, ɱɟɦ ɪɚɡɦɟɪ ɩɨɪ, ɢɥɢ ɜɫɥɟɞɫɬɜɢɟ ɛɨɥɶɲɨɝɨ ɬɪɟɧɢɹ ɢɯ ɦɨɥɟɤɭɥ ɨ ɫɬɟɧɤɢ ɩɨɪ ɦɟɦɛɪɚɧɵ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɡɚɜɢɫɢɬ ɨɬ ɫɜɨɣɫɬɜ ɦɟɦɛɪɚɧ. Ɉɧɢ ɞɨɥɠɧɵ ɨɛɥɚɞɚɬɶ ɜɵɫɨɤɨɣ ɫɟɥɟɤɬɢɜɧɨɫɬɶɸ, ɛɨɥɶɲɨɣ ɩɪɨɧɢɰɚɟɦɨɫɬɶɸ, ɭɫɬɨɣɱɢɜɨɫɬɶɸ ɤ ɞɟɣɫɬɜɢɸ ɫɪɟɞɵ, ɩɨɫɬɨɹɧɫɬɜɨɦ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɜ ɩɪɨɰɟɫɫɟ ɷɤɫɩɥɭɚɬɚɰɢɢ, ɞɨɫɬɚɬɨɱɧɨɣ ɦɟɯɚɧɢɱɟɫɤɨɣ ɩɪɨɱɧɨɫɬɶɸ, ɧɢɡɤɨɣ ɫɬɨɢɦɨɫɬɶɸ. ɋɟɥɟɤɬɢɜɧɨɫɬɶ M (ɜ %) ɦɟɦɛɪɚɧ ɜ ɩɪɨɰɟɫɫɟ ɪɚɡɞɟɥɟɧɢɹ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ (5.89) M = 100(cɨ - cɮ)/cɨ = 100(1 - cɮ/cɨ), ɝɞɟ c0 ɢ cɮ – ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɢɫɯɨɞɧɨɦ ɪɚɫɬɜɨɪɟ (ɫɬɨɱɧɨɣ ɜɨɞɟ) ɢ ɮɢɥɶɬɪɚɬɟ (ɨɱɢɳɟɧɧɨɣ ɜɨɞɟ). ɉɨɪɢɫɬɨɫɬɶ E ɦɟɦɛɪɚɧɵ ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɫɨɨɬɧɨɲɟɧɢɟɦ E = S.dɫɪ2.n/4, (5.90) 2 ɝɞɟ dɫɪ – ɫɪɟɞɧɢɣ ɞɢɚɦɟɬɪ ɩɨɪ, ɦ; n – ɱɢɫɥɨ ɩɨɪ ɧɚ 1 ɦ ɩɥɨɳɚɞɢ ɦɟɦɛɪɚɧɵ. ɉɪɨɧɢɰɚɟɦɨɫɬɶ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɨɥɢɱɟɫɬɜɨɦ ɮɢɥɶɬɪɚɬɚ Vɮ, ɩɨɥɭɱɟɧɧɨɝɨ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ ɫ ɟɞɢɧɢɰɵ ɪɚɛɨɱɟɣ ɩɨɜɟɪɯɧɨɫɬɢ: Vɮ = k1 ('P - 'Pɨ), (5.91) ɝɞɟ 'p – ɪɚɡɧɨɫɬɶ ɞɚɜɥɟɧɢɣ ɜɨɞɵ ɞɨ ɢ ɩɨɫɥɟ ɦɟɦɛɪɚɧɵ; 'Pɨ – ɪɚɡɧɨɜɢɞɧɨɫɬɶ ɨɫɦɨɬɢɱɟɫɤɢɯ ɞɚɜɥɟɧɢɣ; k1 – ɤɨɷɮɮɢɰɢɟɧɬ, ɡɚɜɢɫɹɳɢɣ ɨɬ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɦɟɦɛɪɚɧɵ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɤɨɪɨɫɬɶ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɷɮɮɟɤɬɢɜɧɨɦɭ ɞɚɜɥɟɧɢɸ (ɪɚɡɧɨɫɬɢ ɦɟɠɞɭ ɩɪɢɥɨɠɟɧɧɵɦ ɞɚɜɥɟɧɢɟɦ ɢ ɨɫɦɨɬɢɱɟɫɤɢɦ). ɗɮɮɟɤɬɢɜɧɨɟ ɞɚɜɥɟɧɢɟ ɡɧɚɱɢɬɟɥɶɧɨ ɩɪɟɜɨɫɯɨɞɢɬ ɨɫɦɨɬɢɱɟɫɤɨɟ. ȼɟɥɢɱɢɧɚ ɨɫɦɨɬɢɱɟɫɤɨɝɨ ɞɚɜɥɟɧɢɹ ɫɨɫɬɚɜɥɹɟɬ: ɞɥɹ ɫɨɥɢ Na2SO4 – 43 ɤɉɚ, ɚ ɞɥɹ NaHCO3 – 89 ɤɉɚ. ȼ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɧɟɤɨɬɨɪɨɟ ɤɨɥɢɱɟɫɬɜɨ ɪɚɫɬɜɨɪɢɦɨɝɨ ɜɟɳɟɫɬɜɚ ɩɪɨɯɨɞɢɬ ɱɟɪɟɡ ɦɟɦɛɪɚɧɭ ɜɦɟɫɬɟ ɫ ɜɨɞɨɣ. ɗɬɨɬ ɩɪɨɫɤɨɤ S ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɞɚɜɥɟɧɢɹ: S = k2(cɨ - cɮ), (5.92) ɝɞɟ k2 – ɤɨɧɫɬɚɧɬɚ ɦɟɦɛɪɚɧɵ. Ⱦɥɹ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɫɚ ɩɪɢɦɟɧɹɸɬ ɧɟɩɨɪɢɫɬɵɟ – ɞɢɧɚɦɢɱɟɫɤɢɟ ɢ ɞɢɮɮɭɡɢɨɧɧɵɟ ɦɟɦɛɪɚɧɵ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɟ ɫɨɛɨɣ ɤɜɚɡɢɝɨɦɨɝɟɧɧɵɟ ɝɟɥɢ, ɢ ɩɨɪɢɫɬɵɟ ɦɟɦɛɪɚɧɵ ɜ ɜɢɞɟ ɬɨɧɤɢɯ ɩɥɟɧɨɤ, ɢɡɝɨɬɨɜɥɟɧɧɵɟ ɢɡ ɩɨɥɢɦɟɪɧɵɯ ɦɚɬɟɪɢɚɥɨɜ. ɇɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ ɩɨɥɢɦɟɪɧɵɟ ɦɟɦɛɪɚɧɵ ɢɡ ɚɰɟɬɚɬɰɟɥɥɸɥɨɡɵ, ɩɨɥɢɷɬɢɥɟɧɚ, ɩɨɥɢɬɟɬɪɚɮɬɨɪɷɬɢɥɟɧɚ, ɩɨɪɢɫɬɨɝɨ ɫɬɟɤɥɚ. ɉɪɨɰɟɫɫ ɦɟɦɛɪɚɧɧɨɝɨ ɪɚɡɞɟɥɟɧɢɹ ɡɚɜɢɫɢɬ ɨɬ ɞɚɜɥɟɧɢɹ, ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɢɯ ɭɫɥɨɜɢɣ ɢ ɤɨɧɫɬɪɭɤɰɢɢ ɚɩɩɚɪɚɬɚ, ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɨɣ ɩɪɢɪɨɞɵ ɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɧɢɹ ɜ ɧɢɯ ɩɪɢɦɟɫɟɣ, ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɍɜɟɥɢɱɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɬɜɨɪɚ ɩɪɢɜɨɞɢɬ ɤ ɪɨɫɬɭ ɨɫɦɨɬɢɱɟɫɤɨɝɨ ɞɚɜɥɟɧɢɹ ɪɚɫɬɜɨɪɢɬɟɥɹ, ɩɨɜɵɲɟɧɢɸ ɜɹɡɤɨɫɬɢ ɪɚɫɬɜɨɪɚ ɢ ɪɨɫɬɭ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɨɥɹɪɢɡɚɰɢɢ, ɬ.ɟ. ɤ ɫɧɢɠɟɧɢɸ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɢ ɫɟɥɟɤɬɢɜɧɨɫɬɢ. Ⱦɨɫɬɨɢɧɫɬɜɚ ɦɟɬɨɞɚ: ɨɬɫɭɬɫɬɜɢɟ ɮɚɡɨɜɵɯ ɩɟɪɟɯɨɞɨɜ ɩɪɢ ɨɬɞɟɥɟɧɢɢ ɩɪɢɦɟɫɟɣ; ɜɨɡɦɨɠɧɨɫɬɶ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɫɚ ɩɪɢ ɤɨɦɧɚɬɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɛɟɡ ɩɪɢɦɟɧɟɧɢɹ ɢɥɢ ɫ ɧɟɛɨɥɶɲɢɦɢ ɞɨɛɚɜɤɚɦɢ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɝɟɧɬɨɜ; ɩɪɨɫɬɚɹ ɤɨɧɫɬɪɭɤɰɢɹ ɚɩɩɚɪɚɬɭɪɵ. ɇɟɞɨɫɬɚɬɤɢ ɦɟɬɨɞɚ: ɹɜɥɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɨɧɧɨɣ ɩɨɥɹɪɢɡɚɰɢɢ, ɬ.ɟ. ɪɨɫɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɦɟɦɛɪɚɧɵ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɫɧɢɠɟɧɢɸ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɭɫɬɚɧɨɜɤɢ, ɫɬɟɩɟɧɢ ɪɚɡɞɟɥɟɧɢɹ ɤɨɦɩɨɧɟɧɬɨɜ ɢ ɫɪɨɤɚ ɫɥɭɠɛɵ ɦɟɦɛɪɚɧ; ɩɪɨɜɟɞɟɧɢɟ ɩɪɨɰɟɫɫɚ ɩɪɢ ɩɨɜɵɲɟɧɧɵɯ ɞɚɜɥɟɧɢɹɯ, ɱɬɨ ɬɪɟɛɭɟɬ ɫɩɟɰɢɚɥɶɧɵɯ ɭɩɥɨɬɧɟɧɢɣ ɚɩɩɚɪɚɬɭɪɵ. Ɉɛɪɚɬɧɵɣ ɨɫɦɨɫ ɪɟɤɨɦɟɧɞɭɟɬɫɹ ɢɫɩɨɥɶɡɨɜɚɬɶ ɩɪɢ ɫɥɟɞɭɸɳɟɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɷɥɟɤɬɪɨɥɢɬɨɜ: ɞɥɹ ɨɞɧɨɜɚɥɟɧɬɧɵɯ ɫɨɥɟɣ – ɧɟ ɛɨɥɟɟ 5…10 %; ɞɥɹ ɞɜɭɯɜɚɥɟɧɬɧɵɯ – 10…15 %; ɞɥɹ ɦɧɨɝɨɜɚɥɟɧɬɧɵɯ – 15…20 %. Ⱦɥɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɷɬɢ ɩɪɟɞɟɥɵ ɜɵɲɟ. Ⱦɥɹ ɭɦɟɧɶɲɟɧɢɹ ɜɥɢɹɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɢ ɩɨɥɹɪɢɡɚɰɢɢ ɨɪɝɚɧɢɡɭɸɬ ɪɟɰɢɪɤɭɥɹɰɢɸ ɪɚɫɬɜɨɪɚ ɢ ɬɭɪɛɭɥɢɡɚɰɢɸ ɩɪɢɥɟɝɚɸɳɟɝɨ ɤ ɦɟɦɛɪɚɧɟ ɫɥɨɹ ɠɢɞɤɨɫɬɢ. ɉɪɢɪɨɞɚ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɨɤɚɡɵɜɚɟɬ ɜɥɢɹɧɢɟ ɧɚ ɫɟɥɟɤɬɢɜɧɨɫɬɶ. ɉɪɢ ɨɞɢɧɚɤɨɜɨɣ ɦɨɥɟɤɭɥɹɪɧɨɣ ɦɚɫɫɟ ɧɟɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ ɡɚɞɟɪɠɢɜɚɸɬɫɹ ɧɚ ɦɟɦɛɪɚɧɟ ɥɭɱɲɟ, ɱɟɦ ɨɪɝɚɧɢɱɟɫɤɢɟ. ɋ ɩɨɜɵɲɟɧɢɟɦ ɞɚɜɥɟɧɢɹ ɭɞɟɥɶ- ɧɚɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɦɟɦɛɪɚɧɵ ɭɜɟɥɢɱɢɜɚɟɬɫɹ. Ɉɞɧɚɤɨ ɩɪɢ ɜɵɫɨɤɢɯ ɞɚɜɥɟɧɢɹɯ ɩɪɨɢɫɯɨɞɢɬ ɭɩɥɨɬɧɟɧɢɟ ɦɚɬɟɪɢɚɥɚ ɦɟɦɛɪɚɧ, ɱɬɨ ɜɵɡɵɜɚɟɬ ɫɧɢɠɟɧɢɟ ɩɪɨɧɢɰɚɟɦɨɫɬɢ, ɩɨɷɬɨɦɭ ɞɥɹ ɤɚɠɞɨɝɨ ɜɢɞɚ ɦɟɦɛɪɚɧ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɦɚɤɫɢɦɚɥɶɧɨɟ ɪɚɛɨɱɟɟ ɞɚɜɥɟɧɢɟ. ɋ ɪɨɫɬɨɦ ɬɟɦɩɟɪɚɬɭɪɵ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɩɪɨɧɢɰɚɟɦɨɫɬɶ ɦɟɦɛɪɚɧ, ɧɨ ɩɪɢ ɷɬɨɦ ɩɨɜɵɲɚɟɬɫɹ ɨɫɦɨɬɢɱɟɫɤɨɟ ɞɚɜɥɟɧɢɟ, ɤɨɬɨɪɨɟ ɭɦɟɧɶɲɚɟɬ ɩɪɨɧɢɰɚɟɦɨɫɬɶ; ɬɚɤɠɟ ɧɚɱɢɧɚɟɬɫɹ ɭɫɚɞɤɚ ɢ ɫɬɹɝɢɜɚɧɢɟ ɩɨɪ ɦɟɦɛɪɚɧɵ, ɱɬɨ ɬɚɤɠɟ ɫɧɢɠɚɟɬ ɩɪɨɧɢɰɚɟɦɨɫɬɶ; ɜɨɡɪɚɫɬɚɟɬ ɫɤɨɪɨɫɬɶ ɝɢɞɪɨɥɢɡɚ, ɫɨɤɪɚɳɚɹ ɫɪɨɤ ɫɥɭɠɛɵ ɦɟɦɛɪɚɧ. ɇɚɩɪɢɦɟɪ, ɚɰɟɬɚɬɰɟɥɥɸɥɨɡɧɵɟ ɦɟɦɛɪɚɧɵ ɩɪɢ 50qɋ ɪɚɡɪɭɲɚɸɬɫɹ, ɩɨɷɬɨɦɭ ɧɟɨɛɯɨɞɢɦɨ ɪɚɛɨɬɚɬɶ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɟ 20…30qɋ. Ʉɨɧɫɬɪɭɤɰɢɹ ɚɩɩɚɪɚɬɨɜ ɞɥɹ ɩɪɨɜɟɞɟɧɢɹ ɩɪɨɰɟɫɫɨɜ ɨɛɪɚɬɧɨɝɨ ɨɫɦɨɫɚ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɢ ɞɨɥɠɧɚ ɨɛɟɫɩɟɱɢɜɚɬɶ ɛɨɥɶɲɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɦɟɦɛɪɚɧ ɜ ɟɞɢɧɢɰɟ ɨɛɴɟɦɚ, ɦɟɯɚɧɢɱɟɫɤɭɸ ɩɪɨɱɧɨɫɬɶ ɢ ɝɟɪɦɟɬɢɱɧɨɫɬɶ. ɉɨ ɫɩɨɫɨɛɭ ɭɤɥɚɞɤɢ ɦɟɦɛɪɚɧ ɚɩɩɚɪɚɬɵ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɱɟɬɵɪɟ ɨɫɧɨɜɧɵɟ ɬɢɩɚ: 1) ɬɢɩɚ ɮɢɥɶɬɪ-ɩɪɟɫɫ ɫ ɩɥɨɫɤɨɩɚɪɚɥɥɟɥɶɧɵɦɢ ɮɢɥɶɬɪɭɸɳɢɦɢ ɭɫɬɪɨɣɫɬɜɚɦɢ; 2) ɫ ɬɪɭɛɱɚɬɵɦɢ ɮɢɥɶɬɪɭɸɳɢɦɢ ɷɥɟɦɟɧɬɚɦɢ; 3) ɫ ɪɭɥɨɧɧɵɦɢ ɢɥɢ ɫɩɢɪɚɥɶɧɵɦɢ ɷɥɟɦɟɧɬɚɦɢ; 4) ɫ ɦɟɦɛɪɚɧɚɦɢ ɜ ɜɢɞɟ ɩɨɥɵɯ ɜɨɥɨɤɨɧ. 5.2.7. Ⱦɟɫɨɪɛɰɢɹ, ɞɟɡɨɞɨɪɚɰɢɹ ɢ ɞɟɝɚɡɚɰɢɹ ɪɚɫɬɜɨɪɟɧɧɵɯ ɩɪɢɦɟɫɟɣ Ɇɧɨɝɢɟ ɫɬɨɱɧɵɟ ɜɨɞɵ ɡɚɝɪɹɡɧɟɧɵ ɥɟɬɭɱɢɦɢ ɧɟɨɪɝɚɧɢɱɟɫɤɢɦɢ ɢ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɩɪɢɦɟɫɹɦɢ. ɉɪɢ ɩɪɨɩɭɫɤɚɧɢɢ ɜɨɡɞɭɯɚ ɢɥɢ ɞɪɭɝɨɝɨ ɢɧɟɪɬɧɨɝɨ ɦɚɥɨɪɚɫɬɜɨɪɢɦɨɝɨ ɜ ɜɨɞɟ ɝɚɡɚ (ɚɡɨɬ, ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ, ɬɨɩɨɱɧɵɟ ɞɵɦɨɜɵɟ ɝɚɡɵ) ɱɟɪɟɡ ɫɬɨɱɧɭɸ ɜɨɞɭ ɥɟɬɭɱɢɣ ɤɨɦɩɨɧɟɧɬ ɞɢɮɮɭɧɞɢɪɭɟɬ ɜ ɝɚɡɨɜɭɸ ɮɚɡɭ. Ⱦɟɫɨɪɛɰɢɹ ɨɛɭɫɥɨɜɥɟɧɚ ɛɨɥɟɟ ɜɵɫɨɤɢɦ ɩɚɪɰɢɚɥɶɧɵɦ ɞɚɜɥɟɧɢɟɦ ɝɚɡɚ ɧɚɞ ɪɚɫɬɜɨɪɨɦ, ɱɟɦ ɜ ɨɤɪɭɠɚɸɳɟɦ ɜɨɡɞɭɯɟ. Ɋɚɜɧɨɜɟɫɧɨɟ ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɭɞɚɥɹɟɦɨɝɨ ɝɚɡɚ ɧɚɯɨɞɹɬ ɩɨ ɡɚɤɨɧɭ Ƚɟɧɪɢ. Ʉɨɥɢɱɟɫɬɜɨ ɜɟɳɟɫɬɜɚ Ɇ, ɩɟɪɟɲɟɞɲɟɝɨ ɢɡ ɠɢɞɤɨɣ ɮɚɡɵ ɜ ɝɚɡɨɜɭɸ, ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɭɪɚɜɧɟɧɢɸ ɦɚɫɫɨɩɟɪɟɞɚɱɢ: Ɇ = Ky˜ F˜'ɋɫɪ, (5.93) ɝɞɟ Ky – ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ, ɪɚɜɧɵɣ, ɜ ɞɚɧɧɨɦ ɫɥɭɱɚɟ, ɤɨɷɮɮɢɰɢɟɧɬɭ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɝɚɡɨɜɨɣ ɮɚɡɟ Ey; F – ɩɨɜɟɪɯɧɨɫɬɶ ɤɨɧɬɚɤɬɚ ɮɚɡ; 'ɋɫɪ – ɫɪɟɞɧɹɹ ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ ɞɟɫɨɪɛɰɢɢ. ɋɬɟɩɟɧɶ ɭɞɚɥɟɧɢɹ ɥɟɬɭɱɢɯ ɜɟɳɟɫɬɜ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɫ ɪɨɫɬɨɦ ɬɟɦɩɟɪɚɬɭɪɵ ɝɚɡɨɠɢɞɤɨɫɬɧɨɣ ɫɦɟɫɢ, ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɨɬɞɚɱɢ ɢ ɩɨɜɟɪɯɧɨɫɬɢ ɤɨɧɬɚɤɬɚ ɮɚɡ. Ⱦɟɫɨɪɛɢɪɭɟɦɨɟ ɢɡ ɜɨɞɵ ɜɟɳɟɫɬɜɨ ɧɚɩɪɚɜɥɹɸɬ ɧɚ ɚɞɫɨɪɛɰɢɸ ɢɥɢ ɧɚ ɤɚɬɚɥɢɬɢɱɟɫɤɨɟ ɫɠɢɝɚɧɢɟ. Ⱦɟɡɨɞɨɪɚɰɢɸ ɩɪɨɜɨɞɹɬ ɞɥɹ ɨɱɢɫɬɤɢ ɞɭɪɧɨɩɚɯɧɭɳɢɯ ɫɬɨɱɧɵɯ ɜɨɞ. Ⱦɥɹ ɷɬɨɝɨ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɚɷɪɚɰɢɸ, ɯɥɨɪɢɪɨɜɚɧɢɟ, ɪɟɤɬɢɮɢɤɚɰɢɸ, ɞɢɫɬɢɥɥɹɰɢɸ, ɨɛɪɚɛɨɬɤɭ ɞɵɦɨɜɵɦɢ ɝɚɡɚɦɢ, ɨɤɢɫɥɟɧɢɟ ɤɢɫɥɨɪɨɞɨɦ ɩɨɞ ɞɚɜɥɟɧɢɟɦ, ɨɡɨɧɢɪɨɜɚɧɢɟ, ɷɤɫɬɪɚɤɰɢɸ, ɚɞɫɨɪɛɰɢɸ ɢ ɦɢɤɪɨɛɢɨɥɨɝɢɱɟɫɤɨɟ ɨɤɢɫɥɟɧɢɟ. ɇɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɵɦ ɫɱɢɬɚɟɬɫɹ ɦɟɬɨɞ ɚɷɪɚɰɢɢ, ɤɨɬɨɪɵɣ ɫɨɫɬɨɢɬ ɜ ɩɪɨɞɭɜɚɧɢɢ ɜɨɡɞɭɯɚ ɱɟɪɟɡ ɫɬɨɱɧɭɸ ɜɨɞɭ. ɇɟɞɨɫɬɚɬɨɤ ɦɟɬɨɞɚ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɬɨɦ, ɱɬɨ ɧɟɤɨɬɨɪɵɟ ɡɚɝɪɹɡɧɟɧɢɹ ɧɟ ɭɞɚɥɹɸɬɫɹ ɦɟɬɨɞɨɦ ɚɷɪɚɰɢɢ ɢ ɨɫɬɚɸɬɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. Ⱦɭɪɧɨɩɚɯɧɭɳɢɟ ɫɬɨɱɧɵɟ ɜɨɞɵ ɨɱɢɳɚɸɬ ɬɚɤɠɟ ɩɪɨɞɭɜɤɨɣ ɨɫɬɪɵɦ ɩɚɪɨɦ. ɋɬɟɩɟɧɶ ɨɱɢɫɬɤɢ ɨɬ ɫɟɪɨɜɨɞɨɪɨɞɚ ɢ ɦɟɬɢɥɦɟɪɤɚɩɬɚɧɚ ɞɨɫɬɢɝɚɟɬ 100 %, ɨɬ ɞɪɭɝɢɯ ɜɟɳɟɫɬɜ – ɞɨ 90 %. ɉɪɨɦɵɲɥɟɧɧɨɟ ɩɪɢɦɟɧɟɧɢɟ ɢɦɟɟɬ ɢ ɯɥɨɪɢɪɨɜɚɧɢɟ ɞɭɪɧɨɩɚɯɧɭɳɢɯ ɫɬɨɱɧɵɯ ɜɨɞ. ɉɪɢ ɷɬɨɦ ɩɪɨɢɫɯɨɞɢɬ ɨɤɢɫɥɟɧɢɟ ɯɥɨɪɨɦ ɫɟɪɨɫɨɞɟɪɠɚɳɢɯ ɫɨɟɞɢɧɟɧɢɣ. Ɉɱɢɫɬɤɭ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɫɟɪɨɜɨɞɨɪɨɞɚ ɩɪɨɜɨɞɹɬ ɬɚɤɠɟ ɨɤɢɫɥɟɧɢɟɦ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ ɩɪɢ ɚɬɦɨɫɮɟɪɧɨɦ ɞɚɜɥɟɧɢɢ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ (ɠɟɥɟɡɧɚɹ ɫɬɪɭɠɤɚ, ɝɪɚɮɢɬɨɜɵɟ ɦɚɬɟɪɢɚɥɵ). ȼɵɫɨɤɚɹ ɫɬɟɩɟɧɶ ɨɱɢɫɬɤɢ ɦɨɠɟɬ ɛɵɬɶ ɞɨɫɬɢɝɧɭɬɚ ɩɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɠɢɞɤɨɮɚɡɧɨɝɨ ɨɤɢɫɥɟɧɢɹ ɫɟɪɧɢɫɬɵɯ ɜɟɳɟɫɬɜ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ ɩɨɞ ɞɚɜɥɟɧɢɟɦ. ɋɟɪɨɜɨɞɨɪɨɞ ɢɡ ɜɨɞɵ ɜɨɡɦɨɠɧɨ ɭɞɚɥɢɬɶ ɝɢɞɪɨɤɫɢɞɨɦ ɠɟɥɟɡɚ, ɜ ɳɟɥɨɱɧɨɣ ɢ ɜ ɧɟɣɬɪɚɥɶɧɨɣ ɫɪɟɞɟ. Ȼɨɥɟɟ ɷɮɮɟɤɬɢɜɧɨ ɩɪɨɢɫɯɨɞɢɬ ɨɱɢɫɬɤɚ ɩɪɢ ɨɞɧɨɜɪɟɦɟɧɧɨɦ ɜɜɟɞɟɧɢɢ ɜ ɜɨɞɭ ɨɡɨɧɚ ɢɥɢ ɞɢɨɤɫɢɞɚ ɯɥɨɪɚ ɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɜɨɞɵ ɱɟɪɟɡ ɫɥɨɣ ɚɤɬɢɜɧɨɝɨ ɭɝɥɹ. ɋɬɟɩɟɧɶ ɞɟɡɨɞɨɪɚɰɢɢ ɫɟɪɨɜɨɞɨɪɨɞɚ, ɦɟɬɢɥɦɟɪɤɚɩɬɚɧɚ ɢ ɞɢɦɟɬɢɥɫɭɥɶɮɢɞɚ ɡɚɜɢɫɢɬ ɨɬ ɢɯ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɢ ɢɡɦɟɧɹɟɬɫɹ ɨɬ 80 ɞɨ 100 %. Ⱦɟɝɚɡɚɰɢɟɣ ɭɞɚɥɹɸɬ ɢɡ ɜɨɞɵ ɪɚɫɬɜɨɪɟɧɧɵɟ ɝɚɡɵ, ɤɨɬɨɪɭɸ ɨɫɭɳɟɫɬɜɥɹɸɬ ɯɢɦɢɱɟɫɤɢɦɢ, ɬɟɪɦɢɱɟɫɤɢɦɢ ɢ ɞɟɫɨɪɛɰɢɨɧɧɵɦɢ (ɚɷɪɚɰɢɨɧɧɵɦɢ) ɦɟɬɨɞɚɦɢ. ɇɚɢɛɨɥɟɟ ɩɨɥɧɚɹ ɞɟɝɚɡɚɰɢɹ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɪɚɡɛɪɵɡɝɢɜɚɧɢɢ ɜ ɜɚɤɭɭɦɟ ɢ ɨɞɧɨɜɪɟɦɟɧɧɨɦ ɩɨɞɨɝɪɟɜɟ ɜɨɞɵ. ɉɪɢ ɬɟɪɦɢɱɟɫɤɨɣ ɞɟɝɚɡɚɰɢɢ ɜɨɞɵ ɨɬ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɞɢɨɤɫɢɞɚ ɭɝɥɟɪɨɞɚ ɢɥɢ ɤɢɫɥɨɪɨɞɚ ɩɪɨɩɭɫɤɚɸɬ ɩɚɪ ɱɟɪɟɡ ɜɨɞɭ ɢ ɧɚɝɪɟɜɚɸɬ ɟɟ ɞɨ ɬɟɦɩɟɪɚɬɭɪɵ ɤɢɩɟɧɢɹ ɩɪɢ ɜɧɟɲɧɟɦ ɞɚɜɥɟɧɢɢ. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɩɚɪɰɢɚɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɝɚɡɚ ɧɚɞ ɜɨɞɨɣ ɫɧɢɠɚɟɬɫɹ ɞɨ ɧɭɥɹ ɢ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɟɝɨ ɬɚɤɠɟ ɩɚɞɚɟɬ ɞɨ ɧɭɥɹ. ȼɫɥɟɞɫɬɜɢɟ ɧɚɪɭɲɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɜ ɫɢɫɬɟɦɟ ɩɪɨɢɫɯɨɞɢɬ ɜɵɞɟɥɟɧɢɟ ɢɡɛɵɬɨɱɧɵɯ ɝɚɡɨɜ ɢɡ ɜɨɞɵ (ɮɢɡɢɱɟɫɤɚɹ ɞɟɫɨɪɛɰɢɹ). Ⱦɥɹ ɢɧɬɟɧɫɢɜɧɨɣ ɞɟɝɚɡɚɰɢɢ ɧɟɨɛɯɨɞɢɦɨ, ɱɬɨɛɵ ɜɨɞɚ ɧɟɩɪɟɪɵɜɧɨ ɤɨɧɬɚɤɬɢɪɨɜɚɥɚ ɫ ɧɨɜɵɦɢ ɩɨɪɰɢɹɦɢ ɩɚɪɚ ɩɪɢ ɛɨɥɶɲɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɤɨɧɬɚɤɬɚ ɮɚɡ ɜ ɬɟɱɟɧɢɟ ɞɨɫɬɚɬɨɱɧɨɝɨ ɜɪɟɦɟɧɢ. Ɍɟɦɩɟɪɚɬɭɪɚ ɜɨɞɵ ɞɨɥɠɧɚ ɛɵɬɶ ɛɥɢɡɤɚ ɤ ɬɟɦɩɟɪɚɬɭɪɟ ɧɚɫɵɳɟɧɧɨɝɨ ɩɚɪɚ ɩɪɢ ɞɚɧɧɨɦ ɞɚɜɥɟɧɢɢ. Ⱥɦɦɢɚɤ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɭɞɚɥɹɸɬ ɩɪɨɞɭɜɤɨɣ ɜɨɞɹɧɵɦ ɩɚɪɨɦ ɢɥɢ ɜɨɡɞɭɯɨɦ. ɋɤɨɪɨɫɬɶ ɩɟɪɟɯɨɞɚ ɝɚɡɨɨɛɪɚɡɧɨɝɨ ɚɦɦɢɚɤɚ ɢɡ ɜɨɞɵ ɜ ɚɬɦɨɫɮɟɪɭ ɡɚɜɢɫɢɬ ɨɬ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɧɚɬɹɠɟɧɢɹ ɧɚ ɝɪɚɧɢɰɟ ɜɨɡɞɭɯ-ɜɨɞɚ ɢ ɨɬ ɪɚɡɧɨɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɣ ɚɦɦɢɚɤɚ ɜ ɜɨɞɟ ɢ ɜɨɡɞɭɯɟ. ɏɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɞɟɝɚɡɚɰɢɢ ɩɪɢɦɟɧɹɸɬ ɩɪɢ ɧɢɡɤɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɝɚɡɨɜ ɜ ɜɨɞɟ ɢɥɢ ɜ ɫɥɭɱɚɟ ɧɟɰɟɥɟɫɨɨɛɪɚɡɧɨɫɬɢ ɢɯ ɢɫɩɨɥɶɡɨɜɚɧɢɹ, ɚ ɬɚɤɠɟ ɩɪɢ ɭɫɥɨɜɢɢ, ɱɬɨ ɩɪɨɞɭɤɬɵ ɨɛɪɚɛɨɬɤɢ ɧɟ ɡɚɬɪɭɞɧɹɸɬ ɞɚɥɶɧɟɣɲɭɸ ɨɱɢɫɬɤɭ ɢɥɢ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɜɨɞɵ. Ɇɟɬɨɞɵ ɨɫɧɨɜɚɧɵ ɧɚ ɩɪɨɜɟɞɟɧɢɢ ɪɟɚɤɰɢɣ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɤɨɬɨɪɵɯ ɩɪɨɢɫɯɨɞɢɬ ɯɢɦɢɱɟɫɤɨɟ ɫɜɹɡɵɜɚɧɢɟ ɪɚɫɬɜɨɪɟɧɧɵɯ ɝɚɡɨɜ. Ⱦɥɹ ɭɞɚɥɟɧɢɹ ɤɢɫɥɨɪɨɞɚ ɢɡ ɜɨɞɵ, ɟɟ ɮɢɥɶɬɪɭɸɬ ɱɟɪɟɡ ɥɟɝɤɨɨɤɢɫɥɹɸɳɢɟɫɹ ɫɬɚɥɶɧɵɟ ɫɬɪɭɠɤɢ. ɉɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɜɨɞɵ ɠɟɥɟɡɨ ɨɤɢɫɥɹɟɬɫɹ: 4Fe +3O2 = 2Fe2O3. (5.94) ɉɪɢ ɨɛɪɚɛɨɬɤɟ ɜɨɞɵ ɫɭɥɶɮɢɬɨɦ ɧɚɬɪɢɹ ɨɛɪɚɡɭɟɬɫɹ ɫɭɥɶɮɚɬ ɧɚɬɪɢɹ: (5.95) 2Na2SO3 +O2 = 2 Na2SO4. Ʌɭɱɲɢɦ ɨɛɟɫɤɢɫɥɨɪɚɠɢɜɚɸɳɢɦ ɜɨɞɭ ɪɟɚɝɟɧɬɨɦ ɹɜɥɹɟɬɫɹ ɝɢɞɪɚɡɢɢ: O2 + N2H4 o N2 +2H2O. (5.96) Ɋɟɚɤɰɢɹ ɩɪɨɬɟɤɚɟɬ ɡɧɚɱɢɬɟɥɶɧɨ ɛɵɫɬɪɟɟ, ɱɟɦ ɩɪɢ ɨɤɢɫɥɟɧɢɢ ɫɭɥɶɮɢɬɚ. Ʉɚɬɚɥɢɡɚɬɨɪɨɦ ɫɥɭɠɢɬ ɦɟɞɶ, ɫɬɟɤɥɨ, ɚɤɬɢɜɧɵɣ ɭɝɨɥɶ. 5.2.8. ɗɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɪɚɡɥɢɱɧɵɯ ɪɚɫɬɜɨɪɢɦɵɯ ɢ ɞɢɫɩɟɪɝɢɪɨɜɚɧɧɵɯ ɩɪɢɦɟɫɟɣ ɩɪɢɦɟɧɹɸɬɫɹ ɩɪɨɰɟɫɫɵ ɚɧɨɞɧɨɝɨ ɨɤɢɫɥɟɧɢɹ ɢ ɤɚɬɨɞɧɨɝɨ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ, ɷɥɟɤɬɪɨɤɨɚɝɭɥɹɰɢɢ, ɷɥɟɤɬɪɨɮɥɨɤɭɥɹɰɢɢ ɢ ɷɥɟɤɬɪɨɞɢɚɥɢɡɚ. ȼɫɟ ɷɬɢ ɩɪɨɰɟɫɫɵ ɩɪɨɬɟɤɚɸɬ ɧɚ ɷɥɟɤɬɪɨɞɚɯ ɩɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɱɟɪɟɡ ɫɬɨɱɧɭɸ ɜɨɞɭ ɩɨɫɬɨɹɧɧɨɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɬɨɤɚ (ɪɢɫ. 5.14). ɗɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɩɨɡɜɨɥɹɸɬ ɢɡɜɥɟɤɚɬɶ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɰɟɧɧɵɟ ɩɪɨɞɭɤɬɵ ɩɪɢ ɨɬɧɨɫɢɬɟɥɶɧɨ ɩɪɨɫɬɨɣ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɣ ɫɯɟɦɟ ɨɱɢɫɬɤɢ, ɛɟɡ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɝɟɧɬɨɜ. Ɉɫɧɨɜɧɵɦ ɧɟɞɨɫɬɚɬɤɨɦ ɷɬɢɯ ɦɟɬɨɞɨɜ ɹɜɥɹɟɬɫɹ ɛɨɥɶɲɨɣ ɪɚɫɯɨɞ ɷɥɟɤɬɪɨɷɧɟɪɝɢɢ. Ɉɱɢɫɬɤɭ ɫɬɨɱɧɵɯ ɜɨɞ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢɦɢ ɦɟɬɨɞɚɦɢ ɦɨɠɧɨ ɩɪɨɜɨɞɢɬɶ ɩɟɪɢɨɞɢɱɟɫɤɢ ɢɥɢ ɧɟɩɪɟɪɵɜɧɨ. + 2 3 – 1 4 Ɋɢɫ. 5.14. ɋɯɟɦɚ ɷɥɟɤɬɪɨɥɢɡɟɪɚ: 1 – ɤɨɪɩɭɫ; 2 – ɚɧɨɞ; 3 – ɤɚɬɨɞ; 4 – ɞɢɚɮɪɚɝɦɚ. ɉɪɢ ɩɪɨɯɨɠɞɟɧɢɢ ɫɬɨɱɧɨɣ ɜɨɞɵ ɱɟɪɟɡ ɦɟɠɷɥɟɤɬɪɨɞɧɨɟ ɩɪɨɫɬɪɚɧɫɬɜɨ ɷɥɟɤɬɪɨɥɢɡɟɪɚ ɩɪɨɢɫɯɨɞɢɬ ɷɥɟɤɬɪɨɥɢɡ ɜɨɞɵ, ɩɨɥɹɪɢɡɚɰɢɹ ɱɚɫɬɢɰ, ɷɥɟɤɬɪɨɮɨɪɟɡ, ɨɤɢɫɥɢɬɟɥɶɧɨ-ɜɨɫɫɬɚɧɨɜɢɬɟɥɶɧɵɟ ɩɪɨɰɟɫɫɵ, ɜɡɚɢɦɨɞɟɣɫɬɜɢɟ ɩɪɨɞɭɤɬɨɜ ɷɥɟɤɬɪɨɥɢɡɚ ɞɪɭɝ ɫ ɞɪɭɝɨɦ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢɯ ɦɟɬɨɞɨɜ ɨɰɟɧɢɜɚɟɬɫɹ ɩɥɨɬɧɨɫɬɶɸ ɬɨɤɚ, ɧɚɩɪɹɠɟɧɢɟɦ, ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɨɥɟɡɧɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɧɚɩɪɹɠɟɧɢɹ, ɜɵɯɨɞɨɦ ɩɨ ɬɨɤɭ, ɜɵɯɨɞɨɦ ɩɨ ɷɧɟɪɝɢɢ. ɉɥɨɬɧɨɫɬɶ ɬɨɤɚ – ɷɬɨ ɨɬɧɨɲɟɧɢɟ ɬɨɤɚ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɷɥɟɤɬɪɨɞɚ (Ⱥ/ɦ2, Ⱥ/ɫɦ2). ɇɚɩɪɹɠɟɧɢɟ ɷɥɟɤɬɪɨɥɢɡɟɪɚ (ɪɢɫ. 5.14) ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɪɚɡɧɨɫɬɢ ɷɥɟɤɬɪɨɞɧɵɯ ɩɨɬɟɧɰɢɚɥɨɜ ɢ ɩɚɞɟɧɢɹ ɧɚɩɪɹɠɟɧɢɹ ɜ ɪɚɫɬɜɨɪɟ: (5.95) U e a  e ɤ  'e a  'e ɤ  'U ɷɥ  'U ɞɢɚɮ , ɝɞɟ e ɚ ɢ e ɤ - ɪɚɜɧɨɜɟɫɧɵɟ ɩɨɬɟɧɰɢɚɥɵ ɚɧɨɞɚ ɢ ɤɚɬɨɞɚ; 'e ɚ ɢ 'e ɤ - ɜɟɥɢɱɢɧɚ ɚɧɨɞɧɨɣ ɢ ɤɚɬɨɞɧɨɣ ɩɨɥɹɪɢɡɚɰɢɢ; 'U ɷɥ ɢ 'U ɞɢɚɮ - ɩɚɞɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɜ ɷɥɟɤɬɪɨɥɢɬɟ ɢ ɞɢɚɮɪɚɝɦɟ. ɉɚɞɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɜ ɷɥɟɤɬɪɨɥɢɬɟ (ɫɬɨɱɧɨɣ ɜɨɞɟ) ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɩɭɡɵɪɶɤɨɜ ɝɚɡɚ ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɡɚɤɨɧɭ Ɉɦɚ: 'U ɷɥ i ˜ U ˜ G , (5.96) ɝɞɟ i - ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, Ⱥ/ɫɦ2; U - ɭɞɟɥɶɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ, Ɉɦ˜ɫɦ; G - ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ, ɫɦ. ɉɪɢ ɜɵɞɟɥɟɧɢɢ ɝɚɡɨɜɵɯ ɩɭɡɵɪɶɤɨɜ, ɜɫɥɟɞɫɬɜɢɟ ɭɞɥɢɧɟɧɢɹ ɩɨɬɨɤɚ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ, 'U ɷɥ ɜɨɡɪɚɫɬɚɟɬ. Ɉɬɧɨɲɟɧɢɟ K ɧɚɩɪ e a  e ɤ / U ɧɚɡɵɜɚɸɬ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɨɥɟɡɧɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɧɚɩɪɹɠɟɧɢɹ. ȼɵɯɨɞ ɩɨ ɬɨɤɭ – ɷɬɨ ɨɬɧɨɲɟɧɢɟ ɬɟɨɪɟɬɢɱɟɫɤɢ ɧɟɨɛɯɨɞɢɦɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɷɥɟɤɬɪɢɱɟɫɬɜɚ ɤ ɩɪɚɤɬɢɱɟɫɤɢ ɡɚɬɪɚɱɟɧɧɨɦɭ, ɜɵɪɚɠɟɧɧɨɟ ɜ ɞɨɥɹɯ ɟɞɢɧɢɰɵ ɢɥɢ ɜ % (ɩɪɨɰɟɧɬɚɯ). Ⱥɧɨɞɧɨɟ ɨɤɢɫɥɟɧɢɟ ɢ ɤɚɬɨɞɧɨɟ ɜɨɫɫɬɚɧɨɜɥɟɧɢɟ. ȼ ɷɥɟɤɬɪɨɥɢɡɟɪɟ (ɪɢɫ. 5.14) ɧɚ ɩɨɥɨɠɢɬɟɥɶɧɨɦ ɷɥɟɤɬɪɨɞɟ – ɚɧɨɞɟ ɢɨɧɵ ɨɬɞɚɸɬ ɷɥɟɤɬɪɨɧɵ, ɬ.ɟ. ɩɪɨɬɟɤɚɟɬ ɪɟɚɤɰɢɹ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ; ɧɚ ɨɬɪɢɰɚɬɟɥɶɧɨɦ ɷɥɟɤɬɪɨɞɟ – ɤɚɬɨɞɟ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢɫɨɟɞɢɧɟɧɢɟ ɷɥɟɤɬɪɨɧɨɜ, ɬ.ɟ. ɩɪɨɬɟɤɚɟɬ ɪɟɚɤɰɢɹ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ. ɗɬɢ ɩɪɨɰɟɫɫɵ ɪɚɡɪɚɛɨɬɚɧɵ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɪɚɫɬɜɨɪɟɧɧɵɯ ɩɪɢɦɟɫɟɣ (ɰɢɚɧɢɞɨɜ, ɚɦɢɧɨɜ, ɫɩɢɪɬɨɜ, ɚɥɶɞɟɝɢɞɨɜ, ɧɢɬɪɨɫɨɟɞɢɧɟɧɢɣ, ɫɭɥɶɮɢɞɨɜ, ɦɟɪɤɚɩɬɚɧɨɜ). ȼ ɩɪɨɰɟɫɫɚɯ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɜɟɳɟɫɬɜɚ, ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɩɨɥɧɨɫɬɶɸ ɪɚɫɩɚɞɚɸɬɫɹ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ CO2, NH3 ɢ ɜɨɞɵ ɢɥɢ ɨɛɪɚɡɭɸɬɫɹ ɛɨɥɟɟ ɩɪɨɫɬɵɟ ɢ ɧɟɬɨɤɫɢɱɧɵɟ ɜɟɳɟɫɬɜɚ, ɤɨɬɨɪɵɟ ɦɨɠɧɨ ɭɞɚɥɹɬɶ ɞɪɭɝɢɦɢ ɦɟɬɨɞɚɦɢ. ȼ ɤɚɱɟɫɬɜɟ ɚɧɨɞɨɜ ɢɫɩɨɥɶɡɭɸɬ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢ ɧɟɪɚɫɬɜɨɪɢɦɵɟ ɦɚɬɟɪɢɚɥɵ: ɝɪɚɮɢɬ, ɦɚɝɧɟɬɢɬ, ɞɢɨɤɫɢɞɵ ɫɜɢɧɰɚ, ɦɚɪɝɚɧɰɚ ɢ ɪɭɬɟɧɢɹ, ɤɨɬɨɪɵɟ ɧɚɧɨɫɹɬ ɧɚ ɬɢɬɚɧɨɜɭɸ ɨɫɧɨɜɭ. Ʉɚɬɨɞɵ ɢɡɝɨɬɨɜɥɹɸɬ ɢɡ ɦɨɥɢɛɞɟɧɚ, ɫɩɥɚɜɚ ɜɨɥɶɮɪɚɦɚ ɫ ɠɟɥɟɡɨɦ ɢɥɢ ɧɢɤɟɥɟɦ, ɢɡ ɝɪɚɮɢɬɚ, ɧɟɪɠɚɜɟɸɳɟɣ ɫɬɚɥɢ ɢ ɞɪɭɝɢɯ ɦɟɬɚɥɥɨɜ, ɩɨɤɪɵɬɵɯ ɦɨɥɢɛ- ɞɟɧɨɦ, ɜɨɥɶɮɪɚɦɨɦ ɢɥɢ ɢɯ ɫɩɥɚɜɚɦɢ. ɉɪɨɰɟɫɫ ɩɪɨɜɨɞɹɬ ɜ ɷɥɟɤɬɪɨɥɢɡɟɪɚɯ ɫ ɞɢɚɮɪɚɝɦɨɣ ɢ ɛɟɡ ɧɟɟ. Ʉɪɨɦɟ ɨɫɧɨɜɧɵɯ ɩɪɨɰɟɫɫɨɜ ɷɥɟɤɬɪɨɨɤɢɫɥɟɧɢɹ ɢ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ ɨɞɧɨɜɪɟɦɟɧɧɨ ɦɨɝɭɬ ɩɪɨɬɟɤɚɬɶ ɷɥɟɤɬɪɨɮɥɨɬɚɰɢɹ, ɷɥɟɤɬɪɨɮɨɪɟɡ ɢ ɷɥɟɤɬɪɨɤɨɚɝɭɥɹɰɢɹ. ɗɥɟɤɬɪɨɤɨɚɝɭɥɹɰɢɹ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɧɟɪɚɫɬɜɨɪɢɦɵɯ ɷɥɟɤɬɪɨɞɨɜ ɤɨɚɝɭɥɹɰɢɹ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɜ ɪɟɡɭɥɶɬɚɬɟ ɷɥɟɤɬɪɨɮɨɪɟɬɢɱɟɫɤɢɯ ɹɜɥɟɧɢɣ ɢ ɪɚɡɪɹɞɚ ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɧɚ ɷɥɟɤɬɪɨɞɚɯ, ɨɛɪɚɡɨɜɚɧɢɹ ɜ ɪɚɫɬɜɨɪɟ ɜɟɳɟɫɬɜ (ɯɥɨɪ, ɤɢɫɥɨɪɨɞ), ɪɚɡɪɭɲɚɸɳɢɯ ɫɨɥɶɜɚɬɧɵɟ ɨɛɨɥɨɱɤɢ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɱɚɫɬɢɰ ɡɚɝɪɹɡɧɟɧɢɣ. Ɍɚɤɨɣ ɩɪɨɰɟɫɫ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɩɪɢ ɧɟɜɵɫɨɤɨɦ ɫɨɞɟɪɠɚɧɢɢ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ ɢ ɧɢɡɤɨɣ ɭɫɬɨɣɱɢɜɨɫɬɢ ɡɚɝɪɹɡɧɟɧɢɣ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɜɵɫɨɤɨɭɫɬɨɣɱɢɜɵɟ ɡɚɝɪɹɡɧɟɧɢɹ, ɩɪɨɜɨɞɹɬ ɷɥɟɤɬɪɨɥɢɡ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɪɚɫɬɜɨɪɢɦɵɯ ɫɬɚɥɶɧɵɯ ɢɥɢ ɚɥɸɦɢɧɢɟɜɵɯ ɚɧɨɞɨɜ. ɉɨɞ ɞɟɣɫɬɜɢɟɦ ɬɨɤɚ ɩɪɨɢɫɯɨɞɢɬ ɪɚɫɬɜɨɪɟɧɢɟ ɦɟɬɚɥɥɚ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɱɟɝɨ ɜ ɜɨɞɭ ɩɟɪɟɯɨɞɹɬ ɤɚɬɢɨɧɵ ɠɟɥɟɡɚ ɢɥɢ ɚɥɸɦɢɧɢɹ, ɤɨɬɨɪɵɟ, ɜɫɬɪɟɱɚɹɫɶ ɫ ɝɢɞɪɨɤɫɢɥɶɧɵɦɢ ɝɪɭɩɩɚɦɢ, ɨɛɪɚɡɭɸɬ ɝɢɞɪɨɤɫɢɞɵ ɦɟɬɚɥɥɨɜ ɜ ɜɢɞɟ ɯɥɨɩɶɟɜ, ɢ ɧɚɫɬɭɩɚɟɬ ɢɧɬɟɧɫɢɜɧɚɹ ɤɨɚɝɭɥɹɰɢɹ. ɋ ɩɨɜɵɲɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɡɜɟɲɟɧɧɵɯ ɜɟɳɟɫɬɜ ɛɨɥɟɟ 100 ɦɝ/ɥ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɷɥɟɤɬɪɨɤɨɚɝɭɥɹɰɢɢ ɫɧɢɠɚɟɬɫɹ. ɋ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɪɚɫɯɨɞ ɷɧɟɪɝɢɢ ɧɚ ɚɧɨɞɧɨɟ ɪɚɫɬɜɨɪɟɧɢɟ ɦɟɬɚɥɥɚ ɭɦɟɧɶɲɚɟɬɫɹ. ɗɥɟɤɬɪɨɤɨɚɝɭɥɹɰɢɸ ɪɟɤɨɦɟɧɞɭɟɬɫɹ ɩɪɨɜɨɞɢɬɶ ɜ ɧɟɣɬɪɚɥɶɧɨɣ ɢɥɢ ɫɥɚɛɨɳɟɥɨɱɧɨɣ ɫɪɟɞɟ ɩɪɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɧɟ ɛɨɥɟɟ 10 Ⱥ/ɦ2, ɪɚɫɫɬɨɹɧɢɢ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɧɟ ɛɨɥɟɟ 20 ɦɦ ɢ ɫɤɨɪɨɫɬɢ ɞɜɢɠɟɧɢɹ ɧɟ ɦɟɧɟɟ 0,5 ɦ/ɫ. Ⱦɨɫɬɨɢɧɫɬɜɚ ɷɥɟɤɬɪɨɤɨɚɝɭɥɹɰɢɢ: ɨɬɫɭɬɫɬɜɢɟ ɩɨɬɪɟɛɧɨɫɬɢ ɜ ɪɟɚɝɟɧɬɚɯ, ɦɚɥɚɹ ɱɭɜɫɬɜɢɬɟɥɶɧɨɫɬɶ ɤ ɢɡɦɟɧɟɧɢɹɦ ɭɫɥɨɜɢɣ ɩɪɨɰɟɫɫɚ ɨɱɢɫɬɤɢ, ɩɨɥɭɱɟɧɢɟ ɲɥɚɦɚ ɫ ɯɨɪɨɲɢɦɢ ɫɬɪɭɤɬɭɪɧɨ-ɦɟɯɚɧɢɱɟɫɤɢɦɢ ɫɜɨɣɫɬɜɚɦɢ. ɇɟɞɨɫɬɚɬɨɤ ɦɟɬɨɞɚ - ɩɨɜɵɲɟɧɧɵɣ ɪɚɫɯɨɞ ɦɟɬɚɥɥɚ ɢ ɷɥɟɤɬɪɨɷɧɟɪɝɢɢ. ɗɥɟɤɬɪɨɮɥɨɬɚɰɢɹ. ȼ ɷɬɨɦ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɩɪɨɯɨɞɢɬ ɩɪɢ ɩɨɦɨɳɢ ɩɭɡɵɪɶɤɨɜ ɝɚɡɚ, ɨɛɪɚɡɭɸɳɢɯɫɹ ɩɪɢ ɷɥɟɤɬɪɨɥɢɡɟ ɜɨɞɵ. ɇɚ ɚɧɨɞɟ ɜɨɡɧɢɤɚɸɬ ɩɭɡɵɪɶɤɢ ɤɢɫɥɨɪɨɞɚ, ɚ ɧɚ ɤɚɬɨɞɟ – ɜɨɞɨɪɨɞɚ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɪɚɫɬɜɨɪɢɦɵɯ ɷɥɟɤɬɪɨɞɨɜ ɩɪɨɢɫɯɨɞɢɬ ɨɛɪɚɡɨɜɚɧɢɟ ɯɥɨɩɶɟɜ ɤɨɚɝɭɥɹɧɬɨɜ ɢ ɩɭɡɵɪɶɤɨɜ ɝɚɡɚ, ɱɬɨ ɫɩɨɫɨɛɫɬɜɭɟɬ ɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɨɣ ɮɥɨɬɚɰɢɢ. Ɉɫɧɨɜɧɭɸ ɪɨɥɶ ɩɪɢ ɷɥɟɤɬɪɨɮɥɨɬɚɰɢɢ ɢɝɪɚɸɬ ɩɭɡɵɪɶɤɢ, ɨɛɪɚɡɭɸɳɢɟɫɹ ɧɚ ɤɚɬɨɞɟ. Ɋɚɡɦɟɪ ɩɭɡɵɪɶɤɨɜ ɜɨɞɨɪɨɞɚ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɧɶɲɟ, ɱɟɦ ɩɪɢ ɞɪɭɝɢɯ ɦɟɬɨɞɚɯ ɮɥɨɬɚɰɢɢ. Ⱦɢɚɦɟɬɪ ɩɭɡɵɪɶɤɨɜ ɦɟɧɹɟɬɫɹ ɨɬ 20 ɞɨ 100 ɦɤɦ. Ɇɟɥɤɢɟ ɩɭɡɵɪɶɤɢ ɜɨɞɨɪɨɞɚ ɨɛɥɚɞɚɸɬ ɛɨɥɶɲɟɣ ɪɚɫɬɜɨɪɢɦɨɫɬɶɸ, ɱɟɦ ɤɪɭɩɧɵɟ. ɂɡ ɩɟɪɟɫɵɳɟɧɧɵɯ ɝɚɡɨɦ ɪɚɫɬɜɨɪɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ɦɟɥɶɱɚɣɲɢɟ ɩɭɡɵɪɶɤɢ ɜɵɞɟɥɹɸɬɫɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɱɚɫɬɢɰ ɡɚɝɪɹɡɧɟɧɢɣ, ɫɩɨɫɨɛɫɬɜɭɹ ɷɮɮɟɤɬɭ ɮɥɨɬɚɰɢɢ. Ɉɩɬɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ 200…260 Ⱥ/ɦ2, ɝɚɡɨɫɨɞɟɪɠɚɧɢɟ – ɨɤɨɥɨ 0,1%. ɗɥɟɤɬɪɨɞɢɚɥɢɡ. ɉɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɷɥɟɤɬɪɨɞɢɚɥɢɡɨɦ ɨɫɧɨɜɚɧ ɧɚ ɪɚɡɞɟɥɟɧɢɢ ɢɨɧɢɡɢɪɨɜɚɧɧɵɯ ɜɟɳɟɫɬɜ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɥɟɤɬɪɨɞɜɢɠɭɳɟɣ ɫɢɥɵ, ɫɨɡɞɚɜɚɟɦɨɣ ɜ ɪɚɫɬɜɨɪɟ ɩɨ ɨɛɟ ɫɬɨɪɨɧɵ ɦɟɦɛɪɚɧ. ɗɬɨɬ ɩɪɨɰɟɫɫ ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɨɩɪɟɫɧɟɧɢɹ ɫɨɥɟɧɵɯ ɜɨɞ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɷɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢ ɚɤɬɢɜɧɵɯ (ɢɨɧɨɨɛɦɟɧɧɵɯ) ɞɢɚɮɪɚɝɦ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɩɨɜɵɲɚɟɬɫɹ ɢ ɫɧɢɠɚɟɬɫɹ ɪɚɫɯɨɞ ɷɥɟɤɬɪɨɷɧɟɪɝɢɢ. ɂɨɧɨɨɛɦɟɧɧɵɟ ɦɟɦɛɪɚɧɵ ɩɪɨɧɢɰɚɟɦɵ ɬɨɥɶɤɨ ɞɥɹ ɢɨɧɨɜ, ɢɦɟɸɳɢɯ ɡɚɪɹɞ ɬɨɝɨ ɠɟ ɡɧɚɤɚ, ɱɬɨ ɢ ɭ ɩɨɞɜɢɠɧɵɯ ɢɨɧɨɜ. Ⱦɥɹ ɨɛɟɫɫɨɥɢɜɚɧɢɹ ɜɨɞɵ ɩɪɢɦɟɧɹɸɬ ɝɨɦɨɝɟɧɧɵɟ ɢ ɝɟɬɟɪɨɝɟɧɧɵɟ ɦɟɦɛɪɚɧɵ. Ƚɨɦɨɝɟɧɧɵɟ ɦɟɦɛɪɚɧɵ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɩɨɪɨɲɨɤ ɢɨɧɢɬɚ, ɫɦɟɲɚɧɧɵɣ ɫɨ ɫɜɹɡɭɸɳɢɦ ɜɟɳɟɫɬɜɨɦ. Ɇɟɦɛɪɚɧɵ ɞɨɥɠɧɵ ɨɛɥɚɞɚɬɶ ɦɚɥɵɦ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ. Ɋɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɦɟɦɛɪɚɧɚɦɢ ɨɤɚɡɵɜɚɟɬ ɛɨɥɶɲɨɟ ɜɥɢɹɧɢɟ ɧɚ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɪɚɛɨɬɵ ɷɥɟɤɬɪɨɞɢɚɥɢɡɚɬɨɪɚ. Ɉɧɨ ɫɨɫɬɚɜɥɹɟɬ 1…2 ɦɦ. Ɋɚɫɯɨɞ ɷɧɟɪɝɢɢ ɩɪɢ ɨɱɢɫɬɤɟ ɜɨɞɵ, ɫɨɞɟɪɠɚɳɟɣ 250 ɦɝ/ɥ ɩɪɢɦɟɫɟɣ ɞɨ ɨɫɬɚɬɨɱɧɨɝɨ ɫɨɞɟɪɠɚɧɢɹ ɫɨɥɟɣ 5 ɦɝ/ɥ ɫɨɫɬɚɜɥɹɟɬ 7 ɤȼɬ˜ɱ/ɦ3. ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɫɨɥɟɫɨɞɟɪɠɚɧɢɹ ɜ ɜɨɞɟ ɭɞɟɥɶɧɵɣ ɪɚɫɯɨɞ ɷɧɟɪɝɢɢ ɜɨɡɪɚɫɬɚɟɬ. Ɉɫɧɨɜɧɵɦ ɧɟɞɨɫɬɚɬɤɨɦ ɷɥɟɤɬɪɨɞɢɚɥɢɡɚ ɹɜɥɹɟɬɫɹ ɤɨɧɰɟɧɬɪɚɰɢɨɧɧɚɹ ɩɨɥɹɪɢɡɚɰɢɹ, ɩɪɢɜɨɞɹɳɚɹ ɤ ɨɫɚɠɞɟɧɢɸ ɫɨɥɟɣ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɦɟɦɛɪɚɧ ɢ ɫɧɢɠɟɧɢɸ ɩɨɤɚɡɚɬɟɥɟɣ ɨɱɢɫɬɤɢ. 5.3. ɏɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ʉ ɯɢɦɢɱɟɫɤɢɦ ɦɟɬɨɞɚɦ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬɧɨɫɹɬ ɧɟɣɬɪɚɥɢɡɚɰɢɸ, ɨɤɢɫɥɟɧɢɟ ɢ ɜɨɫɫɬɚɧɨɜɥɟɧɢɟ. ɂɯ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɭɞɚɥɟɧɢɹ ɪɚɫɬɜɨɪɢɦɵɯ ɜɟɳɟɫɬɜ ɢ ɜ ɡɚɦɤɧɭɬɵɯ ɫɢɫɬɟɦɚɯ ɜɨɞɨɫɧɚɛɠɟɧɢɹ. ɏɢɦɢɱɟɫɤɭɸ ɨɱɢɫɬɤɭ ɩɪɨɜɨɞɹɬ ɢɧɨɝɞɚ ɤɚɤ ɩɪɟɞɜɚɪɢɬɟɥɶɧɭɸ ɩɟɪɟɞ ɛɢɨɥɨɝɢɱɟɫɤɨɣ ɨɱɢɫɬɤɨɣ ɢɥɢ ɩɨɫɥɟ ɧɟɟ ɤɚɤ ɦɟɬɨɞ ɞɨɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ. 5.3.1. ɇɟɣɬɪɚɥɢɡɚɰɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɋɬɨɱɧɵɟ ɜɨɞɵ, ɫɨɞɟɪɠɚɳɢɟ ɦɢɧɟɪɚɥɶɧɵɟ ɤɢɫɥɨɬɵ ɢɥɢ ɳɟɥɨɱɢ, ɩɟɪɟɞ ɫɛɪɨɫɨɦ ɢɯ ɜ ɜɨɞɨɟɦɵ ɢɥɢ ɩɟɪɟɞ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɜ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɧɟɣɬɪɚɥɢɡɭɸɬ. ɉɪɚɤɬɢɱɟɫɤɢ ɧɟɣɬɪɚɥɶɧɵɦɢ ɫɱɢɬɚɸɬɫɹ ɜɨɞɵ, ɢɦɟɸɳɢɟ pH = 6,5…8,5. ɇɟɣɬɪɚɥɢɡɚɰɢɸ ɦɨɠɧɨ ɩɪɨɜɨɞɢɬɶ ɪɚɡɥɢɱɧɵɦ ɩɭɬɟɦ: ɫɦɟɲɟɧɢɟɦ ɤɢɫɥɵɯ ɢ ɳɟɥɨɱɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ, ɞɨɛɚɜɥɟɧɢɟɦ ɪɟɚɝɟɧɬɨɜ, ɮɢɥɶɬɪɨɜɚɧɢɟɦ ɤɢɫɥɵɯ ɜɨɞ ɱɟɪɟɡ ɧɟɣɬɪɚɥɢɡɭɸɳɢɟ ɦɚɬɟɪɢɚɥɵ, ɚɛɫɨɪɛɰɢɟɣ ɤɢɫɥɵɯ ɝɚɡɨɜ ɳɟɥɨɱɧɵɦɢ ɜɨɞɚɦɢ ɢɥɢ ɚɛɫɨɪɛɰɢɟɣ ɚɦɦɢɚɤɚ ɤɢɫɥɵɦɢ ɜɨɞɚɦɢ. ȼ ɩɪɨɰɟɫɫɟ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɦɨɝɭɬ ɨɛɪɚɡɨɜɵɜɚɬɶɫɹ ɨɫɚɞɤɢ. Ⱦɥɹ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɤɢɫɥɵɯ ɜɨɞ ɦɨɝɭɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ: NaOH, KOH, Na2CO3, NH4OH (ɚɦɦɢɚɱɧɚɹ ɜɨɞɚ), CaCO3, MgCO3, ɞɨɥɨɦɢɬ (CaCO3˜MgCO3), ɰɟɦɟɧɬ. ɇɚɢɛɨɥɟɟ ɞɨɫɬɭɩɧɵɦ ɪɟɚɝɟɧɬɨɦ ɹɜɥɹɟɬɫɹ ɝɢɞɪɨɤɫɢɞ ɤɚɥɶɰɢɹ (ɢɡɜɟɫɬɤɨɜɨɟ ɦɨɥɨɤɨ) ɫ ɫɨɞɟɪɠɚɧɢɟɦ 5…10% ɚɤɬɢɜɧɨɣ ɢɡɜɟɫɬɢ Ca(OH)2. ɂɧɨɝɞɚ ɞɥɹ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɩɪɢɦɟɧɹɸɬ ɨɬɯɨɞɵ ɩɪɨɢɡɜɨɞɫɬɜɚ: ɲɥɚɤɢ ɦɟɬɚɥɥɭɪɝɢɱɟɫɤɢɯ ɩɪɨɢɡɜɨɞɫɬɜ. Ɋɟɚɝɟɧɬɵ ɜɵɛɢɪɚɸɬ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɫɨɫɬɚɜɚ ɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɤɢɫɥɨɣ ɫɬɨɱɧɨɣ ɜɨɞɵ. Ɋɚɡɥɢɱɚɸɬ ɬɪɢ ɜɢɞɚ ɤɢɫɥɨɬɨɫɨɞɟɪɠɚɳɢɯ ɫɬɨɱɧɵɯ ɜɨɞ: 1) ɜɨɞɵ, ɫɨɞɟɪɠɚɳɢɟ ɫɥɚɛɵɟ ɤɢɫɥɨɬɵ (H2CO3, CH3COOH); 2) ɜɨɞɵ, ɫɨɞɟɪɠɚɳɢɟ ɫɢɥɶɧɵɟ ɤɢɫɥɨɬɵ (HCl, HNO3); 3) ɜɨɞɵ, ɫɨɞɟɪɠɚɳɢɟ ɫɟɪɧɭɸ ɢ ɫɟɪɧɢɫɬɭɸ ɤɢɫɥɨɬɵ. ɉɪɢ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɢɡɜɟɫɬɤɨɜɵɦ ɦɨɥɨɤɨɦ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɫɟɪɧɭɸ ɤɢɫɥɨɬɭ, ɜ ɨɫɚɞɨɤ ɜɵɩɚɞɚɟɬ ɝɢɩɫ CaSO4˜2H2O, ɱɬɨ ɜɵɡɵɜɚɟɬ ɨɬɥɨɠɟɧɢɟ ɟɝɨ ɧɚ ɫɬɟɧɤɚɯ ɬɪɭɛɨɩɪɨɜɨɞɨɜ. Ⱦɥɹ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɳɟɥɨɱɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɪɚɡɥɢɱɧɵɟ ɤɢɫɥɨɬɵ ɢɥɢ ɤɢɫɥɵɟ ɝɚɡɵ, ɧɚɩɪɢɦɟɪ, ɨɬɯɨɞɹɳɢɟ ɝɚɡɵ, ɫɨɞɟɪɠɚɳɢɟ CO2, SO2, NO2, N2O3 ɢ ɞɪ. ɉɪɢɦɟɧɟɧɢɟ ɤɢɫɥɵɯ ɝɚɡɨɜ ɩɨɡɜɨɥɹɟɬ ɧɟ ɬɨɥɶɤɨ ɧɟɣɬɪɚɥɢɡɨɜɚɬɶ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɧɨ ɢ ɨɞɧɨɜɪɟɦɟɧɧɨ ɩɪɨɢɡɜɨɞɢɬɶ ɨɱɢɫɬɤɭ ɫɚɦɢɯ ɝɚɡɨɜ ɨɬ ɜɪɟɞɧɵɯ ɤɨɦɩɨɧɟɧɬɨɜ. Ʉɨɥɢɱɟɫɬɜɨ ɤɢɫɥɨɝɨ ɝɚɡɚ, ɧɟɨɛɯɨɞɢɦɨɝɨ ɞɥɹ ɧɟɣɬɪɚɥɢɡɚɰɢɢ, ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧɨ ɩɨ ɭɪɚɜɧɟɧɢɸ ɦɚɫɫɨɨɬɞɚɱɢ: M k ˜ E ɠ ˜ F ˜ 'C , (5.97) ɝɞɟ M – ɤɨɥɢɱɟɫɬɜɨ ɤɢɫɥɨɝɨ ɝɚɡɚ, ɧɟɨɛɯɨɞɢɦɨɝɨ ɞɥɹ ɧɟɣɬɪɚɥɢɡɚɰɢɢ; k – ɮɚɤɬɨɪ ɭɫɤɨɪɟɧɢɹ ɯɟɦɨɫɨɪɛɰɢɢ; Eɠ – ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ; F – ɩɨɜɟɪɯɧɨɫɬɶ ɤɨɧɬɚɤɬɚ ɮɚɡ; 'ɋ – ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ. ɇɟɣɬɪɚɥɢɡɚɰɢɹ ɳɟɥɨɱɧɵɯ ɜɨɞ ɞɵɦɨɜɵɦɢ ɝɚɡɚɦɢ ɹɜɥɹɟɬɫɹ ɪɟɫɭɪɫɨɫɛɟɪɟɝɚɸɳɟɣ ɬɟɯɧɨɥɨɝɢɟɣ, ɬ.ɤ. ɩɪɢ ɷɬɨɦ ɥɢɤɜɢɞɢɪɭɟɬɫɹ ɫɛɪɨɫ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɤɪɚɳɚɟɬɫɹ ɩɨɬɪɟɛɥɟɧɢɟ ɫɜɟɠɟɣ ɜɨɞɵ, ɷɤɨɧɨɦɢɬɫɹ ɬɟɩɥɨɜɚɹ ɷɧɟɪɝɢɹ ɧɚ ɩɨɞɨɝɪɟɜ ɫɜɟɠɟɣ ɜɨɞɵ, ɚ ɬɚɤɠɟ ɨɱɢɳɚɸɬɫɹ ɞɵɦɨɜɵɟ ɝɚɡɵ ɨɬ ɤɢɫɥɵɯ ɤɨɦɩɨɧɟɧɬɨɜ (CO2, SO2 ɢ ɞɪ.) ɢ ɨɬ ɩɵɥɢ. 5.3.2. Ɉɤɢɫɥɟɧɢɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɫɬɨɱɧɵɯ ɜɨɞ Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɫɥɟɞɭɸɳɢɟ ɨɤɢɫɥɢɬɟɥɢ; ɝɚɡɨɨɛɪɚɡɧɵɣ ɢ ɫɠɢɠɟɧɧɵɣ ɯɥɨɪ, ɞɢɨɤɫɢɞ ɯɥɨɪɚ, ɯɥɨɪɚɬ ɤɚɥɶɰɢɹ, ɝɢɩɨɯɥɨɪɢɬɵ ɤɚɥɶɰɢɹ ɢ ɧɚɬɪɢɹ, ɩɟɪɦɚɧɝɚɧɚɬ ɤɚɥɢɹ, ɛɢɯɪɨɦɚɬ ɤɚɥɢɹ, ɩɟɪɨɤɫɢɞ ɜɨɞɨɪɨɞɚ, ɤɢɫɥɨɪɨɞ ɜɨɡɞɭɯɚ, ɩɟɪɨɤɫɨɫɟɪɧɵɟ ɤɢɫɥɨɬɵ, ɨɡɨɧ, ɩɢɪɨɥɸɡɢɬ ɢ ɞɪ. ȼ ɩɪɨɰɟɫɫɟ ɨɤɢɫɥɟɧɢɹ ɬɨɤɫɢɱɧɵɟ ɡɚɝɪɹɡɧɟɧɢɹ, ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɣ ɩɟɪɟɯɨɞɹɬ ɜ ɦɟɧɟɟ ɬɨɤɫɢɱɧɵɟ, ɤɨɬɨɪɵɟ ɭɞɚɥɹɸɬ ɢɡ ɜɨɞɵ. Ⱥɤɬɢɜɧɨɫɬɶ ɜɟɳɟɫɬɜɚ ɤɚɤ ɨɤɢɫɥɢɬɟɥɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜɟɥɢɱɢɧɨɣ ɨɤɢɫɥɢɬɟɥɶɧɨɝɨ ɩɨɬɟɧɰɢɚɥɚ. ɉɟɪɜɨɟ ɦɟɫɬɨ ɫɪɟɞɢ ɨɤɢɫɥɢɬɟɥɟɣ ɡɚɧɢɦɚɟɬ ɮɬɨɪ, ɤɨɬɨɪɵɣ ɢɡ-ɡɚ ɜɵɫɨɤɨɣ ɚɝɪɟɫɫɢɜɧɨɫɬɢ ɧɟ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧ ɧɚ ɩɪɚɤɬɢɤɟ. Ⱦɥɹ ɞɪɭɝɢɯ ɜɟɳɟɫɬɜ ɜɟɥɢɱɢɧɚ ɨɤɢɫɥɢɬɟɥɶɧɨɝɨ ɩɨɬɟɧɰɢɚɥɚ ɪɚɜɧɚ: ɞɥɹ ɨɡɨɧɚ – 2,07; ɞɥɹ ɯɥɨɪɚ – 0,94; ɞɥɹ ɩɟɪɨɤɫɢɞɚ ɜɨɞɨɪɨɞɚ - 0,68; ɞɥɹ ɩɟɪɦɚɧɝɚɧɚɬɚ ɤɚɥɢɹ – 0,59. ɏɥɨɪ ɢ ɜɟɳɟɫɬɜɚ, ɫɨɞɟɪɠɚɳɢɟ “ɚɤɬɢɜɧɵɣ” ɯɥɨɪ, ɹɜɥɹɸɬɫɹ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦɢ ɨɤɢɫɥɢɬɟɥɹɦɢ. ɂɯ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɫɟɪɨɜɨɞɨɪɨɞɚ, ɝɢɞɪɨɫɭɥɶɮɢɞɚ, ɦɟɬɢɥɫɟɪɧɢɫɬɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɮɟɧɨɥɨɜ, ɰɢɚɧɢɞɨɜ ɢ ɞɪ. ɉɪɢ ɜɜɟɞɟɧɢɢ ɯɥɨɪɚ ɜ ɜɨɞɭ ɨɛɪɚɡɭɟɬɫɹ ɯɥɨɪɧɨɜɚɬɢɫɬɚɹ ɢ ɫɨɥɹɧɚɹ ɤɢɫɥɨɬɵ: Cl 2  H 2 O HOCl  HCl . (5.98) ɉɟɪɨɤɫɢɞ ɜɨɞɨɪɨɞɚ ɢɫɩɨɥɶɡɭɟɬɫɹ ɞɥɹ ɨɤɢɫɥɟɧɢɹ ɧɢɬɪɢɬɨɜ, ɚɥɶɞɟɝɢɞɨɜ, ɮɟɧɨɥɨɜ, ɰɢɚɧɢɞɨɜ, ɫɟɪɨɫɨɞɟɪɠɚɳɢɯ ɨɬɯɨɞɨɜ, ɚɤɬɢɜɧɵɯ ɤɪɚɫɢɬɟɥɟɣ. ɉɟɪɨɤɫɢɞ ɜɨɞɨɪɨɞɚ ɜ ɤɢɫɥɨɣ ɢ ɳɟɥɨɱɧɨɣ ɫɪɟɞɚɯ ɪɚɡɥɚɝɚɟɬɫɹ ɩɨ ɫɥɟɞɭɸɳɢɦ ɫɯɟɦɚɦ: 2 H   H 2 O2  2e o 2 H 2 O, 2OH   H 2 O2  2e o 2 H 2 O  2O 2 . . (5.99) ȼ ɪɚɡɛɚɜɥɟɧɧɵɯ ɪɚɫɬɜɨɪɚɯ ɩɪɨɰɟɫɫ ɨɤɢɫɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɩɪɨɬɟɤɚɟɬ ɦɟɞɥɟɧɧɨ, ɩɨɷɬɨɦɭ ɢɫɩɨɥɶɡɭɸɬ ɤɚɬɚɥɢɡɚɬɨɪɵ – ɢɨɧɵ ɦɟɬɚɥɥɨɜ ɩɟɪɟɦɟɧɧɨɣ ɜɚɥɟɧɬɧɨɫɬɢ (Fe2+, Cu2+, Mn2+, CO2+, Cr2+, Ag2+). ȼ ɩɪɨɰɟɫɫɚɯ ɜɨɞɨɨɛɪɚɛɨɬɤɢ ɢɫɩɨɥɶɡɭɸɬ ɬɚɤɠɟ ɜɨɫɫɬɚɧɨɜɢɬɟɥɶɧɵɟ ɫɜɨɣɫɬɜɚ ɩɟɪɨɤɫɢɞɚ ɜɨɞɨɪɨɞɚ. ȼ ɧɟɣɬɪɚɥɶɧɨɣ ɢ ɫɥɚɛɨɳɟɥɨɱɧɨɣ ɫɪɟɞɚɯ ɨɧ ɥɟɝɤɨ ɜɡɚɢɦɨɞɟɣɫɬɜɭɟɬ ɫ ɯɥɨɪɨɦ ɢ ɝɢɩɨɯɥɨɪɢɬɚɦɢ, ɩɟɪɟɜɨɞɹ ɢɯ ɜ ɯɥɨɪɢɞɵ: H 2 O2  Cl 2 o O2  2 HCl , (5.100) NaClO  H 2 O2 o NaCl  O2  H 2 O . (5.101) ɗɬɢ ɪɟɚɤɰɢɢ ɢɫɩɨɥɶɡɭɸɬ ɩɪɢ ɞɟɯɥɨɪɢɪɨɜɚɧɢɢ ɜɨɞɵ. Ʉɢɫɥɨɪɨɞ ɜɨɡɞɭɯɚ ɢɫɩɨɥɶɡɭɸɬ ɩɪɢ ɨɱɢɫɬɤɟ ɜɨɞɵ ɨɬ ɠɟɥɟɡɚ. Ɋɟɚɤɰɢɹ ɨɤɢɫɥɟɧɢɹ ɜ ɜɨɞɧɨɦ ɪɚɫɬɜɨɪɟ ɩɪɨɬɟɤɚɟɬ ɩɨ ɫɯɟɦɟ: 4 Fe 2  O2  2 H 2 O Fe 3  3H 2 O 4 Fe 3  4OH  , Fe(OH ) 3  3H  . (5.102) ɉɢɪɨɥɸɡɢɬ ɹɜɥɹɟɬɫɹ ɩɪɢɪɨɞɧɵɦ ɦɚɬɟɪɢɚɥɨɦ, ɫɨɫɬɨɹɳɢɦ ɜ ɨɫɧɨɜɧɨɦ ɢɡ ɞɢɨɤɫɢɞɚ ɦɚɪɝɚɧɰɚ. ȿɝɨ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɨɤɢɫɥɟɧɢɹ ɬɪɟɯɜɚɥɟɧɬɧɨɝɨ ɦɵɲɶɹɤɚ ɜ ɩɹɬɢɜɚɥɟɧɬɧɵɣ: (5.103) H 3 AsO3  MnO2  H 2 SO4 H 3 AsO4  MnSO4  H 2 O . Ɉɤɢɫɥɟɧɢɟ ɨɡɨɧɨɦ ɩɨɡɜɨɥɹɟɬ ɨɞɧɨɜɪɟɦɟɧɧɨ ɨɛɟɫɩɟɱɢɬɶ ɨɛɟɫɰɜɟɱɢɜɚɧɢɟ ɜɨɞɵ, ɭɫɬɪɚɧɟɧɢɟ ɩɪɢɜɤɭɫɨɜ ɢ ɡɚɩɚɯɨɜ ɢ ɨɛɟɡɡɚɪɚɠɢɜɚɧɢɟ. Ɉɡɨɧ ɨɤɢɫɥɹɟɬ ɤɚɤ ɧɟɨɪɝɚɧɢɱɟɫɤɢɟ, ɬɚɤ ɢ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɪɚɫɬɜɨɪɟɧɧɵɟ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. Ɉɡɨɧɢɪɨɜɚɧɢɟɦ ɦɨɠɧɨ ɨɱɢɳɚɬɶ ɫɬɨɱɧɵɟ ɜɨɞɵ ɨɬ ɮɟɧɨɥɨɜ, ɧɟɮɬɟɩɪɨɞɭɤɬɨɜ, ɫɟɪɨɜɨɞɨɪɨɞɚ, ɫɨɟɞɢɧɟɧɢɣ ɦɵɲɶɹɤɚ, ɉȺȼ, ɰɢɚɧɢɞɨɜ, ɤɪɚɫɢɬɟɥɟɣ, ɤɚɧɰɟɪɨɝɟɧɧɵɯ ɚɪɨɦɚɬɢɱɟɫɤɢɯ ɭɝɥɟɜɨɞɨɪɨɞɨɜ, ɩɟɫɬɢɰɢɞɨɜ ɢ ɞɪ. ɉɪɢ ɨɛɪɚɛɨɬɤɟ ɜɨɞɵ ɨɡɨɧɨɦ ɩɪɨɢɫɯɨɞɢɬ ɪɚɡɥɨɠɟɧɢɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɢ ɨɛɟɡɡɚɪɚɠɢɜɚɧɢɟ ɜɨɞɵ; ɛɚɤɬɟɪɢɢ ɩɨɝɢɛɚɸɬ ɜ ɧɟɫɤɨɥɶɤɨ ɬɵɫɹɱ ɪɚɡ ɛɵɫɬɪɟɟ, ɱɟɦ ɩɪɢ ɨɛɪɚɛɨɬɤɟ ɜɨɞɵ ɯɥɨɪɨɦ. Ⱦɟɣɫɬɜɢɟ ɨɡɨɧɚ ɜ ɩɪɨɰɟɫɫɚɯ ɨɤɢɫɥɟɧɢɹ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɜ ɬɪɟɯ ɪɚɡɥɢɱɧɵɯ ɧɚɩɪɚɜɥɟɧɢɹɯ: ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɟ ɨɤɢɫɥɟɧɢɟ ɫ ɭɱɚɫɬɢɟɦ ɨɞɧɨɝɨ ɚɬɨɦɚ ɤɢɫɥɨɪɨɞɚ; ɩɪɢɫɨɟɞɢɧɟɧɢɟ ɰɟɥɨɣ ɦɨɥɟɤɭɥɵ ɨɡɨɧɚ ɤ ɨɤɢɫɥɹɟɦɨɦɭ ɜɟɳɟɫɬɜɭ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɨɡɨɧɢɞɨɜ; ɤɚɬɚɥɢɬɢɱɟɫɤɨɟ ɭɫɢɥɟɧɢɟ ɨɤɢɫɥɹɸɳɟɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɤɢɫɥɨɪɨɞɚ, ɩɪɢɫɭɬɫɬɜɭɸɳɟɝɨ ɜ ɨɡɨɧɢɪɨɜɚɧɧɨɦ ɜɨɡɞɭɯɟ. Ɉɤɢɫɥɟɧɢɟ ɜɟɳɟɫɬɜ ɦɨɠɟɬ ɛɵɬɶ ɩɪɹɦɨɟ ɢ ɧɟɩɪɹɦɨɟ, ɚ ɬɚɤɠɟ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɤɚɬɚɥɢɡɨɦ ɢ ɨɡɨɧɨɥɢɡɨɦ. Ʉɢɧɟɬɢɤɚ ɩɪɹɦɵɯ ɪɟɚɤɰɢɣ ɨɤɢɫɥɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɜɵɪɚɠɟɧɚ ɭɪɚɜɧɟɧɢɟɦ: (5.104)  ln>CW @ />C0 @ k >O3 @˜ W , ɝɞɟ >C0 @ , >CW @ - ɧɚɱɚɥɶɧɚɹ ɢ ɤɨɧɟɱɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɟɳɟɫɬɜɚ, ɦɝ/ɥ; k - ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ, ɥ/(ɦɨɥɶ˜ɫ); >O3 @ - ɫɪɟɞɧɹɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɨɡɨɧɚ ɜɨ ɜɪɟɦɹ ɩɪɨɯɨɠɞɟɧɢɹ ɪɟɚɤɰɢɢ, ɦɝ/ɥ; W - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɨɡɨɧɢɪɨɜɚɧɢɹ, ɫ. ɇɟɩɪɹɦɨɟ ɨɤɢɫɥɟɧɢɟ – ɷɬɨ ɨɤɢɫɥɟɧɢɟ ɪɚɞɢɤɚɥɚɦɢ, ɨɛɪɚɡɭɸɳɢɦɢɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɟɪɟɯɨɞɚ ɨɡɨɧɚ ɢɡ ɝɚɡɨɜɨɣ ɮɚɡɵ ɜ ɠɢɞɤɨɫɬɶ ɢ ɟɝɨ ɫɚɦɨɪɚɡɥɨɠɟɧɢɹ. Ʉɚɬɚɥɢɡ – ɤɚɬɚɥɢɬɢɱɟɫɤɨɟ ɜɨɡɞɟɣɫɬɜɢɟ ɨɡɨɧɢɪɨɜɚɧɢɹ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɭɫɢɥɟɧɢɢ ɢɦ ɨɤɢɫɥɹɸɳɟɣ ɫɩɨɫɨɛɧɨɫɬɢ ɤɢɫɥɨɪɨɞɚ, ɤɨɬɨɪɵɣ ɩɪɢɫɭɬɫɬɜɭɟɬ ɜ ɨɡɨɧɢɪɨɜɚɧɧɨɦ ɜɨɡɞɭɯɟ. Ɉɡɨɧɨɥɢɡ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɮɢɤɫɚɰɢɢ ɨɡɨɧɚ ɧɚ ɞɜɨɣɧɨɣ ɢɥɢ ɬɪɨɣɧɨɣ ɭɝɥɟɪɨɞɧɨɣ ɫɜɹɡɢ ɫ ɩɨɫɥɟɞɭɸɳɢɦ ɟɟ ɪɚɡɪɵɜɨɦ ɢ ɨɛɪɚɡɨɜɚɧɢɟɦ ɨɡɨɧɢɞɨɜ, ɤɨɬɨɪɵɟ, ɤɚɤ ɢ ɨɡɨɧ, ɹɜɥɹɸɬɫɹ ɧɟɫɬɨɣɤɢɦɢ ɫɨɟɞɢɧɟɧɢɹɦɢ ɢ ɛɵɫɬɪɨ ɪɚɡɥɚɝɚɸɬɫɹ. Ɉɡɨɧɢɪɨɜɚɧɢɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɚɛɫɨɪɛɰɢɢ, ɫɨɩɪɨɜɨɠɞɚɟɦɵɣ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɟɣ ɜ ɠɢɞɤɨɣ ɮɚɡɟ. Ɋɚɫɯɨɞ ɨɡɨɧɚ, ɧɟɨɛɯɨɞɢɦɨɝɨ ɞɥɹ ɨɤɢɫɥɟɧɢɹ ɡɚɝɪɹɡɧɟɧɢɣ, ɦɨɠɟɬ ɛɵɬɶ ɨɩɪɟɞɟɥɟɧ ɩɨ ɭɪɚɜɧɟɧɢɸ ɦɚɫɫɨɨɛɦɟɧɚ: M * Eɠ ˜ F ˜ 'C ɠ , (5.105) * ɝɞɟ M – ɪɚɫɯɨɞ ɨɡɨɧɚ, ɩɟɪɟɯɨɞɹɳɟɝɨ ɢɡ ɝɚɡɨɜɨɣ ɮɚɡɵ ɜ ɠɢɞɤɭɸ, ɤɝ/ɫ; E ɠ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɜ ɠɢɞɤɨɣ ɮɚɡɟ ɩɪɢ ɩɪɨɬɟɤɚɧɢɢ ɜ ɧɟɣ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ, ɦ/ɫ; F - ɩɨɜɟɪɯɧɨɫɬɶ ɤɨɧɬɚɤɬɚ ɮɚɡ, ɦ2; 'C ɠ - ɞɜɢɠɭɳɚɹ ɫɢɥɚ ɩɪɨɰɟɫɫɚ, ɤɝ/ɦ3. ɉɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɡɧɚɱɢɬɟɥɶɧɨ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɩɪɢ ɫɨɜɦɟɫɬɧɨɦ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɭɥɶɬɪɚɡɜɭɤɚ ɢ ɨɡɨɧɚ, ɭɥɶɬɪɚɮɢɨɥɟɬɨɜɨɝɨ ɨɛɥɭɱɟɧɢɹ ɢ ɨɡɨɧɚ. ɍɥɶɬɪɚɮɢɨɥɟɬɨɜɨɟ ɨɛɥɭɱɟɧɢɟ ɭɫɤɨɪɹɟɬ ɨɤɢɫɥɟɧɢɟ ɜ 102…104 ɪɚɡ. 5.3.3. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɜɨɫɫɬɚɧɨɜɥɟɧɢɟɦ Ɇɟɬɨɞɵ ɜɨɫɫɬɚɧɨɜɢɬɟɥɶɧɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɫɨɟɞɢɧɟɧɢɣ ɪɬɭɬɢ, ɯɪɨɦɚ, ɦɵɲɶɹɤɚ. ȼ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɧɟɨɪɝɚɧɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ ɪɬɭɬɢ ɜɨɫɫɬɚɧɚɜɥɢɜɚɸɬ ɞɨ ɦɟɬɚɥɥɢɱɟɫɤɨɣ ɪɬɭɬɢ, ɤɨɬɨɪɭɸ ɨɬɞɟɥɹɸɬ ɨɬ ɜɨɞɵ ɨɬɫɬɚɢɜɚɧɢɟɦ, ɮɢɥɶɬɪɨɜɚɧɢɟɦ ɢɥɢ ɮɥɨɬɚɰɢɟɣ. Ⱦɥɹ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ ɪɬɭɬɢ ɢ ɟɟ ɫɨɟɞɢɧɟɧɢɣ ɩɪɢɦɟɧɹ- ɸɬ ɫɭɥɶɮɢɞ ɠɟɥɟɡɚ, ɛɨɪɝɢɞɪɢɞ ɧɚɬɪɢɹ, ɝɢɞɪɨɫɭɥɶɮɢɬ ɧɚɬɪɢɹ, ɝɢɞɪɚɡɢɧ, ɠɟɥɟɡɧɵɣ ɩɨɪɨɲɨɤ, ɫɟɪɨɜɨɞɨɪɨɞ, ɚɥɸɦɢɧɢɟɜɭɸ ɩɭɞɪɭ. ɇɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦ ɫɩɨɫɨɛɨɦ ɭɞɚɥɟɧɢɹ ɦɵɲɶɹɤɚ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɹɜɥɹɟɬɫɹ ɨɫɚɠɞɟɧɢɟ ɟɝɨ ɜ ɜɢɞɟ ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɯ ɫɨɟɞɢɧɟɧɢɣ ɞɢɨɤɫɢɞɨɦ ɫɟɪɵ. Ɇɟɬɨɞ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɜɟɳɟɫɬɜ, ɫɨɞɟɪɠɚɳɢɯ ɲɟɫɬɢɜɚɥɟɧɬɧɵɣ ɯɪɨɦ, ɨɫɧɨɜɚɧ ɧɚ ɜɨɫɫɬɚɧɨɜɥɟɧɢɢ ɟɝɨ ɞɨ ɬɪɟɯɜɚɥɟɧɬɧɨɝɨ ɫ ɩɨɫɥɟɞɭɸɳɢɦ ɨɫɚɠɞɟɧɢɟɦ ɜ ɜɢɞɟ ɝɢɞɪɨɤɫɢɞɚ ɜ ɳɟɥɨɱɧɨɣ ɫɪɟɞɟ. ȼ ɤɚɱɟɫɬɜɟ ɜɨɫɫɬɚɧɨɜɢɬɟɥɟɣ ɢɫɩɨɥɶɡɭɸɬ ɚɤɬɢɜɧɵɣ ɭɝɨɥɶ, ɫɭɥɶɮɚɬ ɠɟɥɟɡɚ, ɛɢɫɭɥɶɮɚɬ ɧɚɬɪɢɹ, ɜɨɞɨɪɨɞ, ɞɢɨɤɫɢɞ ɫɟɪɵ, ɨɬɯɨɞɵ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɩɢɪɢɬɧɵɣ ɨɝɚɪɨɤ. Ⱦɥɹ ɜɨɫɫɬɚɧɨɜɥɟɧɢɹ ɯɪɨɦɚ ɧɚɢɛɨɥɟɟ ɱɚɫɬɨ ɢɫɩɨɥɶɡɭɸɬ ɪɚɫɬɜɨɪɵ ɝɢɞɪɨɫɭɥɶɮɢɬɚ ɧɚɬɪɢɹ: 4 H 2 CrO4  6 NaHSO3  3H 2 SO4 o (5.106) o 2Cr2 ( SO4 ) 3  3Na 2 SO4  10 H 2 O Ⱦɥɹ ɨɫɚɠɞɟɧɢɹ ɬɪɟɯɜɚɥɟɧɬɧɨɝɨ ɯɪɨɦɚ ɩɪɢɦɟɧɹɸɬ ɳɟɥɨɱɧɵɟ ɪɟɚɝɟɧɬɵ Ca (OH ) 2 , NaOH ɢ ɞɪ.: Cr 3  3OH  Cr (OH ) 3 . ȼɨɫɫɬɚɧɨɜɥɟɧɢɟ ɞɢɨɤɫɢɞɨɦ ɫɟɪɵ ɩɪɨɢɫɯɨɞɢɬ ɩɨ ɫɯɟɦɟ: SO2  H 2 O o H 2 SO3 , 2CrO3  3H 2 SO3 o Cr2 ( SO4 ) 3  3H 2 O (5.107) (5.108) ȼ ɩɪɢɫɭɬɫɬɜɢɢ ɫɨɞɵ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ ɯɪɨɦ ɩɨɥɧɨɫɬɶɸ ɭɞɚɥɹɟɬɫɹ ɢɡ ɧɢɯ: 6 Na 2 CrO4  SO2  Na 2 CO3  nH 2 O (5.109) Cr2 O3 ˜ nH 2 O  3 Na 2 SO4  CO2 5.3.4. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɢɨɧɨɜ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ Ⱦɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɫɨɟɞɢɧɟɧɢɣ ɪɬɭɬɢ, ɯɪɨɦɚ, ɤɚɞɦɢɹ, ɰɢɧɤɚ, ɫɜɢɧɰɚ, ɦɟɞɢ, ɧɢɤɟɥɹ, ɦɵɲɶɹɤɚ ɢ ɞɪɭɝɢɯ ɜɟɳɟɫɬɜ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ ɪɟɚɝɟɧɬɧɵɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ, ɫɭɳɧɨɫɬɶ ɤɨɬɨɪɵɯ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɩɟɪɟɜɨɞɟ ɪɚɫɬɜɨɪɢɦɵɯ ɜ ɜɨɞɟ ɜɟɳɟɫɬɜ ɜ ɧɟɪɚɫɬɜɨɪɢɦɵɟ ɩɪɢ ɞɨɛɚɜɥɟɧɢɢ ɪɚɡɥɢɱɧɵɯ ɪɟɚɝɟɧɬɨɜ ɫ ɩɨɫɥɟɞɭɸɳɢɦ ɨɬɞɟɥɟɧɢɟɦ ɢɯ ɨɬ ɜɨɞɵ ɜ ɜɢɞɟ ɨɫɚɞɤɨɜ. ȼ ɤɚɱɟɫɬɜɟ ɪɟɚɝɟɧɬɨɜ ɞɥɹ ɭɞɚɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɢɨɧɨɜ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ ɢɫɩɨɥɶɡɭɸɬ ɝɢɞɪɨɤɫɢɞɵ ɤɚɥɶɰɢɹ ɢ ɧɚɬɪɢɹ, ɤɚɪɛɨɧɚɬ ɧɚɬɪɢɹ, ɫɭɥɶɮɢɞɵ ɧɚɬɪɢɹ, ɪɚɡɥɢɱɧɵɟ ɨɬɯɨɞɵ. ɇɚɢɛɨɥɟɟ ɲɢɪɨɤɨ ɢɫɩɨɥɶɡɭɟɬɫɹ ɝɢɞɪɨɤɫɢɞ ɤɚɥɶɰɢɹ. Ɉɫɚɠɞɟɧɢɟ ɦɟɬɚɥɥɨɜ ɩɪɨɢɫɯɨɞɢɬ ɜ ɜɢɞɟ ɝɢɞɪɨɤɫɢɞɨɜ. ɉɪɢ ɨɛɪɚɛɨɬɤɟ ɤɢɫɥɵɯ ɜɨɞ ɨɤɫɢɞɨɦ ɤɚɥɶɰɢɹ ɢ ɝɢɞɪɨɤɫɢɞɨɦ ɧɚɬɪɢɹ ɢɨɧɵ ɰɢɧɤɚ, ɦɟɞɢ, ɧɢɤɟɥɹ, ɫɜɢɧɰɚ, ɤɚɞɦɢɹ, ɤɨɛɚɥɶɬɚ, ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɫɬɨɤɚɯ, ɫɜɹɡɵɜɚɸɬɫɹ ɜ ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɟ ɫɨɟɞɢɧɟɧɢɹ. ȼɵɞɟɥɟɧɢɟ ɤɚɬɢɨɧɨɜ Zn 2 ɳɟɥɨɱɚɦɢ ɨɫɧɨɜɚɧɨ ɧɚ ɩɟɪɟɜɨɞɟ ɢɯ ɜ ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɣ ɝɢɞɪɨɤɫɢɞ ɰɢɧɤɚ: Zn 2  2OH  o Zn(OH ) 2 p . (5.110) ɉɪɢ ɞɟɣɫɬɜɢɢ ɫɨɞɵ ɧɚ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɫɨɞɟɪɠɚɳɢɟ ɫɨɥɢ ɰɢɧɤɚ, ɨɛɪɚɡɭɸɬɫɹ ɝɢɞɪɨɤɫɨɤɚɪɛɨɧɚɬɵ: 2 ZnCl 2  2 Na 2 CO3  H 2 O o 4 NaCl  CO2  ( ZnOH 2 )CO3 p . (5.111) Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɦɟɞɢ ɫɜɹɡɚɧɚ ɫ ɨɫɚɠɞɟɧɢɟɦ ɟɟ ɜ ɜɢɞɟ ɝɢɞɪɨɤɫɢɞɚ ɢɥɢ ɝɢɞɪɨɤɫɢɞ-ɤɚɪɛɨɧɚɬɚ: Cu 2  2OH  o Cu (OH ) 2 , (5.112) 2Cu 2  2OH   CO 2 o (CuOH ) 2 CO3 p . (5.113) ȼɨɡɦɨɠɟɧ ɩɪɨɰɟɫɫ ɢɡɜɥɟɱɟɧɢɹ ɦɟɞɢ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɨɫɚɠɞɟɧɢɟɦ ɮɟɪɪɨɰɢɚɧɢɞɨɦ ɤɚɥɢɹ. ɗɬɨɬ ɪɟɚɝɟɧɬ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧ ɢ ɞɥɹ ɨɫɚɠɞɟɧɢɹ ɞɪɭɝɢɯ ɢɨɧɨɜ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɧɢɤɟɥɹ ɨɫɧɨɜɚɧɚ ɧɚ ɜɵɞɟɥɟɧɢɢ ɟɝɨ ɢɡ ɪɚɫɬɜɨɪɚ ɜ ɜɢɞɟ ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɯ ɫɨɟɞɢɧɟɧɢɣ: Ni 2  2OH  o Ni (OH ) 2 p , (5.114) Ni 2  CO32 o NiCO3 p . (5.115) ɇɚɯɨɞɹɳɢɟɫɹ ɜ ɪɚɫɬɜɨɪɟ ɤɚɬɢɨɧɵ ɫɜɢɧɰɚ ɩɟɪɟɜɨɞɹɬ ɜ ɨɫɚɞɨɤ ɜ ɜɢɞɟ ɨɞɧɨɝɨ ɢɡ ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɯ ɫɨɟɞɢɧɟɧɢɣ: Pb 2  2OH  o Pb(OH ) 2 p , (5.116) Pb 2  CO32 o PbCO3 p . (5.117) Ɉɛɪɚɛɨɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɳɟɥɨɱɧɵɦɢ ɪɟɚɝɟɧɬɚɦɢ ɩɨɡɜɨɥɹɟɬ ɫɧɢɡɢɬɶ ɫɨɞɟɪɠɚɧɢɟ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ ɜ ɪɚɫɬɜɨɪɟ ɞɨ ɜɟɥɢɱɢɧɵ, ɫɨɩɨɫɬɚɜɢɦɵɯ ɫ ɉȾɄ ɞɥɹ ɜɨɞɨɟɦɨɜ ɫɚɧɢɬɚɪɧɨ-ɛɵɬɨɜɨɝɨ ɩɨɥɶɡɨɜɚɧɢɹ. Ȼɨɥɟɟ ɝɥɭɛɨɤɚɹ ɨɱɢɫɬɤɚ ɨɬ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɨɛɪɚɛɨɬɤɟ ɫɬɨɱɧɵɯ ɜɨɞ ɫɭɥɶɮɢɞɨɦ ɧɚɬɪɢɹ. Ɋɟɚɤɰɢɢ ɧɟɣɬɪɚɥɢɡɚɰɢɢ ɢɦɟɸɬ ɩɟɪɜɵɣ ɩɨɪɹɞɨɤ: (5.118) dc / dW k1 ˜ C , ɝɞɟ C - ɤɨɧɰɟɧɬɪɚɰɢɹ ɫɨɥɢ ɦɟɬɚɥɥɚ; W - ɜɪɟɦɹ ɪɟɚɤɰɢɢ; k1 - ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɜɨɞɵ ɫ ɜɵɫɨɤɢɦ ɫɨɞɟɪɠɚɧɢɟɦ ɦɵɲɶɹɤɚ ɩɪɢɦɟɧɹɸɬ ɦɟɬɨɞ ɯɢɦɢɱɟɫɤɨɝɨ ɟɝɨ ɨɫɚɠɞɟɧɢɹ ɜ ɜɢɞɟ ɬɪɭɞɧɨɪɚɫɬɜɨɪɢɦɵɯ ɫɨɟɞɢɧɟɧɢɣ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɤɢɫɥɨɪɨɞɨɫɨɞɟɪɠɚɳɢɯ ɫɨɟɞɢɧɟɧɢɣ ɦɵɲɶɹɤɚ ɩɪɢɦɟɧɹɸɬ ɢɡɜɟɫɬɤɨɜɨɟ ɦɨɥɨɤɨ. ɂɡ ɫɢɥɶɧɨɤɢɫɥɵɯ ɪɚɫɬɜɨɪɨɜ ɦɵɲɶɹɤ ɨɫɚɠɞɚɸɬ ɫɭɥɶɮɢɞɨɦ ɧɚɬɪɢɹ, ɫɟɪɨɜɨɞɨɪɨɞɨɦ. Ɉɱɢɫɬɤɭ ɫɭɥɶɮɢɞɧɨ-ɳɟɥɨɱɧɵɯ ɫɬɨɤɨɜ ɨɬ ɦɵɲɶɹɤɚ ɩɪɨɜɨɞɹɬ ɫɭɥɶɮɚɬɨɦ ɠɟɥɟɡɚ (ɠɟɥɟɡɧɵɦ ɤɭɩɨɪɨɫɨɦ). ɋɨɟɞɢɧɟɧɢɹ ɬɪɟɯɜɚɥɟɧɬɧɨɝɨ ɦɵɲɶɹɤɚ ɩɟɪɟɞ ɨɫɚɠɞɟɧɢɟɦ ɨɤɢɫɥɹɸɬ ɞɨ ɩɹɬɢɜɚɥɟɧɬɧɨɝɨ. ȼ ɤɚɱɟɫɬɜɟ ɨɤɢɫɥɢɬɟɥɟɣ ɢɫɩɨɥɶɡɭɸɬ ɯɥɨɪɧɭɸ ɢɡɜɟɫɬɶ, ɯɥɨɪ, ɩɟɪɨɤɫɢɞ ɜɨɞɨɪɨɞɚ, ɚɡɨɬɧɭɸ ɤɢɫɥɨɬɭ, ɨɡɨɧ, ɩɢɪɨɥɸɡɢɬ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɨɬ ɫɨɥɟɣ ɠɟɥɟɡɚ ɩɪɢɦɟɧɹɸɬ ɚɷɪɚɰɢɸ, ɜ ɩɪɨɰɟɫɫɟ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɨɤɢɫɥɟɧɢɟ ɞɜɭɯɜɚɥɟɧɬɧɨɝɨ ɠɟɥɟɡɚ ɜ ɬɪɟɯɜɚɥɟɧɬɧɨɟ: 4 Fe 2  O2  10 H 2 O 4 Fe(OH ) 3  8H  . (5.119) ɉɪɢ ɜɵɫɨɤɨɦ ɫɨɞɟɪɠɚɧɢɢ ɠɟɥɟɡɚ ɜ ɜɨɞɟ ɩɪɢɦɟɧɹɸɬ ɪɟɚɝɟɧɬɧɵɟ ɦɟɬɨɞɵ. Ⱦɥɹ ɷɬɨɣ ɰɟɥɢ ɢɫɩɨɥɶɡɭɸɬ ɯɥɨɪ, ɯɥɨɪɢɬ ɤɚɥɶɰɢɹ (ɯɥɨɪɧɭɸ ɢɡɜɟɫɬɶ), ɩɟɪɦɚɧɝɚɧɚɬ ɤɚɥɢɹ, ɨɡɨɧ, ɨɤɫɢɞ ɤɚɥɶɰɢɹ (ɢɡɜɟɫɬɶ), ɤɚɪɛɨɧɚɬ ɧɚɬɪɢɹ (ɫɨɞɭ). ɉɪɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɫɨɟɞɢɧɟɧɢɣ ɠɟɥɟɡɚ ɫ ɯɥɨɪɨɦ ɩɪɨɬɟɤɚɟɬ ɪɟɚɤɰɢɹ: (5.120) Fe( HCO3 ) 2  Cl 2  Ca( HCO3 ) 2 o 2 Fe(OH ) 3 p CaCl2  6CO2 n . ɍɞɚɥɟɧɢɟ ɢɡ ɜɨɞɵ ɦɚɪɝɚɧɰɚ ɦɨɠɟɬ ɛɵɬɶ ɞɨɫɬɢɝɧɭɬɨ: ɨɛɪɚɛɨɬɤɨɣ ɜɨɞɵ ɩɟɪɦɚɧɝɚɧɚɬɨɦ ɤɚɥɢɹ; ɚɷɪɚɰɢɟɣ, ɫɨɜɦɟɳɟɧɧɨɣ ɫ ɢɡɜɟɫɬɤɨɜɚɧɢɟɦ; ɮɢɥɶɬɪɨɜɚɧɢɟɦ ɜɨɞɵ ɱɟɪɟɡ ɦɚɪɝɚɧɰɟɜɵɣ ɩɟɫɨɤ ɢɥɢ ɦɚɪɝɚɧɰɟɜɵɣ ɤɚɬɢɨɧɢɬ; ɨɤɢɫɥɟɧɢɟɦ ɨɡɨɧɨɦ, ɯɥɨɪɨɦ ɢɥɢ ɞɢɨɤɫɢɞɨɦ ɯɥɨɪɚ. 5.4. ɉɪɨɰɟɫɫɵ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ȼɢɨɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɱɢɫɬɤɢ ɯɨɡɹɣɫɬɜɟɧɧɨ-ɛɵɬɨɜɵɯ ɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɦɧɨɝɢɯ ɪɚɫɬɜɨɪɟɧɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɢ ɧɟɤɨɬɨɪɵɯ ɧɟɨɪɝɚɧɢɱɟɫɤɢɯ (ɫɟɪɨɜɨɞɨɪɨɞɚ, ɫɭɥɶɮɢɞɨɜ, ɚɦɦɢɚɤɚ, ɧɢɬɪɢɬɨɜ) ɜɟɳɟɫɬɜ. ɉɪɨɰɟɫɫ ɨɱɢɫɬɤɢ ɨɫɧɨɜɚɧ ɧɚ ɫɩɨɫɨɛɧɨɫɬɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɢɫɩɨɥɶɡɨɜɚɬɶ ɷɬɢ ɜɟɳɟɫɬɜɚ ɞɥɹ ɩɢɬɚɧɢɹ ɜ ɩɪɨɰɟɫɫɟ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ, ɬɚɤ ɤɚɤ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ ɞɥɹ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɹɜɥɹɸɬɫɹ ɢɫɬɨɱɧɢɤɨɦ ɭɝɥɟɪɨɞɚ. 5.4.1. Ɉɫɧɨɜɧɵɟ ɩɨɤɚɡɚɬɟɥɢ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ʉɨɧɬɚɤɬɢɪɭɹ ɫ ɨɪɝɚɧɢɱɟɫɤɢɦɢ ɜɟɳɟɫɬɜɚɦɢ, ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ ɱɚɫɬɢɱɧɨ ɪɚɡɪɭɲɚɸɬ ɢɯ, ɩɪɟɜɪɚɳɚɹ ɜ ɜɨɞɭ, ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ, ɧɢɬɪɢɬ- ɢ ɫɭɥɶɮɚɬ-ɢɨɧɵ ɢ ɞɪ. Ⱦɪɭɝɚɹ ɱɚɫɬɶ ɜɟɳɟɫɬɜɚ ɢɞɟɬ ɧɚ ɨɛɪɚɡɨɜɚɧɢɟ ɛɢɨɦɚɫɫɵ. Ɋɚɡɪɭɲɟɧɢɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɧɚɡɵɜɚɸɬ ɛɢɨɯɢɦɢɱɟɫɤɢɦ ɨɤɢɫɥɟɧɢɟɦ. Ȼɢɨɯɢɦɢɱɟɫɤɢɟ ɩɨɤɚɡɚɬɟɥɢ. ɋɬɨɱɧɵɟ ɜɨɞɵ, ɧɚɩɪɚɜɥɹɟɦɵɟ ɧɚ ɛɢɨɯɢɦɢɱɟɫɤɭɸ ɨɱɢɫɬɤɭ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɭɸɫɹ ɜɟɥɢɱɢɧɨɣ ȻɉɄ ɢ ɏɉɄ. ȻɉɄ – ɷɬɨ ɛɢɨɯɢɦɢɱɟɫɤɚɹ ɩɨɬɪɟɛɧɨɫɬɶ ɜ ɤɢɫɥɨɪɨɞɟ, ɬ.ɟ. ɤɨɥɢɱɟɫɬɜɨ ɤɢɫɥɨɪɨɞɚ, ɢɫɩɨɥɶɡɨɜɚɧɧɨɝɨ ɩɪɢ ɛɢɨɯɢɦɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɚɯ ɨɤɢɫɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ (ɧɟ ɜɤɥɸɱɚɹ ɩɪɨɰɟɫɫɚ ɧɢɬɪɢɮɢɤɚɰɢɢ) ɡɚ ɨɩɪɟɞɟɥɟɧɧɵɣ ɩɪɨɦɟɠɭɬɨɤ ɜɪɟɦɟɧɢ (2, 5, 8, 10, 20 ɫɭɬɨɤ), ɜ ɦɝ Ɉ2 ɧɚ 1 ɦɝ ɜɟɳɟɫɬɜɚ. ɇɚɩɪɢɦɟɪ ȻɉɄ5 – ɛɢɨɯɢɦɢɱɟɫɤɚɹ ɩɨɬɪɟɛɧɨɫɬɶ ɜ ɤɢɫɥɨɪɨɞɟ ɡɚ 5 ɫɭɬ, ȻɉɄɩɨɥɧ – ɩɨɥɧɚɹ ȻɉɄ ɞɨ ɧɚɱɚɥɚ ɩɪɨɰɟɫɫɚ ɧɢɬɪɢɮɢɤɚɰɢɢ. ɏɉɄ – ɯɢɦɢɱɟɫɤɚɹ ɩɨɬɪɟɛɧɨɫɬɶ ɜ ɤɢɫɥɨɪɨɞɟ, ɬ.ɟ. ɤɨɥɢɱɟɫɬɜɨ ɤɢɫɥɨɪɨɞɚ, ɷɤɜɢɜɚɥɟɧɬɧɨɟ ɤɨɥɢɱɟɫɬɜɭ ɪɚɫɯɨɞɭɟɦɨɝɨ ɨɤɢɫɥɢɬɟɥɹ, ɧɟɨɛɯɨɞɢɦɨɝɨ ɞɥɹ ɨɤɢɫɥɟɧɢɹ ɜɫɟɯ ɜɨɫɫɬɚɧɨɜɢɬɟɥɟɣ, ɫɨɞɟɪɠɚɳɢɯɫɹ ɜ ɜɨɞɟ. ɏɉɄ ɬɚɤɠɟ ɜɵɪɚɠɚɸɬ ɜ ɦɝ Ɉ2 ɧɚ 1 ɦɝ ɜɟɳɟɫɬɜɚ. Ȼɢɨɯɢɦɢɱɟɫɤɨɣ ɚɤɬɢɜɧɨɫɬɶɸ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɧɚɡɵɜɚɸɬ ɛɢɨɯɢɦɢɱɟɫɤɭɸ ɞɟɹɬɟɥɶɧɨɫɬɶ, ɫɜɹɡɚɧɧɭɸ ɫ ɪɚɡɪɭɲɟɧɢɟɦ ɨɪɝɚɧɢɱɟɫɤɢɯ ɡɚɝɪɹɡɧɟɧɢɣ ɫɬɨɱɧɵɯ ɜɨɞ. ȼɨɡɦɨɠɧɨɫɬɶ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ (ɛɢɨɪɚɡɥɚɝɚɟɦɨɫɬɶ ɫɬɨɱɧɵɯ ɜɨɞ) ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɱɟɪɟɡ ɛɢɨɯɢɦɢɱɟɫɤɢɣ ɩɨɤɚɡɚɬɟɥɶ, ɬ.ɟ. ɨɬɧɨɲɟɧɢɟɦ ȻɉɄɩɨɥɧ/ɏɉɄ. ȿɝɨ ɡɧɚɱɟɧɢɟ ɤɨɥɟɛɥɟɬɫɹ ɜ ɲɢɪɨɤɢɯ ɩɪɟɞɟɥɚɯ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɝɪɭɩɩ ɫɬɨɱɧɵɯ ɜɨɞ: ɩɪɨɦɵɲɥɟɧɧɵɟ ɫɬɨɱɧɵɟ ɜɨɞɵ ɢɦɟɸɬ ɧɢɡɤɢɣ ɛɢɨɯɢɦɢɱɟɫɤɢɣ ɩɨɤɚɡɚɬɟɥɶ (0,05…0,3), ɛɵɬɨɜɵɟ ɫɬɨɱɧɵɟ ɜɨɞɵ – ɫɜɵɲɟ 0,5. ɉɪɢ ɨɬɧɨɲɟɧɢɢ (ȻɉɄ/ɏɉɄ).100% = 50% ɜɟɳɟɫɬɜɚ ɩɨɞɞɚɸɬɫɹ ɛɢɨɯɢɦɢɱɟɫɤɨɦɭ ɨɤɢɫɥɟɧɢɸ. ɉɪɢ ɷɬɨɦ ɧɟɨɛɯɨɞɢɦɨ, ɱɬɨɛɵ ɫɬɨɱɧɵɟ ɜɨɞɵ ɧɟ ɫɨɞɟɪɠɚɥɢ ɹɞɨɜɢɬɵɯ ɜɟɳɟɫɬɜ ɢ ɩɪɢɦɟɫɟɣ ɫɨɥɟɣ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ. Ȼɢɨɯɢɦɢɱɟɫɤɢɣ ɩɨɤɚɡɚɬɟɥɶ ɧɟɨɛɯɨɞɢɦ ɞɥɹ ɪɚɫɱɟɬɚ ɢ ɷɤɫɩɥɭɚɬɚɰɢɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɨɨɪɭɠɟɧɢɣ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ. Ⱦɥɹ ɜɨɡɦɨɠɧɨɫɬɢ ɩɨɞɚɱɢ ɫɬɨɱɧɵɯ ɜɨɞ ɧɚ ɛɢɨɯɢɦɢɱɟɫɤɭɸ ɨɱɢɫɬɤɭ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɦɚɤɫɢɦɚɥɶɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ ɬɨɤɫɢɱɧɵɯ ɜɟɳɟɫɬɜ, ɤɨɬɨɪɵɟ ɧɟ ɜɥɢɹɸɬ ɧɚ ɩɪɨɰɟɫɫɵ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ (ɆɄɛ) ɢ ɧɚ ɪɚɛɨɬɭ ɨɱɢɫɬɧɵɯ ɫɨɨɪɭɠɟɧɢɣ (ɆɄɛ.ɨ.ɫ.). Ⱦɥɹ ɧɟɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɤɨɬɨɪɵɟ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɩɨɞɞɚɸɬɫɹ ɛɢɨɯɢɦɢɱɟɫɤɨɦɭ ɨɤɢɫɥɟɧɢɸ, ɬɚɤɠɟ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɦɚɤɫɢɦɚɥɶɧɵɟ ɤɨɧɰɟɧɬɪɚɰɢɢ, ɩɪɢ ɩɪɟɜɵɲɟɧɢɢ ɤɨɬɨɪɵɯ ɜɨɞɭ ɧɟɥɶɡɹ ɩɨɞɜɟɪɝɚɬɶ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɟ. 5.4.2. Ɇɟɬɨɞ ɚɷɪɨɛɧɨɣ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɂɡɜɟɫɬɧɵ ɚɷɪɨɛɧɵɟ ɢ ɚɧɚɷɪɨɛɧɵɟ ɦɟɬɨɞɵ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ. Ⱥɷɪɨɛɧɵɣ ɦɟɬɨɞ ɨɫɧɨɜɚɧ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɚɷɪɨɛɧɵɯ ɝɪɭɩɩ ɨɪɝɚɧɢɡɦɨɜ, ɞɥɹ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ ɤɨɬɨɪɵɯ ɧɟɨɛɯɨɞɢɦ ɩɨɫɬɨɹɧɧɵɣ ɩɪɢɬɨɤ ɤɢɫɥɨɪɨɞɚ ɢ ɬɟɦɩɟɪɚɬɭɪɚ 20…40qɋ. ɉɪɢ ɚɷɪɨɛɧɨɣ ɨɱɢɫɬɤɟ ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ ɤɭɥɶɬɢɜɢɪɭɸɬɫɹ ɜ ɚɤɬɢɜɧɨɦ ɢɥɟ ɢɥɢ ɛɢɨɩɥɟɧɤɟ. Ⱥɧɚɷɪɨɛɧɵɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɩɪɨɬɟɤɚɸɬ ɛɟɡ ɞɨɫɬɭɩɚ ɤɢɫɥɨɪɨɞɚ; ɢɯ ɢɫɩɨɥɶɡɭɸɬ ɜ ɨɫɧɨɜɧɨɦ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɨɫɚɞɤɨɜ. Ⱥɤɬɢɜɧɵɣ ɢɥ ɫɨɫɬɨɢɬ ɢɡ ɠɢɜɵɯ ɨɪɝɚɧɢɡɦɨɜ ɢ ɬɜɟɪɞɨɝɨ ɫɭɛɫɬɪɚɬɚ. ɋɨɨɛɳɟɫɬɜɨ ɜɫɟɯ ɠɢɜɵɯ ɨɪɝɚɧɢɡɦɨɜ (ɫɤɨɩɥɟɧɢɹ ɛɚɤɬɟɪɢɣ, ɩɪɨɫɬɟɣɲɢɟ ɱɟɪɜɢ, ɩɥɟɫɧɟɜɵɟ ɝɪɢɛɵ, ɞɪɨɠɠɢ, ɚɤɬɢɧɨɦɢɰɟɬɵ, ɜɨɞɨɪɨɫɥɢ), ɧɚɫɟɥɹɸɳɢɯ ɢɥ, ɧɚɡɵɜɚɸɬ ɛɢɨɰɟɧɨɡɨɦ. Ⱥɤɬɢɜɧɵɣ ɢɥ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɚɦɮɨɬɟɪɧɭɸ ɤɨɥɥɨɢɞɧɭɸ ɫɢɫɬɟɦɭ, ɢɦɟɸɳɭɸ ɩɪɢ ɪɇ = 4…9 ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɚɪɹɞ. ɋɭɯɨɟ ɜɟɳɟɫɬɜɨ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɫɨɞɟɪɠɢɬ 70…90 % ɨɪɝɚɧɢɱɟɫɤɢɯ ɢ 30…10 % ɧɟɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. ɋɭɛɫɬɪɚɬ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɬɜɟɪɞɭɸ ɨɬɦɟɪɲɭɸ ɱɚɫɬɶ ɨɫɬɚɬɤɨɜ ɜɨɞɨɪɨɫɥɟɣ ɢ ɪɚɡɥɢɱɧɵɯ ɬɜɟɪɞɵɯ ɨɫɬɚɬɤɨɜ; ɤ ɧɟɦɭ ɩɪɢɤɪɟɩɥɹɸɬɫɹ ɨɪɝɚɧɢɡɦɵ ɚɤɬɢɜɧɨɝɨ ɢɥɚ. ɋɭɛɫɬɪɚɬ ɫɨɫɬɚɜɥɹɟɬ ɞɨ 40 % ɜ ɚɤɬɢɜɧɨɦ ɢɥɟ. ȼ ɚɤɬɢɜɧɨɦ ɢɥɟ ɧɚɯɨɞɹɬɫɹ ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ ɪɚɡɥɢɱɧɵɯ ɝɪɭɩɩ. ɉɨ ɷɤɨɥɨɝɢɱɟɫɤɢɦ ɝɪɭɩɩɚɦ ɦɢɤɪɨɨɪɝɚɧɢɡɦɵ ɞɟɥɹɬɫɹ ɧɚ ɚɷɪɨɛɨɜ ɢ ɚɧɚɷɪɨɛɨɜ, ɬɟɪɦɨɮɢɥɨɜ ɢ ɦɟɡɨɮɢɥɨɜ, ɝɚɥɨɮɢɥɨɜ ɢ ɝɚɥɨɮɨɛɨɜ. Ʉɚɱɟɫɬɜɨ ɢɥɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɤɨɪɨɫɬɶɸ ɟɝɨ ɨɫɚɠɞɟɧɢɹ ɢ ɫɬɟɩɟɧɶɸ ɨɱɢɫɬɤɢ ɠɢɞɤɨɫɬɢ. ɋɨɫɬɨɹɧɢɟ ɢɥɚ ɯɚɪɚɤɬɟɪɢɡɭɟɬ “ɢɥɨɜɵɣ ɢɧɞɟɤɫ”, ɤɨɬɨɪɵɣ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɨɬɧɨɲɟɧɢɟ ɨɛɴɟɦɚ ɨɫɚɠɞɚɟɦɨɣ ɱɚɫɬɢ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɤ ɦɚɫɫɟ ɜɵɫɭɲɟɧɧɨɝɨ ɨɫɚɞɤɚ (ɜ ɝɪɚɦɦɚɯ) ɩɨɫɥɟ ɨɬɫɬɚɢɜɚɧɢɹ ɜ ɬɟɱɟɧɢɟ 30 ɦɢɧ. ɑɟɦ ɯɭɠɟ ɨɫɟɞɚɟɬ ɢɥ, ɬɟɦ ɛɨɥɟɟ ɜɵɫɨɤɢɣ “ɢɥɨɜɵɣ ɢɧɞɟɤɫ” ɨɧ ɢɦɟɟɬ. Ȼɢɨɩɥɟɧɤɚ ɪɚɫɬɟɬ ɧɚ ɧɚɩɨɥɧɢɬɟɥɟ ɛɢɨɮɢɥɶɬɪɚ, ɨɧɚ ɢɦɟɟɬ ɜɢɞ ɫɥɢɡɢɫɬɵɯ ɨɛɪɚɫɬɚɧɢɣ ɬɨɥɳɢɧɨɣ 1…3 ɦɦ ɢ ɛɨɥɟɟ. Ȼɢɨɩɥɟɧɤɚ ɫɨɫɬɨɢɬ ɢɡ ɛɚɤɬɟɪɢɣ, ɝɪɢɛɨɜ, ɞɪɨɠɠɟɣ ɢ ɞɪɭɝɢɯ ɨɪɝɚɧɢɡɦɨɜ. ɑɢɫɥɨ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ ɜ ɛɢɨɩɥɟɧɤɟ ɦɟɧɶɲɟ, ɱɟɦ ɜ ɚɤɬɢɜɧɨɦ ɢɥɟ. 5.4.3. Ɇɟɯɚɧɢɡɦ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɪɚɫɩɚɞɚ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɉɪɢɪɨɫɬ ɛɢɨɦɚɫɫɵ ɩɪɨɢɫɯɨɞɢɬ ɜ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ. Ɉɧ ɡɚɜɢɫɢɬ ɨɬ ɯɢɦɢɱɟɫɤɨɣ ɩɪɢɪɨɞɵ ɡɚɝɪɹɡɧɟɧɢɣ, ɜɢɞɚ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ, ȻɉɄ ɢ ɏɉɄ, ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɮɨɫɮɨɪɚ ɢ ɚɡɨɬɚ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ, ɨɬ ɟɟ ɬɟɦɩɟɪɚɬɭɪɵ. Ⱦɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɩɪɨɢɫɯɨɞɢɥ ɩɪɨɰɟɫɫ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ, ɨɧɢ ɞɨɥɠɧɵ ɩɨɩɚɫɬɶ ɜɧɭɬɪɶ ɤɥɟɬɨɤ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ. Ʉ ɩɨɜɟɪɯɧɨɫɬɢ ɤɥɟɬɨɤ ɜɟɳɟɫɬɜɚ ɩɨɫɬɭɩɚɸɬ ɡɚ ɫɱɟɬ ɤɨɧɜɟɤɬɢɜɧɨɣ ɢ ɦɨɥɟɤɭɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ, ɚ ɜɨ ɜɧɭɬɪɶ ɤɥɟɬɨɤ – ɞɢɮɮɭɡɢɟɣ ɱɟɪɟɡ ɩɨɥɭɩɪɨɧɢɰɚɟɦɵɟ ɰɢɬɨɩɥɚɡɦɚɬɢɱɟɫɤɢɟ ɦɟɦɛɪɚɧɵ. ɇɨ ɛɨɥɶɲɚɹ ɱɚɫɬɶ ɜɟɳɟɫɬɜɚ ɩɨɩɚɞɚɟɬ ɜɧɭɬɪɶ ɤɥɟɬɨɤ ɩɪɢ ɩɨɦɨɳɢ ɫɩɟɰɢɮɢɱɟɫɤɨɝɨ ɛɟɥɤɚɩɟɪɟɧɨɫɱɢɤɚ. Ɉɛɪɚɡɭɸɳɢɣɫɹ ɪɚɫɬɜɨɪɢɦɵɣ ɤɨɦɩɥɟɤɫ “ɜɟɳɟɫɬɜɨ-ɩɟɪɟɧɨɫɱɢɤ” ɞɢɮɮɭɧɞɢɪɭɟɬ ɱɟɪɟɡ ɦɟɦɛɪɚɧɭ ɜ ɤɥɟɬɤɭ, ɝɞɟ ɨɧ ɪɚɫɩɚɞɚɟɬɫɹ, ɢ ɛɟɥɨɤɩɟɪɟɧɨɫɱɢɤ ɜɤɥɸɱɚɟɬɫɹ ɜ ɧɨɜɵɣ ɰɢɤɥ ɩɟɪɟɧɨɫɚ ɜɟɳɟɫɬɜɚ. Ɉɫɧɨɜɧɭɸ ɪɨɥɶ ɜ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɝɪɚɸɬ ɩɪɨɰɟɫɫɵ ɩɪɟɜɪɚɳɟɧɢɹ ɜɟɳɟɫɬɜɚ, ɩɪɨɬɟɤɚɸɳɢɟ ɜɧɭɬɪɢ ɤɥɟɬɨɤ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ. ɗɬɢ ɩɪɨɰɟɫɫɵ ɡɚɤɚɧɱɢɜɚɸɬɫɹ ɨɤɢɫɥɟɧɢɟɦ ɜɟɳɟɫɬɜɚ ɫ ɜɵɞɟɥɟɧɢɟɦ ɷɧɟɪɝɢɢ ɢ ɫɢɧɬɟɡɨɦ ɧɨɜɵɯ ɜɟɳɟɫɬɜ ɫ ɡɚɬɪɚɬɨɣ ɷɧɟɪɝɢɢ. 5.4.4. Ʉɢɧɟɬɢɤɚ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɋɤɨɪɨɫɬɶ ɛɢɨɯɢɦɢɱɟɫɤɢɯ ɪɟɚɤɰɢɣ ɨɩɪɟɞɟɥɹɟɬɫɹ ɚɤɬɢɜɧɨɫɬɶɸ ɮɟɪɦɟɧɬɨɜ, ɤɨɬɨɪɚɹ ɡɚɜɢɫɢɬ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ, ɪɇ ɢ ɩɪɢɫɭɬɫɬɜɢɹ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ ɪɚɡɥɢɱɧɵɯ ɜɟɳɟɫɬɜ. Ɏɟɪɦɟɧɬɵ, ɩɪɟɞɫɬɚɜɥɹɸɳɢɟ ɫɨɛɨɣ ɫɥɨɠɧɵɟ ɛɟɥɤɨɜɵɟ ɫɨɟɞɢɧɟɧɢɹ, ɜɵɩɨɥɧɹɸɬ ɪɨɥɶ ɭɫɤɨɪɹɸɳɢɯ ɤɚɬɚɥɢɡɚɬɨɪɨɜ. ɋ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɫɤɨɪɨɫɬɶ ɮɟɪɦɟɧɬɚɬɢɜɧɵɯ ɩɪɨɰɟɫɫɨɜ ɩɨɜɵɲɚɟɬɫɹ, ɧɨ ɞɨ ɨɩɪɟɞɟɥɟɧɧɨɝɨ ɩɪɟɞɟɥɚ. Ⱦɥɹ ɤɚɠɞɨɝɨ ɮɟɪɦɟɧɬɚ ɢɦɟɟɬɫɹ ɨɩɬɢɦɚɥɶɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ, ɜɵɲɟ ɤɨɬɨɪɨɣ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɩɚɞɚɟɬ. Ʉ ɱɢɫɥɭ ɜɟɳɟɫɬɜ-ɚɤɬɢɜɚɬɨɪɨɜ, ɩɨɜɵɲɚɸɳɢɯ ɚɤɬɢɜɧɨɫɬɶ ɮɟɪɦɟɧɬɨɜ, ɨɬɧɨɫɹɬɫɹ ɦɧɨɝɢɟ ɜɢɬɚɦɢɧɵ ɢ ɤɚɬɢɨɧɵ ɋɚ2+, Ɇg2+, Ɇn2+. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɫɨɥɢ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ, ɫɢɧɢɥɶɧɚɹ ɤɢɫɥɨɬɚ, ɚɧɬɢɛɢɨɬɢɤɢ ɹɜɥɹɸɬɫɹ ɢɧɝɢɛɢɬɨɪɚɦɢ, ɬ.ɟ. ɫɧɢɠɚɸɬ ɚɤɬɢɜɧɨɫɬɶ ɮɟɪɦɟɧɬɨɜ. Ɇɢɤɪɨɨɪɝɚɧɢɡɦɵ ɫɩɨɫɨɛɧɵ ɨɤɢɫɥɹɬɶ ɦɧɨɝɢɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɧɨ ɞɥɹ ɷɬɨɝɨ ɬɪɟɛɭɟɬɫɹ ɪɚɡɧɨɟ ɜɪɟɦɹ ɚɞɚɩɬɚɰɢɢ. Ʌɟɝɤɨ ɨɤɢɫɥɹɸɬɫɹ ɛɟɧɡɨɣɧɚɹ ɤɢɫɥɨɬɚ, ɷɬɢɥɨɜɵɣ ɢ ɚɦɢɥɨɜɵɣ ɫɩɢɪɬɵ, ɝɥɢɤɨɥɢ, ɯɥɨɪɝɢɞɪɢɞɵ, ɚɰɟɬɨɧ, ɝɥɢɰɟɪɢɧ, ɚɧɢɥɢɧ, ɫɥɨɠɧɵɟ ɷɮɢɪɵ. ȼɟɳɟɫɬɜɚ, ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ ɜ ɤɨɥɥɨɢɞɧɨɦ ɢɥɢ ɦɟɥɤɨɞɢɫɩɟɪɫɧɨɦ ɫɨɫɬɨɹɧɢɢ, ɨɤɢɫɥɹɸɬɫɹ ɫ ɦɟɧɶɲɟɣ ɫɤɨɪɨɫɬɶɸ, ɱɟɦ ɜɟɳɟɫɬɜɚ, ɪɚɫɬɜɨɪɟɧɧɵɟ ɜ ɜɨɞɟ. ɍɪɚɜɧɟɧɢɟ ɤɢɧɟɬɢɤɢ ɮɟɪɦɟɧɬɚɬɢɜɧɵɯ ɪɟɚɤɰɢɣ ɩɪɟɞɥɨɠɟɧɨ Ɇɢɯɚɷɥɢɫɨɦ ɢ Ɇɟɧɬɟɧɨɦ. Ɉɧɨ ɨɩɪɟɞɟɥɹɟɬ ɫɤɨɪɨɫɬɶ ɩɪɨɬɟɤɚɧɢɹ ɪɟɚɤɰɢɣ ɜɧɭɬɪɢ ɤɥɟɬɨɤ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ; v = vɦɚɤɫ[S]/(kɦ+[S]), (5.121) ɝɞɟ v = dP/dW - ɫɤɨɪɨɫɬɶ ɨɛɪɚɡɨɜɚɧɢɹ ɩɪɨɞɭɤɬɚ Ɋ ɢɡ ɜɟɳɟɫɬɜɚ S; vɦɚɤɫ - ɦɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɫɤɨɪɨɫɬɢ; kɦ - ɤɨɧɫɬɚɧɬɚ Ɇɢɯɚɷɥɢɫɚ-Ɇɟɧɬɟɧɚ, ɦɨɥɶ/ɥ. Ʉɨɧɫɬɚɧɬɚ kɦ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɮɟɪɦɟɧɬɚɬɢɜɧɨɣ ɪɟɚɤɰɢɢ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫɭɛɫɬɪɚɬɚ ɜ ɫɬɚɰɢɨɧɚɪɧɨɦ ɫɨɫɬɨɹɧɢɢ ɩɪɨɰɟɫɫɚ. Ⱦɥɹ ɨɤɢɫɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɦɢɤɪɨɨɪɝɚɧɢɡɦɚɦɢ ɧɟɨɛɯɨɞɢɦ ɤɢɫɥɨɪɨɞ, ɧɨ ɨɧɢ ɦɨɝɭɬ ɟɝɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɬɨɥɶɤɨ ɜ ɪɚɫɬɜɨɪɟɧɧɨɦ ɜ ɜɨɞɟ ɜɢɞɟ. Ⱦɥɹ ɧɚɫɵɳɟɧɢɹ ɫɬɨɱɧɨɣ ɜɨɞɵ ɤɢɫɥɨɪɨɞɨɦ ɩɪɨɜɨɞɹɬ ɩɪɨɰɟɫɫ ɚɷɪɚɰɢɢ, ɪɚɡɛɢɜɚɹ ɜɨɡɞɭɲɧɵɣ ɩɨɬɨɤ ɧɚ ɩɭɡɵɪɶɤɢ, ɪɚɜɧɨɦɟɪɧɨ ɪɚɫɩɪɟɞɟɥɹɹ ɢɯ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. ɂɡ ɩɭɡɵɪɶɤɨɜ ɜɨɡɞɭɯɚ ɤɢɫɥɨɪɨɞ ɚɛɫɨɪɛɢɪɭɟɬɫɹ ɜɨɞɨɣ, ɚ ɡɚɬɟɦ ɩɟɪɟɧɨɫɢɬɫɹ ɤ ɦɢɤɪɨɨɪɝɚɧɢɡɦɚɦ. Ʉɨɥɢɱɟɫɬɜɨ ɚɛɫɨɪɛɢɪɭɟɦɨɝɨ ɤɢɫɥɨɪɨɞɚ ɦɨɠɟɬ ɛɵɬɶ ɜɵɱɢɫɥɟɧɨ ɩɨ ɭɪɚɜɧɟɧɢɸ ɦɚɫɫɨɨɬɞɚɱɢ: (5.122) Ɇ = EV.V(ɋɪ - ɋ), ɝɞɟ Ɇ - ɤɨɥɢɱɟɫɬɜɨ ɚɛɫɨɪɛɢɪɨɜɚɧɧɨɝɨ ɤɢɫɥɨɪɨɞɚ, ɤɝ/ɫ; EV - ɨɛɴɟɦɧɵɣ ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ, c-1; V - ɨɛɴɟɦ ɫɬɨɱɧɨɣ ɜɨɞɵ ɜ ɫɨɨɪɭɠɟɧɢɢ, ɦ3; ɋɪ, ɋ ɪɚɜɧɨɜɟɫɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ ɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɤɢɫɥɨɪɨɞɚ ɜ ɦɚɫɫɟ ɠɢɞɤɨɫɬɢ, ɤɝ/ɦ3. Ʉɨɥɢɱɟɫɬɜɨ ɚɛɫɨɪɛɢɪɭɟɦɨɝɨ ɤɢɫɥɨɪɨɞɚ ɦɨɠɟɬ ɛɵɬɶ ɭɜɟɥɢɱɟɧɨ ɡɚ ɫɱɟɬ ɪɨɫɬɚ ɤɨɷɮɮɢɰɢɟɧɬɚ ɦɚɫɫɨɨɬɞɚɱɢ ɢɥɢ ɞɜɢɠɭɳɟɣ ɫɢɥɵ. ɇɚ ɫɤɨɪɨɫɬɶ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɜɥɢɹɟɬ ɬɭɪɛɭɥɢɡɚɰɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɜ ɨɱɢɫɬɧɵɯ ɫɨɨɪɭɠɟɧɢɹɯ, ɱɬɨ ɫɩɨɫɨɛɫɬɜɭɟɬ ɪɚɫɩɚɞɭ ɯɥɨɩɶɟɜ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɧɚ ɛɨɥɟɟ ɦɟɥɤɢɟ ɢ ɭɜɟɥɢɱɢɜɚɟɬ ɫɤɨɪɨɫɬɶ ɩɨɫɬɭɩɥɟɧɢɹ ɩɢɬɚɬɟɥɶɧɵɯ ɜɟɳɟɫɬɜ ɢ ɤɢɫɥɨɪɨɞɚ ɤ ɦɢɤɪɨɨɪɝɚɧɢɡɦɚɦ. Ɍɭɪɛɭɥɢɡɚɰɢɹ ɩɨɬɨɤɚ ɞɨɫɬɢɝɚɟɬɫɹ ɢɧɬɟɧɫɢɜɧɵɦ ɩɟɪɟɦɟɲɢɜɚɧɢɟɦ, ɩɪɢ ɤɨɬɨɪɨɦ ɚɤɬɢɜɧɵɣ ɢɥ ɧɚɯɨɞɢɬɫɹ ɜɨ ɜɡɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ, ɱɬɨ ɨɛɟɫɩɟɱɢɜɚɟɬ ɪɚɜɧɨɦɟɪɧɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɟɝɨ ɜ ɫɬɨɱɧɨɣ ɜɨɞɟ. Ⱦɨɡɚ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɡɚɜɢɫɢɬ ɨɬ “ɢɥɨɜɨɝɨ ɢɧɞɟɤɫɚ”. ɑɟɦ ɦɟɧɶɲɟ “ɢɥɨɜɵɣ ɢɧɞɟɤɫ”, ɬɟɦ ɛɨɥɶɲɭɸ ɞɨɡɭ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɧɟɨɛɯɨɞɢɦɨ ɩɨɞɚɜɚɬɶ ɧɚ ɨɱɢɫɬɧɵɟ ɫɨɨɪɭɠɟɧɢɹ. Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɥɟɞɭɟɬ ɩɪɢɦɟɧɹɬɶ ɫɜɟɠɢɣ ɚɤɬɢɜɧɵɣ ɢɥ, ɤɨɬɨɪɵɣ ɯɨɪɨɲɨ ɨɫɟɞɚɟɬ ɢ ɛɨɥɟɟ ɭɫɬɨɣɱɢɜ ɤ ɤɨɥɟɛɚɧɢɹɦ ɬɟɦɩɟɪɚɬɭɪɵ ɢ ɪɇ ɫɪɟɞɵ. ɇɚɢɛɨɥɟɟ ɨɩɬɢɦɚɥɶɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɩɨɞɞɟɪɠɢɜɚɟɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 20…30qɋ. ɉɪɟɜɵɲɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɦɨɠɟɬ ɩɪɢɜɟɫɬɢ ɤ ɝɢɛɟɥɢ ɦɢɤɪɨɨɪɝɚɧɢɡɦɨɜ. ɉɪɢ ɛɨɥɟɟ ɧɢɡɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɫɧɢɠɚɟɬɫɹ ɫɤɨɪɨɫɬɶ ɨɱɢɫɬɤɢ, ɡɚɦɟɞɥɹɟɬɫɹ ɩɪɨɰɟɫɫ ɚɞɚɩɬɚɰɢɢ ɦɢɤɪɨɛɨɜ ɤ ɧɨɜɵɦ ɜɢɞɚɦ ɡɚɝɪɹɡɧɟɧɢɣ, ɭɯɭɞɲɚɸɬɫɹ ɩɪɨɰɟɫɫɵ ɮɥɨɤɭɥɹɰɢɢ ɢ ɨɫɚɠɞɟɧɢɹ ɚɤɬɢɜɧɨɝɨ ɢɥɚ. 5.4.5. Ⱥɧɚɷɪɨɛɧɵɟ ɦɟɬɨɞɵ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ Ⱥɧɚɷɪɨɛɧɵɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɫɛɪɚɠɢɜɚɧɢɹ ɨɫɚɞɤɨɜ, ɨɛɪɚɡɭɸɳɢɯɫɹ ɩɪɢ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɟ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ, ɚ ɬɚɤɠɟ ɤɚɤ ɩɟɪɜɭɸ ɫɬɭɩɟɧɶ ɨɱɢɫɬɤɢ ɨɱɟɧɶ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɯ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ (ȻɉɄɩɨɥɧ | 4…5 ɝ/ɥ), ɫɨɞɟɪɠɚɳɢɯ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɤɨɬɨɪɵɟ ɪɚɡɪɭɲɚɸɬɫɹ ɚɧɚɷɪɨɛɧɵɦɢ ɛɚɤɬɟɪɢɹɦɢ ɜ ɩɪɨɰɟɫɫɚɯ ɛɪɨɠɟɧɢɹ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɤɨɧɟɱɧɨɝɨ ɜɢɞɚ ɩɪɨɞɭɤɬɚ ɪɚɡɥɢɱɚɸɬ ɜɢɞɵ ɛɪɨɠɟɧɢɹ: ɫɩɢɪɬɨɜɨɟ, ɩɪɨɩɢɨɧɨɜɨɤɢɫɥɨɟ, ɦɨɥɨɱɧɨɤɢɫɥɨɟ, ɦɟɬɚɧɨɜɨɟ ɢ ɞɪ. Ʉɨɧɟɱɧɵɦɢ ɩɪɨɞɭɤɬɚɦɢ ɛɪɨɠɟɧɢɹ ɹɜɥɹɸɬɫɹ: ɫɩɢɪɬɵ, ɤɢɫɥɨɬɵ, ɚɰɟɬɨɧ, ɝɚɡɵ ɛɪɨɠɟɧɢɹ (ɋɈ2, ɇ2, ɋɇ4). Ⱦɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɦɟɬɚɧɨɜɨɟ ɛɪɨɠɟɧɢɟ, ɩɪɨɰɟɫɫ ɫɥɨɠɧɵɣ ɢ ɦɧɨɝɨɫɬɚɞɢɣɧɵɣ. ɉɪɨɰɟɫɫ ɦɟɬɚɧɨɜɨɝɨ ɛɪɨɠɟɧɢɹ ɫɨɫɬɨɢɬ ɢɡ ɞɜɭɯ ɮɚɡ: ɤɢɫɥɨɣ ɢ ɳɟɥɨɱɧɨɣ (ɢɥɢ ɦɟɬɚɧɨɜɨɣ). ȼ ɤɢɫɥɨɣ ɮɚɡɟ ɢɡ ɫɥɨɠɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɨɛɪɚɡɭɸɬɫɹ ɧɢɡɲɢɟ ɠɢɪɧɵɟ ɤɢɫɥɨɬɵ, ɫɩɢɪɬɵ, ɚɦɢɧɨɤɢɫɥɨɬɵ, ɚɦɦɢɚɤ, ɝɥɢɰɟɪɢɧ, ɚɰɟɬɨɧ, ɫɟɪɨɜɨɞɨɪɨɞ, ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ ɢ ɜɨɞɨɪɨɞ. ɗɬɢ ɩɪɨɦɟɠɭɬɨɱɧɵɟ ɩɪɨɞɭɤɬɵ ɜ ɳɟɥɨɱɧɨɣ ɮɚɡɟ ɨɛɪɚɡɭɸɬ ɦɟɬɚɧ ɢ ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ. Ɉɫɧɨɜɧɚɹ ɪɟɚɤɰɢɹ ɦɟɬɚɧɨɨɛɪɚɡɨɜɚɧɢɹ ɋɈ2 + 4ɇ2Ⱥ o ɋɇ4 + 4Ⱥ + 2ɇ2O, (5.123) ɝɞɟ ɇ2Ⱥ - ɨɪɝɚɧɢɱɟɫɤɨɟ ɜɟɳɟɫɬɜɨ, ɫɨɞɟɪɠɚɳɟɟ ɇ2. Ɇɟɬɚɧ ɦɨɠɟɬ ɨɛɪɚɡɨɜɵɜɚɬɶɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɪɚɫɩɚɞɚ ɭɤɫɭɫɧɨɣ ɤɢɫɥɨɬɵ ɋɇ3ɋɈɈɇ o ɋɇ4 + ɋɈ2, ɋɈ2 + 4ɇ2 o ɋɇ4 + 2ɇ2O. (5.124) ɉɪɢ ɞɟɧɢɬɪɢɮɢɤɚɰɢɢ ɜ ɚɧɚɷɪɨɛɧɵɯ ɭɫɥɨɜɢɹɯ: 6Ⱥɇ2 + 2NO3 o 6A + 6H2O + N2. (5.125) ɉɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɤɨɧɟɱɧɵɦ ɩɪɨɞɭɤɬɨɦ ɦɨɠɟɬ ɛɵɬɶ ɢ ɚɦɦɢɚɤ. Ɉɫɧɨɜɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ ɚɧɚɷɪɨɛɧɨɝɨ ɫɛɪɚɠɢɜɚɧɢɹ ɹɜɥɹɟɬɫɹ ɬɟɦɩɟɪɚɬɭɪɚ, ɞɨɡɚ ɡɚɝɪɭɡɤɢ ɨɫɚɞɤɚ ɢ ɫɬɟɩɟɧɶ ɟɝɨ ɩɟɪɟɦɟɲɢɜɚɧɢɹ. ɉɪɨɰɟɫɫɵ ɫɛɪɚɠɢɜɚɧɢɹ ɜɟɞɭɬ ɜ ɦɟɡɨɮɢɥɶɧɵɯ (30…35qɋ) ɢ ɬɟɪɦɨɮɢɥɶɧɵɯ (50…55qɋ) ɭɫɥɨɜɢɹɯ. ɉɨɥɧɨɝɨ ɫɛɪɚɠɢɜɚɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɜ ɦɟɬɚɧɬɟɧɤɚɯ ɞɨɫɬɢɱɶ ɧɟɥɶɡɹ. ȼ ɫɪɟɞɧɟɦ ɫɬɟɩɟɧɶ ɪɚɫɩɚɞɚ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɫɨɫɬɚɜɥɹɟɬ ɨɤɨɥɨ 40 %. 5.4.6. Ɉɛɪɚɛɨɬɤɚ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ȼ ɩɪɨɰɟɫɫɚɯ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɜ ɩɟɪɜɢɱɧɵɯ ɢ ɜɬɨɪɢɱɧɵɯ ɨɬɫɬɨɣɧɢɤɚɯ ɨɛɪɚɡɭɸɬɫɹ ɛɨɥɶɲɢɟ ɦɚɫɫɵ ɨɫɚɞɤɨɜ, ɤɨɬɨɪɵɟ ɧɟɨɛɯɨɞɢɦɨ ɭɬɢɥɢɡɢɪɨɜɚɬɶ ɢɥɢ ɨɛɪɚɛɚɬɵɜɚɬɶ ɫ ɰɟɥɶɸ ɭɦɟɧɶɲɟɧɢɹ ɡɚɝɪɹɡɧɟɧɢɹ ɛɢɨɫɮɟɪɵ. Ɉɫɚɞɤɢ, ɢɦɟɸɬ ɪɚɡɧɵɣ ɫɨɫɬɚɜ ɢ ɛɨɥɶɲɭɸ ɜɥɚɠɧɨɫɬɶ. ɂɯ ɩɨɞɪɚɡɞɟɥɹɸɬ ɧɚ ɬɪɢ ɝɪɭɩɩɵ: 1) ɨɫɚɞɤɢ ɜ ɨɫɧɨɜɧɨɦ ɦɢɧɟɪɚɥɶɧɨɝɨ ɫɨɫɬɚɜɚ; 2) ɨɫɚɞɤɢ ɜ ɨɫɧɨɜɧɨɦ ɨɪɝɚɧɢɱɟɫɤɨɝɨ ɫɨɫɬɚɜɚ; 3) ɫɦɟɲɚɧɧɵɟ ɨɫɚɞɤɢ, ɫɨɞɟɪɠɚɳɢɟ ɤɚɤ ɦɢɧɟɪɚɥɶɧɵɟ, ɬɚɤ ɢ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ. Ɉɫɚɞɤɢ ɯɚɪɚɤɬɟɪɢɡɭɸɬɫɹ ɫɨɞɟɪɠɚɧɢɟɦ ɫɭɯɨɝɨ ɜɟɳɟɫɬɜɚ (ɜ ɝ/ɥ ɢɥɢ ɜ %); ɫɨɞɟɪɠɚɧɢɟɦ ɛɟɡɡɨɥɶɧɨɝɨ ɜɟɳɟɫɬɜɚ (ɜ % ɨɬ ɦɚɫɫɵ ɫɭɯɨɝɨ ɜɟɳɟɫɬɜɚ); ɷɥɟɦɟɧɬɧɵɦ ɫɨɫɬɚɜɨɦ; ɤɚɠɭɳɟɣɫɹ ɜɹɡɤɨɫɬɶɸ ɢ ɬɟɤɭɱɟɫɬɶɸ; ɝɪɚɧɭɥɨɦɟɬɪɢɱɟɫɤɢɦ ɫɨɫɬɚɜɨɦ. Ɉɫɚɞɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɬɪɭɞɧɨɮɢɥɶɬɪɭɟɦɵɟ ɫɭɫɩɟɧɡɢɢ. ȼɨ ɜɬɨɪɢɱɧɵɯ ɨɬɫɬɨɣɧɢɤɚɯ ɜ ɨɫɚɞɤɟ ɧɚɯɨɞɢɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɢɡɛɵɬɨɱɧɵɣ ɚɤɬɢɜɧɵɣ ɢɥ, ɨɛɴɟɦ ɤɨɬɨɪɨɝɨ ɜ 1,5…2 ɪɚɡɚ ɛɨɥɶɲɟ, ɱɟɦ ɨɛɴɟɦ ɨɫɚɞɤɚ ɢɡ ɩɟɪɜɢɱɧɨɝɨ ɨɬɫɬɨɣɧɢɤɚ. ɍɞɟɥɶɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɨɫɚɞɤɚ (r = 72˜1010…78,6˜1012 ɫɦ/ɝ) ɹɜɥɹɟɬɫɹ ɨɞɧɢɦ ɢɡ ɨɩɪɟɞɟɥɹɸɳɢɯ ɩɨɤɚɡɚɬɟɥɟɣ ɞɥɹ ɜɵɛɨɪɚ ɦɟɬɨɞɚ ɨɛɪɚɛɨɬɤɢ ɨɫɚɞɤɨɜ. ȼ ɨɫɚɞɤɚɯ ɫɨɞɟɪɠɢɬɫɹ ɫɜɨɛɨɞɧɚɹ (60…65 %) ɢ ɫɜɹɡɚɧɧɚɹ (30…35%) ɜɨɞɚ. ɋɜɨɛɨɞɧɚɹ ɜɨɞɚ ɫɪɚɜɧɢɬɟɥɶɧɨ ɥɟɝɤɨ ɦɨɠɟɬ ɛɵɬɶ ɭɞɚɥɟɧɚ ɢɡ ɨɫɚɞɤɚ, ɫɜɹɡɚɧɧɚɹ ɜɨɞɚ (ɤɨɥɥɨɢɞɧɨ-ɫɜɹɡɚɧɧɚɹ ɢ ɝɢɝɪɨɫɤɨɩɢɱɟɫɤɚɹ) ɝɨɪɚɡɞɨ ɬɪɭɞɧɟɟ. Ʉɨɥɥɨɢɞɧɨ-ɫɜɹɡɚɧɧɚɹ ɜɥɚɝɚ ɨɛɜɨɥɚɤɢɜɚɟɬ ɬɜɟɪɞɵɟ ɱɚɫɬɢɰɵ ɝɢɞɪɚɬɧɨɣ ɨɛɨɥɨɱɤɨɣ ɢ ɩɪɟɩɹɬɫɬɜɭɟɬ ɢɯ ɫɨɟɞɢɧɟɧɢɸ ɜ ɤɪɭɩɧɵɟ ɚɝɪɟɝɚɬɵ. Ʉɨɚɝɭɥɹɧɬɵ ɩɨɥɨɠɢɬɟɥɶɧɨ ɡɚɪɹɠɟɧɧɵɦɢ ɢɨɧɚɦɢ ɧɟɣɬɪɚɥɢɡɭɸɬ ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɚɪɹɞ ɱɚɫɬɢɰ ɨɫɚɞɤɚ. ɉɨɫɥɟ ɷɬɨɝɨ ɨɬɞɟɥɶɧɵɟ ɬɜɟɪɞɵɟ ɱɚɫɬɢɰɵ ɨɫɜɨɛɨɠɞɚɸɬɫɹ ɨɬ ɝɢɞɪɚɬɧɨɣ ɨɛɨɥɨɱɤɢ ɢ ɫɨɟɞɢɧɹɸɬɫɹ ɜɦɟɫɬɟ ɜ ɯɥɨɩɶɹ. Ɉɫɜɨɛɨɠɞɟɧɧɚɹ ɜɨɞɚ ɥɟɝɱɟ ɮɢɥɶɬɪɭɟɬɫɹ. Ɋɚɡɪɭɲɢɬɶ ɝɢɞɪɚɬɧɭɸ ɨɛɨɥɨɱɤɭ ɦɨɠɧɨ ɬɚɤɠɟ ɤɪɚɬɤɨɜɪɟɦɟɧɧɨɣ ɬɟɪɦɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɨɣ. Ɉɛɪɚɛɨɬɤɚ ɨɫɚɞɤɚ ɚɤɬɢɜɧɨɝɨ ɢɥɚ ɜɤɥɸɱɚɟɬ: 1) ɭɩɥɨɬɧɟɧɢɟ ɨɫɚɞɤɚ ɝɪɚɜɢɬɚɰɢɨɧɧɵɦ, ɮɥɨɬɚɰɢɨɧɧɵɦ, ɰɟɧɬɪɨɛɟɠɧɵɦ ɢ ɜɢɛɪɚɰɢɨɧɧɵɦ ɦɟɬɨɞɚɦɢ; 2) ɫɬɚɛɢɥɢɡɚɰɢɸ ɨɫɚɞɤɨɜ ɜ ɚɷɪɨɛɧɵɯ ɢ ɚɧɚɷɪɨɛɧɵɯ ɭɫɥɨɜɢɹɯ; 3) ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɟ ɨɫɚɞɤɨɜ ɪɟɚɝɟɧɬɧɵɦɢ ɢ ɛɟɡɪɟɚɝɟɧɬɧɵɦɢ ɫɩɨɫɨɛɚɦɢ; 4) ɬɟɩɥɨɜɭɸ ɨɛɪɚɛɨɬɤɭ; 5) ɠɢɞɤɨɮɚɡɧɨɟ ɨɤɢɫɥɟɧɢɟ ɨɪɝɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɨɫɚɞɤɚ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ; 6) ɨɛɟɡɜɨɠɢɜɚɧɢɟ ɨɫɚɞɤɨɜ ɧɚ ɢɥɨɜɵɯ ɩɥɨɳɚɞɤɚɯ ɟɫɬɟɫɬɜɟɧɧɵɦ ɩɭɬɟɦ ɢ ɦɟɯɚɧɢɱɟɫɤɢɦ ɫɩɨɫɨɛɨɦ; 7) ɫɭɲɤɭ ɨɫɚɞɤɨɜ; 8) ɫɠɢɝɚɧɢɟ ɨɫɚɞɤɨɜ. 5.5. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ Ɍɟɪɦɢɱɟɫɤɢɦɢ ɦɟɬɨɞɚɦɢ ɨɛɟɡɜɪɟɠɢɜɚɸɬɫɹ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɫɨɞɟɪɠɚɳɢɟ ɦɢɧɟɪɚɥɶɧɵɟ ɫɨɥɢ ɤɚɥɶɰɢɹ, ɦɚɝɧɢɹ, ɧɚɬɪɢɹ ɢ ɞɪ., ɚ ɬɚɤɠɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ. Ɍɚɤɢɟ ɫɬɨɱɧɵɟ ɜɨɞɵ ɦɨɝɭɬ ɛɵɬɶ ɨɛɟɡɜɪɟɠɟɧɵ: - ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟɦ ɫɬɨɱɧɵɯ ɜɨɞ ɫ ɩɨɫɥɟɞɭɸɳɟɦ ɜɵɞɟɥɟɧɢɟɦ ɪɚɫɬɜɨɪɟɧɧɵɯ ɜɟɳɟɫɬɜ; - ɨɤɢɫɥɟɧɢɟɦ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɤɚɬɚɥɢɡɚɬɨɪɚ; - ɠɢɞɤɨɮɚɡɧɵɦ ɨɤɢɫɥɟɧɢɟɦ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ; - ɨɝɧɟɜɵɦ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟɦ. 5.5.1. Ʉɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ ɗɬɨɬ ɦɟɬɨɞ ɜ ɨɫɧɨɜɧɨɦ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɦɢɧɟɪɚɥɶɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ. Ɉɧ ɩɨɡɜɨɥɹɟɬ ɜɵɞɟɥɹɬɶ ɢɡ ɫɬɨɤɨɜ ɫɨɥɢ ɫ ɩɨɥɭɱɟɧɢɟɦ ɭɫɥɨɜɧɨ ɱɢɫɬɨɣ ɜɨɞɵ, ɩɪɢɝɨɞɧɨɣ ɞɥɹ ɨɛɨɪɨɬɧɨɝɨ ɜɨɞɨɫɧɚɛɠɟɧɢɹ. ɉɪɨɰɟɫɫ ɪɚɡɞɟɥɟɧɢɹ ɦɢɧɟɪɚɥɶɧɵɯ ɜɟɳɟɫɬɜ ɢ ɜɨɞɵ ɦɨɠɟɬ ɛɵɬɶ ɩɪɨɜɟɞɟɧ ɜ ɞɜɟ ɫɬɚɞɢɢ: ɫɬɚɞɢɹ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ ɢ ɫɬɚɞɢɹ ɜɵɞɟɥɟɧɢɹ ɫɭɯɢɯ ɜɟɳɟɫɬɜ. Ʉɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ ɦɨɠɟɬ ɛɵɬɶ ɩɪɨɜɟɞɟɧɚ ɢɫɩɚɪɟɧɢɟɦ (ɜɵɩɚɪɢɜɚɧɢɟɦ), ɜɵɦɨɪɚɠɢɜɚɧɢɟɦ ɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɟɣ. ȼɵɩɚɪɢɜɚɧɢɟ ɹɜɥɹɟɬɫɹ ɷɧɟɪɝɨɟɦɤɢɦ ɩɪɨɰɟɫɫɨɦ. ɗɧɟɪɝɢɹ, ɡɚɬɪɚɱɢɜɚɟɦɚɹ ɧɚ ɜɵɩɚɪɢɜɚɧɢɟ, ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɷɧɟɪɝɢɢ ɧɚ ɧɚɝɪɟɜ ɫɬɨɱɧɨɣ ɜɨɞɵ ɨɬ ɧɚɱɚɥɶɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ ɞɨ ɬɟɦɩɟɪɚɬɭɪɵ ɢɫɩɚɪɟɧɢɹ; ɧɚ ɞɟɮɨɪɦɢɪɨɜɚɧɢɟ ɢ ɩɟɪɟɧɨɫ ɰɟɧɬɪɨɜ ɩɚɪɨɨɛɪɚɡɨɜɚɧɢɹ; ɧɚ ɪɚɛɨɬɭ, ɡɚɬɪɚɱɟɧɧɭɸ ɧɚ ɪɚɡɞɟɥɟɧɢɟ ɪɚɫɬɜɨɪɢɬɟɥɹ ɢ ɪɚɫɬɜɨɪɚ; ɧɚ ɮɨɪɦɢɪɨɜɚɧɢɟ ɩɨɜɟɪɯɧɨɫɬɧɵɯ ɩɚɪɨɜɵɯ ɩɭɡɵɪɟɣ ɩɪɢ ɢɫɩɚɪɟɧɢɢ; ɧɚ ɩɪɟɨɞɨɥɟɧɢɟ ɫɢɥ ɞɚɜɥɟɧɢɹ ɩɪɢ ɮɨɪɦɢɪɨɜɚɧɢɢ ɩɭɡɵɪɟɣ; ɧɚ ɩɪɟɨɞɨɥɟɧɢɟ ɩɭɡɵɪɟɦ ɝɪɚɧɢɰɵ ɪɚɡɞɟɥɚ ɮɚɡ ɢ ɧɚ ɬɪɚɧɫɩɨɪɬɢɪɨɜɚɧɢɟ ɩɚɪɨɜɵɯ ɩɭɡɵɪɟɣ ɞɨ ɝɪɚɧɢɰɵ ɪɚɡɞɟɥɚ ɮɚɡ. ɉɪɢ ɪɚɫɱɟɬɟ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɚɬɪɚɬ ɭɱɢɬɵɜɚɸɬ ɷɧɟɪɝɢɸ, ɡɚɬɪɚɱɟɧɧɭɸ ɧɚ ɢɫɩɚɪɟɧɢɟ r, ɢ ɧɚ ɪɚɛɨɬɭ ɪɚɡɞɟɥɟɧɢɹ ɪɚɫɬɜɨɪɚ ɢ ɪɚɫɬɜɨɪɢɬɟɥɹ lp, ɬ.ɤ. ɨɫɬɚɥɶɧɵɟ ɫɨɫɬɚɜɥɹɸɳɢɟ ɧɟɜɟɥɢɤɢ: q = r + lp. (5.126) ɉɨɫɤɨɥɶɤɭ ɩɪɢ ɜɵɩɚɪɢɜɚɧɢɢ ɫ ɤɪɢɫɬɚɥɥɢɡɚɰɢɟɣ ɜɵɞɟɥɹɟɬɫɹ ɬɟɩɥɨɬɚ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ rɤɪ, ɬɨ ɡɚɬɪɚɬɵ ɷɧɟɪɝɢɢ ɧɚ ɜɵɩɚɪɢɜɚɧɢɟ ɛɭɞɭɬ (5.127) q = q – rɤɪ. ɉɪɢ ɜɵɩɚɪɢɜɚɧɢɢ ɧɢɡɤɨɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɯ ɪɚɫɬɜɨɪɨɜ ɫ ɤɪɢɫɬɚɥɥɢɡɚɰɢɟɣ ɡɧɚɱɟɧɢɟ lɪ ɦɚɥɨ, ɩɨɷɬɨɦɭ ɡɚɬɪɚɬɵ ɷɧɟɪɝɢɢ ɧɚ ɜɵɩɚɪɢɜɚɧɢɟ ɫɨɫɬɚɜɹɬ q = r – rɤɪ. (5.128) ɉɪɨɰɟɫɫ ɜɵɦɨɪɚɠɢɜɚɧɢɹ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɬɨɦ, ɱɬɨ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɟ ɧɢɠɟ ɬɟɦɩɟɪɚɬɭɪɵ ɡɚɦɟɪɡɚɧɢɹ ɱɢɫɬɚɹ ɜɨɞɚ ɨɛɪɚɡɭɟɬ ɤɪɢɫɬɚɥɥɵ ɩɪɟɫɧɨɝɨ ɥɶɞɚ, ɚ ɪɚɫɬɜɨɪ ɫ ɪɚɫɬɜɨɪɟɧɧɵɦɢ ɜ ɧɟɦ ɫɨɥɹɦɢ ɪɚɡɦɟɳɚɟɬɫɹ ɜ ɹɱɟɣɤɚɯ ɦɟɠɞɭ ɷɬɢɦɢ ɤɪɢɫɬɚɥɥɚɦɢ. Ɍɟɦɩɟɪɚɬɭɪɚ ɡɚɦɟɪɡɚɧɢɹ ɪɚɫɫɨɥɚ ɜɫɟɝɞɚ ɧɢɠɟ ɬɟɦɩɟɪɚɬɭɪɵ ɡɚɦɟɪɡɚɧɢɹ ɱɢɫɬɨɣ ɜɨɞɵ ɢ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɬɜɨɪɟɧɧɵɯ ɫɨɥɟɣ. Ⱦɥɹ ɢɫɤɥɸɱɟɧɢɹ ɨɛɪɚɡɨɜɚɧɢɹ ɦɟɥɤɢɯ ɤɪɢɫɬɚɥɥɨɜ ɢ ɨɬɞɟɥɟɧɢɹ ɦɟɠɤɪɢɫɬɚɥɥɢɬɧɨɝɨ ɪɚɫɫɨɥɚ ɩɪɨɰɟɫɫ ɜɵɦɨɪɚɠɢɜɚɧɢɹ ɩɪɨɜɨɞɹɬ ɩɪɢ ɪɟɠɢɦɚɯ ɦɟɞɥɟɧɧɨɝɨ ɩɟɪɟɨɯɥɚɠɞɟɧɢɹ. Ɋɚɡɧɨɫɬɶ ɦɟɠɞɭ ɬɟɦɩɟɪɚɬɭɪɨɣ ɡɚɦɟɪɡɚɧɢɹ ɱɢɫɬɨɝɨ ɪɚɫɬɜɨɪɢɬɟɥɹ tɡ ɢ ɪɚɫɬɜɨɪɚ tɡ ɧɚɡɵɜɚɸɬ ɩɨɧɢɠɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ ɡɚɦɟɪɡɚɧɢɹ ɪɚɫɬɜɨɪɚ ǻtɡ: ǻtɡ = tɡ – tɡ. (5.129) ɉɨɧɢɠɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɡɚɦɟɪɡɚɧɢɹ ɞɥɹ ɪɚɡɛɚɜɥɟɧɧɵɯ ɪɚɫɬɜɨɪɨɜ ɧɟɷɥɟɤɬɪɨɥɢɬɨɜ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɬɜɨɪɚ: ǻt ɡ = k ǜ m , (5.130) ɝɞɟ k – ɤɪɢɨɫɤɨɩɢɱɟɫɤɚɹ ɤɨɧɫɬɚɧɬɚ ɪɚɫɬɜɨɪɢɬɟɥɹ, ɡɚɜɢɫɹɳɚɹ ɬɨɥɶɤɨ ɨɬ ɩɪɢɪɨɞɵ ɪɚɫɬɜɨɪɢɬɟɥɹ (ɧɨ ɧɟ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ), ɞɥɹ ɜɨɞɵ k = 1,85; m – ɦɨɥɹɪɧɚɹ ɤɨɧɰɟɧɬɪɚɰɢɹ. ȼɵɦɨɪɚɠɢɜɚɧɢɟ ɦɨɠɧɨ ɩɪɨɜɨɞɢɬɶ ɩɨɞ ɜɚɤɭɭɦɨɦ ɢɥɢ ɩɪɢ ɩɨɦɨɳɢ ɫɩɟɰɢɚɥɶɧɨɣ ɯɨɥɨɞɢɥɶɧɨɣ ɭɫɬɚɧɨɜɤɢ. ɇɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦɢ ɯɥɚɞɨɚɝɟɧɬɚɦɢ ɹɜɥɹɸɬɫɹ ɚɦɦɢɚɤ, ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ, ɛɭɬɚɧ, ɩɪɨɩɚɧ, ɢɡɨɛɭɬɚɧ, ɯɥɚɞɨɧɵ (ɋɋl2F2, ɋɋl3F, ɋɋlF3) ɢ ɢɯ ɨɤɫɢɞɵ. 5.5.2. Ʉɪɢɫɬɚɥɥɢɡɚɰɢɹ ɜɟɳɟɫɬɜ ɢɡ ɪɚɫɬɜɨɪɨɜ Ⱦɥɹ ɜɵɞɟɥɟɧɢɹ ɜɟɳɟɫɬɜ ɢɡ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɯ ɪɚɫɬɜɨɪɨɜ ɢɫɩɨɥɶɡɭɸɬ ɦɟɬɨɞɵ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɢ ɫɭɲɤɢ. ȼɟɳɟɫɬɜɚ, ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɤɨɬɨɪɵɯ ɫɭɳɟɫɬɜɟɧɧɨ ɜɨɡɪɚɫɬɚɟɬ ɫ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ (ɩɨɥɨɠɢɬɟɥɶɧɚɹ ɪɚɫɬɜɨɪɢɦɨɫɬɶ), ɤɪɢɫɬɚɥɥɢɡɭɸɬ ɩɪɢ ɨɯɥɚɠɞɟɧɢɢ ɢɯ ɧɚɫɵɳɟɧɧɵɯ ɪɚɫɬɜɨɪɨɜ – ɷɬɨ ɩɨɥɢɬɟɪɦɢɱɟɫɤɚɹ ɢɥɢ ɢɡɨɝɢɞɪɢɱɟɫɤɚɹ ɤɪɢɫɬɚɥɥɢɡɚɰɢɹ, ɢɞɭɳɚɹ ɩɪɢ ɧɟɢɡɦɟɧɧɨɦ ɫɨɞɟɪɠɚɧɢɢ ɜɨɞɵ ɜ ɫɢɫɬɟɦɟ. ȿɫɥɢ ɫ ɪɨɫɬɨɦ ɬɟɦɩɟɪɚɬɭɪɵ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɜɟɳɟɫɬɜɚ ɭɦɟɧɶɲɚɟɬɫɹ (ɨɬɪɢɰɚɬɟɥɶɧɚɹ ɪɚɫɬɜɨɪɢɦɨɫɬɶ), ɬɨ ɤɪɢɫɬɚɥɥɢɡɚɰɢɸ ɩɪɨɜɨɞɹɬ ɩɪɢ ɧɚɝɪɟɜɚɧɢɢ ɪɚɫɬɜɨɪɚ. ȼɟɳɟɫɬɜɚ, ɦɚɥɨ ɢɡɦɟɧɹɸɳɢɟ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɩɪɢ ɢɡɦɟɧɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ, ɤɪɢɫɬɚɥɥɢɡɭɸɬ ɩɭɬɟɦ ɢɫɩɚɪɟɧɢɹ ɜɨɞɵ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ – ɢɡɨɬɟɪɦɢɱɟɫɤɚɹ ɤɪɢɫɬɚɥɥɢɡɚɰɢɹ. ɉɨɥɨɠɢɬɟɥɶɧɨɣ ɪɚɫɬɜɨɪɢɦɨɫɬɶɸ ɨɛɥɚɞɚɸɬ ɪɚɫɬɜɨɪɵ ɆgCl2, ɆgSO4, NaCl; ɨɬɪɢɰɚɬɟɥɶɧɨɣ - ɪɚɫɬɜɨɪɵ CaSO4, ɋɚSiO3, ɢ ɞɪ. Ʉɪɢɫɬɚɥɥɢɡɚɰɢɸ ɫɨɥɢ ɦɨɠɧɨ ɬɚɤɠɟ ɩɪɨɜɨɞɢɬɶ ɜɜɟɞɟɧɢɟɦ ɜ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɣ ɪɚɫɬɜɨɪ ɜɟɳɟɫɬɜ, ɭɦɟɧɶɲɚɸɳɢɯ ɟɟ ɪɚɫɬɜɨɪɢɦɨɫɬɶ. ɗɬɨ ɜɟɳɟɫɬɜɚ, ɫɨɞɟɪɠɚɳɢɟ ɨɞɢɧɚɤɨɜɵɣ ɢɨɧ ɫ ɞɚɧɧɨɣ ɫɨɥɶɸ ɢɥɢ ɫɜɹɡɵɜɚɸɳɢɟ ɜɨɞɭ. Ʉɪɢɫɬɚɥɥɢɡɚɰɢɸ ɬɚɤɨɝɨ ɬɢɩɚ ɧɚɡɵɜɚɸɬ ɜɵɫɚɥɢɜɚɧɢɟɦ. Ɋɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦ ɜɢɞɨɦ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɹɜɥɹɟɬɫɹ ɯɢɦɢɱɟɫɤɨɟ ɨɫɚɠɞɟɧɢɟ ɜɟɳɟɫɬɜɚ ɢɡ ɪɚɫɬɜɨɪɨɜ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɪɟɚɝɟɧɬɨɜ. ɇɚɩɪɢɦɟɪ, ɩɪɢɦɟɫɢ ɢɨɧɨɜ ɦɟɬɚɥɥɨɜ ɨɫɚɠɞɚɸɬ ɜ ɜɢɞɟ ɝɢɞɪɨɤɫɢɞɨɜ, ɞɨɛɚɜɥɹɹ ɜ ɪɚɫɬɜɨɪ ɳɟɥɨɱɢ. ȼɵɞɟɥɟɧɢɟ ɤɪɢɫɬɚɥɥɨɜ ɩɪɨɢɫɯɨɞɢɬ ɬɨɥɶɤɨ ɢɡ ɩɟɪɟɫɵɳɟɧɧɵɯ ɪɚɫɬɜɨɪɨɜ. ɉɟɪɟɫɵɳɟɧɧɵɟ ɪɚɫɬɜɨɪɵ ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɪɚɡɧɨɫɬɶɸ ɦɟɠɞɭ ɤɨɧɰɟɧɬɪɚɰɢɹɦɢ ɩɟɪɟɫɵɳɟɧɧɨɝɨ ɋɩ ɢ ɧɚɫɵɳɟɧɧɨɝɨ ɋ* ɪɚɫɬɜɨɪɨɜ, ɨɬɧɨɫɢɬɟɥɶɧɵɦ ɩɟɪɟɫɵɳɟɧɢɟɦ (ɋɩ - ɋ*)/ɋ* ɢɥɢ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɟɪɟɫɵɳɟɧɢɹ ɋɩ/ɋ*. Ɉɛɪɚɡɨɜɚɧɢɟ ɤɪɢɫɬɚɥɥɨɜ ɫɨɫɬɨɢɬ ɢɡ ɞɜɭɯ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɯ ɫɬɚɞɢɣ: 1) ɜɨɡɧɢɤɧɨɜɟɧɢɟ ɜ ɩɟɪɟɫɵɳɟɧɧɨɦ ɪɚɫɬɜɨɪɟ ɰɟɧɬɪɨɜ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɡɚɪɨɞɵɲɟɣ ɤɪɢɫɬɚɥɥɨɜ; 2) ɪɨɫɬ ɤɪɢɫɬɚɥɥɨɜ ɧɚ ɛɚɡɟ ɷɬɢɯ ɞɜɭɯ ɡɚɪɨɞɵɲɟɣ. Ⱦɥɹ ɡɚɪɨɞɵɲɚ ɫɮɟɪɢɱɟɫɤɨɣ ɮɨɪɦɵ ɪɚɛɨɬɚ ɨɛɪɚɡɨɜɚɧɢɹ ɪɚɜɧɚ: Ⱥ = 4/3 ʌ·r2·ı, (5.131) ɝɞɟ r - ɪɚɡɦɟɪ ɡɚɪɨɞɵɲɚ; ı - ɤɨɷɮɮɢɰɢɟɧɬ ɩɨɜɟɪɯɧɨɫɬɧɨɝɨ ɧɚɬɹɠɟɧɢɹ. Ɋɚɡɦɟɪ ɡɚɪɨɞɵɲɚ, ɧɚɯɨɞɹɳɟɝɨɫɹ ɜ ɪɚɜɧɨɜɟɫɢɢ ɫ ɩɟɪɟɫɵɳɟɧɧɵɦ ɪɚɫɬɜɨɪɨɦ, ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɟɧ ɥɨɝɚɪɢɮɦɭ ɫɬɟɩɟɧɢ ɩɟɪɟɫɵɳɟɧɢɹ: r = 2 ıǜɆ/[ȡǜRǜTǜln(ɋɩ/ɋ*)], (5.132) ɝɞɟ Ɇ - ɦɨɥɹɪɧɚɹ ɦɚɫɫɚ ɬɜɟɪɞɨɣ ɮɚɡɵ; ȡ - ɩɥɨɬɧɨɫɬɶ ɜɟɳɟɫɬɜɚ; R ɭɧɢɜɟɪɫɚɥɶɧɚɹ ɝɚɡɨɜɚɹ ɩɨɫɬɨɹɧɧɚɹ; Ɍ – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ. ȼɟɪɨɹɬɧɨɫɬɶ ɨɛɪɚɡɨɜɚɧɢɹ ɡɚɪɨɞɵɲɟɣ ɜɨɡɪɚɫɬɟɬ ɫ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ. ɗɬɨɦɭ ɩɪɨɰɟɫɫɭ ɫɩɨɫɨɛɫɬɜɭɟɬ ɦɟɯɚɧɢɱɟɫɤɚɹ ɜɢɛɪɚɰɢɹ, ɩɟɪɟɦɟɲɢɜɚɧɢɟ, ɜɨɡɞɟɣɫɬɜɢɟ ɚɤɭɫɬɢɱɟɫɤɨɝɨ ɢ ɦɚɝɧɢɬɧɵɯ ɩɨɥɟɣ. Ɋɨɫɬ ɤɪɢɫɬɚɥɥɨɜ ɩɪɨɢɫɯɨɞɢɬ ɜ ɪɟɡɭɥɶɬɚɬɟ ɞɢɮɮɭɡɢɢ ɜɟɳɟɫɬɜɚ ɢɡ ɨɫɧɨɜɧɨɣ ɦɚɫɫɵ ɪɚɫɬɜɨɪɚ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɫɬɭɳɟɝɨ ɤɪɢɫɬɚɥɥɚ ɫ ɩɨɫɥɟɞɭɸɳɢɦ ɜɤɥɸɱɟɧɢɟɦ ɱɚɫɬɢɰ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɤɪɢɫɬɚɥɥɢɱɟɫɤɭɸ ɪɟɲɟɬɤɭ. ɋɤɨɪɨɫɬɶ ɞɢɮɮɭɡɢɢ ɱɚɫɬɢɰ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɤɪɢɫɬɚɥɥɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɭɪɚɜɧɟɧɢɸ dMIJ/dIJ = ȕǜF(ɋɩ - ɋɤɪ), (5.133) ɚ ɫɤɨɪɨɫɬɶ ɪɨɫɬɚ ɤɪɢɫɬɚɥɥɚ dMIJ/dIJ = ȕɤɪǜF(ɋɤɪ - ɋ*). (5.134) Ɉɛɳɟɟ ɭɪɚɜɧɟɧɢɟ ɫɤɨɪɨɫɬɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɢɦɟɟɬ ɜɢɞ dMW/dIJ = 1/(1/ȕ + 1/ȕɤɪ)ǜF(Cɩ - ɋ*) = kɤɪǜF(ɋɩ - ɋ*), (5.135) ɝɞɟ ɆW – ɤɨɥɢɱɟɫɬɜɨ ɞɢɮɮɭɧɞɢɪɭɸɳɟɝɨ ɜɟɳɟɫɬɜɚ; IJ – ɜɪɟɦɹ; ȕ ɢ ȕɤɪ – ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɨɬɞɚɱɢ ɢ ɩɪɨɰɟɫɫɚ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ; F – ɩɥɨɳɚɞɶ ɩɨɜɟɪɯɧɨɫɬɢ ɤɪɢɫɬɚɥɥɚ; ɋɤɪ – ɤɨɧɰɟɧɬɪɚɰɢɹ ɜɟɳɟɫɬɜɚ ɭ ɩɨɜɟɪɯɧɨɫɬɢ ɤɪɢɫɬɚɥɥɚ; kɤɪ – ɤɨɷɮɮɢɰɢɟɧɬ ɫɤɨɪɨɫɬɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ. ɇɟɤɨɬɨɪɵɟ ɩɪɢɦɟɫɢ ɜ ɪɚɫɬɜɨɪɟ ɭɜɟɥɢɱɢɜɚɸɬ ɫɤɨɪɨɫɬɶ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ, ɞɪɭɝɢɟ ɭɦɟɧɶɲɚɸɬ. 5.5.3. Ɍɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɵɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɉɨ ɬɟɩɥɨɬɜɨɪɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ ɩɪɨɦɵɲɥɟɧɧɵɟ ɫɬɨɤɢ ɞɟɥɹɬ ɧɚ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɫɩɨɫɨɛɧɵɟ ɝɨɪɟɬɶ ɫɚɦɨɫɬɨɹɬɟɥɶɧɨ, ɢ ɧɚ ɜɨɞɵ, ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɤɨɬɨɪɵɯ ɧɟɨɛɯɨɞɢɦɨ ɞɨɛɚɜɥɹɬɶ ɬɨɩɥɢɜɨ. ɗɬɢ ɫɬɨɱɧɵɟ ɜɨɞɵ ɢɦɟɸɬ ɷɧɬɚɥɶɩɢɸ ɧɢɠɟ 8400 ɤȾɠ/ɤɝ (2000 ɤɤɚɥ/ɤɝ). ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɬɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɨɝɨ ɦɟɬɨɞɚ ɜɫɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɡɚɝɪɹɡɧɹɸɳɢɟ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɩɨɥɧɨɫɬɶɸ ɨɤɢɫɥɹɸɬɫɹ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ ɩɪɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ ɞɨ ɧɟɬɨɤɫɢɱɧɵɯ ɫɨɟɞɢɧɟɧɢɣ. Ʉ ɷɬɢɦ ɦɟɬɨɞɚɦ ɨɬɧɨɫɹɬ ɦɟɬɨɞ ɠɢɞɤɨɮɚɡɧɨɝɨ ɨɤɢɫɥɟɧɢɹ, ɦɟɬɨɞ ɩɚɪɨɮɚɡɧɨɝɨ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ɢ ɩɥɚɦɟɧɧɵɣ ɢɥɢ “ɨɝɧɟɜɨɣ” ɦɟɬɨɞ. ȼɵɛɨɪ ɦɟɬɨɞɚ ɡɚɜɢɫɢɬ ɨɬ ɨɛɴɟɦɚ ɫɬɨɱɧɵɯ ɜɨɞ, ɢɯ ɫɨɫɬɚɜɚ ɢ ɬɟɩɥɨɬɜɨɪɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ, ɷɤɨɧɨɦɢɱɧɨɫɬɢ ɩɪɨɰɟɫɫɚ ɢ ɬɪɟɛɨɜɚɧɢɣ, ɩɪɟɞɴɹɜɥɹɟɦɵɯ ɤ ɨɱɢɳɟɧɧɵɦ ɜɨɞɚɦ. Ɇɟɬɨɞ ɠɢɞɤɨɮɚɡɧɨɝɨ ɨɤɢɫɥɟɧɢɹ. ɗɬɨɬ ɦɟɬɨɞ ɨɱɢɫɬɤɢ ɨɫɧɨɜɚɧ ɧɚ ɨɤɢɫɥɟɧɢɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɪɚɫɬɜɨɪɟɧɧɵɯ ɜ ɜɨɞɟ, ɤɢɫɥɨɪɨɞɨɦ ɩɪɢ ɬɟɦɩɟɪɚ- ɬɭɪɚɯ 100…350ûɋ ɢ ɞɚɜɥɟɧɢɹɯ 2…28 Ɇɉɚ. ɉɪɢ ɜɵɫɨɤɢɯ ɞɚɜɥɟɧɢɹɯ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɜ ɜɨɞɟ ɤɢɫɥɨɪɨɞɚ ɡɧɚɱɢɬɟɥɶɧɨ ɜɨɡɪɚɫɬɚɟɬ, ɱɬɨ ɫɩɨɫɨɛɫɬɜɭɟɬ ɭɫɤɨɪɟɧɢɸ ɩɪɨɰɟɫɫɚ ɨɤɢɫɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɨɤɢɫɥɟɧɢɹ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɫ ɩɨɜɵɲɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ. Ʌɟɬɭɱɢɟ ɜɟɳɟɫɬɜɚ ɨɤɢɫɥɹɸɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɜ ɩɚɪɨɝɚɡɨɜɨɣ ɮɚɡɟ, ɚ ɧɟɥɟɬɭɱɢɟ – ɜ ɠɢɞɤɨɣ ɮɚɡɟ. ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɤɨɧɰɟɧɬɪɚɰɢɢ ɨɪɝɚɧɢɱɟɫɤɢɯ ɩɪɢɦɟɫɟɣ ɜ ɜɨɞɟ ɷɤɨɧɨɦɢɱɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɠɢɞɤɨɮɚɡɧɨɝɨ ɨɤɢɫɥɟɧɢɹ ɜɨɡɪɚɫɬɚɟɬ. Ɇɟɬɨɞ ɧɚɱɢɧɚɸɬ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɜ ɯɢɦɢɱɟɫɤɨɣ, ɧɟɮɬɟɩɟɪɟɪɚɛɚɬɵɜɚɸɳɟɣ, ɰɟɥɥɸɥɨɡɧɨɛɭɦɚɠɧɨɣ, ɮɚɪɦɚɰɟɜɬɢɱɟɫɤɨɣ ɢ ɞɪɭɝɢɯ ɨɬɪɚɫɥɹɯ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. Ɇɟɬɨɞ ɩɚɪɨɮɚɡɧɨɝɨ ɤɚɬɚɥɢɬɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ. ȼ ɨɫɧɨɜɟ ɦɟɬɨɞɚ ɧɚɯɨɞɢɬɫɹ ɝɟɬɟɪɨɝɟɧɧɨɟ ɤɚɬɚɥɢɬɢɱɟɫɤɨɟ ɨɤɢɫɥɟɧɢɟ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ ɩɪɢ ɜɵɫɨɤɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɥɟɬɭɱɢɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ, ɧɚɯɨɞɹɳɢɯɫɹ ɜ ɫɬɨɱɧɵɯ ɜɨɞɚɯ. ɉɪɨɰɟɫɫ ɩɪɨɬɟɤɚɟɬ ɢɧɬɟɧɫɢɜɧɨ ɜ ɩɚɪɨɜɨɣ ɮɚɡɟ ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɦɟɞɧɨɯɪɨɦɨɜɨɝɨ, ɰɢɧɤ-ɯɪɨɦɨɜɨɝɨ, ɦɟɞɧɨ-ɦɚɪɝɚɧɰɟɜɨɝɨ ɢɥɢ ɞɪɭɝɨɝɨ ɤɚɬɚɥɢɡɚɬɨɪɚ. Ɉɫɧɨɜɧɨɣ ɧɟɞɨɫɬɚɬɨɤ ɦɟɬɨɞɚ – ɜɨɡɦɨɠɧɨɫɬɶ ɨɬɪɚɜɥɟɧɢɹ ɤɚɬɚɥɢɡɚɬɨɪɨɜ ɫɨɟɞɢɧɟɧɢɹɦɢ ɮɨɫɮɨɪɚ, ɮɬɨɪɚ, ɫɟɪɵ. ɉɨɷɬɨɦɭ ɧɟɨɛɯɨɞɢɦɨ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɟ ɭɞɚɥɟɧɢɟ ɤɚɬɚɥɢɬɢɱɟɫɤɢɯ ɹɞɨɜ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ. Ⱦɨɫɬɨɢɧɫɬɜɚ ɦɟɬɨɞɚ: ɜɨɡɦɨɠɧɨɫɬɶ ɨɱɢɫɬɤɢ ɛɨɥɶɲɨɝɨ ɨɛɴɟɦɚ ɫɬɨɱɧɵɯ ɜɨɞ ɛɟɡ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨɝɨ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ, ɨɬɫɭɬɫɬɜɢɟ ɜ ɩɪɨɞɭɤɬɚɯ ɨɤɢɫɥɟɧɢɹ ɜɪɟɞɧɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ; ɜɨɡɦɨɠɧɨɫɬɶ ɤɨɦɛɢɧɢɪɨɜɚɧɢɹ ɫ ɞɪɭɝɢɦɢ ɦɟɬɨɞɚɦɢ; ɛɟɡɨɩɚɫɧɨɫɬɶ ɜ ɪɚɛɨɬɟ. ɇɟɞɨɫɬɚɬɤɢ ɦɟɬɨɞɚ: ɧɟɩɨɥɧɨɟ ɨɤɢɫɥɟɧɢɟ ɧɟɤɨɬɨɪɵɯ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ; ɜɵɫɨɤɚɹ ɤɨɪɪɨɡɢɹ ɨɛɨɪɭɞɨɜɚɧɢɹ ɜ ɤɢɫɥɵɯ ɫɪɟɞɚɯ. Ɉɝɧɟɜɨɣ ɦɟɬɨɞ. ɗɬɨɬ ɦɟɬɨɞ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɹɜɥɹɟɬɫɹ ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɵɦ ɢ ɭɧɢɜɟɪɫɚɥɶɧɵɦ ɢɡ ɬɟɪɦɢɱɟɫɤɢɯ ɦɟɬɨɞɨɜ. ɋɭɳɧɨɫɬɶ ɟɝɨ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɪɚɫɩɵɥɟɧɢɢ ɫɬɨɱɧɵɯ ɜɨɞ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɜ ɬɨɩɨɱɧɵɟ ɝɚɡɵ, ɧɚɝɪɟɬɵɟ ɞɨ 900…1000ûɋ. ɉɪɢ ɷɬɨɦ ɜɨɞɚ ɩɨɥɧɨɫɬɶɸ ɢɫɩɚɪɹɟɬɫɹ, ɚ ɨɪɝɚɧɢɱɟɫɤɢɟ ɩɪɢɦɟɫɢ ɫɝɨɪɚɸɬ. Ɉɝɧɟɜɨɣ ɦɟɬɨɞ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɬɨɥɶɤɨ ɦɢɧɟɪɚɥɶɧɵɟ ɜɟɳɟɫɬɜɚ. Ɇɟɬɨɞ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧ ɬɚɤɠɟ ɞɥɹ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɧɟɛɨɥɶɲɨɝɨ ɨɛɴɟɦɚ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɜɵɫɨɤɨɬɨɤɫɢɱɧɵɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɜɟɳɟɫɬɜɚ, ɨɱɢɫɬɤɚ ɨɬ ɤɨɬɨɪɵɯ ɞɪɭɝɢɦɢ ɦɟɬɨɞɚɦɢ ɧɟɜɨɡɦɨɠɧɚ ɢɥɢ ɧɟɷɮɮɟɤɬɢɜɧɚ. Ʉɪɨɦɟ ɬɨɝɨ, ɨɝɧɟɜɨɣ ɦɟɬɨɞ ɰɟɥɟɫɨɨɛɪɚɡɟɧ, ɟɫɥɢ ɢɦɟɸɬɫɹ ɝɨɪɸɱɢɟ ɨɬɯɨɞɵ, ɤɨɬɨɪɵɟ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɤɚɤ ɬɨɩɥɢɜɨ. ȼ ɩɪɨɰɟɫɫɟ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ɪɚɡɥɢɱɧɨɝɨ ɫɨɫɬɚɜɚ ɦɨɝɭɬ ɨɛɪɚɡɨɜɵɜɚɬɶɫɹ ɨɤɫɢɞɵ ɳɟɥɨɱɧɵɯ ɢ ɳɟɥɨɱɧɨ-ɡɟɦɟɥɶɧɵɯ ɦɟɬɚɥɥɨɜ (CaO, MgO, BaO, K2O, Na2O ɢ ɞɪ.). ɉɪɢ ɞɢɫɫɨɰɢɚɰɢɢ ɯɥɨɪɢɞɨɜ ɜ ɞɵɦɨɜɵɯ ɝɚɡɚɯ ɫɨɞɟɪɠɢɬɫɹ ɯɥɨɪ ɢ ɯɥɨɪɨɜɨɞɨɪɨɞ. Ɉɪɝɚɧɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ, ɫɨɞɟɪɠɚɳɢɟ ɫɟɪɭ, ɮɨɫɮɨɪ, ɝɚɥɨɝɟɧɵ, ɦɨɝɭɬ ɨɛɪɚɡɨɜɵɜɚɬɶ SO2, SO3, P2O5, HCl, Cl2 ɢ ɞɪ. ɉɪɢɫɭɬɫɬɜɢɟ ɷɬɢɯ ɜɟɳɟɫɬɜ ɜ ɞɵɦɨɜɵɯ ɝɚɡɚɯ ɧɟɠɟɥɚɬɟɥɶɧɨ, ɬ.ɤ. ɷɬɨ ɜɵɡɵɜɚɟɬ ɤɨɪɪɨɡɢɸ ɚɩɩɚɪɚɬɭɪɵ. ɂɡ ɫɬɨɱɧɵɯ ɜɨɞ, ɫɨɞɟɪɠɚɳɢɯ ɧɢɬɪɨɫɨɟɞɢɧɟɧɢɹ, ɦɨɝɭɬ ɜɵ- ɞɟɥɹɬɶɫɹ ɨɤɫɢɞɵ ɚɡɨɬɚ. Ɇɟɠɞɭ ɷɬɢɦɢ ɫɨɟɞɢɧɟɧɢɹɦɢ ɩɪɨɢɫɯɨɞɹɬ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɧɨɜɵɯ ɫɨɟɞɢɧɟɧɢɣ, ɜ ɬɨɦ ɱɢɫɥɟ ɢ ɬɨɤɫɢɱɧɵɯ. Ⱦɥɹ ɨɝɧɟɜɨɝɨ ɦɟɬɨɞɚ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɢɫɩɨɥɶɡɭɸɬ ɪɚɡɥɢɱɧɵɟ ɩɟɱɢ. ɉɪɨɰɟɫɫ ɩɪɨɜɨɞɹɬ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɟ 800…890ûɋ. Ɋɚɡɞɟɥ 6. Ɂɚɳɢɬɚ ɥɢɬɨɫɮɟɪɵ ɇɚɤɨɩɥɟɧɢɟ ɡɧɚɱɢɬɟɥɶɧɵɯ ɦɚɫɫ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɨɛɭɫɥɨɜɥɟɧɨ ɫɭɳɟɫɬɜɭɸɳɢɦ ɭɪɨɜɧɟɦ ɬɟɯɧɨɥɨɝɢɢ ɩɟɪɟɪɚɛɨɬɤɢ ɫɵɪɶɹ ɢ ɧɟɞɨɫɬɚɬɨɱɧɨɫɬɶɸ ɟɝɨ ɤɨɦɩɥɟɤɫɧɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɡɧɚɱɢɬɟɥɶɧɚɹ ɱɚɫɬɶ ɨɬɯɨɞɨɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɩɪɟɞɩɪɢɹɬɢɣ ɦɨɠɟɬ ɛɵɬɶ ɷɮɮɟɤɬɢɜɧɨ ɢɫɩɨɥɶɡɨɜɚɧɚ ɜ ɧɚɪɨɞɧɨɦ ɯɨɡɹɣɫɬɜɟ. Ɇɧɨɝɨɨɛɪɚɡɢɟ ɜɢɞɨɜ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ, ɡɧɚɱɢɬɟɥɶɧɨɟ ɪɚɡɥɢɱɢɟ ɫɨɫɬɚɜɚ ɨɞɧɨɢɦɟɧɧɵɯ ɨɬɯɨɞɨɜ ɭɫɥɨɠɧɹɟɬ ɡɚɞɚɱɢ ɢɯ ɭɬɢɥɢɡɚɰɢɢ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ, ɪɚɡɥɢɱɧɵɟ ɬɟɯɧɨɥɨɝɢɢ ɪɟɤɭɩɟɪɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɜ ɫɜɨɟɣ ɨɫɧɨɜɟ ɛɚɡɢɪɭɸɬɫɹ ɧɚ ɦɟɬɨɞɚɯ, ɫɨɜɨɤɭɩɧɨɫɬɶ ɤɨɬɨɪɵɯ ɨɛɟɫɩɟɱɢɜɚɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɭɬɢɥɢɡɚɰɢɢ ɜɬɨɪɢɱɧɵɯ ɦɚɬɟɪɢɚɥɶɧɵɯ ɪɟɫɭɪɫɨɜ ɢɥɢ ɢɯ ɩɟɪɟɪɚɛɨɬɤɢ ɜ ɰɟɥɟɜɵɟ ɩɪɨɞɭɤɬɵ. 6.1. Ƚɢɞɪɨɦɟɯɚɧɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɛɪɚɛɨɬɤɢ ɠɢɞɤɢɯ ɨɬɯɨɞɨɜ 6.1.1. Ƚɢɞɪɨɦɟɯɚɧɢɱɟɫɤɨɟ ɨɛɟɡɜɨɠɢɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ȼ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɨɛɪɚɡɭɸɬɫɹ ɨɫɚɞɤɢ, ɨɛɴɟɦ ɤɨɬɨɪɵɯ ɫɨɫɬɚɜɥɹɟɬ ɨɬ 0,5 ɞɨ 1 % ɨɛɴɟɦɚ ɫɬɨɱɧɵɯ ɜɨɞ ɞɥɹ ɫɬɚɧɰɢɣ ɫɨɜɦɟɫɬɧɨɣ ɨɱɢɫɬɤɢ ɛɵɬɨɜɵɯ ɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɢ ɨɬ 10 ɞɨ 30 % ɞɥɹ ɥɨɤɚɥɶɧɵɯ ɨɱɢɫɬɧɵɯ ɫɨɨɪɭɠɟɧɢɣ. ɍɫɥɨɜɧɨ ɨɫɚɞɤɢ ɦɨɠɧɨ ɪɚɡɞɟɥɢɬɶ ɧɚ ɬɪɢ ɨɫɧɨɜɧɵɟ ɤɚɬɟɝɨɪɢɢ - ɦɢɧɟɪɚɥɶɧɵɟ ɨɫɚɞɤɢ, ɨɪɝɚɧɢɱɟɫɤɢɟ ɨɫɚɞɤɢ ɢ ɢɡɛɵɬɨɱɧɵɟ ɚɤɬɢɜɧɵɟ ɢɥɵ. Ɉɫɧɨɜɧɵɟ ɡɚɞɚɱɢ ɫɨɜɪɟɦɟɧɧɨɣ ɬɟɯɧɨɥɨɝɢɢ ɨɛɪɚɛɨɬɤɢ ɫɨɫɬɨɹɬ ɜ ɭɦɟɧɶɲɟɧɢɢ ɢɯ ɨɛɴɟɦɚ ɢ ɜ ɩɨɫɥɟɞɭɸɳɟɦ ɩɪɟɜɪɚɳɟɧɢɢ ɜ ɛɟɡɜɪɟɞɧɵɣ ɩɪɨɞɭɤɬ, ɧɟ ɜɵɡɵɜɚɸɳɢɣ ɡɚɝɪɹɡɧɟɧɢɹ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. ȼ ɨɫɚɞɤɚɯ ɫɨɞɟɪɠɚɬɫɹ ɫɨɟɞɢɧɟɧɢɹ ɤɪɟɦɧɢɹ, ɚɥɸɦɢɧɢɹ, ɠɟɥɟɡɚ, ɨɤɫɢɞɚ ɤɚɥɶɰɢɹ, ɦɚɝɧɢɹ, ɤɚɥɢɹ, ɧɚɬɪɢɹ, ɧɢɤɟɥɹ, ɯɪɨɦɚ ɢ ɞɪ. ɏɢɦɢɱɟɫɤɢɣ ɫɨɫɬɚɜ ɨɫɚɞɤɨɜ ɨɤɚɡɵɜɚɟɬ ɛɨɥɶɲɨɟ ɜɥɢɹɧɢɟ ɧɚ ɢɯ ɜɨɞɨɨɬɞɚɱɭ. ɋɨɟɞɢɧɟɧɢɹ ɠɟɥɟɡɚ, ɚɥɸɦɢɧɢɹ, ɯɪɨɦɚ, ɦɟɞɢ, ɚ ɬɚɤɠɟ ɤɢɫɥɨɬɵ, ɳɟɥɨɱɢ ɢ ɧɟɤɨɬɨɪɵɟ ɞɪɭɝɢɟ ɜɟɳɟɫɬɜɚ, ɫɨɞɟɪɠɚɳɢɟɫɹ ɜ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞɚɯ, ɫɩɨɫɨɛɫɬɜɭɸɬ ɢɧɬɟɧɫɢɮɢɤɚɰɢɢ ɩɪɨɰɟɫɫɚ ɨɛɟɡɜɨɠɢɜɚɧɢɹ ɨɫɚɞɤɨɜ ɢ ɫɧɢɠɚɸɬ ɪɚɫɯɨɞ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɝɟɧɬɨɜ ɧɚ ɢɯ ɤɨɚɝɭɥɹɰɢɸ ɩɟɪɟɞ ɨɛɟɡɜɨɠɢɜɚɧɢɟɦ. Ɇɚɫɥɚ, ɠɢɪɵ, ɚɡɨɬɧɵɟ ɫɨɟɞɢɧɟɧɢɹ, ɜɨɥɨɤɧɢɫɬɵɟ ɜɟɳɟɫɬɜɚ, ɧɚɨɛɨɪɨɬ ɹɜɥɹɸɬɫɹ ɧɟɛɥɚɝɨɩɪɢɹɬɧɵɦɢ ɤɨɦɩɨɧɟɧɬɚɦɢ. Ɉɤɪɭɠɚɹ ɱɚɫɬɢɰɵ ɨɫɚɞɤɚ, ɨɧɢ ɧɚɪɭɲɚɸɬ ɩɪɨɰɟɫɫɵ ɭɩɥɨɬɧɟɧɢɹ ɢ ɤɨɚɝɭɥɹɰɢɢ, ɚ ɬɚɤɠɟ ɭɜɟɥɢɱɢɜɚɸɬ ɫɨɞɟɪɠɚɧɢɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ɜ ɨɫɚɞɤɟ, ɱɬɨ ɫɤɚɡɵɜɚɟɬɫɹ ɧɚ ɭɯɭɞɲɟɧɢɢ ɟɝɨ ɜɨɞɨɨɬɞɚɱɢ. Ɇɟɯɚɧɢɱɟɫɤɨɟ ɨɛɟɡɜɨɠɢɜɚɧɢɟ ɨɫɚɞɤɨɜ ɩɪɨɦɫɬɨɤɨɜ ɦɨɠɟɬ ɩɪɨɢɡɜɨɞɢɬɶɫɹ ɷɤɫɬɟɧɫɢɜɧɵɦɢ ɢ ɢɧɬɟɧɫɢɜɧɵɦɢ ɦɟɬɨɞɚɦɢ. ɗɤɫɬɟɧɫɢɜɧɵɟ ɦɟɬɨɞɵ ɨɫɭɳɟɫɬɜ- ɥɹɸɬɫɹ ɜ ɪɚɡɥɢɱɧɨɝɨ ɪɨɞɚ ɭɩɥɨɬɧɢɬɟɥɹɯ, ɢɧɬɟɧɫɢɜɧɨɟ ɨɛɟɡɜɨɠɢɜɚɧɢɟ ɢ ɫɝɭɳɟɧɢɟ ɩɪɨɢɡɜɨɞɢɬɫɹ ɫ ɩɨɦɨɳɶɸ ɮɢɥɶɬɪɨɜɚɧɢɹ, ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ, ɝɢɞɪɨɰɢɤɥɨɧɢɪɨɜɚɧɢɹ ɢ ɬ.ɩ. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɨɬɞɟɥɟɧɢɹ ɬɜɟɪɞɵɯ ɜɟɳɟɫɬɜ ɨɬ ɠɢɞɤɨɫɬɢ, ɩɪɨɢɫɯɨɞɹɳɢɣ ɩɪɢ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ ɧɚɞ ɮɢɥɶɬɪɭɸɳɟɣ ɫɪɟɞɨɣ ɢ ɩɨɞ ɧɟɣ. Ⱦɥɹ ɨɛɟɡɜɨɠɢɜɚɧɢɹ ɨɫɚɞɤɨɜ ɢ ɲɥɚɦɨɜ ɨɛɵɱɧɨ ɢɫɩɨɥɶɡɭɸɬ ɜɚɤɭɭɦ-ɮɢɥɶɬɪɵ ɢ ɮɢɥɶɬɪ-ɩɪɟɫɫɵ. Ɏɢɥɶɬɪɭɸɳɟɣ ɫɪɟɞɨɣ ɧɚ ɮɢɥɶɬɪɚɯ ɹɜɥɹɟɬɫɹ ɮɢɥɶɬɪɨɜɚɥɶɧɚɹ ɬɤɚɧɶ ɢ ɫɥɨɣ ɨɫɚɞɤɚ, ɩɪɢɥɢɩɚɸɳɢɣ ɤ ɬɤɚɧɢ ɢ ɨɛɪɚɡɭɸɳɢɣ ɜ ɩɪɨɰɟɫɫɟ ɮɢɥɶɬɪɨɜɚɧɢɹ ɞɨɩɨɥɧɢɬɟɥɶɧɨ ɮɢɥɶɬɪɭɸɳɢɣ ɜɫɩɨɦɨɝɚɬɟɥɶɧɵɣ ɫɥɨɣ, ɤɨɬɨɪɵɣ ɫɨɛɫɬɜɟɧɧɨ ɢ ɨɛɟɫɩɟɱɢɜɚɟɬ ɡɚɞɟɪɠɚɧɢɟ ɦɟɥɶɱɚɣɲɢɯ ɱɚɫɬɢɰ ɫɭɫɩɟɧɡɢɢ. ɉɨ ɦɟɪɟ ɭɜɟɥɢɱɟɧɢɹ ɫɥɨɹ ɪɨɥɶ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ (ɬɤɚɧɢ) ɫɜɨɞɢɬɫɹ ɥɢɲɶ ɤ ɩɨɞɞɟɪɠɚɧɢɸ ɮɢɥɶɬɪɭɸɳɟɝɨ ɜɫɩɨɦɨɝɚɬɟɥɶɧɨɝɨ ɫɥɨɹ. ɍɜɟɥɢɱɟɧɢɟ ɬɨɥɳɢɧɵ ɫɥɨɹ ɨɛɟɫɩɟɱɢɜɚɟɬ ɭɥɭɱɲɟɧɢɟ ɤɚɱɟɫɬɜɚ ɮɢɥɶɬɪɚɬɚ, ɧɨ ɜ ɬɨ ɠɟ ɜɪɟɦɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɭɜɟɥɢɱɟɧɢɹ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɩɪɨɯɨɠɞɟɧɢɸ ɜɨɞɵ ɱɟɪɟɡ ɩɨɪɵ ɢ ɤɚɩɢɥɥɹɪɵ ɫɥɨɹ ɨɫɚɞɤɚ ɭɦɟɧɶɲɚɟɬɫɹ ɫɤɨɪɨɫɬɶ ɮɢɥɶɬɪɚɰɢɢ. Ɏɢɥɶɬɪɭɟɦɨɫɬɶ ɫɭɫɩɟɧɡɢɣ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɭɞɟɥɶɧɵɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ ɨɫɚɞɤɚ. ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ ɩɨɞ ɨɫɚɞɤɨɦ ɢɦɟɟɬɫɹ ɜ ɜɢɞɭ ɫɥɨɣ, ɨɬɥɚɝɚɸɳɢɣɫɹ ɧɚ ɮɢɥɶɬɪɨɜɚɥɶɧɨɣ ɩɟɪɟɝɨɪɨɞɤɟ ɩɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɫɭɫɩɟɧɡɢɣ. ɍɞɟɥɶɧɵɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ ɨɫɚɞɤɚ ɧɚɡɵɜɚɟɬɫɹ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɟɞɢɧɢɰɵ ɦɚɫɫɵ ɬɜɟɪɞɨɣ ɮɚɡɵ, ɨɬɥɚɝɚɸɳɟɣɫɹ ɧɚ ɟɞɢɧɢɰɟ ɩɥɨɳɚɞɢ ɮɢɥɶɬɪɚ ɩɪɢ ɮɢɥɶɬɪɨɜɚɧɢɢ ɩɨɞ ɩɨɫɬɨɹɧɧɵɦ ɞɚɜɥɟɧɢɟɦ ɫɭɫɩɟɧɡɢɢ, ɜɹɡɤɨɫɬɶ ɠɢɞɤɨɣ ɮɚɡɵ ɤɨɬɨɪɨɣ ɪɚɜɧɚ ɟɞɢɧɢɰɟ. ɍɞɟɥɶɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɨɫɚɞɤɚ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɟɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɮɢɥɶɬɪɚɰɢɢ ɢ ɮɢɥɶɬɪɭɟɦɨɫɬɶ (ɜɨɞɨɨɬɞɚɱɭ) ɨɫɚɞɤɨɜ, ɨɩɪɟɞɟɥɹɸɬ ɩɨ ɮɨɪɦɭɥɟ (6.1) i = (2 P.F2/K.mɭɞ)b, ɝɞɟ Ɋ - ɞɚɜɥɟɧɢɟ (ɜɚɤɭɭɦ), ɩɪɢ ɤɨɬɨɪɨɦ ɩɪɨɢɫɯɨɞɢɬ ɮɢɥɶɬɪɨɜɚɧɢɟ; F ɩɥɨɳɚɞɶ ɮɢɥɶɬɪɭɸɳɟɣ ɩɨɜɟɪɯɧɨɫɬɢ; K - ɜɹɡɤɨɫɬɶ ɮɢɥɶɬɪɚɬɚ; mɭɞ - ɦɚɫɫɚ ɬɜɟɪɞɨɣ ɮɚɡɵ ɨɫɚɞɤɚ, ɨɬɥɚɝɚɸɳɟɝɨɫɹ ɧɚ ɮɢɥɶɬɪɨɜɚɥɶɧɨɣ ɩɟɪɟɝɨɪɨɞɤɟ ɩɪɢ ɩɨɥɭɱɟɧɢɢ ɟɞɢɧɢɰɵ ɨɛɴɟɦɚ ɮɢɥɶɬɪɚɬɚ; b = t/U2 - ɩɚɪɚɦɟɬɪ, ɩɨɥɭɱɚɟɦɵɣ ɨɩɵɬɧɵɦ ɩɭɬɟɦ (t - ɜɪɟɦɹ ɮɢɥɶɬɪɚɰɢɢ); U - ɨɛɴɟɦ ɜɵɞɟɥɹɟɦɨɝɨ ɮɢɥɶɬɪɚɬɚ. ɉɨɞ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟɦ ɩɨɧɢɦɚɸɬ ɪɚɡɞɟɥɟɧɢɟ ɧɟɨɞɧɨɪɨɞɧɵɯ ɮɚɡ ɩɪɢ ɩɨɦɨɳɢ ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ. Ɉɧɨ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜ ɚɩɩɚɪɚɬɚɯ, ɧɚɡɵɜɚɟɦɵɯ ɰɟɧɬɪɢɮɭɝɚɦɢ. ɐɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ ɫɭɫɩɟɧɡɢɣ ɢ ɲɥɚɦɨɜ ɩɪɨɢɡɜɨɞɢɬɫɹ ɞɜɭɦɹ ɦɟɬɨɞɚɦɢ. ȼ ɩɟɪɜɨɦ ɫɥɭɱɚɟ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ ɜɵɩɨɥɧɹɟɬɫɹ ɜ ɪɨɬɨɪɚɯ, ɢɦɟɸɳɢɯ ɫɩɥɨɲɧɭɸ ɫɬɟɧɤɭ, ɜɨ ɜɬɨɪɨɦ - ɩɟɪɮɨɪɢɪɨɜɚɧɧɭɸ. ɐɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ ɜ ɩɟɪɮɨɪɢɪɨɜɚɧɧɵɯ ɪɨɬɨɪɚɯ ɹɜɥɹɟɬɫɹ ɩɪɨɰɟɫɫɨɦ, ɨɬɞɟɥɶɧɵɟ ɷɥɟɦɟɧɬɵ ɤɨɬɨɪɨɝɨ ɫɯɨɞɧɵ ɫ ɮɢɥɶɬɪɚɰɢɟɣ ɢ ɩɪɟɫɫɨɜɚɧɢɟɦ ɲɥɚɦɨɜ. ɉɪɨɰɟɫɫɵ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ ɜ ɫɩɥɨɲɧɵɯ ɪɨɬɨɪɚɯ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɰɟɧɬɪɢɮɭɝɚɥɶɧɨɟ ɨɫɜɟɬɥɟɧɢɟ ɢ ɨɫɚɞɢɬɟɥɶɧɨɟ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ. Ɉɫɚɞɢɬɟɥɶɧɨɟ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟ ɹɜɥɹɟɬɫɹ ɩɪɨɰɟɫɫɨɦ ɪɚɡɞɟɥɟɧɢɹ ɫɭɫɩɟɧɡɢɣ, ɫɨɞɟɪɠɚɳɢɯ ɡɧɚɱɢɬɟɥɶɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɬɜɟɪɞɨɣ ɮɚɡɵ. Ɉɫɧɨɜɧɵɦ ɩɚɪɚɦɟɬɪɨɦ ɰɟɧɬɪɢɮɭɝ ɹɜɥɹɟɬɫɹ ɮɚɤɬɨɪ ɪɚɡɞɟɥɟɧɢɹ Ʉɪ - ɨɬɧɨɲɟɧɢɟ ɭɫɤɨɪɟɧɢɹ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɤ ɭɫɤɨɪɟɧɢɸ ɫɢɥɵ ɬɹɠɟɫɬɢ: Kɪ = w02/(g.r), (6.2) ɝɞɟ w0 = 2 S n r/60 - ɨɤɪɭɠɧɚɹ ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ, ɦ/ɫ; n – ɱɚɫɬɨɬɚ ɜɪɚɳɟɧɢɹ, ɦɢɧ-1; g - ɭɫɤɨɪɟɧɢɟ ɫɢɥɵ ɬɹɠɟɫɬɢ, ɦ/ɫ2; r - ɪɚɞɢɭɫ ɜɪɚɳɟɧɢɹ, ɦ. ɋɪɟɞɢ ɚɩɩɚɪɚɬɨɜ ɞɥɹ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɪɚɡɞɟɥɟɧɢɹ ɪɚɡɥɢɱɧɵɯ ɠɢɞɤɢɯ ɨɬɯɨɞɨɜ ɲɢɪɨɤɨɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɩɨɥɭɱɢɥɢ ɬɚɤɠɟ ɠɢɞɤɨɫɬɧɵɟ ɫɟɩɚɪɚɬɨɪɵ, ɪɚɛɨɬɚɸɳɢɟ ɩɨ ɩɪɢɧɰɢɩɭ ɬɨɧɤɨɫɥɨɣɧɨɝɨ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ (ɫɟɩɚɪɢɪɨɜɚɧɢɹ). ȼ ɧɟɮɬɹɧɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɨɧɢ ɩɪɢɦɟɧɹɸɬɫɹ, ɧɚɩɪɢɦɟɪ, ɞɥɹ ɨɱɢɫɬɤɢ ɜɨɞɨɧɟɮɬɹɧɵɯ ɥɨɜɭɲɟɱɧɵɯ ɷɦɭɥɶɫɢɣ, ɨɬɞɟɥɟɧɢɹ ɦɟɯɚɧɢɱɟɫɤɢɯ ɩɪɢɦɟɫɟɣ ɢɡ ɩɪɢɫɚɞɨɤ ɤ ɦɚɫɥɚɦ, ɨɱɢɫɬɤɢ ɝɥɢɧɢɫɬɨɝɨ ɪɚɫɬɜɨɪɚ, ɩɪɢɦɟɧɹɟɦɨɝɨ ɩɪɢ ɛɭɪɟɧɢɢ ɧɟɮɬɹɧɵɯ ɫɤɜɚɠɢɧ, ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɧɟɮɬɟɩɟɪɟɪɚɛɚɬɵɜɚɸɳɢɯ ɡɚɜɨɞɨɜ, ɨɬɞɟɥɟɧɢɹ ɤɢɫɥɨɝɨ ɝɭɞɪɨɧɚ ɨɬ ɫɜɟɬɥɵɯ ɞɢɫɬɢɥɥɹɬɨɜ ɢ ɬ.ɞ. ȼ ɩɪɚɤɬɢɤɟ ɫɝɭɳɟɧɢɹ ɢ ɨɛɟɡɜɨɠɢɜɚɧɢɹ ɨɫɚɞɤɨɜ ɢɡ ɨɱɢɫɬɧɵɯ ɫɨɨɪɭɠɟɧɢɣ ɦɚɥɵɯ ɢ ɫɪɟɞɧɢɯ ɩɪɨɦɵɲɥɟɧɧɵɯ ɢ ɬɪɚɧɫɩɨɪɬɧɵɯ ɩɪɟɞɩɪɢɹɬɢɣ ɧɚɢɛɨɥɶɲɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɩɨɥɭɱɢɥɢ ɝɢɞɪɨɰɢɤɥɨɧɵ, ɤɨɬɨɪɵɟ ɩɪɢɦɟɧɹɸɬɫɹ, ɤɚɤ ɩɪɚɜɢɥɨ, ɜ ɤɨɦɛɢɧɚɰɢɢ ɫ ɪɚɫɩɨɥɨɠɟɧɧɵɦɢ ɧɢɠɟ ɛɭɧɤɟɪɚɦɢ - ɭɩɥɨɬɧɢɬɟɥɹɦɢ ɨɫɚɞɤɚ. ɉɨ ɤɨɧɫɬɪɭɤɬɢɜɧɵɦ ɨɫɨɛɟɧɧɨɫɬɹɦ ɜɫɟ ɝɢɞɪɨɰɢɤɥɨɧɵ ɦɨɠɧɨ ɪɚɡɛɢɬɶ ɧɚ ɫɥɟɞɭɸɳɢɟ ɝɪɭɩɩɵ: ɚ) ɤɨɧɢɱɟɫɤɢɟ ɝɢɞɪɨɰɢɤɥɨɧɵ; ɛ) ɰɢɥɢɧɞɪɢɱɟɫɤɢɟ ɝɢɞɪɨɰɢɤɥɨɧɵ; ɜ) ɬɭɪɛɨɰɢɤɥɨɧɵ (ɰɟɧɬɪɢɤɥɨɧɵ). Ɉɫɚɠɞɟɧɢɟ ɱɚɫɬɢɰ ɜɡɜɟɫɢ ɜ ɩɨɥɟ ɞɟɣɫɬɜɢɹ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ, ɢɦɟɸɳɟɟ ɦɟɫɬɨ ɩɪɢ ɪɚɛɨɬɟ ɝɢɞɪɨɰɢɤɥɨɧɨɜ, ɜɨ ɦɧɨɝɨ ɪɚɡ ɢɧɬɟɧɫɢɜɧɟɟ ɨɫɚɠɞɟɧɢɹ ɢɯ ɜ ɩɨɥɟ ɜɟɪɬɢɤɚɥɶɧɵɯ ɫɢɥ, ɜɨɡɧɢɤɚɸɳɢɯ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ ɜ ɭɩɥɨɬɧɢɬɟɥɹɯ ɜɟɪɬɢɤɚɥɶɧɨɝɨ ɢɥɢ ɝɨɪɢɡɨɧɬɚɥɶɧɨɝɨ ɬɢɩɚ. Ɏɚɤɬɨɪ ɪɚɡɞɟɥɟɧɢɹ Kɪ, ɩɨɤɚɡɵɜɚɸɳɢɣ, ɜɨ ɫɤɨɥɶɤɨ ɪɚɡ ɫɤɨɪɨɫɬɶ ɩɟɪɟɦɟɳɟɧɢɹ ɱɚɫɬɢɰɵ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɛɨɥɶɲɟ ɫɤɨɪɨɫɬɢ ɟɟ ɨɫɟɞɚɧɢɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ ɬɹɠɟɫɬɢ, ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɥɟɞɭɸɳɢɦ ɜɵɪɚɠɟɧɢɟɦ: (6.3) Kɪ = 18.G2(Uɱ - U0)P0.wɬ2/[18.G2(Uɱ - U0)P0.g.r]) = wɬ2/g.r, ɝɞɟ G - ɞɢɚɦɟɬɪ ɱɚɫɬɢɰɵ ɜɡɜɟɫɢ; Uɱ - ɩɥɨɬɧɨɫɬɶ ɱɚɫɬɢɰɵ ɜɡɜɟɫɢ; U0 - ɩɥɨɬɧɨɫɬɶ ɠɢɞɤɨɫɬɢ (ɫɪɟɞɵ); P0 - ɚɛɫɨɥɸɬɧɚɹ ɜɹɡɤɨɫɬɶ ɠɢɞɤɨɫɬɢ; wɬ - ɬɚɧɝɟɧɰɢɚɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ɧɚ ɪɚɞɢɭɫɟ ɪɚɡɞɟɥɟɧɢɹ; g - ɭɫɤɨɪɟɧɢɟ ɫɢɥɵ ɬɹɠɟɫɬɢ; r - ɪɚɞɢɭɫ ɜɪɚɳɟɧɢɹ. Ɂɧɚɱɟɧɢɹ ɮɚɤɬɨɪɚ ɪɚɡɞɟɥɟɧɢɹ Kɪ ɤɨɥɟɛɥɸɬɫɹ ɜ ɩɪɟɞɟɥɚɯ ɨɬ 500 ɞɨ 2000. ȼ ɝɢɞɪɨɰɢɤɥɨɧɚɯ, ɤɚɤ ɢ ɜ ɰɟɧɬɪɢɮɭɝɚɯ, ɪɚɡɞɟɥɟɧɢɟ ɫɭɫɩɟɧɡɢɣ ɩɪɨɢɫɯɨɞɢɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ, ɧɨ ɩɨ ɫɩɨɫɨɛɭ ɞɟɣɫɬɜɢɹ ɨɧɢ ɡɧɚɱɢɬɟɥɶɧɨ ɨɬɥɢɱɚɸɬɫɹ. ȼ ɰɟɧɬɪɢɮɭɝɟ ɫɭɫɩɟɧɡɢɹ ɜɦɟɫɬɟ ɫ ɛɚɪɚɛɚɧɨɦ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɭɝɥɨɜɨɣ ɫɤɨɪɨɫɬɢ ɫɨɜɫɟɦ ɢɥɢ ɩɨɱɬɢ (ɲɧɟɤɨɜɵɟ ɰɟɧɬɪɢɮɭɝɢ) ɧɟ ɞɜɢɠɟɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɛɚɪɚɛɚɧɚ. ɉɪɢ ɷɬɨɦ ɧɚ ɱɚɫɬɢɰɵ ɧɟ ɞɟɣɫɬɜɭɸɬ ɧɢɤɚɤɢɟ ɤɚɫɚɬɟɥɶɧɵɟ ɫɢɥɵ. ȼ ɝɢɞɪɨɰɢɤɥɨɧɟ ɠɟ ɧɚ ɱɚɫɬɢɰɵ ɫɭɫɩɟɧɡɢɢ ɞɟɣɫɬɜɭɸɬ ɛɨɥɶɲɢɟ ɬɚɧɝɟɧɰɢɚɥɶɧɵɟ ɫɢɥɵ, ɩɨɞɞɟɪɠɢɜɚɸɳɢɟ ɢɯ ɜ ɧɟɩɪɟɪɵɜɧɨɦ ɨɬɧɨɫɢɬɟɥɶɧɨɦ ɞɜɢɠɟɧɢɢ. Ɇɟɠɞɭ ɫɥɨɹɦɢ ɫɭɫɩɟɧɡɢɢ ɜɨɡɧɢɤɚɟɬ ɧɚɩɪɹɠɟɧɢɟ ɫɞɜɢɝɚ, ɞɟɣɫɬɜɭɸɳɟɟ ɧɚ ɬɜɟɪɞɭɸ ɱɚɫɬɢɰɭ ɤɚɤ ɩɨɩɟɪɟɱɧɚɹ ɫɢɥɚ. ɂɡɜɟɫɬɧɨ, ɱɬɨ ɞɥɹ ɭɜɟɥɢɱɟɧɢɹ ɝɥɭɛɢɧɵ ɨɬɛɨɪɚ ɱɚɫɬɢɰ ɜɡɜɟɫɢ ɜ ɰɟɧɬɪɢɮɭɝɚɯ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɱɚɫɬɨɬɟ ɜɪɚɳɟɧɢɹ ɛɚɪɚɛɚɧɚ ɧɟɨɛɯɨɞɢɦɨ ɭɜɟɥɢɱɢɬɶ ɟɝɨ ɞɢɚɦɟɬɪ. ȼ ɝɢɞɪɨɰɢɤɥɨɧɚɯ, ɧɚɨɛɨɪɨɬ, ɷɬɨ ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɫɜɹɡɚɧɨ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɞɢɚɦɟɬɪɚ ɚɩɩɚɪɚɬɚ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɭɦɟɧɶɲɟɧɢɟ ɞɢɚɦɟɬɪɚ ɝɢɞɪɨɰɢɤɥɨɧɚ ɜɟɞɟɬ ɤ ɫɧɢɠɟɧɢɸ ɟɝɨ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ. ɉɨɷɬɨɦɭ ɜ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɬɪɟɛɭɟɬɫɹ ɞɨɛɢɬɶɫɹ ɛɨɥɟɟ ɬɨɧɤɨɣ ɨɱɢɫɬɤɢ ɧɟɨɛɯɨɞɢɦɨɝɨ ɩɪɨɞɭɤɬɚ ɩɪɢ ɡɧɚɱɢɬɟɥɶɧɵɯ ɪɚɫɯɨɞɚɯ ɩɨɫɥɟɞɧɟɝɨ, ɢɫɩɨɥɶɡɭɸɬ ɛɚɬɚɪɟɣɧɵɟ ɝɢɞɪɨɰɢɤɥɨɧɵ (ɦɭɥɶɬɢɝɢɞɪɨɰɢɤɥɨɧɵ), ɩɪɟɞɫɬɚɜɥɹɸɳɢɟ ɫɨɛɨɣ ɧɟɫɤɨɥɶɤɨ ɩɚɪɚɥɥɟɥɶɧɨ ɜɤɥɸɱɟɧɧɵɯ ɷɥɟɦɟɧɬɚɪɧɵɯ ɝɢɞɪɨɰɢɤɥɨɧɨɜ. 6.1.2. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ Ɏɢɥɶɬɪɨɜɚɧɢɟ ɩɪɢɦɟɧɹɸɬ ɞɥɹ ɜɵɞɟɥɟɧɢɹ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ ɬɨɧɤɨɞɢɫɩɟɪɫɧɵɯ ɬɜɟɪɞɵɯ ɢɥɢ ɠɢɞɤɢɯ ɜɟɳɟɫɬɜ. Ɋɚɡɞɟɥɟɧɢɟ ɩɪɨɜɨɞɹɬ ɩɪɢ ɩɨɦɨɳɢ ɩɨɪɢɫɬɵɯ ɢɥɢ ɡɟɪɧɢɫɬɵɯ ɩɟɪɟɝɨɪɨɞɨɤ, ɩɪɨɩɭɫɤɚɸɳɢɯ ɠɢɞɤɨɫɬɶ, ɢ ɡɚɞɟɪɠɢɜɚɸɳɢɯ ɞɢɫɩɟɪɝɢɪɨɜɚɧɧɭɸ ɮɚɡɭ. ɉɪɨɰɟɫɫ ɢɞɟɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɢɞɪɨɫɬɚɬɢɱɟɫɤɨɝɨ ɞɚɜɥɟɧɢɹ ɫɬɨɥɛɚ ɠɢɞɤɨɫɬɢ, ɩɨɜɵɲɟɧɧɨɝɨ ɞɚɜɥɟɧɢɹ ɧɚɞ ɩɟɪɟɝɨɪɨɞɤɨɣ ɢɥɢ ɜɚɤɭɭɦɚ ɩɨɫɥɟ ɩɟɪɟɝɨɪɨɞɤɢ. ȼɵɛɨɪ ɩɟɪɟɝɨɪɨɞɨɤ ɡɚɜɢɫɢɬ ɨɬ ɫɜɨɣɫɬɜ ɫɬɨɱɧɨɣ ɜɨɞɵ, ɬɟɦɩɟɪɚɬɭɪɵ, ɞɚɜɥɟɧɢɹ ɮɢɥɶɬɪɨɜɚɧɢɹ ɢ ɤɨɧɫɬɪɭɤɰɢɢ ɮɢɥɶɬɪɚ. ȼ ɤɚɱɟɫɬɜɟ ɩɟɪɟɝɨɪɨɞɨɤ ɢɫɩɨɥɶɡɭɸɬ ɦɟɬɚɥɥɢɱɟɫɤɢɟ ɩɟɪɮɨɪɢɪɨɜɚɧɧɵɟ ɥɢɫɬɵ ɢ ɫɟɬɤɢ, ɬɤɚɧɟɜɵɟ ɩɟɪɟɝɨɪɨɞɤɢ ɢɡ ɩɪɢɪɨɞɧɨɝɨ, ɢɫɤɭɫɫɬɜɟɧɧɨɝɨ ɢ ɫɢɧɬɟɬɢɱɟɫɤɨɝɨ ɜɨɥɨɤɧɚ. Ɏɢɥɶɬɪɨɜɚɧɧɵɟ ɩɟɪɟɝɨɪɨɞɤɢ ɞɨɥɠɧɵ ɨɛɥɚɞɚɬɶ ɦɢɧɢɦɚɥɶɧɵɦ ɝɢɞɪɚɜɥɢɱɟɫɤɢɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ, ɦɟɯɚɧɢɱɟɫɤɨɣ ɩɪɨɱɧɨɫɬɶɸ ɢ ɝɢɛɤɨɫɬɶɸ, ɯɢɦɢɱɟɫɤɨɣ ɫɬɨɣɤɨɫɬɶɸ, ɨɧɢ ɧɟ ɞɨɥɠɧɵ ɧɚɛɭɯɚɬɶ ɢ ɪɚɡɪɭɲɚɬɶɫɹ ɩɪɢ ɡɚɞɚɧɧɵɯ ɭɫɥɨɜɢɹɯ ɮɢɥɶɬɪɨɜɚɧɢɹ. Ɋɚɡɧɨɫɬɶ ɞɚɜɥɟɧɢɣ ɩɨ ɨɛɟ ɫɬɨɪɨɧɵ ɮɢɥɶɬɪɨɜɚɧɧɨɣ ɩɟɪɟɝɨɪɨɞɤɢ ɫɨɡɞɚɸɬ ɪɚɡɧɵɦɢ ɫɩɨɫɨɛɚɦɢ. ȿɫɥɢ ɩɪɨɫɬɪɚɧɫɬɜɨ ɧɚɞ ɫɭɫɩɟɧɡɢɟɣ ɫɨɨɛɳɚɸɬ ɫ ɢɫɬɨɱɧɢɤɨɦ ɫɠɚɬɨɝɨ ɝɚɡɚ ɢɥɢ ɩɪɨɫɬɪɚɧɫɬɜɨ ɩɨɞ ɮɢɥɶɬɪɨɜɚɧɧɨɣ ɩɟɪɟɝɨɪɨɞɤɨɣ ɩɪɢɫɨɟɞɢɧɹɸɬ ɤ ɢɫɬɨɱɧɢɤɭ ɜɚɤɭɭɦɚ, ɬɨ ɩɪɨɢɫɯɨɞɢɬ ɩɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ. ɉɪɢ ɷɬɨɦ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɭɦɟɧɶɲɚɟɬɫɹ ɜ ɫɜɹɡɢ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɥɨɹ ɨɫɚɞɤɚ ɜɨɡɪɚɫɬɚɸɳɟɣ ɬɨɥɳɢɧɵ. ȿɫɥɢ ɫɭɫɩɟɧɡɢɸ ɩɨɞɚɸɬ ɧɚ ɮɢɥɶɬɪ ɩɨɪɲɧɟɜɵɦ ɧɚɫɨɫɨɦ ɫ ɩɨɫɬɨɹɧɧɨɣ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶɸ, ɬɨ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɫɤɨɪɨɫɬɢ; ɩɪɢ ɷɬɨɦ ɪɚɡɧɨɫɬɶ ɞɚɜɥɟɧɢɣ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɜɫɥɟɞɫɬɜɢɟ ɭɜɟɥɢɱɟɧɢɹ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɥɨɹ ɨɫɚɞɤɚ ɜɨɡɪɚɫɬɚɸɳɟɣ ɬɨɥɳɢɧɵ. ȿɫɥɢ ɫɭɫɩɟɧɡɢɸ ɩɨɞɚɸɬ ɧɚ ɮɢɥɶɬɪ ɰɟɧɬɪɨɛɟɠɧɵɦ ɧɚɫɨɫɨɦ, ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɤɨɬɨɪɨɝɨ ɭɦɟɧɶɲɚɟɬɫɹ ɩɪɢ ɜɨɡɪɚɫɬɚɧɢɢ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɨɫɚɞɤɚ, ɱɬɨ ɨɛɭɫɥɚɜɥɢɜɚɟɬ ɩɨɜɵɲɟɧɢɟ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ, ɬɨ ɩɪɨɢɡɜɨɞɢɬɫɹ ɩɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɟɪɟɦɟɧɧɵɯ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ ɢ ɫɤɨɪɨɫɬɢ. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɩɪɨɢɡɜɨɞɹɬ ɩɪɢ ɫɥɟɞɭɸɳɢɯ ɪɚɡɧɨɫɬɹɯ ɞɚɜɥɟɧɢɣ: - ɩɨɞ ɜɚɤɭɭɦɨɦ - 5·104…9·104 ɉɚ; - ɩɨɞ ɞɚɜɥɟɧɢɟɦ ɫɠɚɬɨɝɨ ɜɨɡɞɭɯɚ – ɧɟ ɛɨɥɟɟ 3·105 ɉɚ; - ɩɪɢ ɩɨɞɚɱɟ ɩɨɪɲɧɟɜɵɦ ɢɥɢ ɰɟɧɬɪɨɛɟɠɧɵɦ ɧɚɫɨɫɨɦ – ɞɨ 5·105 ɉɚ; - ɩɨɞ ɝɢɞɪɨɫɬɚɬɢɱɟɫɤɢɦ ɞɚɜɥɟɧɢɟɦ – ɞɨ 5·104 ɉɚ. ɉɪɨɰɟɫɫ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɨɜɨɞɹɬ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɨɫɚɞɤɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ ɢɥɢ ɫ ɡɚɤɭɩɨɪɤɨɣ ɩɨɪ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɨɫɚɞɤɚ ɧɚɛɥɸɞɚɟɬɫɹ ɩɪɢ ɞɨɫɬɚɬɨɱɧɨ ɜɵɫɨɤɨɣ ɤɨɧɰɟɧɬɪɚɰɢɢ ɬɜɟɪɞɨɣ ɮɚɡɵ ɜ ɫɭɫɩɟɧɡɢɢ (ɛɨɥɟɟ 1% ɨɛɴɟɦɧ.). Ɏɢɥɶɬɪɨɜɚɧɢɟ ɫ ɡɚɤɭɩɨɪɢɜɚɧɢɟɦ ɩɨɪ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ ɧɚɡɵɜɚɸɬ ɨɫɜɟɬɥɟɧɢɟɦ, ɨɧɨ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɬɜɟɪɞɨɣ ɮɚɡɵ ɦɟɧɟɟ 0,7 ɨɛɴɟɦɧ.% ɉɪɢ ɪɚɡɞɟɥɟɧɢɢ ɫɭɫɩɟɧɡɢɣ ɫ ɧɟɛɨɥɶɲɨɣ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɬɨɧɤɨɞɢɫɩɟɪɫɢɪɨɜɚɧɧɨɣ ɬɜɟɪɞɨɣ ɮɚɡɵ ɱɚɫɬɨ ɩɪɢɦɟɧɹɸɬ ɮɢɥɶɬɪɨɜɚɥɶɧɵɟ ɜɫɩɨɦɨɝɚɬɟɥɶɧɵɟ ɜɟɳɟɫɬɜɚ ɩɪɟɩɹɬɫɬɜɭɸɳɢɟ ɩɪɨɧɢɤɚɧɢɸ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ ɜ ɩɨɪɵ ɮɢɥɶɬɪɨɜɚɥɶɧɨɣ ɩɟɪɟɝɨɪɨɞɤɢ. ȼ ɤɚɱɟɫɬɜɟ ɜɫɩɨɦɨɝɚɬɟɥɶɧɵɯ ɜɟɳɟɫɬɜ ɢɫɩɨɥɶɡɭɸɬ ɬɨɧɤɨɞɢɫɩɟɪɫɧɵɟ ɢɥɢ ɬɨɧɤɨɜɨɥɨɤɧɢɫɬɵɟ ɦɚɬɟɪɢɚɥɵ: ɞɢɚɬɨɦɢɬ, ɩɟɪɥɢɬ, ɚɫɛɟɫɬ, ɰɟɥɥɸɥɨɡɭ, ɚɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ, ɞɪɟɜɟɫɧɭɸ ɦɭɤɭ. ɉɪɢ ɞɨɛɚɜɥɟɧɢɢ ɜɫɩɨɦɨɝɚɬɟɥɶɧɨɝɨ ɜɟɳɟɫɬɜɚ ɤ ɪɚɡɞɟɥɹɟɦɨɣ ɫɭɫɩɟɧɡɢɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ ɜ ɧɟɣ ɭɜɟɥɢɱɢɜɚɟɬɫɹ, ɱɬɨ ɩɪɟɞɨɬɜɪɚɳɚɟɬ ɡɚɤɭɩɨɪɢɜɚɧɢɟ ɩɨɪ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ. ɍɪɚɜɧɟɧɢɹ ɮɢɥɶɬɪɨɜɚɧɢɹ. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɩɪɨɬɟɤɚɟɬ ɜ ɥɚɦɢɧɚɪɧɨɦ ɪɟɠɢɦɟ ɜɫɥɟɞɫɬɜɢɟ ɧɟɛɨɥɶɲɨɝɨ ɪɚɡɦɟɪɚ ɩɨɪ ɜ ɫɥɨɟ ɨɫɚɞɤɚ ɢ ɮɢɥɶɬɪɨɜɚɥɶɧɨɣ ɩɟɪɟɝɨɪɨɞɤɢ, ɚ ɬɚɤɠɟ ɦɚɥɨɣ ɫɤɨɪɨɫɬɢ ɞɜɢɠɟɧɢɹ ɠɢɞɤɨɣ ɮɚɡɵ ɜ ɩɨɪɚɯ. ɋɤɨɪɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɜɵɪɚɠɚɸɬ ɜ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɣ ɮɨɪɦɟ dV wɮ , (6.4) S ˜ dW ɝɞɟ V – ɨɛɴɟɦ ɮɢɥɶɬɪɚɬɚ, ɦ³; S – ɩɨɜɟɪɯɧɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ, ɦ²; IJ - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ, ɫ. ɋɤɨɪɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ, ɧɨ ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɜɹɡɤɨɫɬɢ ɠɢɞɤɨɣ ɮɚɡɵ ɢ ɨɛɳɟɦɭ ɝɢɞɪɚɜɥɢɱɟɫɤɨɦɭ ɫɨɩɪɨɬɢɜɥɟɧɢɸ ɫɥɨɸ ɨɫɚɞɤɚ ɢ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ: dV/(S.dW) = 'P/[P0(Rɨɫ + Rɮɩ)] (6.5) ɝɞɟ 'Ɋ – ɪɚɡɧɨɫɬɶ ɞɚɜɥɟɧɢɣ, ɉɚ; ȝ0 – ɜɹɡɤɨɫɬɶ ɠɢɞɤɨɣ ɮɚɡɵ ɫɭɫɩɟɧɡɢɢ, ɉɚ.ɫ; Rɨɫ – ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɫɥɨɹ ɨɫɚɞɤɚ, ɦǦ¹; Rɮɩ – ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ ɦǦ¹. Ɉɛɴɟɦ ɨɫɚɞɤɚ ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɱɟɪɟɡ ɜɵɫɨɬɭ ɫɥɨɹ ɨɫɚɞɤɚ hɨɫ, ɚ ɬɚɤɠɟ ɱɟɪɟɡ ɨɬɧɨɲɟɧɢɟ ɨɛɴɟɦɚ ɨɫɚɞɤɚ ɤ ɨɛɴɟɦɭ ɮɢɥɶɬɪɚɬɚ ɯɨ: hoc·S = ɯɨ·V, (6.6) ɨɬɤɭɞɚ ɬɨɥɳɢɧɚ ɨɫɚɞɤɚ ɫɨɫɬɚɜɢɬ hoc = xo ˜ V S ɋɨɩɪɨɬɢɜɥɟɧɢɟ ɫɥɨɹ ɨɫɚɞɤɚ ɪɚɜɧɨ (6.7) Rɨɫ = r·hɨɫ = rɨ·ɯɨ·V/S, (6.8) -2 ɝɞɟ rɨ – ɭɞɟɥɶɧɨɟ ɨɛɴɟɦɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɨɫɚɞɤɚ, ɦ . ɋ ɭɱɟɬɨɦ ɷɬɨɝɨ ɜɵɪɚɠɟɧɢɹ ɨɫɧɨɜɧɨɟ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɮɢɥɶɬɪɨɜɚɧɢɹ ɢɦɟɟɬ ɜɢɞ 'P dV wɮ , V S ˜ dW § · P 0 ¨ r0 ˜ x 0  Rɮn ¸ (6.9) S © ¹ ɉɪɢɧɹɜ ɭɫɥɨɜɢɟ Rɮɩ = 0, ɩɨɥɭɱɢɦ 'P Ro= , P 0 ˜ hoc ˜ wɮ (6.10) ȼ ɧɚɱɚɥɟ ɮɢɥɶɬɪɨɜɚɧɢɹ V = 0, ɤɨɝɞɚ ɧɚ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɟ ɟɳɟ ɧɟ ɨɛɪɚɡɨɜɚɥɫɹ ɫɥɨɣ ɨɫɚɞɤɚ, ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ ɛɭɞɟɬ 'P (6.11) Rɮn= , P 0 ˜ wɮ ɍɪɚɜɧɟɧɢɟ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ. V V · § ³ P 0 ¨© r0 ˜ x 0 S  Rɮn ¸¹dV P 0 ˜ r0 ˜ x0 ˜ 2 V  P 0 ˜ Rɮn ˜ V 2S r ³ 'P ˜ S ˜ dW ; (6.12) 'P ˜ S ˜ W , (6.13) Ɋɚɡɞɟɥɢɜ ɨɛɟ ɱɚɫɬɢ ɭɪɚɜɧɟɧɢɹ ɧɚ ȝɨrɨɯɨ/(2S), ɩɨɥɭɱɢɦ ɡɚɜɢɫɢɦɨɫɬɶ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɮɢɥɶɬɪɨɜɚɧɢɹ ɨɬ ɨɛɴɟɦɚ ɮɢɥɶɬɪɚɬɚ V2+2 ˜ Rɮn ˜ S r0 ˜ x0 ˜V 2˜ 'P ˜ S 2 ˜W , P 0 ˜ r0 ˜ x0 (6.14) ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɩɪɢɦɟɧɢɦɨ ɤɚɤ ɤ ɫɠɢɦɚɟɦɵɦ, ɬɚɤ ɢ ɤ ɧɟɫɠɢɦɚɟɦɵɦ ɨɫɚɞɤɚɦ, ɩɨɫɤɨɥɶɤɭ ɩɪɢ ǻɊ = const ɜɟɥɢɱɢɧɵ rɨ ɢ ɯɨ ɬɚɤɠɟ ɩɨɫɬɨɹɧɧɵ. ɉɪɢ ǻɊ = const ɩɨ ɦɟɪɟ ɭɜɟɥɢɱɟɧɢɹ ɨɛɴɟɦɚ ɮɢɥɶɬɪɚɬɚ ɢ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɮɢɥɶɬɪɨɜɚɧɢɹ ɫɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɭɦɟɧɶɲɚɟɬɫɹ. ɍɪɚɜɧɟɧɢɟ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɫɤɨɪɨɫɬɢ ɩɪɨɰɟɫɫɚ. Ⱦɥɹ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɫɤɨɪɨɫɬɢ ɩɪɨɢɡɜɨɞɧɭɸ dV/dIJ ɦɨɠɧɨ ɡɚɦɟɧɢɬɶ ɨɬɧɨɲɟɧɢɟɦ ɤɨɧɟɱɧɵɯ ɜɟɥɢɱɢɧ V/IJ. ɉɨɫɥɟ ɬɚɤɨɣ ɡɚɦɟɧɵ ɧɚɯɨɞɹɬ ɪɟɲɟɧɢɟ ɨɫɧɨɜɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɮɢɥɶɬɪɨɜɚɧɢɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ǻɊ: 'P P 0 ˜ r0 ˜ x0 ˜ V2 V ,  P 0 Rɮn ˜ 2 S ˜W S ˜W (6.15) ɍɦɧɨɠɢɜ ɢ ɪɚɡɞɟɥɢɜ ɩɟɪɜɨɟ ɫɥɚɝɚɟɦɨɟ ɩɪɚɜɨɣ ɱɚɫɬɢ ɧɚ IJ, ɫ ɭɱɟɬɨɦ ɜɵɪɚɠɟɧɢɹ wɮ = V , ɩɨɥɭɱɢɦ SW ǻɊ = ȝɨrɨɯɨwɮ2 IJ + ȝɨ Rɮɩ wɮ. (6.16) ɉɪɢ wɮ = const ɪɚɡɧɨɫɬɶ ɞɚɜɥɟɧɢɣ ɜɨɡɪɚɫɬɚɟɬ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɮɢɥɶɬɪɨɜɚɧɢɹ. ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɩɪɢɦɟɧɢɦɨ ɤ ɧɟɫɠɢɦɚɟɦɵɦ ɨɫɚɞɤɚɦ. ɍɪɚɜɧɟɧɢɟ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ɩɨɫɬɨɹɧɧɵɯ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ ɢ ɫɤɨɪɨɫɬɢ. Ɍɚɤɨɣ ɜɢɞ ɮɢɥɶɬɪɨɜɚɧɢɹ ɨɫɭɳɟɫɬɜɢɦ, ɟɫɥɢ ɱɢɫɬɚɹ ɠɢɞɤɨɫɬɶ ɮɢɥɶɬɪɭɟɬɫɹ ɫɤɜɨɡɶ ɫɥɨɣ ɨɫɚɞɤɚ ɧɟɢɡɦɟɧɧɨɣ ɬɨɥɳɢɧɵ ɩɪɢ ɩɨɫɬɨɹɧɧɨɣ ɪɚɡɧɨɫɬɢ ɞɚɜɥɟɧɢɣ. ɉɪɢɧɹɜ ɪɚɜɟɧɫɬɜɨ ɯɨV/S = hɨɫ ɢ ɡɚɦɟɧɭ dV/dIJ ɧɚ ɩɨɫɬɨɹɧɧɨɟ ɡɧɚɱɟɧɢɟ V/IJ ɩɪɢ ǻɊ = const ɧɚɣɞɟɦ V= 'P ˜ S ˜W , P 0 ˜ r0 ˜ hoc  Rɮn (6.17) ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɞɚɟɬ ɡɚɜɢɫɢɦɨɫɬɶ ɨɛɴɟɦɚ ɮɢɥɶɬɪɚɬɚ ɨɬ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɮɢɥɶɬɪɨɜɚɧɢɹ ɱɢɫɬɨɣ ɠɢɞɤɨɫɬɢ, ɜ ɱɚɫɬɧɨɫɬɢ ɩɪɨɦɵɜɧɨɣ ɠɢɞɤɨɫɬɢ. ɉɪɢ ɩɪɨɱɢɯ ɪɚɜɧɵɯ ɭɫɥɨɜɢɹɯ ɫɤɨɪɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ ɬɟɦ ɛɨɥɶɲɟ ɢ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɚ ɬɟɦ ɜɵɲɟ, ɱɟɦ ɦɟɧɶɲɟ ɨɛɴɟɦ ɩɨɥɭɱɟɧɧɨɝɨ ɮɢɥɶɬɪɚɬɚ ɢɥɢ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚɹ ɷɬɨɦɭ ɨɛɴɟɦɭ ɬɨɥɳɢɧɚ ɫɥɨɹ ɨɫɚɞɤɚ ɧɚ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɟ. ɉɨɷɬɨɦɭ ɞɥɹ ɩɨɜɵɲɟɧɢɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɮɢɥɶɬɪɚ ɧɟɨɛɯɨɞɢɦɨ ɫɬɪɟɦɢɬɶɫɹ ɤ ɜɨɡɦɨɠɧɨ ɛɵɫɬɪɨɦɭ ɭɞɚɥɟɧɢɸ ɨɫɚɞɤɚ ɫ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ. Ⱦɥɹ ɧɚɢɛɨɥɶɲɟɣ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɮɢɥɶɬɪɨɜ ɩɟɪɢɨɞɢɱɟɫɤɨɝɨ ɞɟɣɫɬɜɢɹ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɤɚɤ ɦɨɠɧɨ ɱɚɳɟ ɩɨɜɬɨɪɹɬɶ ɰɢɤɥɵ ɟɝɨ ɪɚɛɨɬɵ, ɩɨɞɚɜɚɹ ɧɚ ɮɢɥɶɬɪ ɧɟɛɨɥɶɲɢɟ ɩɨɪɰɢɢ ɫɭɫɩɟɧɡɢɢ. Ɉɞɧɚɤɨ ɱɚɫɬɨɟ ɩɨɜɬɨɪɟɧɢɟ ɰɢɤɥɨɜ ɪɚɛɨɬɵ ɮɢɥɶɬɪɚ ɩɨ ɨɫɧɨɜɧɵɦ ɨɩɟɪɚɰɢɹɦ, ɜɤɥɸɱɚɸɳɢɦ ɫɚɦɨ ɮɢɥɶɬɪɨɜɚɧɢɟ, ɩɪɨɦɵɜɤɭ ɢ ɩɪɨɞɭɜɤɭ ɨɫɚɞɤɚ, ɜɥɟɱɟɬ ɡɚ ɫɨɛɨɣ ɫɬɨɥɶ ɠɟ ɱɚɫɬɨɟ ɩɨɜɬɨɪɟɧɢɟ ɜɫɩɨɦɨɝɚɬɟɥɶɧɵɯ ɨɩɟɪɚɰɢɣ ɡɚɝɪɭɡɤɢ ɫɭɫɩɟɧɡɢɢ ɢ ɭɞɚɥɟɧɢɹ ɨɫɚɞɤɚ. ȼ ɤɚɠɞɨɦ ɫɥɭɱɚɟ ɫɭɳɟɫɬɜɭɟɬ ɨɩɬɢɦɚɥɶɧɚɹ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɰɢɤɥɚ ɪɚɛɨɬɵ ɮɢɥɶɬɪɚ, ɩɪɢ ɤɨɬɨɪɨɣ ɮɢɥɶɬɪ ɨɛɥɚɞɚɟɬ ɧɚɢɛɨɥɶɲɟɣ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶɸ. Ⱦɥɹ ɩɪɨɫɬɨɝɨ ɫɥɭɱɚɹ, ɤɨɝɞɚ ɨɩɟɪɚɰɢɢ ɩɪɨɦɵɜɤɢ ɢ ɩɪɨɞɭɜɤɢ ɨɬɫɭɬɫɬɜɭɸɬ, ɢɡ ɭɪɚɜɧɟɧɢɹ ɮɢɥɶɬɪɨɜɚɧɢɹ ɩɪɢ ǻɊ = const ɢ ɩɪɢ ɭɫɥɨɜɢɹɯ Rɮɩ =0, q=V/S ɢ IJ = IJɨɫɧ ɧɚɣɞɟɦ q= A ˜ W ɨɫɧ , (6.18) ɝɞɟ Ⱥ = 2ǻɊ/(ȝɨrɨɯɨ) – ɩɨɫɬɨɹɧɧɚɹ. ȼɵɪɚɡɢɦ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɚ ɭɫɥɨɜɧɨɣ ɫɪɟɞɧɟɣ ɫɤɨɪɨɫɬɶɸ ɮɢɥɶɬɪɨɜɚɧɢɹ wɮ ɤɚɤ ɪɟɡɭɥɶɬɚɬɚ ɞɟɥɟɧɢɹ ɨɛɴɟɦɚ ɮɢɥɶɬɪɚɬɚ, ɫɨɛɪɚɧɧɨɝɨ ɧɚ ɩɥɨɳɚɞɢ ɩɨɜɟɪɯɧɨɫɬɢ ɮɢɥɶɬɪɨɜɚɧɢɹ, ɧɚ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɰɢɤɥɚ IJɰ = (IJɨɫɧ + IJɜɫɩ): wɮ ɧɢɸ A ˜ W ɨɫɧ W ɨɫɧ  W ɜɫn , (6.19) Ɇɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ wɮ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɦɭ ɭɪɚɜɧɟ- A W ɜcn  W ocɧ dwɮ dW ocɧ 2 W ocɧ W oɫɧ  W ɜcn 2 (6.20) , ɢ ɭɫɥɨɜɢɸ dwɮ/dIJɨɫɧ = 0. Ɉɬɫɸɞɚ ɱɢɫɥɢɬɟɥɶ IJɜɫɩ – IJɨɫɧ = 0, ɢɥɢ IJɨɫɧ = IJɜɫɩ, ɬ.ɟ. ɧɚɢɛɨɥɶɲɚɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɚ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɨɞɢɧɚɤɨɜɨɣ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɨɫɧɨɜɧɨɣ ɢ ɜɫɩɨɦɨɝɚɬɟɥɶɧɨɣ ɨɩɟɪɚɰɢɣ. ɉɪɢ ɡɧɚɱɢɬɟɥɶɧɨɦ ɫɨɩɪɨɬɢɜɥɟɧɢɢ ɮɢɥɶɬɪɭɸɳɟɣ ɩɟɪɟɝɨɪɨɞɤɢ ɧɚɢɛɨɥɶɲɚɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɩɟɪɢɨɞɢɱɟɫɤɢ ɞɟɣɫɬɜɭɸɳɟɝɨ ɮɢɥɶɬɪɚ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ IJɨɫɧ> IJɜɫɩ: W ocɧ W ɜcn  2 2 P 0 ˜ Rɮn 2 ˜ 'P ˜ r0 ˜ x0 ˜ W ɜcn , (6.21) ɗɤɨɧɨɦɢɱɟɫɤɢ ɨɩɬɢɦɚɥɶɧɚɹ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɰɢɤɥɚ ɮɢɥɶɬɪɨɜɚɧɢɹ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɫɨɨɬɧɨɲɟɧɢɢ IJɷ = (4…6)IJɜɫɩ. ɗɬɨ ɫɨɨɬɧɨɲɟɧɢɟ ɫɩɪɚɜɟɞɥɢɜɨ ɩɪɢ ǻɊ = const ɢ Rɮɩ = 0. 6.1.3. ɐɟɧɬɪɨɛɟɠɧɨɟ ɮɢɥɶɬɪɨɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ɐɟɧɬɪɨɛɟɠɧɨɟ ɮɢɥɶɬɪɨɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ɞɨɫɬɢɝɚɟɬɫɹ ɜɪɚɳɟɧɢɟɦ ɫɭɫɩɟɧɡɢɢ ɜ ɩɟɪɮɨɪɢɪɨɜɚɧɧɨɦ ɪɨɬɨɪɟ - ɛɚɪɚɛɚɧɟ. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɩɪɨɜɨɞɹɬ ɧɚ ɮɢɥɶɬɪɭɸɳɢɯ ɰɟɧɬɪɢɮɭɝɚɯ. Ɋɚɡɞɟɥɟɧɢɟ ɫɭɫɩɟɧɡɢɢ ɜ ɮɢɥɶɬɪɭɸɳɢɯ ɰɟɧɬɪɢɮɭɝɚɯ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɫɬɚɞɢɢ ɨɛɪɚɡɨɜɚɧɢɹ, ɭɩɥɨɬɧɟɧɢɹ ɢ ɦɟɯɚɧɢɱɟɫɤɨɣ ɫɭɲɤɢ ɨɫɚɞɤɚ ɫ ɜɨɡɦɨɠɧɨɣ ɩɪɨɦɵɜɤɨɣ ɨɫɚɞɤɚ, ɬ.ɟ. ɫɤɨɪɨɫɬɶ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɮɢɥɶɬɪɨɜɚɧɢɹ ɢɡɦɟɧɹɟɬɫɹ ɜɨ ɜɪɟɦɟɧɢ (ɪɢɫ. 6.1). dV F ˜ dW 1 2 3 W Ɋɢɫ. 6.1. ɋɬɚɞɢɢ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɮɢɥɶɬɪɨɜɚɧɢɹ ɜ ɰɟɧɬɪɢɮɭɝɚɯ: 1 – ɨɛɪɚɡɨɜɚɧɢɟ ɨɫɚɞɤɚ; 2 – ɭɩɥɨɬɧɟɧɢɟ ɨɫɚɞɤɚ; 3 – ɨɬɠɢɦ ɨɫɚɞɤɚ. Ⱦɥɹ 1-ɝɨ ɩɟɪɢɨɞɚ ɩɪɢɦɟɧɢɦɵ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɤɢɧɟɬɢɤɢ ɮɢɥɶɬɪɨɜɚɧɢɹ. Ⱦɥɹ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɮɢɥɶɬɪɨɜɚɧɢɹ ɭɪɚɜɧɟɧɢɟ ɮɢɥɶɬɪɨɜɚɧɢɹ ɢɦɟɟɬ ɜɢɞ dV U 0 ˜ Z 2 k c ˜ S ˜ R 2 ˜ r02 ˜ L [ P 0 ln( R rɨɫ )] , (6.22) dW ɝɞɟ R - ɪɚɞɢɭɫ ɪɨɬɨɪɚ; r0 , rɨɫ - ɜɧɭɬɪɟɧɧɢɣ ɪɚɞɢɭɫ ɠɢɞɤɨɫɬɢ ɢ ɨɫɚɞɤɚ; k c ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ ɫɥɨɹ; L - ɞɥɢɧɚ ɪɨɬɨɪɚ. ɉɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɜ ɦɚɫɫɟ ɮɢɥɶɬɪɭɟɦɨɣ ɫɭɫɩɟɧɡɢɢ ɪɚɡɜɢɜɚɟɬɫɹ ɞɚɜɥɟɧɢɟ, ɨɛɟɫɩɟɱɢɜɚɸɳɟɟ ɰɟɧɬɪɨɛɟɠɧɨɟ ɮɢɥɶɬɪɨɜɚɧɢɟ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɢɫɯɨɞɢɬ ɨɬɥɨɠɟɧɢɟ ɨɫɚɞɤɚ ɧɚ ɜɧɭɬɪɟɧɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɛɚɪɚɛɚɧɚ ɪɨɬɨɪɚ ɢ ɭɞɚɥɟɧɢɟ ɨɫɜɟɬɥɟɧɧɨɣ ɜɨɞɵ ɱɟɪɟɡ ɮɢɥɶɬɪɭɸɳɭɸ ɩɟɪɟɝɨɪɨɞɤɭ ɢ ɨɬɜɟɪɫɬɢɹ ɜ ɛɚɪɚɛɚɧɟ. ɐɟɧɬɪɨɛɟɠɧɚɹ ɫɢɥɚ ɢɡɦɟɧɹɟɬɫɹ ɫ ɢɡɦɟɧɟɧɢɟɦ ɪɚɞɢɭɫɚ. ɐɟɧɬɪɨɛɟɠɧɭɸ ɫɢɥɭ, ɞɟɣɫɬɜɭɸɳɭɸ ɧɚ ɦɚɫɫɭ ɷɥɟɦɟɧɬɚɪɧɨɝɨ ɤɨɥɶɰɚ ɫɭɫɩɟɧɡɢɢ ɨɛɴɟɦɨɦ dV = 2·ʌ·r·H·dr = F·dr, ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɜ ɜɢɞɟ (ɫɦ. ɪɢɫ. 6.2): dGɰ = dm·w02/r = dm·Z²·r, (6.23) ɝɞɟ dm – ɦɚɫɫɚ ɷɥɟɦɟɧɬɚɪɧɨɝɨ ɤɨɥɶɰɚ; r – ɪɚɞɢɭɫ ɤɨɥɶɰɚ; w0 – ɨɤɪɭɠɧɚɹ ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ ɤɨɥɶɰɚ; Z = ʌ·n/30 – ɭɝɥɨɜɚɹ ɫɤɨɪɨɫɬɶ ɜɪɚɳɟɧɢɹ ɤɨɥɶɰɚ; n – ɱɢɫɥɨ ɨɛɨɪɨɬɨɜ ɜ ɦɢɧɭɬɭ. Ɇɚɫɫɚ ɷɥɟɦɟɧɬɚɪɧɨɝɨ ɤɨɥɶɰɚ. dm = F·dr·ȡɫ, (6.24) ɚ ɞɚɜɥɟɧɢɟ ɧɚ ɩɪɢɥɟɝɚɸɳɢɣ ɤ ɤɨɥɶɰɭ ɫɥɨɣ, ɪɚɡɜɢɜɚɟɦɨɟ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɨɣ, ɩɪɢɥɨɠɟɧɧɨɣ ɤ ɤɨɥɶɰɭ: dPɰ = dGɰ/F = F·dr·ȡɫ·Z²·r/F = ȡɫ·Z2·r·dr, (6.25) ɝɞɟ ȡɫ - ɩɥɨɬɧɨɫɬɶ ɫɭɫɩɟɧɡɢɢ. Ⱦɚɜɥɟɧɢɟ ɧɚ ɮɢɥɶɬɪɭɸɳɭɸ ɩɟɪɟɝɨɪɨɞɤɭ, ɪɚɡɜɢɜɚɟɦɨɟ ɜɫɟɣ ɦɚɫɫɨɣ ɫɭɫɩɟɧɡɢɢ ɜ ɛɚɪɚɛɚɧɟ ɧɚɯɨɞɢɦ ɢɧɬɟɝɪɢɪɨɜɚɧɢɟɦ ɩɨɫɥɟɞɧɟɝɨ ɭɪɚɜɧɟɧɢɹ ɜ ɩɪɟɞɟɥɚɯ (R2…R1): 'Pɰ = Uɫ.Z2(R12 –R22)/2, (6.26) ɝɞɟ R1 ɢ R2 - ɜɧɟɲɧɢɣ ɢ ɜɧɭɬɪɟɧɧɢɣ ɪɚɞɢɭɫɵ ɫɥɨɹ ɫɭɫɩɟɧɡɢɢ ɜ ɰɟɧɬɪɢɮɭɝɟ. R1 r R2 dr Ɋɢɫ. 6.2. Ʉ ɨɩɪɟɞɟɥɟɧɢɸ ɞɚɜɥɟɧɢɹ ɩɪɢ ɮɢɥɶɬɪɚɰɢɢ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɰɟɧɬɪɨɛɟɠɧɨɣ ɫɢɥɵ ɉɪɢɦɟɧɢɬɟɥɶɧɨ ɤ ɰɟɧɬɪɨɛɟɠɧɨɦɭ ɮɢɥɶɬɪɨɜɚɧɢɸ, ɩɪɨɬɟɤɚɸɳɟɦɭ ɩɪɢ ¨P = const, ɨɫɧɨɜɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɮɢɥɶɬɪɨɜɚɧɢɹ ɛɭɞɟɬ ɢɦɟɬɶ ɜɢɞ wɮ dV F ˜ dW 'Pɰ P 0 r ˜ h  Rɮn , (6.27) Ⱦɥɹ ɮɢɥɶɬɪɭɸɳɟɝɨ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ, ɤɨɝɞɚ ɨɫɚɞɨɤ ɩɪɚɤɬɢɱɟɫɤɢ ɦɝɧɨɜɟɧɧɨ ɨɛɪɚɡɭɟɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɰɟɧɬɪɨɛɟɠɧɨɝɨ ɨɫɚɠɞɟɧɢɹ ɦɨɠɧɨ ɧɚɣɬɢ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ V Rɮn  h ˜ r (6.28) W , 'Pɰ ˜ F ɉɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɮɢɥɶɬɪɨɜɚɧɢɹ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɚɹ ɫɥɭɱɚɸ, ɤɨɝɞɚ ɤɨɥɢɱɟɫɬɜɨ ɨɛɪɚɡɨɜɚɜɲɟɝɨɫɹ ɨɫɚɞɤɚ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɤɨɥɢɱɟɫɬɜɭ ɩɨɥɭɱɟɧɧɨɝɨ ɮɢɥɶɬɪɚɬɚ 2 Rɮn V x ˜ r §V · W (6.29) ˜ , ˜¨ ¸  2 ˜ Pɰ © F ¹ 'Pɰ F ɝɞɟ x h ˜F . V Ⱦɥɹ 2-ɝɨ ɢ 3-ɝɨ ɩɟɪɢɨɞɨɜ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ ɞɥɢɬɟɥɶɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɦɨɠɟɬ ɛɵɬɶ ɜɵɱɢɫɥɟɧɚ ɩɪɢɛɥɢɠɟɧɧɨ: a ˜ lg x ɧ  b W , (6.30) xɤ  b ɝɞɟ x ɧ , x ɤ – ɧɚɱɚɥɶɧɚɹ ɢ ɤɨɧɟɱɧɚɹ ɜɥɚɠɧɨɫɬɶ ɨɫɚɞɤɚ; a, b – ɨɩɵɬɧɵɟ ɤɨɧɫɬɚɧɬɵ. ɉɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɰɟɧɬɪɢɮɭɝɢ Q k ɪ ˜Vɪ W ɰ , (6.31) ɝɞɟ k ɪ - ɤɨɷɮɮɢɰɢɟɧɬ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɨɛɴɟɦɚ ɪɨɬɨɪɚ, ( k ɪ 0,4...0,6 ); Vɪ - ɪɚɫ- ɱɟɬɧɵɣ ɨɛɴɟɦ ɪɨɬɨɪɚ; Wɰ - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɩɪɟɛɵɜɚɧɢɟ ɫɭɫɩɟɧɡɢɢ ɜ ɪɨɬɨɪɟ. ɐɟɧɬɪɢɮɭɝɢ ɦɨɝɭɬ ɛɵɬɶ ɩɟɪɢɨɞɢɱɟɫɤɢɦɢ ɢɥɢ ɧɟɩɪɟɪɵɜɧɨɝɨ ɞɟɣɫɬɜɢɹ, ɝɨɪɢɡɨɧɬɚɥɶɧɵɦɢ, ɜɟɪɬɢɤɚɥɶɧɵɦɢ ɢɥɢ ɧɚɤɥɨɧɧɵɦɢ; ɩɨ ɫɩɨɫɨɛɭ ɜɵɝɪɭɡɤɢ ɨɫɚɞɤɚ ɢɡ ɪɨɬɨɪɚ: ɫ ɪɭɱɧɨɣ, ɧɨɠɟɜɨɣ, ɩɨɪɲɧɟɜɨɣ, ɲɧɟɤɨɜɨɣ ɢɥɢ ɰɟɧɬɪɨɛɟɠɧɨɣ ɜɵɝɪɭɡɤɨɣ. ɐɟɧɬɪɢɮɭɝɢ ɩɟɪɢɨɞɢɱɟɫɤɨɝɨ ɞɟɣɫɬɜɢɹ ɩɪɢɦɟɧɹɸɬ ɩɪɢ ɪɚɫɯɨɞɚɯ ɫɭɫɩɟɧɡɢɢ ɦɟɧɟɟ 5ɦ3/ɱ ɜ ɲɢɪɨɤɨɦ ɞɢɚɩɚɡɨɧɟ ɤɨɧɰɟɧɬɪɚɰɢɣ ɫ ɱɚɫɬɢɰɚɦɢ ɞɢɚɦɟɬɪɨɦ ɛɨɥɟɟ 10 ɦɤɦ. ɐɟɧɬɪɢɮɭɝɢ ɧɟɩɪɟɪɵɜɧɨɝɨ ɞɟɣɫɬɜɢɹ ɫɨ ɲɧɟɤɨɜɨɣ ɜɵɝɪɭɡɤɨɣ ɨɫɚɞɤɚ ɩɪɢɦɟɧɹɸɬɫɹ ɞɥɹ ɪɚɡɞɟɥɟɧɢɹ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɯ ɫɭɫɩɟɧɡɢɣ ɫ ɪɚɡɦɟɪɨɦ ɱɚɫɬɢɰ ɛɨɥɟɟ 100 ɦɤɦ. ȼ ɫɢɫɬɟɦɚɯ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ɢɫɩɨɥɶɡɭɸɬ ɝɨɪɢɡɨɧɬɚɥɶɧɵɟ ɲɧɟɤɨɜɵɟ ɰɟɧɬɪɢɮɭɝɢ ɞɥɹ ɜɵɞɟɥɟɧɢɹ ɱɚɫɬɢɰ ɝɢɞɪɚɜɥɢɱɟɫɤɨɣ ɤɪɭɩɧɨɫɬɶɸ 0,2 ɦɦ (ɩɪɨɬɢɜɨɬɨɱɧɵɟ) ɢ 0,05 ɦɦ (ɩɪɹɦɨɬɨɱɧɵɟ). ɋɪɟɞɧɹɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɰɟɧɬɪɢɮɭɝɢ ɩɟɪɢɨɞɢɱɟɫɤɨɝɨ ɞɟɣɫɬɜɢɹ ɩɨ ɨɱɢɳɟɧɧɨɣ ɜɨɞɟ ɡɚ ɨɞɢɧ ɰɢɤɥ ɟɟ ɪɚɛɨɬɵ ɫɨɫɬɚɜɢɬ V1 , (6.32) Q W ɰ  W ɜɫɩ ɝɞɟ V1 - ɨɛɴɟɦ ɨɱɢɳɟɧɧɨɣ ɜɨɞɵ, ɩɨɥɭɱɟɧɧɨɝɨ ɡɚ ɨɞɢɧ ɰɢɤɥ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ, ɦ3; W ɰ - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɫɬɚɞɢɢ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ, ɫ; W ɜɫɩ W ɨɬ  W ɜ - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɜɫɩɨɦɨɝɚɬɟɥɶɧɵɯ ɨɩɟɪɚɰɢɣ, ɫ; W ɨɬ - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɫɬɚɞɢɢ ɨɬɠɢɦɚ, ɫ; W ɜ - ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɫɬɚɞɢɢ ɜɵɝɪɭɡɤɢ ɨɫɚɞɤɚ. 6.2. Ɇɟɯɚɧɢɱɟɫɤɚɹ ɩɟɪɟɪɚɛɨɬɤɚ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɍɬɢɥɢɡɚɰɢɹ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɩɪɢɜɨɞɢɬ ɤ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɥɢɛɨ ɢɯ ɪɚɡɞɟɥɟɧɢɹ ɧɚ ɤɨɦɩɨɧɟɧɬɵ ɫ ɩɨɫɥɟɞɭɸɳɟɣ ɩɟɪɟɪɚɛɨɬɤɨɣ ɫɟɩɚɪɢɪɨɜɚɧɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɪɚɡɥɢɱɧɵɦɢ ɦɟɬɨɞɚɦɢ, ɥɢɛɨ ɩɪɢɞɚɧɢɹ ɢɦ ɨɩɪɟɞɟɥɟɧɧɨɝɨ ɜɢɞɚ. Ⱦɥɹ ɬɟɯ ɩɪɨɦɵɲɥɟɧɧɵɯ ɨɬɯɨɞɨɜ, ɭɬɢɥɢɡɚɰɢɹ ɤɨɬɨɪɵɯ ɧɟ ɫɜɹɡɚɧɚ ɫ ɧɟɨɛɯɨɞɢɦɨɫɬɶɸ ɩɪɨɜɟɞɟɧɢɹ ɮɚɡɨɜɵɯ ɩɪɟɜɪɚɳɟɧɢɣ ɢɥɢ ɜɨɡɞɟɣɫɬɜɢɹ ɯɢɦɢɱɟɫɤɢɯ ɪɟɚɝɟɧɬɨɜ, ɧɨ ɤɨɬɨɪɵɟ ɧɟ ɦɨɝɭɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ, ɩɪɢɦɟɧɹɸɬɫɹ ɞɜɚ ɜɢɞɚ ɦɟɯɚɧɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ: ɢɡɦɟɥɶɱɟɧɢɟ ɢɥɢ ɤɨɦɩɚɤɬɢɪɨɜɚɧɢɟ (ɩɪɟɫɫɨɜɚɧɢɟ). ɗɬɨ ɜ ɪɚɜɧɨɣ ɫɬɟɩɟɧɢ ɨɬɧɨɫɢɬɫɹ ɤ ɨɬɯɨɞɚɦ ɤɚɤ ɨɪɝɚɧɢɱɟɫɤɨɝɨ, ɬɚɤ ɢ ɧɟɨɪɝɚɧɢɱɟɫɤɨɝɨ ɩɪɨɢɫɯɨɠɞɟɧɢɹ. ɉɨɫɥɟ ɢɡɦɟɥɶɱɟɧɢɹ, ɡɚ ɤɨɬɨɪɵɦ ɦɨɠɟɬ ɫɥɟɞɨɜɚɬɶ ɮɪɚɤɰɢɨɧɢɪɨɜɚɧɢɟ, ɨɬɯɨɞɵ ɩɪɟɜɪɚɳɚɸɬɫɹ ɜ ɩɪɨɞɭɤɬɵ, ɝɨɬɨɜɵɟ ɞɥɹ ɞɚɥɶɧɟɣɲɟɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ. Ɍɜɟɪɞɵɣ ɦɚɬɟɪɢɚɥ ɦɨɠɧɨ ɪɚɡɪɭɲɢɬɶ ɢ ɢɡɦɟɥɶɱɢɬɶ ɞɨ ɱɚɫɬɢɰ ɠɟɥɚɟɦɨɝɨ ɪɚɡɦɟɪɚ ɪɚɡɞɚɜɥɢɜɚɧɢɟɦ, ɪɚɫɤɚɥɵɜɚɧɢɟɦ, ɪɚɡɥɚɦɵɜɚɧɢɟɦ, ɪɟɡɚɧɢɟɦ, ɪɚɫɩɢɥɢɜɚɧɢɟɦ, ɢɫɬɢɪɚɧɢɟɦ ɢ ɪɚɡɥɢɱɧɵɦɢ ɤɨɦɛɢɧɚɰɢɹɦɢ ɷɬɢɯ ɫɩɨɫɨɛɨɜ. ɉɨ ɪɚɡɦɟɪɭ ɤɭɫɤɨɜ ɢɫɯɨɞɧɨɝɨ ɫɵɪɶɹ ɢ ɤɨɧɟɱɧɨɝɨ ɩɪɨɞɭɤɬɚ ɢɡɦɟɥɶɱɟɧɢɟ ɭɫɥɨɜɧɨ ɞɟɥɹɬ ɧɚ ɧɟɫɤɨɥɶɤɨ ɤɥɚɫɫɨɜ, ɢɫɯɨɞɹ ɢɡ ɤɨɬɨɪɵɯ ɜɵɛɢɪɚɸɬ ɢɡɦɟɥɶɱɚɸɳɟɟ ɨɛɨɪɭɞɨɜɚɧɢɟ. ɉɪɢɛɥɢɡɢɬɟɥɶɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɪɢɧɹɬɨɣ ɤɥɚɫɫɢɮɢɤɚɰɢɢ ɢɡɦɟɥɶɱɟɧɢɹ ɩɪɢɜɟɞɟɧɚ ɜ ɬɚɛɥ. 6.1. Ɉɞɢɧ ɢɡ ɧɟɞɨɫɬɚɬɤɨɜ, ɜɨɡɧɢɤɚɸɳɢɯ ɩɪɢ ɢɡɦɟɥɶɱɟɧɢɢ ɜɹɡɤɢɯ, ɭɩɪɭɝɢɯ ɢ ɜɹɡɤɨɭɩɪɭɝɢɯ ɦɚɬɟɪɢɚɥɨɜ (ɪɟɡɢɧɚ, ɧɟɤɨɬɨɪɵɟ ɜɢɞɵ ɬɟɪɦɨɩɥɚɫɬɨɜ ɢ ɞɪ.), ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɬɨɦ, ɱɬɨ ɩɪɢ ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɷɧɟɪɝɨɡɚɬɪɚɬɵ ɧɚ ɢɯ ɩɟɪɟɪɚɛɨɬɤɭ ɨɱɟɧɶ ɜɟɥɢɤɢ, ɯɨɬɹ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɧɚ ɢɡɦɟɥɶɱɟɧɢɟ ɪɚɫɯɨɞɭɟɬɫɹ ɧɟ ɛɨɥɟɟ 1 % ɷɧɟɪɝɢɢ, ɨɫɧɨɜɧɚɹ ɠɟ ɟɟ ɱɚɫɬɶ ɩɪɟɨɛɪɚɡɭɟɬɫɹ ɜ ɬɟɩɥɨɬɭ. ɉɨɷɬɨɦɭ ɜ ɩɨɫɥɟɞɧɢɟ 15…20 ɥɟɬ ɜɫɟ ɛɨɥɶɲɟɟ ɩɪɢɦɟɧɟɧɢɟ ɧɚɯɨɞɢɬ ɬɟɯɧɢɤɚ ɤɪɢɨɝɟɧɧɨɝɨ ɢɡɦɟɥɶɱɟɧɢɹ, ɤɨɬɨɪɚɹ ɩɨɡɜɨɥɹɟɬ ɨɯɥɚɠɞɚɬɶ ɦɚɬɟɪɢɚɥ ɧɢɠɟ ɬɟɦɩɟɪɚɬɭɪɵ ɯɪɭɩɤɨɫɬɢ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɜ ɤɚɱɟɫɬɜɟ ɨɯɥɚɠɞɚɸɳɟɝɨ ɚɝɟɧɬɚ ɢɫɩɨɥɶɡɭɸɬ ɠɢɞɤɢɣ ɚɡɨɬ, ɢɦɟɸɳɢɣ ɬɟɦɩɟɪɚɬɭɪɭ - 196°ɋ, ɱɬɨ ɧɢɠɟ ɬɟɦɩɟɪɚɬɭɪɵ ɯɪɭɩɤɨɫɬɢ ɛɨɥɶɲɢɧɫɬɜɚ ɩɨɥɢɦɟɪɧɵɯ ɦɚɬɟɪɢɚɥɨɜ. ɉɪɢ ɬɚɤɨɦ ɫɩɨɫɨɛɟ ɞɪɨɛɥɟɧɢɹ ɪɟɡɤɨ ɜɨɡɪɚɫɬɚɟɬ ɫɬɟɩɟɧɶ ɢɡɦɟɥɶɱɟɧɢɹ, ɩɨɜɵɲɚɟɬɫɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɩɪɨɰɟɫɫɚ, ɫɧɢɠɚɸɬɫɹ ɭɞɟɥɶɧɵɟ ɷɧɟɪɝɨɡɚɬɪɚɬɵ, ɩɪɟɞɨɬɜɪɚɳɚɟɬɫɹ ɨɤɢɫɥɟɧɢɟ ɩɪɨɞɭɤɬɚ. Ɍɚɛɥɢɰɚ 6.1 Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɦɟɬɨɞɨɜ ɢɡɦɟɥɶɱɟɧɢɹ Ʉɥɚɫɫ ɢɡɦɟɥɶɱɟɧɢɹ Ɋɚɡɦɟɪ ɤɭɫɤɨɜ ɞɨ Ɋɚɡɦɟɪ ɤɭɫɤɨɜ ɢɡɦɟɥɶɱɟɧɢɹ, ɦɦ ɩɨɫɥɟ ɢɡɦɟɥɶɱɟɧɢɹ, ɦɦ Ⱦɪɨɛɥɟɧɢɟ: - ɤɪɭɩɧɨɟ 1000 250 - ɫɪɟɞɧɟɟ 250 20 - ɦɟɥɤɨɟ 20 1…5 ɉɨɦɨɥ: - ɝɪɭɛɵɣ 1…5 0,1…0,04 - ɫɪɟɞɧɢɣ 0,1…0,04 0,005…0,015 - ɬɨɧɤɢɣ 0,1…0,02 0,001…0,005 - ɤɨɥɥɨɢɞɧɵɣ  0,1  0,001 Ⱦɪɨɛɥɟɧɢɟ. ɂɧɬɟɧɫɢɜɧɨɫɬɶ ɢ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɯɢɦɢɱɟɫɤɢɯ ɞɢɮɮɭɡɢɨɧɧɵɯ ɢ ɛɢɨɯɢɦɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɜɨɡɪɚɫɬɚɟɬ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɡɦɟɪɨɜ ɤɭɫɤɨɜ (ɡɟɪɟɧ) ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ. Ɇɟɬɨɞ ɞɪɨɛɥɟɧɢɹ ɢɫɩɨɥɶɡɭɟɬɫɹ ɞɥɹ ɩɨɥɭɱɟɧɢɹ ɢɡ ɤɪɭɩɧɵɯ ɤɭɫɤɨɜ ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ ɩɪɨɞɭɤɬɨɜ ɤɪɭɩɧɨɫɬɶɸ ɞɨ 5 ɦɦ. ȼ ɤɚɱɟɫɬɜɟ ɨɫɧɨɜɧɵɯ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɨɤɚɡɚɬɟɥɟɣ ɞɪɨɛɥɟɧɢɹ ɪɚɫɫɦɚɬɪɢɜɚɸɬ ɫɬɟɩɟɧɶ ɢ ɷɧɟɪɝɨɟɦɤɨɫɬɶ ɞɪɨɛɥɟɧɢɹ. ɂɡɦɟɥɶɱɟɧɢɟ. Ɇɟɬɨɞ ɢɡɦɟɥɶɱɟɧɢɹ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɩɨɥɭɱɟɧɢɹ ɢɡ ɤɭɫɤɨɜɵɯ ɨɬɯɨɞɨɜ ɡɟɪɧɨɜɵɯ ɢ ɦɟɥɤɨɞɢɫɩɟɪɫɧɵɯ ɮɪɚɤɰɢɣ ɤɪɭɩɧɨɫɬɶɸ ɦɟɧɟɟ 5 ɦɦ. ɉɪɢ ɩɟɪɟɪɚɛɨɬɤɟ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɢɫɩɨɥɶɡɭɸɬ ɚɝɪɟɝɚɬɵ ɝɪɭɛɨɝɨ ɢ ɬɨɧɤɨɝɨ ɢɡɦɟɥɶɱɟɧɢɹ: ɫɬɟɪɠɧɟɜɵɟ, ɲɚɪɨɜɵɟ ɢ ɧɨɠɟɜɵɟ ɦɟɥɶɧɢɰɵ, ɞɟɡɢɧɬɟɝɪɚɬɨɪɵ, ɞɢɫɤɨɜɵɟ ɢ ɤɨɥɶɰɟɜɵɟ ɦɟɥɶɧɢɰɵ, ɛɟɝɭɧɵ. ȼ ɤɚɱɟɫɬɜɟ ɧɟɫɭɳɟɣ ɫɪɟɞɵ ɩɪɢ ɫɭɯɨɦ ɢɡɦɟɥɶɱɟɧɢɢ ɱɚɳɟ ɜɫɟɝɨ ɩɪɢɦɟɧɹɸɬ ɜɨɡɞɭɯ, ɪɟɠɟ ɞɵɦɨɜɵɟ ɢɥɢ ɢɧɟɪɬɧɵɟ ɝɚɡɵ, ɚ ɩɪɢ ɦɨɤɪɨɦ - ɜɨɞɭ. ɂɡɦɟɥɶɱɟɧɢɟ ɨɬɯɨɞɨɜ ɩɥɚɫɬɦɚɫɫ ɢ ɪɟɡɢɧɨɜɵɯ ɬɟɯɧɢɱɟɫɤɢɯ ɢɡɞɟɥɢɣ ɩɪɨɜɨɞɹɬ ɩɪɢ ɧɢɡɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ (ɤɪɢɨɝɟɧɧɨɟ ɢɡɦɟɥɶɱɟɧɢɟ). Ɋɚɛɨɬɚ A, ɡɚɬɪɚɱɟɧɧɚɹ ɩɪɢ ɞɪɨɛɥɟɧɢɢ ɢɥɢ ɢɡɦɟɥɶɱɟɧɢɢ ɧɚ ɪɚɡɪɭɲɟɧɢɟ ɢɫɯɨɞɧɨɝɨ ɦɚɬɟɪɢɚɥɚ ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɜɧɨɜɶ ɨɛɪɚɡɨɜɚɧɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ F: (6.33) A = k1.'F, . ɝɞɟ k1 – ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ; 'F – ɩɪɢɪɚɳɟɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ. ɋɬɟɩɟɧɶ ɞɪɨɛɥɟɧɢɹ i ɜɵɪɚɠɚɟɬ ɨɬɧɨɲɟɧɢɟ ɪɚɡɦɟɪɨɜ ɤɭɫɤɨɜ ɩɨɞɥɟɠɚɳɟɝɨ ɞɪɨɛɥɟɧɢɸ dɧ ɢ ɤɭɫɤɨɜ ɪɚɡɞɪɨɛɥɟɧɧɨɝɨ ɦɚɬɟɪɢɚɥɚ dɤ: i = dɧ/ dɤ. (6.34) Ɋɚɛɨɬɚ ɜɧɭɬɪɟɧɧɢɯ ɫɢɥ ɭɩɪɭɝɨɫɬɢ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɩɨɬɟɪɶ ɪɚɜɧɚ ɪɚɛɨɬɟ ɜɧɟɲɧɢɯ ɫɢɥ, ɜɵɡɜɚɜɲɢɯ ɭɩɪɭɝɭɸ ɞɟɮɨɪɦɚɰɢɸ ɬɟɥɚ: (6.35) A = V2.V/(2 E), ɝɞɟ V - ɧɚɩɪɹɠɟɧɢɟ, ɜɨɡɧɢɤɚɸɳɟɟ ɩɪɢ ɞɟɮɨɪɦɚɰɢɢ; V – ɨɛɴɟɦ ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɬɟɥɚ; E – ɦɨɞɭɥɶ ɭɩɪɭɝɨɫɬɢ (ɦɨɞɭɥɶ ɘɧɝɚ). Ɋɚɛɨɬɚ ɢɡɦɟɥɶɱɟɧɢɹ ɨɞɧɨɝɨ ɤɭɫɤɚ ɪɚɡɦɟɪɨɦ D ɪɚɜɧɚ (6.36) A = k2.D3, ɝɞɟ k2 – ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ. ȼ ɨɛɨɛɳɟɧɧɨɦ ɜɢɞɟ ɪɚɛɨɬɚ, ɡɚɬɪɚɱɢɜɚɟɦɚɹ ɧɚ ɞɟɮɨɪɦɚɰɢɸ ɪɚɡɪɭɲɚɟɦɵɯ ɤɭɫɤɨɜ ɢ ɨɛɪɚɡɨɜɚɧɢɟ ɧɨɜɵɯ ɩɨɜɟɪɯɧɨɫɬɟɣ, ɪɚɜɧɚ A = J.'V + V.'F, (6.37) ɝɞɟ J, V - ɤɨɷɮɮɢɰɢɟɧɬɵ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ; 'V – ɞɟɮɨɪɦɢɪɨɜɚɧɧɵɣ ɨɛɴɟɦ; 'F – ɜɧɨɜɶ ɨɛɪɚɡɨɜɚɧɧɚɹ ɩɨɜɟɪɯɧɨɫɬɶ. ȼ ɱɢɫɬɨɦ ɜɢɞɟ ɪɚɛɨɬɚ ɩɪɢ ɞɪɨɛɥɟɧɢɢ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɫɪɟɞɧɟɝɟɨɦɟɬɪɢɱɟɫɤɨɦɭ ɦɟɠɞɭ ɨɛɴɟɦɨɦ V ɢ ɜɧɨɜɶ ɨɛɧɚɠɟɧɧɨɣ (ɨɛɪɚɡɨɜɚɧɧɨɣ) ɩɨɜɟɪɯɧɨɫɬɶɸ S: (6.38) A = kȻ(V.S), ɝɞɟ kȻ – ɤɨɷɮɮɢɰɢɟɧɬ Ȼɨɧɞɚ. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɢ ɫɨɪɬɢɪɨɜɤɚ (ɫɟɩɚɪɚɰɢɹ) ɨɬɯɨɞɨɜ. ȼ ɪɹɞɟ ɫɥɭɱɚɟɜ ɩɟɪɟɪɚɛɨɬɤɚ ɢɡɦɟɥɶɱɟɧɧɵɯ ɨɬɯɨɞɨɜ ɞɨɥɠɧɚ ɫɨɩɪɨɜɨɠɞɚɬɶɫɹ ɢɯ ɪɚɡɞɟɥɟɧɢɟɦ ɧɚ ɮɪɚɤɰɢɢ ɩɨ ɤɪɭɩɧɨɫɬɢ. Ⱦɥɹ ɪɚɡɞɟɥɟɧɢɹ ɤɭɫɤɨɜɵɯ ɢ ɫɵɩɭɱɢɯ ɦɚɬɟɪɢɚɥɨɜ ɩɪɢɦɟɧɹɸɬ ɪɚɡɥɢɱɧɵɟ ɫɩɨɫɨɛɵ: - ɩɪɨɫɟɢɜɚɧɢɟ ɢɥɢ ɝɪɨɯɨɱɟɧɢɟ; - ɪɚɡɞɟɥɟɧɢɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɨ-ɢɧɟɪɰɢɨɧɧɵɯ ɫɢɥ; - ɪɚɡɞɟɥɟɧɢɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɨ-ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ. Ƚɪɨɯɨɱɟɧɢɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɪɚɡɞɟɥɟɧɢɹ ɧɚ ɤɥɚɫɫɵ ɩɨ ɤɪɭɩɧɨɫɬɢ ɪɚɡɥɢɱɧɵɯ ɩɨ ɪɚɡɦɟɪɚɦ ɤɭɫɤɨɜ (ɡɟɪɟɧ) ɦɚɬɟɪɢɚɥɚ ɩɪɢ ɟɝɨ ɩɟɪɟɦɟɳɟɧɢɢ ɧɚ ɹɱɟɢɫɬɵɯ ɩɨɜɟɪɯɧɨɫɬɹɯ (ɤɨɥɨɫɧɢɤɨɜɵɯ ɪɟɲɟɬɤɚɯ, ɪɟɲɟɬɚɯ, ɩɪɨɜɨɥɨɱɧɵɯ ɫɟɬɤɚɯ, ɳɟɥɟɜɢɞɧɵɯ ɫɢɬɚɯ). Ɉɫɧɨɜɧɵɦ ɩɨɤɚɡɚɬɟɥɟɦ ɝɪɨɯɨɱɟɧɢɹ ɹɜɥɹɟɬɫɹ ɟɝɨ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ȿ, ɨɩɪɟɞɟɥɹɟɦɚɹ ɨɬɧɨɲɟɧɢɟɦ ɤɨɥɢɱɟɫɬɜɚ ɩɨɞɪɟɲɟɬɧɨɝɨ ɩɪɨɞɭɤɬɚ ɤ ɟɝɨ ɨɛɳɟɦɭ ɤɨɥɢɱɟɫɬɜɭ ɜ ɢɫɯɨɞɧɨɦ ɦɚɬɟɪɢɚɥɟ (ɜ %): ȿ = 104(Į – ȣ)/Į(100 - ȣ), (6.39) ɝɞɟ Į ɢ ȣ – ɫɨɞɟɪɠɚɧɢɟ ɧɢɠɧɟɝɨ ɤɥɚɫɫɚ ɜ ɢɫɯɨɞɧɨɦ ɦɚɬɟɪɢɚɥɟ ɢ ɧɚɞɪɟɲɟɬɧɨɦ ɩɪɨɞɭɤɬɟ, %. Ⱦɥɹ ɪɚɡɞɟɥɟɧɢɹ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ ɜ ɜɢɞɟ ɩɭɥɶɩ ɢɫɩɨɥɶɡɭɸɬɫɹ ɤɥɚɫɫɢɮɢɤɚɬɨɪɵ ɝɪɭɛɨɣ ɢ ɬɨɧɤɨɣ ɤɥɚɫɫɢɮɢɤɚɰɢɢ. ɉɨɥɧɨɬɭ ɪɚɡɞɟɥɟɧɢɹ ɩɪɢ ɤɥɚɫɫɢɮɢɤɚɰɢɢ ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɪɚɡɞɟɥɟɧɢɹ: (6.40) KE = ȕ – ȣ, ɝɞɟ ȕ ɢ ȣ – ɫɨɞɟɪɠɚɧɢɟ ɞɚɧɧɨɝɨ ɤɥɚɫɫɚ ɜ ɫɥɢɜɟ ɢ ɩɟɫɤɚɯ, %. ɉɪɢ ɝɪɚɜɢɬɚɰɢɨɧɧɨɦ ɢ ɰɟɧɬɪɨɛɟɠɧɨɦ ɫɩɨɫɨɛɚɯ ɪɚɡɞɟɥɟɧɢɟ ɢɡɦɟɥɶɱɟɧɧɵɯ ɩɪɨɞɭɤɬɨɜ ɧɚ ɤɥɚɫɫɵ ɢɥɢ ɜɵɞɟɥɟɧɢɟ ɰɟɥɟɜɨɝɨ ɩɪɨɞɭɤɬɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɦɟɬɨɞɨɦ ɪɚɡɞɟɥɶɧɨɝɨ ɜɵɫɚɠɢɜɚɧɢɹ ɱɚɫɬɢɰ ɢɡ ɧɟɫɭɳɟɣ ɫɪɟɞɵ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɨ-ɢɧɟɪɰɢɨɧɧɵɯ ɢɥɢ ɝɪɚɜɢɬɚɰɢɨɧɧɨ-ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ. Ɋɚɡɞɟɥɟɧɢɟ ɫɵɩɭɱɢɯ ɦɚɬɟɪɢɚɥɨɜ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɨ-ɢɧɟɪɰɢɨɧɧɵɯ ɫɢɥ ɩɪɨɢɡɜɨɞɢɬɫɹ ɜ ɝɚɡɨɜɵɯ ɨɫɚɞɢɬɟɥɹɯ ɢ ɝɢɞɪɚɜɥɢɱɟɫɤɢɯ ɤɥɚɫɫɢɮɢɤɚɬɨɪɚɯ, ɚ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɝɪɚɜɢɬɚɰɢɨɧɧɨ-ɰɟɧɬɪɨɛɟɠɧɵɯ ɫɢɥ - ɜ ɫɟɩɚɪɚɬɨɪɚɯ ɰɢɤɥɨɧɧɨɝɨ ɬɢɩɚ, ɫ ɜɪɚɳɚɸɳɢɦɢɫɹ ɥɨɩɚɫɬɹɦɢ ɢ ɬ.ɩ. ȼ ɬɨɦ ɫɥɭɱɚɟ, ɟɫɥɢ ɨɬɯɨɞɵ ɦɨɝɭɬ ɫɨɞɟɪɠɚɬɶ ɦɟɬɚɥɥɢɱɟɫɤɢɟ ɜɤɥɸɱɟɧɢɹ, ɢɯ ɨɛɵɱɧɨ ɩɪɨɩɭɫɤɚɸɬ ɱɟɪɟɡ ɦɚɝɧɢɬɧɵɣ ɫɟɩɚɪɚɬɨɪ (ɧɚɩɪɢɦɟɪ, ɫ ɞɜɢɠɭɳɟɣɫɹ ɥɟɧɬɨɣ). ȼ ɦɚɝɧɢɬɧɨɦ ɩɨɥɟ, ɫɨɡɞɚɜɚɟɦɨɦ ɫ ɩɨɦɨɳɶɸ ɷɥɟɤɬɪɨɦɚɝɧɢɬɨɜ, ɩɪɨɢɫɯɨɞɢɬ ɨɬɞɟɥɟɧɢɟ ɦɚɝɧɢɬɧɵɯ ɦɟɬɚɥɥɨɜ ɨɬ ɨɪɝɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɨɬɯɨɞɨɜ. Ɉɤɭɫɤɨɜɚɧɢɟ ɨɬɯɨɞɨɜ. ɇɚɪɹɞɭ ɫ ɦɟɬɨɞɚɦɢ ɭɦɟɧɶɲɟɧɢɹ ɪɚɡɦɟɪɨɜ ɤɭɫɤɨɜɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɢɯ ɪɚɡɞɟɥɟɧɢɹ ɧɚ ɤɥɚɫɫɵ ɤɪɭɩɧɨɫɬɢ ɜ ɪɟɤɭɩɟɪɚɰɢɨɧɧɨɣ ɬɟɯɧɨɥɨɝɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ ɦɟɬɨɞɵ, ɫɜɹɡɚɧɧɵɟ ɫ ɭɤɪɭɩɧɟɧɢɟɦ ɦɟɥɤɨɞɢɫɩɟɪɫɧɵɯ ɱɚɫɬɢɰ, ɢɫɩɨɥɶɡɭɸɳɢɟ ɩɪɢɟɦɵ ɝɪɚɧɭɥɢɪɨɜɚɧɢɹ, ɬɚɛɥɟɬɢɪɨɜɚɧɢɹ, ɛɪɢɤɟɬɢɪɨɜɚɧɢɹ ɢ ɜɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɨɣ ɚɝɥɨɦɟɪɚɰɢɢ. Ƚɪɚɧɭɥɢɪɨɜɚɧɢɟ – ɩɪɨɰɟɫɫ ɮɨɪɦɢɪɨɜɚɧɢɹ ɚɝɪɟɝɚɬɨɜ ɲɚɪɨɨɛɪɚɡɧɨɣ ɢɥɢ ɰɢɥɢɧɞɪɢɱɟɫɤɨɣ ɮɨɪɦɵ ɢɡ ɩɨɪɨɲɤɨɜ, ɩɚɫɬ, ɪɚɫɩɥɚɜɨɜ ɢɥɢ ɪɚɫɬɜɨɪɨɜ ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ. ɗɬɢ ɩɪɨɰɟɫɫɵ ɨɫɧɨɜɚɧɵ ɧɚ ɪɚɡɥɢɱɧɵɯ ɩɪɢɟɦɚɯ ɨɛɪɚɛɨɬɤɢ ɦɚɬɟɪɢɚɥɨɜ: ɨɤɚɬɵɜɚɧɢɟ, ɩɪɟɫɫɨɜɚɧɢɟ ɩɨɪɨɲɤɨɜ ɜ ɞɢɫɩɟɪɫɧɵɯ ɩɨɬɨɤɚɯ, ɝɪɚɧɭɥɢɪɨɜɚɧɢɟ ɪɚɫɩɥɚɜɨɜ. ɋɩɨɫɨɛɧɨɫɬɶ ɝɪɚɧɭɥɢɪɭɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤ ɭɩɥɨɬɧɟɧɢɸ ɢ ɮɨɪɦɨɜɚɧɢɸ ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɡɧɚɱɟɧɢɹɦɢ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɢɯ ɝɪɚɧɭɥɢɪɭɟɦɨɫɬɢ: K1 = (Ȗ/Ȗ0)Ɋɩɥ; K2 = ı/Ɋɩɥ, (6.41) ɝɞɟ Ȗ ɢ Ȗ0 – ɬɟɤɭɳɚɹ ɢ ɢɫɯɨɞɧɚɹ ɩɥɨɬɧɨɫɬɶ ɝɪɚɧɭɥɢɪɭɟɦɨɝɨ ɦɚɬɟɪɢɚɥɚ, ɬ/ɦ³; ı – ɩɪɟɞɟɥ ɩɪɨɱɧɨɫɬɢ ɝɪɚɧɭɥ ɩɪɢ ɫɠɚɬɢɢ, ɉɚ; Ɋɩɥ – ɞɚɜɥɟɧɢɟ ɭɩɥɨɬɧɟɧɢɹ, ɉɚ. ȼɟɥɢɱɢɧɵ K1 ɢ K2 ɩɨɡɜɨɥɹɸɬ ɨɛɨɫɧɨɜɚɧɧɨ ɪɟɤɨɦɟɧɞɨɜɚɬɶ ɦɟɬɨɞ ɝɪɚɧɭɥɢɪɨɜɚɧɢɹ ɞɥɹ ɞɚɧɧɨɝɨ ɦɚɬɟɪɢɚɥɚ: ɱɟɦ ɛɨɥɶɲɟ ɡɧɚɱɟɧɢɹ K1 ɢ K2 , ɬɟɦ ɦɟɧɶɲɢɦɢ ɭɫɢɥɢɹɦɢ ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɡɚɞɚɧɧɚɹ ɫɬɟɩɟɧɶ ɭɩɥɨɬɧɟɧɢɹ ɦɚɬɟɪɢɚɥɚ. Ȼɪɢɤɟɬɢɪɨɜɚɧɢɟ – ɩɨɞɝɨɬɨɜɢɬɟɥɶɧɵɟ ɢ ɫɚɦɨɫɬɨɹɬɟɥɶɧɵɟ ɨɩɟɪɚɰɢɢ ɜ ɩɪɚɤɬɢɤɟ ɭɬɢɥɢɡɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ. Ȼɪɢɤɟɬɢɪɨɜɚɧɢɟ ɞɢɫɩɟɪɫɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɩɪɨɜɨɞɹɬ ɛɟɡ ɫɜɹɡɭɸɳɟɝɨ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɩɪɟɫɫɨɜɚɧɢɹ Ɋɩɥ > 80 Ɇɉɚ ɢ ɫ ɞɨɛɚɜɤɚɦɢ ɫɜɹɡɭɸɳɢɯ ɩɪɢ ɞɚɜɥɟɧɢɢ Ɋɩɥ ” 15…25 Ɇɉɚ. ɇɚ ɩɪɨɰɟɫɫ ɛɪɢɤɟɬɢɪɨɜɚɧɢɹ ɞɢɫɩɟɪɫɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɫɭɳɟɫɬɜɟɧɧɨɟ ɜɥɢɹɧɢɟ ɨɤɚɡɵɜɚɸɬ ɫɨɫɬɚɜ, ɜɥɚɠɧɨɫɬɶ ɢ ɤɪɭɩɧɨɫɬɶ ɦɚɬɟɪɢɚɥɚ, ɬɟɦɩɟɪɚɬɭɪɚ, ɭɞɟɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɢ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɶ ɩɪɟɫɫɨɜɚɧɢɹ. ɇɟɨɛɯɨɞɢɦɨɟ ɭɞɟɥɶɧɨɟ ɞɚɜɥɟɧɢɟ ɩɪɟɫɫɨɜɚɧɢɹ ɨɛɵɱɧɨ ɧɚɯɨɞɢɬɫɹ ɜ ɨɛɪɚɬɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɥɚɠɧɨɫɬɢ ɦɚɬɟɪɢɚɥɚ. ɉɪɟɫɫɨɜɚɧɢɟ ɩɪɢ ɜɵɫɨɤɢɯ ɞɚɜɥɟɧɢɹɯ - ɨɞɢɧ ɢɡ ɫɩɨɫɨɛɨɜ ɭɥɭɱɲɟɧɢɹ ɭɫɥɨɜɢɣ ɷɤɫɩɥɭɚɬɚɰɢɢ ɩɨɥɢɝɨɧɨɜ (ɫɜɚɥɨɤ). ɍɩɥɨɬɧɟɧɧɵɟ ɨɬɯɨɞɵ ɞɚɸɬ ɦɟɧɶɲɟɟ ɤɨɥɢɱɟɫɬɜɨ ɮɢɥɶɬɪɚɬɚ ɢ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ, ɩɪɢ ɷɬɨɦ ɫɧɢɠɚɟɬɫɹ ɜɟɪɨɹɬɧɨɫɬɶ ɜɨɡɧɢɤɧɨɜɟɧɢɹ ɩɨɠɚɪɨɜ, ɷɮɮɟɤɬɢɜɧɟɟ ɢɫɩɨɥɶɡɭɟɬɫɹ ɡɟɦɟɥɶɧɚɹ ɩɥɨɳɚɞɶ ɩɨɥɢɝɨɧɚ. 6.3. Ɏɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɨɫɧɨɜɵ ɨɛɪɚɛɨɬɤɢ ɢ ɭɬɢɥɢɡɚɰɢɢ ɨɬɯɨɞɨɜ 6.3.1. Ɋɟɚɝɟɧɬɧɚɹ ɨɛɪɚɛɨɬɤɚ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ Ȼɨɥɶɲɢɧɫɬɜɨ ɨɫɚɞɤɨɜ, ɨɛɪɚɡɭɸɳɢɯɫɹ ɜ ɩɪɨɰɟɫɫɟ ɨɱɢɫɬɤɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɢ ɝɨɪɨɞɫɤɢɯ ɫɬɨɱɧɵɯ ɜɨɞ, ɝɚɥɶɜɚɧɢɱɟɫɤɢɟ ɲɥɚɦɵ ɢ ɩɪ. ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɬɪɭɞɧɨɪɚɡɞɟɥɹɟɦɵɟ ɫɭɫɩɟɧɡɢɢ. Ⱦɥɹ ɢɯ ɭɫɩɟɲɧɨɝɨ ɨɛɟɡɜɨɠɢɜɚɧɢɹ ɧɟɨɛɯɨɞɢɦɚ ɩɪɟɞɜɚɪɢɬɟɥɶɧɚɹ ɩɨɞɝɨɬɨɜɤɚ - ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɟ. ɐɟɥɶ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ - ɭɥɭɱɲɟɧɢɟ ɜɨɞɨɨɬɞɚɸɳɢɯ ɫɜɨɣɫɬɜ ɨɫɚɞɤɨɜ ɩɭɬɟɦ ɢɡɦɟɧɟɧɢɹ ɢɯ ɫɬɪɭɤɬɭɪɵ ɢ ɮɨɪɦ ɫɜɹɡɢ ɜɨɞɵ. Ɉɬ ɭɫɥɨɜɢɣ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɡɚɜɢɫɢɬ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɨɛɟɡɜɨɠɢɜɚɸɳɢɯ ɚɩɩɚɪɚɬɨɜ, ɱɢɫɬɨɬɚ ɨɬɞɟɥɹɟɦɨɣ ɜɨɞɵ ɢ ɜɥɚɠɧɨɫɬɶ ɨɛɟɡɜɨɠɟɧɧɨɝɨ ɨɫɚɞɤɚ. Ʉɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɟ ɦɨɠɟɬ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɧɟɫɤɨɥɶɤɢɦɢ ɫɩɨɫɨɛɚɦɢ, ɪɚɡɥɢɱɚɸɳɢɦɢɫɹ ɩɨ ɫɜɨɟɦɭ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɨɦɭ ɜɨɡɞɟɣɫɬɜɢɸ ɧɚ ɫɬɪɭɤɬɭɪɭ ɨɛɪɚɛɚɬɵɜɚɟɦɨɝɨ ɨɫɚɞɤɚ. ɇɚɢɛɨɥɶɲɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɢɡ ɧɢɯ ɩɨɥɭɱɢɥɢ: ɯɢɦɢɱɟɫɤɚɹ (ɪɟɚɝɟɧɬɧɚɹ) ɨɛɪɚɛɨɬɤɚ; ɬɟɩɥɨɜɚɹ ɨɛɪɚɛɨɬɤɚ; ɠɢɞɤɨɮɚɡɧɨɟ ɨɤɢɫɥɟɧɢɟ; ɡɚɦɨɪɚɠɢɜɚɧɢɟ ɢ ɨɬɬɚɢɜɚɧɢɟ. ȼ ɩɪɚɤɬɢɤɟ ɨɛɪɚɛɨɬɤɢ ɨɫɚɞɤɨɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɱɚɳɟ ɜɫɟɝɨ ɩɪɢɦɟɧɹɸɬɫɹ ɯɢɦɢɱɟɫɤɢɟ (ɪɟɚɝɟɧɬɧɵɟ) ɦɟɬɨɞɵ ɨɛɪɚɛɨɬɤɢ. Ɋɟɚɝɟɧɬɧɚɹ ɨɛɪɚɛɨɬɤɚ - ɷɬɨ ɧɚɢɛɨɥɟɟ ɢɡɜɟɫɬɧɵɣ ɢ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɣ ɫɩɨɫɨɛ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ, ɫ ɩɨɦɨɳɶɸ ɤɨɬɨɪɨɝɨ ɦɨɠɧɨ ɨɛɟɡɜɨɠɢɜɚɬɶ ɛɨɥɶɲɢɧɫɬɜɨ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ. ɉɪɢ ɪɟɚɝɟɧɬɧɨɣ ɨɛɪɚɛɨɬɤɟ ɩɪɨɢɫɯɨɞɢɬ ɤɨɚɝɭɥɹɰɢɹ - ɩɪɨɰɟɫɫ ɚɝɪɟɝɚɰɢɢ ɬɨɧɤɨɞɢɫɩɟɪɫɧɵɯ ɢ ɤɨɥɥɨɢɞɧɵɯ ɱɚɫɬɢɰ, ɨɛɪɚɡɨɜɚɧɢɟ ɤɪɭɩɧɵɯ ɯɥɨɩɶɟɜ ɫ ɪɚɡɪɵɜɨɦ ɫɨɥɶɜɚɬɧɵɯ ɨɛɨɥɨɱɟɤ ɢ ɢɡɦɟɧɟɧɢɟ ɮɨɪɦ ɫɜɹɡɢ ɜɨɞɵ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɢɡɦɟɧɟɧɢɸ ɫɬɪɭɤɬɭɪɵ ɨɫɚɞɤɚ ɢ ɭɥɭɱɲɟɧɢɸ ɟɝɨ ɜɨɞɨɨɬɞɚɸɳɢɯ ɫɜɨɣɫɬɜ. Ⱦɥɹ ɪɟɚɝɟɧɬɧɨɣ ɨɛɪɚɛɨɬɤɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɦɢɧɟɪɚɥɶɧɵɟ ɢ ɨɪɝɚɧɢɱɟɫɤɢɟ ɫɨɟɞɢɧɟɧɢɹ - ɤɨɚɝɭɥɹɧɬɵ ɢ ɮɥɨɤɭɥɹɧɬɵ. ȼ ɤɚɱɟɫɬɜɟ ɦɢɧɟɪɚɥɶɧɵɯ ɤɨɚɝɭɥɹɧɬɨɜ ɩɪɢɦɟɧɹɸɬ ɫɨɥɢ ɠɟɥɟɡɚ, ɚɥɸɦɢɧɢɹ ɢ ɢɡɜɟɫɬɶ. ɗɬɢ ɪɟɚɝɟɧɬɵ ɜɜɨɞɹɬ ɜ ɨɛɪɚɛɚɬɵɜɚɟɦɵɣ ɨɫɚɞɨɤ ɜ ɜɢɞɟ 10%ɧɵɯ ɪɚɫɬɜɨɪɨɜ. ɇɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɵɦ ɹɜɥɹɟɬɫɹ ɯɥɨɪɧɨɟ ɠɟɥɟɡɨ, ɤɨɬɨɪɨɟ ɩɪɢɦɟɧɹɸɬ ɜ ɫɨɱɟɬɚɧɢɢ ɫ ɢɡɜɟɫɬɶɸ. ɏɢɦɢɱɟɫɤɢɣ ɦɟɯɚɧɢɡɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɤɨɚɝɭɥɹɧɬɨɜ ɫ ɨɫɚɞɤɨɦ ɫɥɟɞɭɸɳɢɣ. ȼɜɟɞɟɧɧɵɣ ɜ ɜɨɞɧɭɸ ɫɪɟɞɭ ɫɟɪɧɨɤɢɫɥɵɣ ɚɥɸɦɢɧɢɣ ɜɡɚɢɦɨɞɟɣɫɬɜɭɟɬ ɫ ɫɨɞɟɪɠɚɳɢɦɢɫɹ ɜ ɜɨɞɟ ɛɢɤɚɪɛɨɧɚɬɚɦɢ, ɨɛɪɚɡɭɹ ɩɟɪɜɨɧɚɱɚɥɶɧɨ ɝɟɥɟɨɛɪɚɡɧɵɣ ɝɢɞɪɚɬ ɨɤɫɢɞɚ ɚɥɸɦɢɧɢɹ: Al2(SO4)3 + 3Ca(HCO3)2 om 2Al(OH)3 + 3CaSO4 + 6CO2. (6.42) ȿɫɥɢ ɳɟɥɨɱɧɨɫɬɶ ɫɪɟɞɵ ɧɟɞɨɫɬɚɬɨɱɧɚɹ, ɨɧɚ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɩɭɬɟɦ ɞɨɛɚɜɥɟɧɢɹ ɢɡɜɟɫɬɢ, ɢ ɬɨɝɞɚ Al2(SO4)3 + 3Ca(OH)2 om 2Al(OH)2 + 3CaSO4. (6.43) Ɉɛɪɚɡɭɸɳɢɟɫɹ ɯɥɨɩɶɹ ɝɢɞɪɚɬɚ ɡɚɯɜɚɬɵɜɚɸɬ ɫɭɫɩɟɧɞɢɪɨɜɚɧɧɵɟ ɢ ɧɚɯɨɞɹɳɢɟɫɹ ɜ ɜɨɞɧɨɣ ɫɪɟɞɟ ɜ ɤɨɥɥɨɢɞɧɨɦ ɫɨɫɬɨɹɧɢɢ ɜɟɳɟɫɬɜɚ ɢ ɩɪɢ ɛɥɚɝɨɩɪɢɹɬɧɵɯ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɢɯ ɭɫɥɨɜɢɹɯ ɛɵɫɬɪɨ ɨɫɟɞɚɸɬ ɜ ɭɩɥɨɬɧɢɬɟɥɟ ɢ ɯɨɪɨɲɨ ɨɬɞɚɸɬ ɜɨɞɭ ɧɚ ɚɩɩɚɪɚɬɚɯ ɞɥɹ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɨɛɟɡɜɨɠɢɜɚɧɢɹ ɩɭɬɟɦ ɮɢɥɶɬɪɚɰɢɢ ɢɥɢ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɹ. ɉɪɢ ɩɪɢɦɟɧɟɧɢɢ ɫɨɥɟɣ ɠɟɥɟɡɚ ɨɛɪɚɡɭɸɬɫɹ ɧɟɪɚɫɬɜɨɪɢɦɵɟ ɝɢɞɪɨɤɫɢɞɵ ɠɟɥɟɡɚ 2FeCl3 + 3Ca(OH)2 = 3CaCl2 + 2Fe(OH)3; (6.44) (6.45) Fe2(SO4)3+ 3Ca(OH)2 = 3CaSO4 + 2Fe(OH)3. ɇɚɢɛɨɥɶɲɢɣ ɷɮɮɟɤɬ ɤɨɚɝɭɥɢɪɨɜɚɧɢɹ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢ ɪɇ = 4…8,5. ɋ ɬɨɱɤɢ ɡɪɟɧɢɹ ɩɨɥɧɨɬɵ ɪɟɚɤɰɢɢ ɢ ɷɤɨɧɨɦɢɢ ɪɟɚɝɟɧɬɚ ɛɨɥɶɲɨɟ ɡɧɚɱɟɧɢɟ ɢɦɟɟɬ ɯɨɪɨɲɟɟ ɢ ɛɵɫɬɪɨɟ ɟɝɨ ɫɦɟɲɟɧɢɟ ɫ ɨɛɪɚɛɚɬɵɜɚɟɦɵɦ ɨɫɚɞɤɨɦ. ɋɟɪɧɨɤɢɫɥɨɟ ɨɤɫɢɞɧɨɟ ɠɟɥɟɡɨ ɦɟɧɟɟ ɷɮɮɟɤɬɢɜɧɵɣ, ɧɨ ɡɚɬɨ ɛɨɥɟɟ ɞɟɲɟɜɵɣ ɢ ɥɟɝɤɨɞɨɫɬɭɩɧɵɣ ɪɟɚɝɟɧɬ. Ɉɪɢɟɧɬɢɪɨɜɨɱɧɨ ɦɨɠɧɨ ɫɤɚɡɚɬɶ, ɱɬɨ ɩɪɢ ɞɨɡɚɯ ɫɟɪɧɨɤɢɫɥɨɝɨ ɠɟɥɟɡɚ, ɜ 1,5…2 ɪɚɡɚ ɩɪɟɜɵɲɚɸɳɢɯ ɞɨɡɵ ɯɥɨɪɧɨɝɨ ɠɟɥɟɡɚ, ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɨɛɟɡɜɨɠɢɜɚɸɳɢɯ ɚɩɩɚɪɚɬɨɜ ɢ ɜɥɚɠɧɨɫɬɶ ɨɛɟɡɜɨɠɟɧɧɨɝɨ ɨɫɚɞɤɚ ɨɞɢɧɚɤɨɜɵ. ɂɡɜɟɫɬɶ ɢɫɩɨɥɶɡɭɸɬ ɧɟ ɬɨɥɶɤɨ ɜ ɫɨɱɟɬɚɧɢɢ ɫ ɫɨɥɹɦɢ ɠɟɥɟɡɚ, ɧɨ ɢ ɤɚɤ ɫɚɦɨɫɬɨɹɬɟɥɶɧɵɣ ɤɨɚɝɭɥɹɧɬ, ɨɤɚɡɵɜɚɸɳɢɣɫɹ ɜ ɪɹɞɟ ɫɥɭɱɚɟɜ ɜɟɫɶɦɚ ɷɮɮɟɤɬɢɜɧɵɦ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɜ ɤɚɱɟɫɬɜɟ ɤɨɚɝɭɥɹɧɬɚ ɧɚɛɥɸɞɚɟɬɫɹ ɬɟɧɞɟɧɰɢɹ ɤ ɟɟ ɪɟɝɟɧɟɪɚɰɢɢ ɢɡ ɡɨɥɵ ɩɨɫɥɟ ɫɠɢɝɚɧɢɹ ɨɛɟɡɜɨɠɟɧɧɵɯ ɨɫɚɞɤɨɜ. ɇɟɞɨɫɬɚɬɤɚɦɢ ɦɢɧɟɪɚɥɶɧɵɯ ɪɟɚɝɟɧɬɨɜ ɹɜɥɹɸɬɫɹ ɞɟɮɢɰɢɬɧɨɫɬɶ, ɜɵɫɨɤɚɹ ɫɬɨɢɦɨɫɬɶ, ɤɨɪɪɨɡɢɨɧɧɨɫɬɶ, ɚ ɬɚɤɠɟ ɬɪɭɞɧɨɫɬɢ ɩɪɢ ɢɯ ɬɪɚɧɫɩɨɪɬɢɪɨɜɚɧɢɢ, ɯɪɚɧɟɧɢɢ, ɩɪɢɝɨɬɨɜɥɟɧɢɢ ɢ ɞɨɡɢɪɨɜɚɧɢɢ. Ɂɚ ɪɭɛɟɠɨɦ ɞɥɹ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɨɫɚɞɤɨɜ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɧɚɪɹɞɭ ɫ ɦɢɧɟɪɚɥɶɧɵɦɢ ɪɟɚɝɟɧɬɚɦɢ ɧɚɯɨɞɹɬ ɩɪɢɦɟɧɟɧɢɟ ɫɢɧɬɟɬɢɱɟɫɤɢɟ ɮɥɨɤɭɥɹɧɬɵ. ɋɢɧɬɟɬɢɱɟɫɤɢɟ ɩɨɥɢɷɥɟɤɬɪɨɥɢɬɵ, ɢɥɢ ɩɨɥɢɦɟɪɵ, ɜɜɨɞɹɬɫɹ ɜ ɨɫɚɞɨɤ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɩɟɪɟɞ ɰɟɧɬɪɢɮɭɝɢɪɨɜɚɧɢɟɦ ɢɥɢ ɮɢɥɶɬɪɨɜɚɧɢɟɦ. ɗɬɢ ɩɨɥɢɦɟɪɵ ɭɧɢɱɬɨɠɚɸɬ ɢɥɢ ɭɦɟɧɶɲɚɸɬ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɨɬɬɚɥɤɢɜɚɸɳɢɟ ɭɫɢɥɢɹ ɫɭɫɩɟɧɞɢɪɨɜɚɧɧɵɯ ɬɜɟɪɞɵɯ ɱɚɫɬɢɰ, ɤɨɬɨɪɵɟ ɫɬɪɟɦɹɬɫɹ ɭɞɟɪɠɚɬɶ ɢɯ ɧɚ ɪɚɫɫɬɨɹɧɢɢ. Ɂɚ ɫɱɟɬ ɩɪɢɬɹɠɟɧɢɹ ɷɬɢɯ ɱɚɫɬɢɰ ɨɛɪɚɡɨɜɚɧɢɟ ɯɥɨɩɶɟɜ ɢ ɫɟɩɚɪɢɪɨɜɚɧɢɟ ɩɪɨɢɫɯɨɞɹɬ ɡɧɚɱɢɬɟɥɶɧɨ ɛɵɫɬɪɟɟ ɢ ɷɮɮɟɤɬɢɜɧɟɟ. ɋɢɧɬɟɬɢɱɟɫɤɢɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɮɥɨɤɭɥɹɧɬɵ - ɥɢɧɟɣɧɵɟ, ɜɨɞɨɪɚɫɬɜɨɪɢɦɵɟ ɦɚɤɪɨɦɨɥɟɤɭɥɵ ɫɨ ɫɬɟɩɟɧɶɸ ɩɨɥɢɦɟɪɢɡɚɰɢɢ ɞɨ (50…200)˜103. ɉɨ ɮɢɡɢɤɨɯɢɦɢɱɟɫɤɢɦ ɫɜɨɣɫɬɜɚɦ ɨɧɢ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɫɥɟɞɭɸɳɢɟ ɝɪɭɩɩɵ: - ɧɟɢɨɧɧɵɟ (ɩɨɥɢɚɤɪɢɥɚɧɢɞ, ɩɨɥɢɨɤɫɢɷɬɢɥɟɧ ɢ ɬ.ɞ.); - ɢɨɧɨɝɟɧɧɵɟ ɝɨɦɨɩɨɥɢɦɟɪɵ (ɚɧɢɨɧɧɵɟ, ɩɨɥɢɦɟɬɚɤɪɢɥɨɜɚɹ ɤɢɫɥɨɬɚ ɢ ɞɪ., ɤɚɬɢɨɧɧɵɟ - ɩɨɥɢɚɦɢɧɵ ɢ ɞɪ.); - ɢɨɧɨɝɟɧɧɵɟ ɫɨɩɨɥɢɦɟɪɵ (ɚɧɢɨɧɧɵɟ, ɤɚɬɢɨɧɧɵɟ). ɉɨɫɤɨɥɶɤɭ ɜ ɨɫɚɞɤɚɯ ɫɬɨɱɧɵɯ ɜɨɞ ɜ ɨɫɧɨɜɧɨɦ ɧɚɯɨɞɹɬɫɹ ɨɬɪɢɰɚɬɟɥɶɧɨ ɡɚɪɹɠɟɧɧɵɟ ɤɨɥɥɨɢɞɵ, ɬɨ ɧɚɢɛɨɥɶɲɢɣ ɢɧɬɟɪɟɫ ɩɪɟɞɫɬɚɜɥɹɸɬ ɤɚɬɢɨɧɧɵɟ ɮɥɨɤɭɥɹɧɬɵ. Ʉɚɬɢɨɧɧɵɟ ɫɢɧɬɟɬɢɱɟɫɤɢɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɮɥɨɤɭɥɹɧɬɵ ɫɨɞɟɪɠɚɬ ɫɜɹɡɚɧɧɵɣ ɫ ɩɨɥɢɦɟɪɨɦ ɚɬɨɦ ɚɡɨɬɚ, ɡɚɪɹɠɟɧɧɵɣ ɜ ɜɨɞɟ ɩɨɥɨɠɢɬɟɥɶɧɨ, ɢ ɫɜɨɛɨɞɧɨ ɞɜɢɠɭɳɢɣɫɹ ɩɪɨɬɢɜɨɢɨɧ ɤɢɫɥɨɬɧɨɝɨ ɨɫɬɚɬɤɚ (ɋ1-, ɋɇ3SO4-, Br-ɢ ɬ.ɞ.). ɋɪɟɞɢ ɫɢɧɬɟɬɢɱɟɫɤɢɯ ɮɥɨɤɭɥɹɧɬɨɜ ɧɚɢɛɨɥɶɲɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɩɨɥɭɱɢɥ ɩɨɥɢɚɤɪɢɥɚɦɢɞ (ɉȺȺ) - ɪɚɫɬɜɨɪɢɦɵɣ ɜ ɜɨɞɟ ɩɨɥɢɦɟɪ, ɫɨɞɟɪɠɚɳɢɣ ɜ ɫɜɨɟɣ ɰɟɩɨɱɧɨɣ ɦɨɥɟɤɭɥɟ ɢɨɧɨɝɟɧɧɵɟ ɝɪɭɩɩɵ. ɉɪɢ ɟɝɨ ɞɢɫɫɨɰɢɚɰɢɢ ɨɛɪɚɡɭɟɬɫɹ ɜɵɫɨɤɨɦɨɥɟɤɭɥɹɪɧɵɣ ɩɨɥɢɜɚɥɟɧɬɧɵɣ ɚɧɢɨɧ ɢ ɦɧɨɝɨ ɩɪɨɫɬɵɯ ɦɚɥɨɜɚɥɟɧɬɧɵɯ ɤɚɬɢɨɧɨɜ, ɩɨɷɬɨɦɭ ɬɚɤɢɟ ɜɟɳɟɫɬɜɚ ɧɚɡɵɜɚɸɬ ɩɨɥɢɷɥɟɤɬɪɨɥɢɬɚɦɢ. Ⱦɟɣɫɬɜɢɟ ɉȺȺ ɨɛɴɹɫɧɹɟɬɫɹ ɚɞɫɨɪɛɰɢɟɣ ɟɝɨ ɦɨɥɟɤɭɥ ɧɚ ɯɥɨɩɶɹɯ ɝɢɞɪɨɤɫɢɞɚ, ɨɛɪɚɡɭɸɳɟɝɨɫɹ ɩɪɢ ɝɢɞɪɨɥɢɡɟ ɤɨɚɝɭɥɹɧɬɨɜ. ɂɡ-ɡɚ ɜɵɬɹɧɭɬɨɣ ɮɨɪɦɵ ɚɞɫɨɪɛɰɢɹ ɩɪɨɢɫɯɨɞɢɬ ɜ ɪɚɡɧɵɯ ɦɟɫɬɚɯ ɧɟɫɤɨɥɶɤɢɦɢ ɱɚɫɬɢɰɚɦɢ ɝɢɞɪɨɤɫɢɞɚ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɱɟɝɨ ɩɨɫɥɟɞɧɢɟ ɨɤɚɡɵɜɚɸɬɫɹ ɫɜɹɡɚɧɧɵɦɢ ɜɦɟɫɬɟ. 6.3.2. Ɏɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɢɡɜɥɟɱɟɧɢɹ ɤɨɦɩɨɧɟɧɬɨɜ ɢɡ ɨɬɯɨɞɨɜ Ɇɧɨɝɢɟ ɩɪɨɰɟɫɫɵ ɭɬɢɥɢɡɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɨɫɧɨɜɚɧɵ ɧɚ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɦɟɬɨɞɨɜ ɜɵɳɟɥɚɱɢɜɚɧɢɹ (ɷɤɫɬɪɚɝɢɪɨɜɚɧɢɹ), ɪɚɫɬɜɨɪɟɧɢɹ ɢ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ. ȼɵɳɟɥɚɱɢɜɚɧɢɟ (ɷɤɫɬɪɚɝɢɪɨɜɚɧɢɟ) ɨɫɧɨɜɚɧɨ ɧɚ ɢɡɜɥɟɱɟɧɢɟ ɨɞɧɨɝɨ ɢɥɢ ɧɟɫɤɨɥɶɤɢɯ ɤɨɦɩɨɧɟɧɬɨɜ ɢɡ ɤɨɦɩɥɟɤɫɧɨɝɨ ɬɜɟɪɞɨɝɨ ɦɚɬɟɪɢɚɥɚ ɩɭɬɟɦ ɟɝɨ (ɢɯ) ɢɡɛɢɪɚɬɟɥɶɧɨɝɨ ɪɚɫɬɜɨɪɟɧɢɹ ɜ ɠɢɞɤɨɫɬɢ – ɷɤɫɬɪɚɝɟɧɬɟ. Ɋɚɡɥɢɱɚɸɬ ɩɪɨɫɬɨɟ ɪɚɫɬɜɨɪɟɧɢɟ ɢ ɜɵɳɟɥɚɱɢɜɚɧɢɟ ɫ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɟɣ. ɋɤɨɪɨɫɬɶ ɜɵɳɟɥɚɱɢɜɚɧɢɹ ɢɡɦɟɧɹɟɬɫɹ ɜ ɯɨɞɟ ɩɪɨɰɟɫɫɚ ɢ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɟɚɝɟɧɬɨɜ, ɬɟɦɩɟɪɚɬɭɪɵ, ɜɟɥɢɱɢɧɵ ɩɨɜɟɪɯɧɨɫɬɢ ɬɜɟɪɞɨɣ ɮɚɡɵ: dG/dIJ = -j.F , (6.46) ɝɞɟ G – ɤɨɥɢɱɟɫɬɜɨ ɜɵɳɟɥɚɱɢɜɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɬɜɟɪɞɨɣ ɮɚɡɟ; j – ɤɨɥɢɱɟɫɬɜɨ ɜɵɳɟɥɚɱɢɜɚɟɦɨɝɨ ɜɟɳɟɫɬɜɚ, ɩɟɪɟɯɨɞɹɳɟɟ ɜ ɪɚɫɬɜɨɪ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ IJ ɫ ɟɞɢɧɢɰɵ ɩɨɜɟɪɯɧɨɫɬɢ ɬɜɟɪɞɨɣ ɮɚɡɵ (ɩɨɬɨɤ ɜɵɳɟɥɚɱɢɜɚɧɢɹ, ɭɞɟɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ɜɵɳɟɥɚɱɢɜɚɧɢɹ); F – ɩɨɜɟɪɯɧɨɫɬɶ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɮɚɡ. Ɋɚɫɬɜɨɪɟɧɢɟ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɝɟɬɟɪɨɝɟɧɧɨɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɦɟɠɞɭ ɠɢɞɤɨɫɬɶɸ ɢ ɬɜɟɪɞɵɦ ɜɟɳɟɫɬɜɨɦ, ɫɨɩɪɨɜɨɠɞɚɟɦɨɝɨ ɩɟɪɟɯɨɞɨɦ ɬɜɟɪɞɨɝɨ ɜɟɳɟɫɬɜɚ ɜ ɪɚɫɬɜɨɪ. ȼɨɡɦɨɠɧɨɫɬɶ ɫɚɦɨɩɪɨɢɡɜɨɥɶɧɨɝɨ ɪɚɫɬɜɨɪɟɧɢɹ ɬɜɟɪɞɨɝɨ ɜɟɳɟɫɬɜɚ ɨɰɟɧɢɜɚɟɬɫɹ ɡɧɚɤɨɦ ɜɟɥɢɱɢɧɵ ǻG (ɢɡɦɟɧɟɧɢɟ ɷɧɟɪɝɢɢ Ƚɢɛɛɫɚ): ǻG = ǻɇɪ – Ɍ.ǻS, (6.47) ɝɞɟ ǻɇɪ – ɢɡɦɟɧɟɧɢɟ ɷɧɬɚɥɶɩɢɢ; Ɍ – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ; ǻS – ɢɡɦɟɧɟɧɢɟ ɷɧɬɪɨɩɢɢ. ɉɪɢ ǻG < 0 ɜɨɡɦɨɠɧɨ ɪɚɫɬɜɨɪɟɧɢɟ, ǻG = 0 ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɪɚɜɧɨɜɟɫɢɸ ɜ ɫɢɫɬɟɦɟ, ɩɪɢ ǻG > 0 ɜɟɪɨɹɬɟɧ ɩɪɨɰɟɫɫ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ. Ɋɚɫɬɜɨɪɢɦɨɫɬɶ ɬɜɟɪɞɵɯ ɜɟɳɟɫɬɜ ɜ ɠɢɞɤɨɫɬɹɯ ɨɛɵɱɧɨ ɨɝɪɚɧɢɱɟɧɚ ɤɨɧɰɟɧɬɪɚɰɢɟɣ ɧɚɫɵɳɟɧɢɹ ɋS. ɋɤɨɪɨɫɬɶ ɪɚɫɬɜɨɪɟɧɢɹ ɦɨɠɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɦɚɫɫɨɨɛɦɟɧɧɵɣ ɩɪɨɰɟɫɫ: (6.48) dG/dIJ = Kɦ F(CS - CW), ɝɞɟ G – ɤɨɥɢɱɟɫɬɜɨ ɪɚɫɬɜɨɪɟɧɧɨɝɨ ɜɟɳɟɫɬɜɚ, ɤɝ.; Kɦ – ɤɨɷɮɮɢɰɢɟɧɬ ɦɚɫɫɨɩɟɪɟɞɚɱɢ (ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɩɪɨɰɟɫɫɚ); F – ɨɛɳɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɪɚɫɬɜɨɪɟɧɧɵɯ ɱɚɫɬɢɰ ɜ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ IJ, ɦ2; ɋW – ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɬɜɨɪɚ ɜ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ IJ, ɤɝ/ɦ3. Ʉɪɢɫɬɚɥɥɢɡɚɰɢɹ – ɷɬɨ ɩɪɨɰɟɫɫ ɜɵɞɟɥɟɧɢɹ ɬɜɟɪɞɨɣ ɮɚɡɵ ɜ ɜɢɞɟ ɤɪɢɫɬɚɥɥɨɜ ɢɡ ɧɚɫɵɳɟɧɧɵɯ ɪɚɫɬɜɨɪɨɜ, ɪɚɫɩɥɚɜɨɜ ɢɥɢ ɩɚɪɨɜ. Ⱦɥɹ ɨɰɟɧɤɢ ɩɨɜɟɞɟɧɢɹ ɪɚɫɬɜɨɪɨɜ ɩɪɢ ɢɯ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɢ ɪɚɰɢɨɧɚɥɶɧɨɝɨ ɜɵɛɨɪɚ ɫɩɨɫɨɛɚ ɩɪɨɜɟɞɟɧɢɹ ɷɬɨɝɨ ɩɪɨɰɟɫɫɚ ɢɫɩɨɥɶɡɭɸɬ ɞɢɚɝɪɚɦɦɵ ɫɨɫɬɨɹɧɢɹ ɪɚɫɬɜɨɪɨɜ, ɜɵɪɚɠɚɸɳɢɟ ɡɚɜɢɫɢɦɨɫɬɶ ɪɚɫɬɜɨɪɢɦɨɫɬɢ ɫɨɥɟɣ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɋɤɨɪɨɫɬɶ ɩɪɨɰɟɫɫɚ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɫɬɟɩɟɧɢ ɩɟɪɟɫɵɳɟɧɢɹ ɪɚɫɬɜɨɪɚ, ɬɟɦɩɟɪɚɬɭɪɵ, ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɩɟɪɟɦɟɲɢɜɚɧɢɹ, ɫɨɞɟɪɠɚɧɢɹ ɩɪɢɦɟɫɟɣ ɢ ɞɪ., ɨɧɚ ɢɡɦɟɧɹɟɬɫɹ ɜɨ ɜɪɟɦɟɧɢ, ɩɪɨɯɨɞɹ ɱɟɪɟɡ ɦɚɤɫɢɦɭɦ. ɋɨɡɞɚɧɢɟ ɧɟɨɛɯɨɞɢɦɨɝɨ ɞɥɹ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɩɟɪɟɫɵɳɟɧɢɹ ɪɚɫɬɜɨɪɚ ɨɛɟɫɩɟɱɢɜɚɸɬ ɨɯɥɚɠɞɟɧɢɟɦ ɝɨɪɹɱɢɯ ɧɚɫɵɳɟɧɧɵɯ ɪɚɫɬɜɨɪɨɜ (ɢɡɨɝɢɞɪɢɱɟɫɤɚɹ ɤɪɢɫɬɚɥɥɢɡɚɰɢɹ) ɢ ɭɞɚɥɟɧɢɟɦ ɱɚɫɬɢɰ ɪɚɫɬɜɨɪɢɬɟɥɹ ɩɭɬɟɦ ɜɵɩɚɪɢɜɚɧɢɹ (ɢɡɨɬɟɪɦɢɱɟɫɤɚɹ ɤɪɢɫɬɚɥɥɢɡɚɰɢɹ) ɢɥɢ ɤɨɦɛɢɧɚɰɢɟɣ ɷɬɢɯ ɦɟɬɨɞɨɜ (ɜɚɤɭɭɦɤɪɢɫɬɚɥɥɢɡɚɰɢɹ, ɮɪɚɤɰɢɨɧɢɪɨɜɚɧɧɚɹ ɤɪɢɫɬɚɥɥɢɡɚɰɢɹ, ɤɪɢɫɬɚɥɥɢɡɚɰɢɹ ɫ ɢɫɩɚɪɟɧɢɟɦ ɪɚɫɬɜɨɪɢɬɟɥɹ ɜ ɬɨɤɟ ɜɨɡɞɭɯɚ ɢɥɢ ɞɪɭɝɨɝɨ ɝɚɡɚ – ɧɨɫɢɬɟɥɹ) ȼ ɩɪɚɤɬɢɤɟ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɢɡ ɪɚɫɬɜɨɪɨɜ ɢɧɨɝɞɚ ɢɫɩɨɥɶɡɭɸɬ ɤɪɢɫɬɚɥɥɢɡɚɰɢɸ ɜɵɫɚɥɢɜɚɧɢɟɦ (ɜɜɟɞɟɧɢɟ ɜ ɪɚɫɬɜɨɪ ɜɟɳɟɫɬɜ, ɩɨɧɢɠɚɸɳɢɯ ɪɚɫɬɜɨɪɢɦɨɫɬɶ ɫɨɥɢ), ɜɵɦɨɪɚɠɢɜɚɧɢɟɦ (ɨɯɥɚɠɞɟɧɢɟɦ ɪɚɫɬɜɨɪɨɜ ɞɨ ɨɬɪɢɰɚɬɟɥɶɧɵɯ ɬɟɦɩɟɪɚɬɭɪ ɫ ɜɵɞɟɥɟɧɢɟɦ ɤɪɢɫɬɚɥɥɨɜ ɫɨɥɢ ɢɥɢ ɢɯ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɭɞɚɥɟɧɢɟɦ ɱɚɫɬɢɰ ɪɚɫɬɜɨɪɢɬɟɥɹ ɜ ɜɢɞɟ ɥɶɞɚ) ɢɥɢ ɡɚ ɫɱɟɬ ɯɢɦɢɱɟɫɤɨɣ ɪɟɚɤɰɢɢ, ɨɛɟɫɩɟɱɢɜɚɸɳɟɣ ɩɟɪɟɫɵɳɟɧɢɟ ɪɚɫɬɜɨɪɚ, ɚ ɬɚɤɠɟ ɜɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɭɸ (ɚɜɬɨɤɥɚɜɧɭɸ) ɤɪɢɫɬɚɥɥɢɡɚɰɢɸ, ɨɛɟɫɩɟɱɢɜɚɸɳɭɸ ɩɨɥɭɱɟɧɢɟ ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɨɜ ɫ ɦɢɧɢɦɚɥɶɧɵɦ ɫɨɞɟɪɠɚɧɢɟɦ ɜɥɚɝɢ. 6.3.3. Ɉɛɨɝɚɳɟɧɢɟ ɩɪɢ ɪɟɤɭɩɟɪɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ȼ ɩɪɚɤɬɢɤɟ ɪɟɤɭɩɟɪɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢɫɩɨɥɶɡɭɸɬ ɦɟɬɨɞɵ ɨɛɨɝɚɳɟɧɢɹ ɩɟɪɟɪɚɛɚɬɵɜɚɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ: ɝɪɚɜɢɬɚɰɢɨɧɧɵɟ, ɦɚɝɧɢɬɧɵɟ, ɷɥɟɤɬɪɢɱɟɫɤɢɟ, ɮɥɨɬɚɰɢɨɧɧɵɟ, ɢ ɫɩɟɰɢɚɥɶɧɵɟ. Ƚɪɚɜɢɬɚɰɢɨɧɧɵɟ ɦɟɬɨɞɵ - ɨɫɧɨɜɚɧɵ ɧɚ ɪɚɡɥɢɱɢɢ ɜ ɫɤɨɪɨɫɬɢ ɜ ɠɢɞɤɨɣ (ɜɨɡɞɭɲɧɨɣ) ɫɪɟɞɟ ɱɚɫɬɢɰ ɪɚɡɥɢɱɧɨɝɨ ɪɚɡɦɟɪɚ ɢ ɩɥɨɬɧɨɫɬɢ. Ɉɧɢ ɨɛɴɟɞɢɧɹɸɬ ɨɛɨɝɚɳɟɧɢɟ ɨɬɫɚɞɤɨɣ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɩɟɪɟɦɟɧɧɵɯ ɩɨ ɧɚɩɪɚɜɥɟɧɢɸ ɜɟɪɬɢɤɚɥɶɧɵɯ ɫɬɪɭɣ ɜɨɞɵ (ɜɨɡɞɭɯɚ); ɨɛɨɝɚɳɟɧɢɟ ɜ ɬɹɠɟɥɵɯ ɫɭɫɩɟɧɡɢɹɯ, ɩɥɨɬɧɨɫɬɶ ɤɨɬɨɪɵɯ ɹɜɥɹɟɬɫɹ ɩɪɨɦɟɠɭɬɨɱɧɨɣ ɦɟɠɞɭ ɩɥɨɬɧɨɫɬɹɦɢ ɪɚɡɞɟɥɹɟɦɵɯ ɱɚɫɬɢɰ; ɨɛɨɝɚɳɟɧɢɟ ɜ ɩɟɪɟɦɟɳɚɸɳɢɯɫɹ ɩɨ ɧɚɤɥɨɧɧɵɦ ɩɨɜɟɪɯɧɨɫɬɹɦ ɩɨɬɨɤɚɯ, ɚ ɬɚɤɠɟ ɩɪɨɦɵɜɤɭ ɞɥɹ ɪɚɡɪɭɲɟɧɢɹ ɢ ɭɞɚɥɟɧɢɹ ɝɥɢɧɢɫɬɵɯ, ɩɟɫɱɚɧɵɯ ɢ ɞɪɭɝɢɯ ɦɢɧɟɪɚɥɶɧɵɯ, ɚ ɬɚɤɠɟ ɨɪɝɚɧɢɱɟɫɤɢɯ ɩɪɢɦɟɫɟɣ. Ɇɚɝɧɢɬɧɨɟ ɨɛɨɝɚɳɟɧɢɟ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɨɬɞɟɥɟɧɢɹ ɩɚɪɚɦɚɝɧɢɬɧɵɯ (ɫɥɚɛɨɦɚɝɧɢɬɧɵɯ) ɢ ɮɟɪɪɨɦɚɝɧɢɬɧɵɯ (ɫɢɥɶɧɨɦɚɝɧɢɬɧɵɯ) ɤɨɦɩɨɧɟɧɬɨɜ (ɬ.ɟ. ɜɟɳɟɫɬɜ ɫ ɭɞɟɥɶɧɨɣ ɦɚɝɧɢɬɧɨɣ ɜɨɫɩɪɢɢɦɱɢɜɨɫɬɶɸ Ȥ ɜɵɲɟ 10-7 ɦ3/ɤɝ) ɫɦɟɫɟɣ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ ɨɬ ɢɯ ɞɢɚɦɚɝɧɢɬɧɵɯ (ɧɟɦɚɝɧɢɬɧɵɯ) ɫɨɫɬɚɜɥɹɸɳɢɯ. ɍɞɟɥɶɧɨɣ ɦɚɝɧɢɬɧɨɣ ɜɨɫɩɪɢɢɦɱɢɜɨɫɬɶɸ Ȥ (ɜ ɦ3/ɤɝ) ɧɚɡɵɜɚɸɬ ɨɛɴɟɦɧɭɸ ɦɚɝɧɢɬɧɭɸ ɜɨɫɩɪɢɢɦɱɢɜɨɫɬɶ ɜɟɳɟɫɬɜ, ɨɬɧɟɫɟɧɧɭɸ ɤ ɟɝɨ ɩɥɨɬɧɨɫɬɢ. ɋɥɚɛɨɦɚɝɧɢɬɧɵɟ ɦɚɬɟɪɢɚɥɵ, ɨɛɨɝɚɳɟɧɧɵɟ ɜ ɫɢɥɶɧɵɯ ɦɚɝɧɢɬɧɵɯ ɩɨɥɹɯ (ɧɚɩɪɹɠɟɧɧɨɫɬɶɸ ɇ § 800…1600 ɤȺ/ɦ), ɫɢɥɶɧɨɦɚɝɧɢɬɧɵɟ – ɜ ɫɥɚɛɵɯ ɩɨɥɹɯ (ɇ § 70…160 ɤȺ/ɦ). ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɛɨɝɚɳɟɧɢɹ ɨɫɧɨɜɚɧɵ ɧɚ ɪɚɡɥɢɱɢɢ ɷɥɟɤɬɪɨɮɢɡɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɪɚɡɞɟɥɹɟɦɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɜɤɥɸɱɚɸɬ ɫɟɩɚɪɚɰɢɸ ɜ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦ ɩɨɥɟ, ɩɨɥɟ ɤɨɪɨɧɧɨɝɨ ɪɚɡɪɹɞɚ, ɤɨɪɨɧɧɨ-ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦ ɩɨɥɟ ɢ ɬɪɢɛɨɚɞɝɟɡɢɨɧɧɭɸ ɫɟɩɚɪɚɰɢɸ. ɗɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɚɹ ɫɟɩɚɪɚɰɢɹ ɨɫɧɨɜɚɧɚ ɧɚ ɪɚɡɥɢɱɢɢ ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɢ ɢ ɫɩɨɫɨɛɧɨɫɬɢ ɤ ɷɥɟɤɬɪɢɡɚɰɢɢ ɬɪɟɧɢɟɦ (ɬɪɢɛɨɷɥɟɤɬɪɢɱɟɫɤɢɣ ɷɮɮɟɤɬ) ɦɢɧɟɪɚɥɶɧɵɯ ɱɚɫɬɢɰ ɪɚɡɞɟɥɹɟɦɨɣ ɫɦɟɫɢ. ɉɪɢ ɧɟɛɨɥɶɲɨɣ ɪɚɡɧɢɰɟ ɜ ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɢ ɱɚɫɬɢɰ ɢɫɩɨɥɶɡɭɸɬ ɷɥɟɤɬɪɢɡɚɰɢɸ ɢɯ ɬɪɟɧɢɟɦ. ɇɚɷɥɟɤɬɪɢɡɨɜɚɧɧɵɟ ɱɚɫɬɢɰɵ ɧɚɩɪɚɜɥɹɸɬ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɩɨɥɟ, ɝɞɟ ɩɪɨɢɫɯɨɞɢɬ ɢɯ ɫɟɩɚɪɚɰɢɹ. ɋɟɩɚɪɚɰɢɹ ɜ ɩɨɥɟ ɤɨɪɨɧɧɨɝɨ ɪɚɡɪɹɞɚ, ɫɨɡɞɚɜɚɟɦɨɝɨ ɦɟɠɞɭ ɤɨɪɨɧɢɪɭɸɳɢɦ (ɡɚɪɹɠɟɧɧɵɦ ɞɨ 20…50 ɬɵɫ. ȼ) ɢ ɨɫɚɞɢɬɟɥɶɧɵɦ (ɡɚɡɟɦɥɟɧɧɵɦ) ɷɥɟɤɬɪɨɞɚɦɢ, ɨɫɧɨɜɚɧɚ ɧɚ ɢɨɧɢɡɚɰɢɢ ɩɟɪɟɫɟɤɚɸɳɢɯ ɷɬɨ ɩɨɥɟ ɦɢɧɟɪɚɥɶɧɵɯ ɱɚɫɬɢɰ ɨɫɟɞɚɸɳɢɦɢ ɧɚ ɧɢɯ ɢɨɧɚɦɢ ɜɨɡɞɭɯɚ ɢ ɧɚ ɪɚɡɥɢɱɢɢ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɩɟɪɟɞɚɱɢ ɩɪɢɨɛɪɟɬɟɧɧɨɝɨ ɡɚɪɹɞɚ ɩɨɜɟɪɯɧɨɫɬɢ ɨɫɚɞɢɬɟɥɶɧɨɝɨ ɷɥɟɤɬɪɨɞɚ, ɱɬɨ ɜɵɪɚɠɚɟɬɫɹ ɜ ɪɚɡɥɢɱɧɵɯ ɬɪɚɟɤɬɨɪɢɹɯ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰ. Ɍɪɢɛɨɚɞɝɟɡɢɨɧɧɚɹ ɫɟɩɚɪɚɰɢɹ ɨɫɧɨɜɚɧɚ ɧɚ ɪɚɡɥɢɱɢɢ ɜ ɚɞɝɟɡɢɢ (ɩɪɢɥɢɩɚɧɢɢ) ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɧɚɷɥɟɤɬɪɢɡɨɜɚɧɧɵɯ ɬɪɟɧɢɟɦ ɱɚɫɬɢɰ ɪɚɡɞɟɥɹɟɦɨɝɨ ɦɚɬɟɪɢɚɥɚ. 6.4. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɛɪɚɛɨɬɤɢ ɨɬɯɨɞɨɜ. 6.4.1. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɵɯ ɫɬɨɤɨɜ Ɇɢɧɟɪɚɥɢɡɨɜɚɧɧɵɟ ɨɬɯɨɞɵ ɲɢɪɨɤɨ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ ɜ ɯɢɦɢɱɟɫɤɢɯ ɩɪɨɢɡɜɨɞɫɬɜɚɯ, ɬɟɩɥɨɷɧɟɪɝɟɬɢɤɟ ɢ ɞɪɭɝɢɯ ɨɬɪɚɫɥɹɯ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. ɇɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɵɦɢ ɦɟɬɨɞɚɦɢ, ɩɨɡɜɨɥɹɸɳɢɦɢ ɨɛɟɡɜɪɟɠɢɜɚɬɶ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɵɟ ɫɬɨɤɢ ɹɜɥɹɸɬɫɹ ɬɟɪɦɢɱɟɫɤɢɟ. Ɂɞɟɫɶ ɜɨɡɦɨɠɧɵ ɫɥɟɞɭɸɳɢɟ ɧɚɩɪɚɜɥɟɧɢɹ: - ɡɧɚɱɢɬɟɥɶɧɨɟ ɭɦɟɧɶɲɟɧɢɟ ɨɛɴɟɦɨɜ ɫɬɨɤɨɜ ɩɪɢ ɢɯ ɩɪɟɞɟɥɶɧɨɦ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɢ ɢ ɯɪɚɧɟɧɢɟ ɷɬɢɯ ɪɚɫɬɜɨɪɨɜ ɜ ɢɫɤɭɫɫɬɜɟɧɧɵɯ ɢɥɢ ɟɫɬɟɫɬɜɟɧɧɵɯ ɯɪɚɧɢɥɢɳɚɯ; - ɜɵɞɟɥɟɧɢɟ ɢɡ ɫɬɨɤɨɜ ɫɨɥɟɣ ɢ ɞɪɭɝɢɯ ɰɟɧɧɵɯ ɜɟɳɟɫɬɜ ɢ ɩɪɢɦɟɧɟɧɢɟ ɨɩɪɟɫɧɟɧɧɨɣ ɜɨɞɵ ɞɥɹ ɧɭɠɞ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢ ɫɟɥɶɫɤɨɝɨ ɯɨɡɹɣɫɬɜɚ. ɉɪɨɰɟɫɫ ɪɚɡɞɟɥɟɧɢɹ ɜɨɞɵ ɢ ɦɢɧɟɪɚɥɶɧɵɯ ɜɟɳɟɫɬɜ ɦɨɠɟɬ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɜ ɞɜɟ ɫɬɚɞɢɢ: ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɢɫɯɨɞɧɨɝɨ ɪɚɫɬɜɨɪɚ ɢ ɜɵɞɟɥɟɧɢɟ ɢɡ ɧɟɝɨ ɫɭɯɨɝɨ ɨɫɬɚɬɤɚ. ȿɫɥɢ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɟɪɜɚɹ ɫɬɚɞɢɹ, ɬɨ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɧɵɣ ɪɚɫɬɜɨɪ ɧɚɩɪɚɜɥɹɟɬɫɹ ɧɚ ɞɚɥɶɧɟɣɲɭɸ ɩɟɪɟɪɚɛɨɬɤɭ ɢɥɢ, ɜ ɤɪɚɣɧɟɦ ɫɥɭɱɚɟ, ɧɚ ɡɚɯɨɪɨɧɟɧɢɟ. Ɇɨɠɧɨ ɩɨɞɚɜɚɬɶ ɫɬɨɱɧɵɟ ɜɨɞɵ, ɦɢɧɭɹ ɫɬɚɞɢɸ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ, ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɧɚ ɜɵɞɟɥɟɧɢɟ ɢɡ ɧɢɯ ɫɭɯɢɯ ɜɟɳɟɫɬɜ, ɧɚɩɪɢɦɟɪ, ɜ ɪɚɫɩɵɥɢɬɟɥɶɧɭɸ ɫɭɲɢɥɤɭ ɢɥɢ ɜ ɤɚɦɟɪɭ ɫɠɢɝɚɧɢɹ, ɧɚɩɪɢɦɟɪ ɰɢɤɥɨɧɧɵɣ ɪɟɚɤɬɨɪ. Ʉɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɪɚɫɬɜɨɪɨɜ ɦɨɠɟɬ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɜ ɢɫɩɚɪɢɬɟɥɶɧɵɯ, ɜɵɦɨɪɚɠɢɜɚɸɳɢɯ, ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɧɵɯ ɭɫɬɚɧɨɜɤɚɯ ɧɟɩɪɟɪɵɜɧɨɝɨ ɢ ɩɟɪɢɨɞɢɱɟɫɤɨɝɨ ɞɟɣɫɬɜɢɹ. ȼ ɢɫɩɚɪɢɬɟɥɶɧɵɯ ɭɫɬɚɧɨɜɤɚɯ ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɬɜɨɪɚ ɩɨɜɵɲɚɟɬɫɹ ɜɫɥɟɞɫɬɜɢɟ ɭɞɚɥɟɧɢɹ ɩɚɪɨɜ ɪɚɫɬɜɨɪɚ ɩɪɢ ɢɫɩɚɪɟɧɢɢ ɠɢɞɤɨɫɬɢ. ɗɬɢ ɭɫɬɚɧɨɜɤɢ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɵ ɜ ɬɟɯɧɢɤɟ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ ɪɚɫɬɜɨɪɨɜ. Ɉɧɢ ɩɨɞɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɜɵɩɚɪɧɵɟ ɭɫɬɚɧɨɜɤɢ, ɜ ɤɨɬɨɪɵɯ ɤɢɩɟɧɢɟ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɧɚɝɪɟɜɚ ɢɥɢ ɜ ɜɵɧɟɫɟɧɧɨɣ ɡɨɧɟ, ɢ ɭɫɬɚɧɨɜɤɢ ɚɞɢɚɛɚɬɧɨɝɨ ɢɫɩɚɪɟɧɢɹ, ɜ ɤɨɬɨɪɵɯ ɢɫɩɚɪɟɧɢɟ ɩɟɪɟɝɪɟɬɨɣ ɠɢɞɤɨɫɬɢ ɩɪɨɢɫɯɨɞɢɬ ɜ ɚɞɢɚɛɚɬɧɨɣ ɤɚɦɟɪɟ. ɂɫɩɚɪɢɬɟɥɶɧɵɟ ɭɫɬɚɧɨɜɤɢ ɦɨɠɧɨ ɭɫɥɨɜɧɨ ɩɨɞɪɚɡɞɟɥɢɬɶ ɧɚ ɭɫɬɚɧɨɜɤɢ, ɜ ɤɨɬɨɪɵɯ ɪɚɫɬɜɨɪ ɤɨɧɬɚɤɬɢɪɭɟɬ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɧɚɝɪɟɜɚ, ɢ ɭɫɬɚɧɨɜɤɢ, ɜ ɤɨɬɨɪɵɯ ɪɚɫɬɜɨɪ ɧɟ ɤɨɧɬɚɤɬɢɪɭɟɬ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɧɚɝɪɟɜɚ. ȼ ɭɫɬɚɧɨɜɤɚɯ ɩɟɪɜɨɝɨ ɬɢɩɚ ɨɛɪɚɡɭɸɬɫɹ ɨɬɥɨɠɟɧɢɹ ɫɨɥɟɣ ɫ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦ ɫɧɢɠɟɧɢɟɦ ɩɥɨɬɧɨɫɬɢ ɬɟɩɥɨɜɨɝɨ ɩɨɬɨɤɚ ɢ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɭɫɬɚɧɨɜɨɤ. ɗɬɨ ɨɛɭɫɥɨɜɥɢɜɚɟɬ ɩɟɪɢɨɞɢɱɟɫɤɢɟ ɨɫɬɚɧɨɜɤɢ ɚɝɪɟɝɚɬɨɜ ɞɥɹ ɨɱɢɫɬɤɢ ɩɨɜɟɪɯɧɨɫɬɟɣ ɧɚɝɪɟɜɚ, ɱɬɨ ɫɧɢɠɚɟɬ ɬɟɯɧɢɤɨ-ɷɤɨɧɨɦɢɱɟɫɤɢɟ ɩɨɤɚɡɚɬɟɥɢ ɢ ɭɫɥɨɠɧɹɟɬ ɢɯ ɷɤɫɩɥɭɚɬɚɰɢɸ. ɋɬɟɩɟɧɶ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ ɪɚɫɬɜɨɪɚ ɜ ɧɢɯ ɫɭɳɟɫɬɜɟɧɧɨ ɨɝɪɚɧɢɱɟɧɚ ɢɡ-ɡɚ ɪɟɡɤɨɝɨ ɭɜɟɥɢɱɟɧɢɹ ɨɬɥɨɠɟɧɢɣ ɫ ɪɨɫɬɨɦ ɤɨɧɰɟɧɬɪɚɰɢɢ ɪɚɫɬɜɨɪɚ. Ⱦɥɹ ɭɥɭɱɲɟɧɢɹ ɭɫɥɨɜɢɣ ɪɚɛɨɬɵ ɩɪɢɯɨɞɢɬɫɹ ɩɪɢɦɟɧɹɬɶ ɫɩɟɰɢɚɥɶɧɵɟ ɦɟɪɵ ɩɨ ɫɧɢɠɟɧɢɸ ɨɬɥɨɠɟɧɢɣ. ȼ ɭɫɬɚɧɨɜɤɚɯ ɜɬɨɪɨɝɨ ɬɢɩɚ ɬɟɩɥɨ ɩɟɪɟɞɚɟɬɫɹ ɩɪɨɦɟɠɭɬɨɱɧɨɦɭ ɝɢɞɪɨɮɨɛɧɨɦɭ ɠɢɞɤɨɦɭ, ɬɜɟɪɞɨɦɭ ɢɥɢ ɝɚɡɨɜɨɦɭ ɬɟɩɥɨɧɨɫɢɬɟɥɸ, ɤɨɬɨɪɵɣ ɡɚɬɟɦ ɩɪɢ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɦ ɤɨɧɬɚɤɬɟ ɧɚɝɪɟɜɚɟɬ ɢɥɢ ɢɫɩɚɪɹɟɬ ɪɚɫɬɜɨɪ. ɇɚɝɪɟɬɵɣ ɪɚɫɬɜɨɪ ɩɨɞɚɟɬɫɹ ɜ ɤɚɦɟɪɵ ɚɞɢɚɛɚɬɧɨɝɨ ɢɫɩɚɪɟɧɢɹ. ɋɬɟɩɟɧɶ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ ɪɚɫɬɜɨɪɚ ɜ ɬɚɤɢɯ ɭɫɬɚɧɨɜɤɚɯ ɫɭɳɟɫɬɜɟɧɧɨ ɩɨɜɵɲɚɟɬɫɹ, ɬɚɤ ɤɚɤ ɨɩɚɫɧɨɫɬɶ ɨɬɥɨɠɟɧɢɣ ɧɚ ɩɨɜɟɪɯɧɨɫɬɹɯ ɧɚɝɪɟɜɚ ɩɪɚɤɬɢɱɟɫɤɢ ɢɫɤɥɸɱɚɟɬɫɹ. ȼ ɭɫɬɚɧɨɜɤɚɯ, ɢɫɩɨɥɶɡɭɸɳɢɯ ɦɟɬɨɞɵ ɜɵɦɨɪɚɠɢɜɚɧɢɹ, ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɵɯ ɫɬɨɤɨɜ ɨɫɧɨɜɚɧɨ ɧɚ ɬɨɦ, ɱɬɨ ɤɨɥɢɱɟɫɬɜɨ ɫɨɥɟɣ ɜ ɤɪɢɫɬɚɥɥɚɯ ɥɶɞɚ ɡɧɚɱɢɬɟɥɶɧɨ ɦɟɧɶɲɟ, ɱɟɦ ɜ ɪɚɫɬɜɨɪɟ, ɢ ɨɛɪɚɡɭɟɬɫɹ ɩɪɟɫɧɵɣ ɥɟɞ. ȼɫɥɟɞɫɬɜɢɟ ɷɬɨɝɨ, ɩɨ ɦɟɪɟ ɨɛɪɚɡɨɜɚɧɢɹ ɥɶɞɚ, ɤɨɧɰɟɧɬɪɚɰɢɹ ɫɨɥɟɣ ɜ ɪɚɫɬɜɨɪɟ ɩɨɜɵɲɚɟɬɫɹ. Ʉɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɵɯ ɜɨɞ ɦɨɠɧɨ ɬɚɤɠɟ ɨɫɭɳɟɫɬɜɢɬɶ ɞɜɭɦɹ ɫɩɨɫɨɛɚɦɢ: ɜɵɦɨɪɚɠɢɜɚɧɢɟɦ ɩɪɢ ɢɫɩɚɪɟɧɢɢ ɩɨɞ ɜɚɤɭɭɦɨɦ ɥɢɛɨ ɡɚɦɨɪɚɠɢɜɚɧɢɟɦ ɫ ɩɨɦɨɳɶɸ ɫɩɟɰɢɚɥɶɧɨɝɨ ɯɨɥɨɞɢɥɶɧɨɝɨ ɚɝɟɧɬɚ. ȼ ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɧɵɯ ɭɫɬɚɧɨɜɤɚɯ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ ɨɫɧɨɜɚɧɨ ɧɚ ɫɩɨɫɨɛɧɨɫɬɢ ɧɟɤɨɬɨɪɵɯ ɜɟɳɟɫɬɜ (ɮɪɟɨɧɵ, ɯɥɨɪ ɢ ɞɪ.) ɩɪɢ ɨɩɪɟɞɟɥɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɨɛɪɚɡɨɜɵɜɚɬɶ ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɵ. ɉɪɢ ɷɬɨɦ ɦɨɥɟɤɭɥɵ ɜɨɞɵ ɩɟɪɟɯɨɞɹɬ ɜ ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɵ, ɚ ɤɨɧɰɟɧɬɪɚɰɢɹ ɪɚɫɬɜɨɪɨɜ ɩɨɜɵɲɚɟɬɫɹ. ɉɪɢ ɩɥɚɜɥɟɧɢɢ ɤɪɢɫɬɚɥɥɨɜ ɜɧɨɜɶ ɜɵɞɟɥɹɟɬɫɹ ɜɨɞɚ, ɤɨɬɨɪɚɹ ɹɜɥɹɟɬɫɹ ɝɢɞɪɚɬɨɨɛɪɚɡɭɸɳɢɦ ɚɝɟɧɬɨɦ. ɉɪɨɰɟɫɫ ɝɢɞɪɚɬɨɨɛɪɚɡɨɜɚɧɢɹ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɩɪɢ ɬɟɦɩɟɪɚɬɭɪɟ ɧɢɠɟ ɢ ɜɵɲɟ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. ȼ ɩɟɪɜɨɦ ɫɥɭɱɚɟ, ɤɚɤ ɩɪɚɜɢɥɨ, ɧɟɨɛɯɨɞɢɦɨ ɩɪɢɦɟɧɟɧɢɟ ɯɨɥɨɞɢɥɶɧɵɯ ɭɫɬɚɧɨɜɨɤ, ɚ ɜɨ ɜɬɨɪɨɦ ɫɥɭɱɚɟ ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɧɚɹ ɭɫɬɚɧɨɜɤɚ ɦɨɠɟɬ ɢɫɩɨɥɶɡɨɜɚɬɶ ɧɢɡɤɨɩɨɬɟɧɰɢɚɥɶɧɨɟ ɬɟɩɥɨ. ɏɨɥɨɞɢɥɶɧɵɟ ɢ ɤɪɢɫɬɚɥɥɨɝɢɞɪɚɬɧɵɟ ɦɟɬɨɞɵ ɨɩɪɟɫɧɟɧɢɹ ɢ ɤɨɧɰɟɧɬɪɢɪɨɜɚɧɢɹ ɦɢɧɟɪɚɥɢɡɢɪɨɜɚɧɧɵɯ ɫɬɨɤɨɜ ɩɪɢɦɟɧɹɸɬɫɹ ɟɳɟ ɫɪɚɜɧɢɬɟɥɶɧɨ ɪɟɞɤɨ, ɧɨ ɜ ɫɢɥɭ ɫɜɨɢɯ ɩɨɥɨɠɢɬɟɥɶɧɵɯ ɤɚɱɟɫɬɜ ɦɨɝɭɬ ɧɚɣɬɢ ɜ ɛɭɞɭɳɟɦ ɲɢɪɨɤɨɟ ɩɪɢɦɟɧɟɧɢɟ. 6.4.2. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ Ɍɟɪɦɢɱɟɫɤɨɦɭ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɸ ɩɟɪɟɞ ɨɛɟɡɜɨɠɢɜɚɧɢɟɦ ɩɨɞɜɟɪɝɚɸɬɫɹ ɨɪɝɚɧɢɱɟɫɤɢɟ ɨɫɚɞɤɢ ɝɨɪɨɞɫɤɢɯ ɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ, ɩɪɨɲɟɞɲɢɯ ɛɢɨɥɨɝɢɱɟɫɤɭɸ ɨɱɢɫɬɤɭ. Ʉ ɦɟɬɨɞɭ ɬɟɪɦɢɱɟɫɤɨɝɨ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɨɬɧɨɫɹɬɫɹ ɬɟɩɥɨɜɚɹ ɨɛɪɚɛɨɬɤɚ, ɠɢɞɤɨɮɚɡɧɨɟ ɨɤɢɫɥɟɧɢɟ, ɡɚɦɨɪɚɠɢɜɚɧɢɟ ɢ ɨɬɬɚɢɜɚɧɢɟ (ɩɨɫɥɟɞɧɟɟ ɜ ɨɫɧɨɜɧɨɦ ɞɥɹ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɨɫɚɞɤɨɜ ɜɨɞɨɩɪɨɜɨɞɧɵɯ ɫɬɚɧɰɢɣ). Ɍɟɩɥɨɜɚɹ ɨɛɪɚɛɨɬɤɚ ɹɜɥɹɟɬɫɹ ɨɞɧɢɦ ɢɡ ɩɟɪɫɩɟɤɬɢɜɧɵɯ ɦɟɬɨɞɨɜ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ. Ɉɧɚ ɩɪɢɦɟɧɹɟɬɫɹ ɞɥɹ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɨɫɚɞɤɨɜ ɝɨɪɨɞɫɤɢɯ ɢ ɩɪɨɦɵɲɥɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ ɫ ɡɨɥɶɧɨɫɬɶɸ 30…40 %. ȼ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɫɯɟɦɚɯ, ɡɚɜɟɪɲɚɸɳɢɯɫɹ ɫɬɚɞɢɟɣ ɨɛɟɡɜɨɠɢɜɚɧɢɹ, ɟɟ ɩɪɟɢɦɭɳɟɫɬɜɚ, ɩɨɦɢɦɨ ɩɨɞɝɨɬɨɜɤɢ ɨɫɚɞɤɨɜ ɤ ɨɛɟɡɜɨɠɢɜɚɧɢɸ, ɫɨɫɬɨɹɬ ɜ ɨɛɟɫɩɟɱɟɧɢɢ ɧɚɞɟɠɧɨɣ ɫɬɚɛɢɥɢɡɚɰɢɢ ɢ ɩɨɥɧɨɣ ɫɬɟɪɢɥɢɡɚɰɢɢ ɨɫɚɞɤɨɜ. ɋɭɳɧɨɫɬɶ ɦɟɬɨɞɚ ɬɟɩɥɨɜɨɣ ɨɛɪɚɛɨɬɤɢ ɫɨɫɬɨɢɬ ɜ ɧɚɝɪɟɜɚɧɢɢ ɨɫɚɞɤɨɜ ɞɨ ɬɟɦɩɟɪɚɬɭɪɵ 150…200°ɋ ɢ ɜɵɞɟɪɠɢɜɚɧɢɢ ɢɯ ɩɪɢ ɷɬɨɣ ɬɟɦɩɟɪɚɬɭɪɟ ɜ ɡɚɤɪɵɬɨɣ ɟɦɤɨɫɬɢ ɜ ɬɟɱɟɧɢɟ 0,5…2 ɱ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɬɚɤɨɣ ɨɛɪɚɛɨɬɤɢ ɩɪɨɢɫɯɨɞɢɬ ɪɟɡɤɨɟ ɢɡɦɟɧɟɧɢɟ ɫɬɪɭɤɬɭɪɵ ɨɫɚɞɤɚ, ɨɤɨɥɨ 40 % ɫɭɯɨɝɨ ɜɟɳɟɫɬɜɚ ɩɟɪɟɯɨɞɢɬ ɜ ɪɚɫɬɜɨɪ, ɚ ɨɫɬɚɜɲɚɹɫɹ ɱɚɫɬɶ ɩɪɢɨɛɪɟɬɚɟɬ ɜɨɞɨɨɬɞɚɸɳɢɟ ɫɜɨɣɫɬɜɚ. Ɉɫɚɞɨɤ ɩɨɫɥɟ ɬɟɩɥɨɜɨɣ ɨɛɪɚɛɨɬɤɢ ɛɵɫɬɪɨ ɭɩɥɨɬɧɹɟɬɫɹ ɞɨ ɜɥɚɠɧɨɫɬɢ 92-94 %, ɢ ɟɝɨ ɨɛɴɟɦ ɫɨɫɬɚɜɥɹɟɬ 20…30 % ɢɫɯɨɞɧɨɝɨ. ɀɢɞɤɨɮɚɡɧɨɟ ɨɤɢɫɥɟɧɢɟ ɩɨɥɭɱɢɥɨ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɡɚ ɪɭɛɟɠɨɦ ɜ ɩɨɫɥɟɞɧɢɟ 50 ɥɟɬ. ȿɝɨ ɫɭɳɧɨɫɬɶ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɨɤɢɫɥɟɧɢɢ ɨɪɝɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɨɫɚɞɤɚ ɤɢɫɥɨɪɨɞɨɦ ɜɨɡɞɭɯɚ ɩɪɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɟ ɢ ɞɚɜɥɟɧɢɢ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɩɪɨɰɟɫɫɚ ɨɰɟɧɢɜɚɟɬɫɹ ɝɥɭɛɢɧɨɣ ɨɤɢɫɥɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɨɣ ɱɚɫɬɢ ɨɫɚɞɤɚ (ɫɧɢɠɟɧɢɟɦ ɏɉɄ ɨɫɚɞɤɚ). ɗɬɚ ɜɟɥɢɱɢɧɚ ɡɚɜɢɫɢɬ ɜ ɨɫɧɨɜɧɨɦ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɨɛɪɚɛɨɬɤɢ. Ⱦɥɹ ɨɤɢɫɥɟɧɢɹ ɧɚ 50 % ɧɟɨɛɯɨɞɢɦɚ ɬɟɦɩɟɪɚɬɭɪɚ ɨɤɨɥɨ 200°ɋ, ɧɚ 70 % ɢ ɛɨɥɟɟ - ɬɟɦɩɟɪɚɬɭɪɚ 250…800°ɋ. Ɉɤɢɫɥɟɧɢɟ ɨɫɚɞɤɚ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɜɵɞɟɥɟɧɢɟɦ ɬɟɩɥɚ. ɉɪɢ ɜɥɚɠɧɨɫɬɢ ɨɫɚɞɤɚ ɨɤɨɥɨ 96 % ɜɵɞɟɥɟɧɧɨɝɨ ɬɟɩɥɚ ɞɨɫɬɚɬɨɱɧɨ ɞɥɹ ɫɚɦɨɩɨɞɞɟɪɠɚɧɢɹ ɬɟɦɩɟɪɚɬɭɪɧɨɝɨ ɪɟɠɢɦɚ ɢ ɨɫɧɨɜɧɚɹ ɷɧɟɪɝɢɹ ɡɚɬɪɚɱɢɜɚɟɬɫɹ ɧɚ ɩɨɞɚɱɭ ɫɠɚɬɨɝɨ ɜɨɡɞɭɯɚ. 6.4.3. ɋɭɲɤɚ ɜɥɚɠɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɋɭɲɤɚ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɭɞɚɥɟɧɢɹ ɜɥɚɝɢ ɢɡ ɬɜɟɪɞɨɝɨ ɢɥɢ ɩɚɫɬɨɨɛɪɚɡɧɨɝɨ ɦɚɬɟɪɢɚɥɚ ɩɭɬɟɦ ɢɫɩɚɪɟɧɢɹ ɫɨɞɟɪɠɚɳɟɣɫɹ ɜ ɧɟɦ ɠɢɞɤɨɫɬɢ ɡɚ ɫɱɟɬ ɩɨɞɜɟɞɟɧɧɨɝɨ ɤ ɦɚɬɟɪɢɚɥɭ ɬɟɩɥɚ. ɗɬɨ ɬɟɪɦɢɱɟɫɤɢɣ ɩɪɨɰɟɫɫ, ɬɪɟɛɭɸɳɢɣ ɡɧɚɱɢɬɟɥɶɧɵɯ ɡɚɬɪɚɬ ɬɟɩɥɚ. ɋɭɲɤɚ ɲɢɪɨɤɨ ɩɪɢɦɟɧɹɟɬɫɹ ɜ ɯɢɦɢɱɟɫɤɨɣ, ɯɢɦɢɤɨ-ɮɚɪɦɚɰɟɜɬɢɱɟɫɤɨɣ, ɩɢɳɟɜɨɣ ɢ ɞɪɭɝɢɯ ɨɬɪɚɫɥɹɯ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. Ɉɬɧɨɫɢɬɟɥɶɧɨ ɲɢɪɨɤɨɟ ɪɚɫɩɪɨ- ɫɬɪɚɧɟɧɢɟ ɫɭɲɤɚ ɩɨɥɭɱɢɥɚ ɜ ɨɛɥɚɫɬɢ ɨɛɪɚɛɨɬɤɢ ɨɫɚɞɤɚ ɝɨɪɨɞɫɤɢɯ ɫɬɨɱɧɵɯ ɜɨɞ (ɛɚɪɚɛɚɧɧɵɟ ɫɭɲɢɥɤɢ, ɫɭɲɤɚ ɜɨ ɜɫɬɪɟɱɧɵɯ ɫɬɪɭɹɯ). ɉɪɨɰɟɫɫɵ ɬɟɪɦɢɱɟɫɤɨɝɨ ɭɞɚɥɟɧɢɹ ɬɨɣ ɱɚɫɬɢ ɜɥɚɝɢ, ɤɨɬɨɪɭɸ ɧɟɜɨɡɦɨɠɧɨ ɭɞɚɥɢɬɶ ɦɟɯɚɧɢɱɟɫɤɢɦ ɩɭɬɟɦ, ɦɨɝɭɬ ɬɚɤɠɟ ɧɚɣɬɢ ɩɪɢɦɟɧɟɧɢɟ ɩɪɢ ɨɛɪɚɛɨɬɤɟ ɩɪɨɦɵɲɥɟɧɧɵɯ ɨɬɯɨɞɨɜ, ɤɨɬɨɪɵɟ ɧɟɨɛɯɨɞɢɦɨ ɩɨɞɝɨɬɨɜɢɬɶ ɤ ɬɪɚɧɫɩɨɪɬɢɪɨɜɚɧɢɸ ɢ ɞɚɥɶɧɟɣɲɟɣ ɩɟɪɟɪɚɛɨɬɤɟ (ɧɚɩɪɢɦɟɪ, ɝɚɥɶɜɚɧɢɱɟɫɤɢɟ ɲɥɚɦɵ), ɚ ɬɚɤɠɟ ɩɪɢ ɨɛɪɚɛɨɬɤɟ ɧɟɤɨɬɨɪɵɯ ɨɬɯɨɞɨɜ ɯɢɦɢɱɟɫɤɨɣ, ɩɢɳɟɜɨɣ ɢ ɞɪɭɝɢɯ ɨɬɪɚɫɥɟɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ. ɋɭɲɤɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɤɨɧɜɟɤɬɢɜɧɵɦ, ɤɨɧɬɚɤɬɧɵɦ, ɪɚɞɢɚɰɢɨɧɧɵɦ ɢ ɤɨɦɛɢɧɢɪɨɜɚɧɧɵɦɢ ɫɩɨɫɨɛɚɦɢ. Ɇɟɬɨɞ ɫɭɲɤɢ ɜɵɛɢɪɚɸɬ ɧɚ ɨɫɧɨɜɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɬɪɟɛɨɜɚɧɢɣ ɤ ɜɵɫɭɲɢɜɚɟɦɨɦɭ ɩɪɨɞɭɤɬɭ ɢ ɫ ɭɱɟɬɨɦ ɬɟɯɧɢɤɨ-ɷɤɨɧɨɦɢɱɟɫɤɢɯ ɩɨɤɚɡɚɬɟɥɟɣ. ɉɪɨɰɟɫɫ ɫɭɲɤɢ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɡɚ ɫɱɟɬ ɬɟɩɥɨɜɨɣ ɷɧɟɪɝɢɢ, ɜɵɪɚɛɚɬɵɜɚɟɦɨɣ ɜ ɝɟɧɟɪɚɬɨɪɟ ɬɟɩɥɚ. Ƚɟɧɟɪɚɬɨɪɨɦ ɬɟɩɥɚ ɦɨɝɭɬ ɫɥɭɠɢɬɶ ɩɚɪɨɜɵɟ ɢɥɢ ɝɚɡɨɜɵɟ ɤɚɥɨɪɢɮɟɪɵ, ɬɨɩɤɢ, ɪɚɛɨɬɚɸɳɢɟ ɧɚ ɬɜɟɪɞɨɦ, ɠɢɞɤɨɦ ɢɥɢ ɝɚɡɨɨɛɪɚɡɧɨɦ ɬɨɩɥɢɜɟ, ɢɧɮɪɚɤɪɚɫɧɵɟ ɢɡɥɭɱɚɬɟɥɢ ɢ ɝɟɧɟɪɚɬɨɪɵ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɬɨɤɚ. ȼɵɛɨɪ ɝɟɧɟɪɚɬɨɪɚ ɬɟɩɥɚ ɨɛɵɱɧɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɯɟɦɨɣ ɢ ɦɟɬɨɞɨɦ ɫɭɲɤɢ, ɮɢɡɢɱɟɫɤɢɦɢ ɫɜɨɣɫɬɜɚɦɢ ɜɵɫɭɲɢɜɚɟɦɨɝɨ ɦɚɬɟɪɢɚɥɚ ɢ ɬɪɟɛɭɟɦɵɦ ɪɟɠɢɦɨɦ ɫɭɲɤɢ. ɉɪɢ ɜɨɡɦɨɠɧɨɫɬɢ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɬɟɩɥɨ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ ɢɥɢ ɨɬɪɚɛɨɬɚɧɧɨɝɨ ɩɚɪɚ, ɩɪɢ ɷɬɨɦ ɨɞɧɨɜɪɟɦɟɧɧɨ ɭɬɢɥɢɡɢɪɭɸɬɫɹ ɬɟɩɥɨɜɵɟ ɨɬɯɨɞɵ. ɋɭɲɤɚ - ɩɪɨɰɟɫɫ ɬɟɩɥɨɦɚɫɫɨɨɛɦɟɧɧɵɣ. ɍɞɚɥɟɧɢɟ ɜɥɚɝɢ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɫɧɨ ɫɜɹɡɚɧɨ ɫ ɩɪɨɞɜɢɠɟɧɢɟɦ ɟɟ ɢɡɧɭɬɪɢ ɤ ɩɨɜɟɪɯɧɨɫɬɢ. ɋɭɲɤɚ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɜɵɩɚɪɢɜɚɧɢɹ ɬɟɦ, ɱɬɨ ɜ ɩɟɪɜɨɦ ɫɥɭɱɚɟ ɭɞɚɥɟɧɢɟ ɜɥɚɝɢ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɥɸɛɨɣ ɬɟɦɩɟɪɚɬɭɪɟ, ɜɨ ɜɬɨɪɨɦ - ɟɫɥɢ ɞɚɜɥɟɧɢɟ ɨɛɪɚɡɭɸɳɢɯɫɹ ɩɚɪɨɜ ɪɚɜɧɨ ɞɚɜɥɟɧɢɸ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ (ɧɚɩɪɢɦɟɪ, ɤɢɩɟɧɢɟ ɜɨɞɵ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɞɚɜɥɟɧɢɢ, ɪɚɜɧɨɦ ɛɚɪɨɦɟɬɪɢɱɟɫɤɨɦɭ). ȼɵɩɚɪɢɜɚɧɢɟ ɩɪɨɢɫɯɨɞɢɬ ɢɡ ɜɫɟɣ ɦɚɫɫɵ ɠɢɞɤɨɫɬɢ, ɩɪɢ ɫɭɲɤɟ ɠɟ ɜɥɚɝɚ ɭɞɚɥɹɟɬɫɹ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɜɵɫɭɲɢɜɚɟɦɨɝɨ ɦɚɬɟɪɢɚɥɚ. ȼɵɩɚɪɢɜɚɧɢɟ - ɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɵɣ ɩɪɨɰɟɫɫ, ɱɟɦ ɫɭɲɤɚ, ɨɞɧɚɤɨ ɧɟ ɜɫɟ ɦɚɬɟɪɢɚɥɵ ɦɨɠɧɨ ɩɨɞɜɟɪɝɚɬɶ ɜɵɩɚɪɢɜɚɧɢɸ. Ɍɚɤ, ɜɥɚɝɚ ɢɡ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ ɭɞɚɥɹɟɬɫɹ ɬɨɥɶɤɨ ɬɟɩɥɨɜɨɣ ɫɭɲɤɨɣ. Ʉɨɧɜɟɤɬɢɜɧɚɹ ɫɭɲɤɚ ɜɨɡɞɭɯɨɦ ɢɥɢ ɝɚɡɨɦ ɹɜɥɹɟɬɫɹ ɧɚɢɛɨɥɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɨɣ. ȼ ɜɨɡɞɭɲɧɨɣ ɫɭɲɤɟ, ɬɚɤ ɠɟ ɤɚɤ ɢ ɜ ɝɚɡɨɜɨɣ, ɬɟɩɥɨ ɩɟɪɟɞɚɟɬɫɹ ɨɬ ɬɟɩɥɨɧɨɫɢɬɟɥɹ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɜɵɫɭɲɢɜɚɟɦɨɦɭ ɜɟɳɟɫɬɜɭ. Ⱦɥɹ ɩɨɥɭɱɟɧɢɹ ɦɚɬɟɪɢɚɥɚ ɧɟɨɛɯɨɞɢɦɨɝɨ ɤɚɱɟɫɬɜɚ ɨɫɨɛɨɟ ɜɧɢɦɚɧɢɟ ɞɨɥɠɧɨ ɭɞɟɥɹɬɶɫɹ ɬɟɯɧɨɥɨɝɢɱɟɫɤɨɦɭ ɪɟɠɢɦɭ ɫɭɲɤɢ, ɩɪɚɜɢɥɶɧɨɦɭ ɜɵɛɨɪɭ ɩɚɪɚɦɟɬɪɨɜ ɬɟɩɥɨɧɨɫɢɬɟɥɹ ɢ ɪɟɠɢɦɭ ɩɪɨɰɟɫɫɚ (ɜɵɛɨɪ ɨɩɬɢɦɚɥɶɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚɝɪɟɜɚ ɦɚɬɟɪɢɚɥɚ, ɟɝɨ ɜɥɚɠɧɨɫɬɢ ɢ ɬ.ɞ.). Ɉɩɬɢɦɚɥɶɧɵɣ ɪɟɠɢɦ ɫɭɲɤɢ, ɜɥɢɹɸɳɢɣ ɧɚ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɦɚɬɟɪɢɚɥɚ, ɡɚɜɢɫɢɬ ɨɬ ɫɜɹɡɢ ɜɥɚɝɢ ɫ ɦɚɬɟɪɢɚɥɨɦ. ɉɨ ɦɟɪɟ ɭɞɚɥɟɧɢɹ ɜɥɚɝɢ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɦɚɬɟɪɢɚɥɚ ɡɚ ɫɱɟɬ ɪɚɡɧɨɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɜɥɚɝɢ ɜɧɭɬɪɢ ɦɚɬɟɪɢɚɥɚ ɢ ɧɚ ɟɝɨ ɩɨɜɟɪɯɧɨɫɬɢ, ɩɪɨɢɫɯɨɞɢɬ ɞɜɢɠɟɧɢɟ ɜɥɚɝɢ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɩɭɬɟɦ ɞɢɮɮɭɡɢɢ. ȼ ɧɟɤɨɬɨɪɵɯ ɫɥɭɱɚɹɯ ɢɦɟɟɬ ɦɟɫɬɨ ɬɚɤ ɧɚɡɵɜɚɟɦɚɹ ɬɟɪɦɨɞɢɮɮɭɡɢɹ, ɤɨɝɞɚ ɞɜɢɠɟɧɢɟ ɜɥɚɝɢ ɜɧɭɬɪɢ ɦɚɬɟɪɢɚɥɚ ɩɪɨɢɫɯɨɞɢɬ ɡɚ ɫɱɟɬ ɭɦɟɧɶɲɟɧɢɹ ɪɚɡɧɨɫɬɢ ɬɟɦɩɟɪɚɬɭɪ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɢ ɜɧɭɬɪɢ ɦɚɬɟɪɢɚɥɚ. ɉɪɢ ɤɨɧɜɟɤɬɢɜɧɨɣ ɫɭɲɤɟ ɨɛɚ ɩɪɨɰɟɫɫɚ ɢɦɟɸɬ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨɟ ɧɚɩɪɚɜɥɟɧɢɟ, ɚ ɩɪɢ ɫɭɲɤɟ ɬɨɤɚɦɢ ɜɵɫɨɤɨɣ ɱɚɫɬɨɬɵ - ɨɞɢɧɚɤɨɜɨɟ. ɉɪɢ ɫɭɲɤɟ ɧɟɤɨɬɨɪɵɯ ɦɚɬɟɪɢɚɥɨɜ ɞɨ ɧɢɡɤɨɣ ɤɨɧɟɱɧɨɣ ɜɥɚɠɧɨɫɬɢ ɬɟɩɥɨ ɪɚɫɯɨɞɭɟɬɫɹ ɧɟ ɬɨɥɶɤɨ ɧɚ ɩɨɞɨɝɪɟɜ ɦɚɬɟɪɢɚɥɚ ɢ ɢɫɩɚɪɟɧɢɟ ɜɥɚɝɢ ɢɡ ɧɟɝɨ, ɧɨ ɢ ɧɚ ɩɪɟɨɞɨɥɟɧɢɟ ɫɜɹɡɢ ɜɥɚɝɢ ɫ ɦɚɬɟɪɢɚɥɨɦ. ȼ ɛɨɥɶɲɢɧɫɬɜɟ ɫɥɭɱɚɟɜ ɩɪɢ ɫɭɲɤɟ ɭɞɚɥɹɟɬɫɹ ɜɨɞɹɧɨɣ ɩɚɪ, ɨɞɧɚɤɨ, ɜ ɯɢɦɢɱɟɫɤɨɣ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɢɧɨɝɞɚ ɩɪɢɯɨɞɢɬɫɹ ɭɞɚɥɹɬɶ ɩɚɪɵ ɨɪɝɚɧɢɱɟɫɤɢɯ ɪɚɫɬɜɨɪɢɬɟɥɟɣ. ɇɟɡɚɜɢɫɢɦɨ ɨɬ ɬɨɝɨ, ɤɚɤɚɹ ɠɢɞɤɨɫɬɶ ɛɭɞɟɬ ɢɫɩɚɪɹɬɶɫɹ, ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɩɪɨɰɟɫɫɚ ɬɟ ɠɟ. 6.4.4. Ɍɟɪɦɨɯɢɦɢɱɟɫɤɚɹ ɨɛɪɚɛɨɬɤɚ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɉɪɢ ɭɬɢɥɢɡɚɰɢɢ ɢ ɩɟɪɟɪɚɛɨɬɤɟ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɢɫɩɨɥɶɡɭɸɬ ɪɚɡɥɢɱɧɵɟ ɦɟɬɨɞɵ ɬɟɪɦɢɱɟɫɤɨɣ ɨɛɪɚɛɨɬɤɢ ɢɫɯɨɞɧɵɯ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɩɨɥɭɱɟɧɧɵɯ ɩɪɨɞɭɤɬɨɜ: ɷɬɨ ɪɚɡɥɢɱɧɵɟ ɩɪɢɟɦɵ ɩɢɪɨɥɢɡɚ, ɩɟɪɟɩɥɚɜɚ, ɨɛɠɢɝɚ ɢ ɨɝɧɟɜɨɝɨ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ (ɫɠɢɝɚɧɢɹ) ɦɧɨɝɢɯ ɜɢɞɨɜ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ɧɚ ɨɪɝɚɧɢɱɟɫɤɨɣ ɨɫɧɨɜɟ. ɉɢɪɨɥɢɡ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɪɚɡɥɨɠɟɧɢɹ ɨɪɝɚɧɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɢɥɢ ɧɟɞɨɫɬɚɬɤɟ ɤɢɫɥɨɪɨɞɚ. ɏɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɩɪɨɬɟɤɚɧɢɟɦ ɪɟɚɤɰɢɣ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɢ ɭɩɥɨɬɧɟɧɢɹ ɨɫɬɚɬɨɱɧɵɯ ɮɪɚɝɦɟɧɬɨɜ ɢɫɯɨɞɧɵɯ ɦɨɥɟɤɭɥ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɱɟɝɨ ɩɪɨɢɫɯɨɞɢɬ ɪɚɫɳɟɩɥɟɧɢɟ ɨɪɝɚɧɢɱɟɫɤɨɣ ɦɚɫɫɵ, ɪɟɤɨɦɛɢɧɚɰɢɹ ɩɪɨɞɭɤɬɨɜ ɪɚɫɳɟɩɥɟɧɢɹ ɫ ɩɨɥɭɱɟɧɢɟɦ ɬɟɪɦɨɞɢɧɚɦɢɱɟɫɤɢ ɫɬɚɛɢɥɶɧɵɯ ɜɟɳɟɫɬɜ: ɬɜɟɪɞɨɝɨ ɨɫɬɚɬɤɚ, ɫɦɨɥɵ, ɝɚɡɚ. ɉɪɢɦɟɧɹɹ ɬɟɪɦɢɧ "ɩɢɪɨɥɢɡ" ɤ ɬɟɪɦɢɱɟɫɤɨɦɭ ɩɪɟɨɛɪɚɡɨɜɚɧɢɸ ɨɪɝɚɧɢɱɟɫɤɨɝɨ ɦɚɬɟɪɢɚɥɚ, ɩɨɞɪɚɡɭɦɟɜɚɸɬ ɧɟ ɬɨɥɶɤɨ ɟɝɨ ɪɚɫɩɚɞ, ɧɨ ɢ ɫɢɧɬɟɡ ɧɨɜɵɯ ɩɪɨɞɭɤɬɨɜ. ɗɬɢ ɫɬɚɞɢɢ ɩɪɨɰɟɫɫɚ ɜɡɚɢɦɧɨ ɫɜɹɡɚɧɵ ɢ ɩɪɨɬɟɤɚɸɬ ɨɞɧɨɜɪɟɦɟɧɧɨ ɫ ɬɟɦ ɥɢɲɶ ɪɚɡɥɢɱɢɟɦ, ɱɬɨ ɤɚɠɞɚɹ ɢɡ ɧɢɯ ɩɪɟɨɛɥɚɞɚɟɬ ɜ ɨɩɪɟɞɟɥɟɧɧɨɦ ɢɧɬɟɪɜɚɥɟ ɬɟɦɩɟɪɚɬɭɪɵ ɢɥɢ ɜɪɟɦɟɧɢ. Ɉɛɳɭɸ ɫɯɟɦɭ ɩɢɪɨɥɢɡɚ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: ɬɜɟɪɞɵɟ ɨɬɯɨɞɵ + Qoɬɜɟɪɞɵɣ ɨɫɬɚɬɨɤ + ɠɢɞɤɢɟ ɩɪɨɞɭɤɬɵ + ɝɚɡɵ r Qi, ɝɞɟ Q - ɞɨɩɨɥɧɢɬɟɥɶɧɨɟ ɬɟɩɥɨ, Qi - ɜɬɨɪɢɱɧɨɟ ɬɟɩɥɨ. ɋɥɟɞɭɟɬ ɨɬɥɢɱɚɬɶ ɩɢɪɨɥɢɡ ɨɬ ɛɥɢɡɤɨɝɨ ɤ ɧɟɦɭ ɩɪɨɰɟɫɫɚ ɝɚɡɢɮɢɤɚɰɢɢ. Ƚɚɡɢɮɢɤɚɰɢɹ ɹɜɥɹɟɬɫɹ ɬɟɪɦɨɯɢɦɢɱɟɫɤɢɦ ɜɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɵɦ ɩɪɨɰɟɫɫɨɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɨɪɝɚɧɢɱɟɫɤɨɣ ɦɚɫɫɵ ɢɥɢ ɩɪɨɞɭɤɬɨɜ ɟɟ ɬɟɪɦɢɱɟɫɤɨɣ ɩɟɪɟɪɚɛɨɬɤɢ ɫ ɝɚɡɢɮɢɰɢɪɭɸɳɢɦɢ ɚɝɟɧɬɚɦɢ, ɜ ɪɟɡɭɥɶɬɚɬɟ ɱɟɝɨ ɨɪɝɚɧɢɱɟɫɤɚɹ ɱɚɫɬɶ ɢɥɢ ɩɪɨɞɭɤɬɵ ɟɟ ɬɟɪɦɢɱɟɫɤɨɣ ɩɟɪɟɪɚɛɨɬɤɢ ɨɛɪɚɳɚɸɬɫɹ ɜ ɝɨɪɸɱɢɟ ɝɚɡɵ. ȼ ɤɚɱɟɫɬɜɟ ɝɚɡɢɮɢɰɢɪɭɸɳɢɯ ɚɝɟɧɬɨɜ ɩɪɢɦɟɧɹɸɬ ɜɨɡɞɭɯ, ɤɢɫɥɨɪɨɞ, ɜɨɞɹɧɨɣ ɩɚɪ, ɞɢɨɤɫɢɞ ɭɝɥɟɪɨɞɚ, ɚ ɬɚɤɠɟ ɢɯ ɫɦɟɫɢ. ɉɪɨɰɟɫɫɵ ɩɢɪɨɥɢɡɚ ɨɬɯɨɞɨɜ ɩɨɥɭɱɢɥɢ ɛɨɥɶɲɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ, ɱɟɦ ɝɚɡɢɮɢɤɚɰɢɹ. ɉɢɪɨɥɢɡɭ ɩɨɞɜɟɪɝɚɸɬɫɹ ɬɜɟɪɞɵɟ ɛɵɬɨɜɵɟ ɢ ɛɥɢɡɤɢɟ ɤ ɧɢɦ ɩɨ ɫɨɫɬɚɜɭ ɩɪɨɦɵɲɥɟɧɧɵɟ ɨɬɯɨɞɵ, ɨɬɯɨɞɵ ɩɥɚɫɬɦɚɫɫ, ɪɟɡɢɧɵ (ɜ ɬɨɦ ɱɢɫɥɟ, ɚɜɬɨɦɨɛɢɥɶɧɵɟ ɩɨɤɪɵɲɤɢ), ɞɪɭɝɢɟ ɨɪɝɚɧɢɱɟɫɤɢɟ ɨɬɯɨɞɵ. ɋ ɫɚɧɢɬɚɪɧɨɣ ɬɨɱɤɢ ɡɪɟɧɢɹ ɩɪɨɰɟɫɫ ɩɢɪɨɥɢɡɚ ɨɛɥɚɞɚɟɬ ɥɭɱɲɢɦɢ ɩɨɤɚɡɚɬɟɥɹɦɢ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫɨ ɫɠɢɝɚɧɢɟɦ. Ʉɨɥɢɱɟɫɬɜɨ ɨɬɯɨɞɹɳɢɯ ɝɚɡɨɜ, ɩɨɞɜɟɪɝɚɟɦɵɯ ɨɱɢɫɬɤɟ, ɧɚɦɧɨɝɨ ɦɟɧɶɲɟ, ɱɟɦ ɩɪɢ ɫɠɢɝɚɧɢɢ ɨɬɯɨɞɨɜ. Ɉɛɴɟɦ ɬɜɟɪɞɨɝɨ ɨɫɬɚɬɤɚ, ɩɨɥɭɱɚɟɦɨɝɨ ɩɨ ɫɯɟɦɟ ɜɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɨɝɨ ɩɢɪɨɥɢɡɚ, ɦɨɠɟɬ ɛɵɬɶ ɡɧɚɱɢɬɟɥɶɧɨ ɭɦɟɧɶɲɟɧ. Ɍɜɟɪɞɵɣ ɨɫɬɚɬɨɤ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɢɥɢ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ (ɫɚɠɚ, ɚɤɬɢɜɢɪɨɜɚɧɧɵɣ ɭɝɨɥɶ ɢ ɞɪ.). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɧɟɤɨɬɨɪɵɟ ɫɯɟɦɵ ɩɢɪɨɥɢɡɚ ɨɬɯɨɞɨɜ ɦɨɝɭɬ ɛɵɬɶ ɛɟɡɨɬɯɨɞɧɵɦɢ. ȼɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɵɣ ɩɢɪɨɥɢɡ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɞɪɭɝɢɦɢ ɦɟɬɨɞɚɦɢ ɢɦɟɟɬ ɪɹɞ ɩɪɟɢɦɭɳɟɫɬɜ: - ɩɪɢ ɧɟɦ ɩɪɨɢɫɯɨɞɢɬ ɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɨɟ ɩɪɟɨɛɪɚɡɨɜɚɧɢɟ ɢɫɯɨɞɧɨɝɨ ɩɪɨɞɭɤɬɚ; - ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɣ ɜɨɡɪɚɫɬɚɟɬ ɫ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɦ ɭɜɟɥɢɱɟɧɢɟɦ ɬɟɦɩɟɪɚɬɭɪɵ, ɜ ɬɨ ɜɪɟɦɹ ɤɚɤ ɬɟɩɥɨɜɵɟ ɩɨɬɟɪɢ ɜɨɡɪɚɫɬɚɸɬ ɥɢɧɟɣɧɨ; - ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɜɪɟɦɹ ɬɟɩɥɨɜɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɨɬɯɨɞɵ; - ɩɪɨɢɫɯɨɞɢɬ ɛɨɥɟɟ ɩɨɥɧɵɣ ɜɵɯɨɞ ɥɟɬɭɱɢɯ ɩɪɨɞɭɤɬɨɜ; - ɫɨɤɪɚɳɚɟɬɫɹ ɤɨɥɢɱɟɫɬɜɨ ɨɫɬɚɬɤɚ ɩɨɫɥɟ ɨɤɨɧɱɚɧɢɹ ɩɪɨɰɟɫɫɚ. Ɋɚɡɥɢɱɚɸɬ ɜɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɵɟ (ɚɝɥɨɦɟɪɚɰɢɹ, ɨɛɠɢɝ ɨɤɚɬɵɲɟɣ) ɢ ɧɢɡɤɨɬɟɦɩɟɪɚɬɭɪɧɵɟ (ɛɟɡ ɨɛɠɢɝɚ) ɦɟɬɨɞɵ ɨɤɭɫɤɨɜɚɧɢɹ. Ⱥɝɥɨɦɟɪɚɰɢɹ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɦɟɥɤɢɟ ɡɟɪɧɚ ɲɢɯɬɵ ɧɚɝɪɟɜɚɸɬɫɹ ɞɨ ɬɟɦɩɟɪɚɬɭɪɵ, ɩɪɢ ɤɨɬɨɪɨɣ ɩɪɨɢɫɯɨɞɢɬ ɢɯ ɪɚɡɦɹɝɱɟɧɢɟ ɢ ɱɚɫɬɢɱɧɨɟ ɩɥɚɜɥɟɧɢɟ. ɉɪɢ ɷɬɨɦ ɡɟɪɧɚ ɫɥɢɩɚɸɬɫɹ, ɩɨɫɥɟɞɭɸɳɟɟ ɛɵɫɬɪɨɟ ɨɯɥɚɠɞɟɧɢɟ ɩɪɢɜɨɞɢɬ ɤ ɢɯ ɤɪɢɫɬɚɥɥɢɡɚɰɢɢ ɢ ɨɛɪɚɡɨɜɚɧɢɸ ɩɨɪɢɫɬɨɝɨ, ɧɨ ɞɨɜɨɥɶɧɨ ɩɪɨɱɧɨɝɨ ɤɭɫɤɨɜɨɝɨ ɩɪɨɞɭɤɬɚ ɩɪɢɝɨɞɧɨɝɨ ɞɥɹ ɦɟɬɚɥɥɭɪɝɢɱɟɫɤɨɝɨ ɩɟɪɟɞɟɥɚ. Ɉɛɠɢɝ ɨɤɚɬɵɲɟɣ ɩɪɨɜɨɞɹɬ ɩɪɢ ɨɤɭɫɤɨɜɚɧɢɢ ɠɟɥɟɡɨɪɭɞɧɵɯ ɦɟɥɤɨɞɢɫɩɟɪɫɧɵɯ ɤɨɧɰɟɧɬɪɚɬɨɜ ɫ ɪɚɡɦɟɪɨɦ ɱɚɫɬɢɰ ɦɟɧɟɟ 100 ɦɤɦ. Ɇɚɬɟɪɢɚɥɵ ɬɚɤɨɣ ɤɪɭɩɧɨɫɬɢ ɯɨɪɨɲɨ ɨɤɨɦɤɨɜɵɜɚɸɬɫɹ, ɨɫɨɛɟɧɧɨ ɩɪɢ ɜɜɟɞɟɧɢɢ ɜ ɲɢɯɬɭ 0,5…2,0% ɩɥɚɫɬɢɱɧɨɣ ɫɜɹɡɭɸɳɟɣ ɞɨɛɚɜɤɢ - ɛɟɧɬɨɧɢɬɚ (ɨɫɨɛɨɝɨ ɫɨɪɬɚ ɜɵɫɨɤɨɤɚɱɟɫɬɜɟɧɧɨɣ ɝɥɢɧɵ). ɋ ɰɟɥɶɸ ɩɨɥɭɱɟɧɢɹ ɨɮɥɸɫɨɜɚɧɧɵɯ ɨɤɚɬɵɲɟɣ ɜ ɲɢɯɬɭ ɜɜɨɞɹɬ ɬɚɤɠɟ ɧɟɨɛɯɨɞɢɦɨɟ ɤɨɥɢɱɟɫɬɜɨ ɢɡɜɟɫɬɧɹɤɚ. ɉɪɨɢɡɜɨɞɫɬɜɨ ɨɤɚɬɵɲɟɣ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ. Ȼɟɧɬɨɧɢɬ, ɢɡɜɟɫɬɧɹɤ ɢ ɞɪɭɝɢɟ ɞɨɛɚɜɤɢ ɢɡɦɟɥɶɱɚɸɬ ɞɨ ɤɪɭɩɧɨɫɬɢ ɤɨɧɰɟɧɬɪɚɬɚ, ɬɳɚɬɟɥɶɧɨ ɩɟɪɟɦɟɲɢɜɚɸɬ ɫ ɩɨɫɥɟɞɧɢɦ, ɭɜɥɚɠɧɹɸɬ ɞɨ 8…9% ɢ ɧɚɩɪɚɜɥɹɸɬ ɧɚ ɨɤɨɦɤɨɜɚɧɢɟ. ɋɵɪɵɟ ɨɤɚɬɵɲɢ ɢɦɟɸɬ ɪɚɡɦɟɪ 8…18 ɦɦ. ɋɰɟɩɥɟɧɢɟ ɱɚɫɬɢɰ ɜ ɧɢɯ ɨɛɟɫɩɟɱɢɜɚɸɬ ɜ ɨɫɧɨɜɧɨɦ ɤɚɩɢɥɥɹɪɧɵɟ ɫɢɥɵ. ɉɨɫɤɨɥɶɤɭ ɨɤɚɬɵɲɢ ɢɦɟɸɬ ɩɪɨɱɧɨɫɬɶ ɧɚ ɫɠɚɬɢɟ ɬɨɥɶɤɨ 8…15 ɇ, ɨɧɢ ɜɵɞɟɪɠɢɜɚɸɬ ɩɚɞɟɧɢɟ ɫ ɜɵɫɨɬɵ ɧɟ ɛɨɥɟɟ 1 ɦ, ɬɨ ɨɧɢ ɧɟɩɪɢɝɨɞɧɵ ɞɥɹ ɩɪɹɦɨɝɨ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɜ ɩɥɚɜɤɟ. ɂɯ ɭɩɪɨɱɧɟɧɢɹ ɞɨɫɬɢɝɚɸɬ ɨɛɠɢɝɨɦ ɩɪɢ 1250…1300ɨɋ, ɱɬɨ ɩɨɜɵɲɚɟɬ ɩɪɨɱɧɨɫɬɶ ɧɚ ɫɠɚɬɢɟ ɞɨ 200…500 ɤɝ/ɨɤɚɬɵɲ. Ɋɚɡɞɟɥ 7. Ɂɚɳɢɬɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɨɬ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ 7.1. Ɍɟɨɪɟɬɢɱɟɫɤɢɟ ɨɫɧɨɜɵ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɨɬ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ. ɉɪɢ ɪɟɲɟɧɢɢ ɡɚɞɚɱ ɡɚɳɢɬɵ ɜɵɞɟɥɹɸɬ ɢɫɬɨɱɧɢɤ, ɩɪɢɟɦɧɢɤ ɷɧɟɪɝɢɢ ɢ ɡɚɳɢɬɧɨɟ ɭɫɬɪɨɣɫɬɜɨ (ɪɢɫ. 7.1), ɤɨɬɨɪɨɟ ɭɦɟɧɶɲɚɟɬ ɞɨ ɞɨɩɭɫɬɢɦɵɯ ɭɪɨɜɧɟɣ ɩɨɬɨɤ ɷɧɟɪɝɢɢ ɤ ɩɪɢɟɦɧɢɤɭ. Ɂɚɳɢɬɧɨɟ ɭɫɬɪɨɣɫɬɜɨ (Ɂɍ) ɨɛɥɚɞɚɟɬ ɫɩɨɫɨɛɧɨɫɬɹɦɢ: ɨɬɪɚɠɚɬɶ, ɩɨɝɥɨɳɚɬɶ, ɛɵɬɶ ɩɪɨɡɪɚɱɧɵɦ ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɩɨɬɨɤɭ ɷɧɟɪɝɢɢ. W W Ɂɍ WD W~ Ɋɢɫ. 7.1. ɗɧɟɪɝɟɬɢɱɟɫɤɢɣ ɛɚɥɚɧɫ ɡɚɳɢɬɧɨɝɨ ɭɫɬɪɨɣɫɬɜɚ ɡ ɨɛɳɟɝɨ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ W+, ɩɨɫɬɭɩɚɸɳɟɝɨ ɤ Ɂɍ, ɱɚɫɬɶ WD ɩɨɝɥɨɳɚɟɬɫɹ, ɱɚɫɬɶ W- ɨɬɪɚɠɚɟɬɫɹ ɢ ɱɚɫɬɶ W~ ɩɪɨɯɨɞɢɬ ɫɤɜɨɡɶ Ɂɍ. Ɍɨɝɞɚ Ɂɍ ɦɨɠɧɨ ɨɯɚɪɚɤɬɟɪɢɡɨɜɚɬɶ ɫɥɟɞɭɸɳɢɦɢ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦɢ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ: ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɨɝɥɨɳɟɧɢɹ Į = WD/W+, ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɨɬɪɚɠɟɧɢɹ ȡ = W-/W+, ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɟɪɟɞɚɱɢ IJ = W~/W+. ɉɪɢ ɷɬɨɦ ɜɵɩɨɥɧɹɟɬɫɹ ɪɚɜɟɧɫɬɜɨ Į + ȡ + IJ = 1. (7.1) ɋɭɦɦɚ Į + IJ = 1- ȡ = Q (ɝɞɟ Q = WQ/W+) ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɧɟɨɬɪɚɠɟɧɧɵɣ ɩɨɬɨɤ ɷɧɟɪɝɢɢ WQ, ɩɪɨɲɟɞɲɢɣ ɜ Ɂɍ. ȿɫɥɢ Į = 1, ɬɨ Ɂɍ ɩɨɝɥɨɳɚɟɬ ɜɫɸ ɷɧɟɪɝɢɸ, ɩɨɫɬɭɩɚɸɳɭɸ ɨɬ ɢɫɬɨɱɧɢɤɚ; ɩɪɢ ȡ = 1 Ɂɍ ɨɛɥɚɞɚɟɬ 100%-ɧɨɣ ɨɬɪɚɠɚɸɳɟɣ ɫɩɨɫɨɛɧɨɫɬɶɸ; ɚ ɪɚɜɟɧɫɬɜɨ IJ = 1 ɨɡɧɚɱɚɟɬ ɚɛɫɨɥɸɬɧɭɸ ɩɪɨɡɪɚɱɧɨɫɬɶ Ɂɍ, ɬ.ɟ. ɷɧɟɪɝɢɹ ɩɪɨɯɨɞɢɬ ɱɟɪɟɡ ɭɫɬɪɨɣɫɬɜɨ ɛɟɡ ɩɨɬɟɪɶ. ɉɪɢɧɰɢɩɵ ɡɚɳɢɬɵ: 1) ɩɪɢɧɰɢɩ: ȡ ĺ 1; ɡɚɳɢɬɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɡɚ ɫɱɟɬ ɨɬɪɚɠɚɬɟɥɶɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ Ɂɍ; 2) ɩɪɢɧɰɢɩ: Į ĺ 1; ɡɚɳɢɬɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɡɚ ɫɱɟɬ ɩɨɝɥɨɳɚɬɟɥɶɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ Ɂɍ; 3) ɩɪɢɧɰɢɩ: IJ ĺ 1; ɡɚɳɢɬɚ ɫ ɭɱɟɬɨɦ ɫɜɨɣɫɬɜ ɩɪɨɡɪɚɱɧɨɫɬɢ Ɂɍ. ɇɚ ɩɪɚɤɬɢɤɟ ɩɪɢɧɰɢɩɵ ɤɨɦɛɢɧɢɪɭɸɬ, ɩɨɥɭɱɚɹ ɪɚɡɥɢɱɧɵɟ ɦɟɬɨɞɵ ɡɚɳɢɬɵ. ɇɚɢɛɨɥɶɲɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɩɨɥɭɱɢɥɢ ɦɟɬɨɞɵ ɡɚɳɢɬɵ ɢɡɨɥɹɰɢɟɣ ɢ ɩɨɝɥɨɳɟɧɢɟɦ. Ɇɟɬɨɞɵ ɢɡɨɥɹɰɢɢ ɢɫɩɨɥɶɡɭɸɬ ɬɨɝɞɚ, ɤɨɝɞɚ ɢɫɬɨɱɧɢɤ ɢ ɩɪɢɟɦɧɢɤ ɷɧɟɪɝɢɢ, ɹɜɥɹɸɳɢɣɫɹ ɨɞɧɨɜɪɟɦɟɧɧɨ ɨɛɴɟɤɬɨɦ ɡɚɳɢɬɵ, ɪɚɫɩɨɥɚɝɚɸɬɫɹ ɫ ɪɚɡɧɵɯ ɫɬɨɪɨɧ ɨɬ Ɂɍ (ɪɢɫ. 7.2). Ɂɍ ɂ Wo0 ɉ Ɂɍ ɂ Uo0 D o1 Wo0 ɉ Do0 Ɋɢɫ. 7.2. Ɇɟɬɨɞɵ ɢɡɨɥɹɰɢɢ ɩɪɢ ɪɚɫɩɨɥɨɠɟɧɢɢ ɢɫɬɨɱɧɢɤɚ ɢ ɩɪɢɟɦɧɢɤɚ ɫ ɪɚɡɧɵɯ ɫɬɨɪɨɧ ɨɬ Ɂɍ. ȼ ɨɫɧɨɜɟ ɷɬɢɯ ɦɟɬɨɞɨɜ ɥɟɠɢɬ ɭɦɟɧɶɲɟɧɢɟ ɩɪɨɡɪɚɱɧɨɫɬɢ ɫɪɟɞɵ ɦɟɠɞɭ ɢɫɬɨɱɧɢɤɨɦ ɢ ɩɪɢɟɦɧɢɤɨɦ, ɬ.ɟ. ɜɵɩɨɥɧɟɧɢɟ ɭɫɥɨɜɢɹ IJ ĺ 0. ɉɪɢ ɷɬɨɦ ɦɨɠɧɨ ɜɵɞɟɥɢɬɶ ɞɜɚ ɨɫɧɨɜɧɵɯ ɦɟɬɨɞɚ ɢɡɨɥɹɰɢɢ: ɦɟɬɨɞ, ɩɪɢ ɤɨɬɨɪɨɦ ɭɦɟɧɶɲɟɧɢɟ ɩɪɨɡɪɚɱɧɨɫɬɢ ɫɪɟɞɵ ɞɨɫɬɢɝɚɟɬɫɹ ɡɚ ɫɱɟɬ ɩɨɝɥɨɳɟɧɢɹ ɷɧɟɪɝɢɢ Ɂɍ, ɬ.ɟ. ɭɫɥɨɜɢɟ IJ ĺ 0 ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɭɫɥɨɜɢɟɦ Į ĺ 0, ɢ ɦɟɬɨɞ, ɩɪɢ ɤɨɬɨɪɨɦ ɭɦɟɧɶɲɟɧɢɟ ɩɪɨɡɪɚɱɧɨɫɬɢ ɫɪɟɞɵ ɞɨɫɬɢɝɚɟɬɫɹ ɡɚ ɫɱɟɬ ɜɵɫɨɤɨɣ ɨɬɪɚɠɚɬɟɥɶɧɨɣ ɫɩɨɫɨɛɧɨɫɬɢ Ɂɍ, ɬ.ɟ. ɭɫɥɨɜɢɟ IJ ĺ 0 ɨɛɟɫɩɟɱɢɜɚɟɬɫɹ ɭɫɥɨɜɢɟɦ ȡ ĺ 1. ȼ ɨɫɧɨɜɟ ɦɟɬɨɞɨɜ ɩɨɝɥɨɳɟɧɢɹ ɥɟɠɢɬ ɩɪɢɧɰɢɩ ɭɜɟɥɢɱɟɧɢɹ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ, ɩɪɨɲɟɞɲɟɝɨ ɜ Ɂɍ (ɪɢɫ. 7.3), ɬ.ɟ. ɞɨɫɬɢɠɟɧɢɹ ɭɫɥɨɜɢɹ Ȟ ĺ 1. Ɋɚɡɥɢɱɚɸɬ ɞɜɚ ɜɢɞɚ ɩɨɝɥɨɳɟɧɢɹ ɷɧɟɪɝɢɢ Ɂɍ: ɩɨɝɥɨɳɟɧɢɟ ɷɧɟɪɝɢɢ ɫɚɦɢɦ Ɂɍ ɡɚ ɫɱɟɬ ɟɟ ɨɬɛɨɪɚ ɨɬ ɢɫɬɨɱɧɢɤɚ ɜ ɬɨɣ ɢɥɢ ɢɧɨɣ ɮɨɪɦɟ, ɜ ɬɨɦ ɱɢɫɥɟ ɜ ɜɢɞɟ ɧɟɨɛɪɚɬɢɦɵɯ ɩɨɬɟɪɶ, ɱɬɨ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬɨɦ Į, ɢ ɩɨɝɥɨɳɟɧɢɟ ɷɧɟɪɝɢɢ ɜ ɫɜɹɡɢ ɫ ɛɨɥɶɲɨɣ ɩɪɨɡɪɚɱɧɨɫɬɶɸ Ɂɍ, ɱɬɨ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬɨɦ IJ. ɂ ɂ Ɂɍ ɉ U o1 D o1 ɚ) ɷɧɟɪɝɢɹ ɨɬɛɢɪɚɟɬɫɹ Ɂɍ ɉ W o0 U o1 D o 0 ɛ) ɷɧɟɪɝɢɹ ɩɪɨɩɭɫɤɚɟɬɫɹ Ɋɢɫ. 7.3. Ɇɟɬɨɞɵ ɩɨɝɥɨɳɟɧɢɹ ɩɪɢ ɪɚɫɩɨɥɨɠɟɧɢɢ ɢɫɬɨɱɧɢɤɚ ɢ ɩɪɢɟɦɧɢɤɚ ɫ ɨɞɧɨɣ ɫɬɨɪɨɧɵ ɨɬ Ɂɍ Ɍ.ɤ. ɩɪɢ Q ĺ 1 ɤɨɷɮɮɢɰɢɟɧɬ ȡ ĺ 0, ɬɨ ɦɟɬɨɞɵ ɩɨɝɥɨɳɟɧɢɹ ɢɫɩɨɥɶɡɭɸɬ ɞɥɹ ɭɦɟɧɶɲɟɧɢɹ ɨɬɪɚɠɟɧɧɨɝɨ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ; ɩɪɢ ɷɬɨɦ ɢɫɬɨɱɧɢɤ ɢ ɩɪɢɟɦɧɢɤ ɷɧɟɪɝɢɢ ɨɛɵɱɧɨ ɧɚɯɨɞɹɬɫɹ ɫ ɨɞɧɨɣ ɫɬɨɪɨɧɵ ɨɬ Ɂɍ. ɉɪɢ ɪɚɫɫɦɨɬɪɟɧɢɢ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɤɨɥɟɛɚɧɢɣ ɧɚɪɹɞɭ ɫ ɤɨɷɮɮɢɰɢɟɧɬɨɦ Į ɢɫɩɨɥɶɡɭɸɬ ɤɨɷɮɮɢɰɢɟɧɬ ɩɨɬɟɪɶ Ș, ɤɨɬɨɪɵɣ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɤɨɥɢɱɟɫɬɜɨ ɷɧɟɪɝɢɢ ɪɚɫɫɟɹɧɧɨɣ Ɂɍ: (7.2) Ș = WS/Ȧ. İ = ES/(2ʌ. H), ɝɞɟ WS ɢ ES – ɫɪɟɞɧɢɟ ɡɚ ɩɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ Ɍ ɦɨɳɧɨɫɬɶ ɩɨɬɟɪɶ ɢ ɪɚɫɫɟɹɧɧɚɹ ɡɚ ɬɨɠɟ ɜɪɟɦɹ ɷɧɟɪɝɢɹ; Ȧ = 2ʌ/Ɍ – ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ; İ – ɷɧɟɪɝɢɹ, ɡɚɩɚɫɟɧɧɚɹ ɫɢɫɬɟɦɨɣ. Ʉɚɱɟɫɬɜɟɧɧɚɹ ɨɰɟɧɤɚ ɫɬɟɩɟɧɢ ɪɟɚɥɢɡɚɰɢɢ ɰɟɥɟɣ ɡɚɳɢɬɵ ɦɨɠɟɬ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɞɜɭɦɹ ɫɩɨɫɨɛɚɦɢ: 1) ɨɩɪɟɞɟɥɹɸɬ ɤɨɷɮɮɢɰɢɟɧɬ ɡɚɳɢɬɵ KW ɜ ɜɢɞɟ ɨɬɧɨɲɟɧɢɹ ɩɨɬɨɤ ɷɧɟɪɝɢɢ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ Ɂɍ KW ɩɨɬɨɤ ɷɧɟɪɝɢɢ ɩɪɢ ɧɚɥɢɱɢɢ Ɂɍ 2) ɨɩɪɟɞɟɥɹɸɬ ɤɨɷɮɮɢɰɢɟɧɬ ɡɚɳɢɬɵ ɜ ɜɢɞɟ ɨɬɧɨɲɟɧɢɹ: ɩɨɬɨɤ ɷɧɟɪɝɢɢ ɧɚ ɜɯɨɞɟ ɜ Ɂɍ . KW ɩɨɬɨɤ ɷɧɟɪɝɢɢ ɧɚ ɜɵɯɨɞɟ ɢɡ Ɂɍ ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɡɚɳɢɬɵ (ɞȻ) ɨɰɟɧɢɜɚɸɬ ɩɨ ɫɨɨɬɧɨɲɟɧɢɸ: E = 10 lg KW. (7.3) 7.2. Ɂɚɳɢɬɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɨɬ ɦɟɯɚɧɢɱɟɫɤɢɯ ɢ ɚɤɭɫɬɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ȼɢɛɪɚɰɢɹ ɢ ɲɭɦ ɹɜɥɹɸɬɫɹ ɭɩɪɭɝɢɦɢ ɤɨɥɟɛɚɧɢɹɦɢ ɬɜɟɪɞɵɯ ɬɟɥ, ɝɚɡɨɜ ɢ ɠɢɞɤɨɫɬɟɣ. ȼɢɛɪɚɰɢɹ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɦɟɯɚɧɢɱɟɫɤɢɟ ɤɨɥɟɛɚɬɟɥɶɧɵɟ ɞɜɢɠɟɧɢɹ ɝɚɪɦɨɧɢɱɟɫɤɨɝɨ ɜɢɞɚ ɜ ɦɟɯɚɧɢɱɟɫɤɨɣ ɫɢɫɬɟɦɟ. ɉɪɢɱɢɧɨɣ ɜɢɛɪɚɰɢɢ ɹɜɥɹɸɬɫɹ ɜɨɡɧɢɤɚɸɳɢɟ ɩɪɢ ɪɚɛɨɬɟ ɦɚɲɢɧ ɢ ɦɟɯɚɧɢɡɦɨɜ ɧɟɭɪɚɜɧɨɜɟɲɟɧɧɵɟ ɫɢɥɨɜɵɟ ɜɨɡɞɟɣɫɬɜɢɹ. Ɉɫɧɨɜɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ ɜɢɛɪɚɰɢɢ ɹɜɥɹɸɬɫɹ: ɱɚɫɬɨɬɚ (Ƚɰ); ɚɦɩɥɢɬɭɞɚ ɫɦɟɳɟɧɢɹ (ɦ ɢɥɢ ɫɦ); ɜɢɛɪɨɫɤɨɪɨɫɬɶ (ɦ/ɫ); ɜɢɛɪɨɭɫɤɨɪɟɧɢɟ (ɦ/ɫ2); ɩɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ (ɫ). ȼ ɩɪɚɤɬɢɤɟ ɜɢɛɪɨɚɤɭɫɬɢɤɢ ɜɟɫɶ ɞɢɚɩɚɡɨɧ ɱɚɫɬɨɬ ɜɢɛɪɚɰɢɢ ɪɚɡɛɢɜɚɟɬɫɹ ɧɚ ɨɤɬɚɜɧɵɟ ɞɢɚɩɚɡɨɧɵ. ȼ ɤɚɠɞɨɦ ɨɤɬɚɜɧɨɦ ɞɢɚɩɚɡɨɧɟ ɜɟɪɯɧɹɹ ɝɪɚɧɢɱɧɚɹ ɱɚɫɬɨɬɚ ɜ ɞɜɚ ɪɚɡɚ ɜɵɲɟ ɧɢɠɧɟɣ, ɚ ɫɪɟɞɧɹɹ ɱɚɫɬɨɬɚ ɞɢɚɩɚɡɨɧɚ ɪɚɜɧɚ ɤɜɚɞɪɚɬɧɨɦɭ ɤɨɪɧɸ ɢɡ ɩɪɨɢɡɜɟɞɟɧɢɹ ɜɟɪɯɧɟɣ ɢ ɧɢɠɧɟɣ ɱɚɫɬɨɬ. ɋɪɟɞɧɢɟ ɝɟɨɦɟɬɪɢɱɟɫɤɢɟ ɱɚɫɬɨɬɵ ɨɤɬɚɜɧɵɯ ɞɢɚɩɚɡɨɧɨɜ ɧɨɪɦɢɪɨɜɚɧɵ ɢ ɧɚɯɨɞɹɬɫɹ ɜ ɢɧɬɟɪɜɚɥɟ ɨɬ 1 ɞɨ 2000 Ƚɰ (ɜɫɟɝɨ 12 ɫɪɟɞɧɟɱɚɫɬɨɬɧɵɯ ɞɢɚɩɚɡɨɧɨɜ). ɉɨ ɫɩɨɫɨɛɭ ɩɟɪɟɞɚɱɢ ɩɪɢɧɹɬɨ ɪɚɡɥɢɱɚɬɶ ɥɨɤɚɥɶɧɭɸ ɜɢɛɪɚɰɢɸ, ɩɟɪɟɞɚɜɚɟɦɭɸ ɱɟɪɟɡ ɪɭɤɢ, ɢ ɨɛɳɭɸ ɜɢɛɪɚɰɢɸ, ɩɟɪɟɞɚɜɚɟɦɭɸ ɱɟɪɟɡ ɨɩɨɪɧɵɟ ɩɨɜɟɪɯɧɨɫɬɢ ɫɢɞɹɳɟɝɨ ɢɥɢ ɫɬɨɹɳɟɝɨ ɱɟɥɨɜɟɤɚ. ɇɚɢɛɨɥɟɟ ɨɩɚɫɧɵ ɞɥɹ ɱɟɥɨɜɟɤɚ ɱɚɫɬɨɬɵ ɤɨɥɟɛɚɧɢɣ 6…9 Ƚɰ, ɬɚɤ ɤɚɤ ɨɧɢ ɫɨɜɩɚɞɚɸɬ ɫ ɫɨɛɫɬɜɟɧɧɨɣ ɱɚɫɬɨɬɨɣ ɤɨɥɟɛɚɧɢɣ ɜɧɭɬɪɟɧɧɢɯ ɨɪɝɚɧɨɜ ɱɟɥɨɜɟɤɚ. Ɋɚɡɥɢɱɚɸɬ ɝɢɝɢɟɧɢɱɟɫɤɨɟ ɢ ɬɟɯɧɢɱɟɫɤɨɟ ɧɨɪɦɢɪɨɜɚɧɢɟ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɜɢɛɪɚɰɢɣ. ɉɪɢ ɝɢɝɢɟɧɢɱɟɫɤɨɦ ɧɨɪɦɢɪɨɜɚɧɢɢ ɜɢɛɪɚɰɢɢ ɩɨ ȽɈɋɌ 12.1.012-90 ɢ ɋɇ 2.2.4/2.1.8.556-96 ɩɪɨɢɡɜɨɞɢɬɫɹ ɨɝɪɚɧɢɱɟɧɢɟ ɩɚɪɚɦɟɬɪɨɜ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɨɣ ɜɢɛɪɚɰɢɢ ɪɚɛɨɱɢɯ ɦɟɫɬ ɢ ɩɨɜɟɪɯɧɨɫɬɟɣ ɤɨɧɬɚɤɬɚ ɜɢɛɪɨɨɩɚɫɧɵɯ ɦɟɯɚɧɢɡɦɨɜ ɫ ɪɭɤɚɦɢ ɪɚɛɨɬɚɸɳɟɝɨ, ɢɫɯɨɞɹ ɢɡ ɮɢɡɢɨɥɨɝɢɱɟɫɤɢɯ ɬɪɟɛɨɜɚɧɢɣ; ɜɨ ɜɬɨɪɨɦ ɫɥɭɱɚɟ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɨɝɪɚɧɢɱɟɧɢɟ ɭɪɨɜɧɹ ɜɢɛɪɚɰɢɣ ɫ ɭɱɟɬɨɦ ɬɟɯɧɢɱɟɫɤɢ ɞɨɫɬɢɠɢɦɨɝɨ ɭɪɨɜɧɹ ɡɚɳɢɬɵ ɨɬ ɜɢɛɪɚɰɢɣ. ɇɨɪɦɢɪɭɟɦɵɟ ɩɚɪɚɦɟɬɪɵ ɥɨɤɚɥɶɧɨɣ ɢ ɨɛɳɟɣ ɜɢɛɪɚɰɢɣ – ɫɪɟɞɧɢɟ ɤɜɚɞɪɚɬɢɱɧɵɟ ɡɧɚɱɟɧɢɹ ɜɢɛɪɨɫɤɨɪɨɫɬɢ ɢ ɜɢɛɪɨɭɫɤɨɪɟɧɢɹ. Ɉɛɳɚɹ ɜɢɛɪɚɰɢɹ ɧɨɪɦɢɪɭɟɬɫɹ ɫ ɭɱɟɬɨɦ ɫɜɨɣɫɬɜ ɢɫɬɨɱɧɢɤɨɜ ɟɟ ɜɨɡɧɢɤɧɨɜɟɧɢɹ ɢ ɞɟɥɢɬɫɹ ɧɚ ɬɪɚɧɫɩɨɪɬɧɭɸ, ɬɪɚɧɫɩɨɪɬɧɨ-ɬɟɯɧɨɥɨɝɢɱɟɫɤɭɸ ɢ ɬɟɯɧɨɥɨɝɢɱɟɫɤɭɸ ɜɢɛɪɚɰɢɢ. ȼɢɛɪɚɰɢɨɧɧɵɟ ɫɢɫɬɟɦɵ ɫɨɫɬɨɹɬ ɢɡ ɷɥɟɦɟɧɬɨɜ ɦɚɫɫɵ, ɭɩɪɭɝɨɫɬɢ ɢ ɞɟɦɩɮɢɪɨɜɚɧɢɹ. ȼ ɬɚɤɨɣ ɫɢɫɬɟɦɟ ɞɟɣɫɬɜɭɸɬ ɫɢɥɵ ɢɧɟɪɰɢɢ, ɬɪɟɧɢɹ, ɭɩɪɭɝɨɫɬɢ ɢ ɜɵɧɭɠɞɚɸɳɢɟ. ɋɢɥɚ ɢɧɟɪɰɢɢ ɪɚɜɧɚ ɩɪɨɢɡɜɟɞɟɧɢɸ ɦɚɫɫɵ M ɧɚ ɟɟ ɭɫɤɨɪɟɧɢɟ dv/dt: (7.4) FM = - M dv/dt, ɝɞɟ v – ɜɢɛɪɨɫɤɨɪɨɫɬɶ. ɋɢɥɚ FM ɧɚɩɪɚɜɥɟɧɚ ɜ ɫɬɨɪɨɧɭ, ɩɪɨɬɢɜɨɩɨɥɨɠɧɭɸ ɭɫɤɨɪɟɧɢɸ. ɋɢɥɚ ɞɟɣɫɬɜɢɹ ɭɩɪɭɝɨɝɨ ɷɥɟɦɟɧɬɚ, ɬ.ɟ. ɜɨɫɫɬɚɧɚɜɥɢɜɚɸɳɚɹ ɫɢɥɚ, ɛɭɞɟɬ ɧɚɩɪɚɜɥɟɧɚ ɜ ɩɪɨɬɢɜɨɩɨɥɨɠɧɭɸ ɫɬɨɪɨɧɭ ɢ ɪɚɜɧɚ (7.5) FG = G.x, ɝɞɟ G – ɤɨɷɮɮɢɰɢɟɧɬ ɠɟɫɬɤɨɫɬɢ ɭɩɪɭɝɨɝɨ ɷɥɟɦɟɧɬɚ, ɇ/ɦ; x = (x1 – x0) – ɫɦɟɳɟɧɢɟ ɤɨɧɰɚ ɭɩɪɭɝɨɝɨ ɷɥɟɦɟɧɬɚ, ɦ. ɉɪɢ ɜɢɛɪɚɰɢɢ ɭɩɪɭɝɢɯ ɫɢɫɬɟɦ ɩɪɨɢɫɯɨɞɢɬ ɪɚɫɫɟɹɧɢɟ ɷɧɟɪɝɢɢ ɜ ɨɤɪɭɠɚɸɳɭɸ ɫɪɟɞɭ, ɚ ɬɚɤɠɟ ɜ ɦɚɬɟɪɢɚɥɟ ɭɩɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ ɢ ɜ ɦɟɫɬɚɯ ɫɨɟɞɢɧɟɧɢɣ ɞɟɬɚɥɟɣ ɤɨɧɫɬɪɭɤɰɢɢ. ɗɬɢ ɩɨɬɟɪɢ ɜɵɡɵɜɚɸɬɫɹ ɫɢɥɚɦɢ ɬɪɟɧɢɹ (ɞɢɫɫɢɩɚɬɢɜɧɵɦɢ ɫɢɥɚɦɢ), ɧɚ ɩɪɟɨɞɨɥɟɧɢɟ ɤɨɬɨɪɵɯ ɧɟɨɛɪɚɬɢɦɨ ɪɚɫɫɟɢɜɚɟɬɫɹ ɷɧɟɪɝɢɹ ɢɫɬɨɱɧɢɤɚ ɜɢɛɪɚɰɢɢ. ȿɫɥɢ ɪɚɫɫɟɹɧɢɟ ɷɧɟɪɝɢɢ ɩɪɨɢɫɯɨɞɢɬ ɜ ɷɥɟɦɟɧɬɟ ɞɟɦɩɮɢɪɨɜɚɧɢɹ, ɬ.ɟ. ɜ ɫɪɟɞɟ ɫ ɜɹɡɤɢɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ, ɬɨ ɞɢɫɫɢɩɚɬɢɜɧɚɹ ɞɟɦɩɮɢɪɭɸɳɚɹ ɫɢɥɚ FS ɩɪɹɦɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɜɢɛɪɨɫɤɨɪɨɫɬɢ v: FS = S.v, (7.6) ɝɞɟ S – ɢɦɩɟɞɚɧɫ (ɫɨɩɪɨɬɢɜɥɟɧɢɟ) ɷɥɟɦɟɧɬɚ ɞɟɦɩɮɢɪɨɜɚɧɢɹ, ɇ.ɦ/ɫ. ɂɦɩɟɞɚɧɫ ɜɢɛɪɨɫɢɫɬɟɦɵ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɢɦɩɟɞɚɧɫɨɜ ɷɥɟɦɟɧɬɚ ɞɟɦɩɮɢɪɨɜɚɧɢɹ, ɦɚɫɫɵ ɢ ɭɩɪɭɝɨɫɬɢ. ɂɦɩɟɞɚɧɫ ɜɢɛɪɨɫɢɫɬɟɦɵ ɢɦɟɟɬ ɦɢɧɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɜ ɪɟɡɨɧɚɧɫɧɨɣ ɨɛɥɚɫɬɢ, ɝɞɟ ɨɧ ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɦɩɟɞɚɧɫɨɦ ɷɥɟɦɟɧɬɚ ɞɟɦɩɮɢɪɨɜɚɧɢɹ. ȼɧɟ ɪɟɡɨɧɚɧɫɧɨɣ ɨɛɥɚɫɬɢ ɢɦɩɟɞɚɧɫɨɦ S ɦɨɠɧɨ ɩɪɟɧɟɛɪɟɱɶ. ȼ ɞɢɚɩɚɡɨɧɟ ɜɵɫɨɤɢɯ ɱɚɫɬɨɬ ɞɜɢɠɟɧɢɟ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜɢɛɪɢɪɭɸɳɟɣ ɦɚɫɫɨɣ, M ɚ ɜ ɞɢɚɩɚɡɨɧɟ ɧɢɡɤɢɯ ɱɚɫɬɨɬ – ɠɟɫɬɤɨɫɬɶɸ ɫɢɫɬɟɦɵ G. Ʉɨɷɮɮɢɰɢɟɧɬ ɩɨɬɟɪɶ ɷɧɟɪɝɢɢ ɫ ɭɱɟɬɨɦ ɢɦɩɟɞɚɧɫɚ ɫɨɫɬɚɜɢɬ K = Z.S/G. (7.7) Ɂɚɳɢɬɚ ɨɬ ɜɢɛɪɚɰɢɢ ɜ ɩɪɨɦɵɲɥɟɧɧɨɫɬɢ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɜɨɡɞɟɣɫɬɜɢɟɦ ɧɚ ɢɫɬɨɱɧɢɤ ɜɢɛɪɚɰɢɢ, ɩɭɬɟɦ ɫɧɢɠɟɧɢɹ ɜɢɛɪɚɰɢɢ ɧɚ ɩɭɬɢ ɟɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɫɥɟɞɭɸɳɢɯ ɦɟɬɨɞɨɜ: 1) ɋɧɢɠɟɧɢɟ ɜɢɛɪɚɰɢɢ ɩɭɬɟɦ ɭɦɟɧɶɲɟɧɢɹ ɢɥɢ ɥɢɤɜɢɞɚɰɢɢ ɜɨɡɦɭɳɚɸɳɢɯ ɫɢɥ. ɗɬɨ ɞɨɫɬɢɝɚɟɬɫɹ ɩɭɬɟɦ ɢɫɤɥɸɱɟɧɢɹ ɜɨɡɦɨɠɧɵɯ ɭɞɚɪɨɜ ɢ ɪɟɡɤɢɯ ɭɫɤɨɪɟɧɢɣ. 2) ɂɡɦɟɧɟɧɢɟ ɱɚɫɬɨɬɵ ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɢɫɬɨɱɧɢɤɚ (ɦɚɲɢɧɵ ɢɥɢ ɭɫɬɚɧɨɜɤɢ) ɞɥɹ ɢɫɤɥɸɱɟɧɢɟ ɪɟɡɨɧɚɧɫɚ ɫ ɱɚɫɬɨɬɨɣ ɜɨɡɦɭɳɚɸɳɟɣ ɫɢɥɵ. 3) ȼɢɛɪɨɩɨɝɥɨɳɟɧɢɟ (ɜɢɛɪɨɞɟɦɮɢɪɨɜɚɧɢɟ) ɩɭɬɟɦ ɩɪɟɜɪɚɳɟɧɢɹ ɷɧɟɪɝɢɢ ɤɨɥɟɛɚɧɢɣ ɫɢɫɬɟɦɵ ɜ ɬɟɩɥɨɜɭɸ ɷɧɟɪɝɢɸ (ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɦɚɬɟɪɢɚɥɨɜ ɫ ɛɨɥɶɲɢɦ ɜɧɭɬɪɟɧɧɢɦ ɬɪɟɧɢɟɦ: ɞɟɪɟɜɨ, ɪɟɡɢɧɚ, ɩɥɚɫɬɦɚɫɫɵ). 4) ȼɢɛɪɨɝɚɲɟɧɢɟ ɩɭɬɟɦ ɜɜɟɞɟɧɢɹ ɜ ɤɨɥɟɛɚɬɟɥɶɧɭɸ ɫɢɫɬɟɦɭ ɞɨɩɨɥɧɢɬɟɥɶɧɵɯ ɦɚɫɫ ɢɥɢ ɭɜɟɥɢɱɟɧɢɹ ɠɟɫɬɤɨɫɬɢ ɫɢɫɬɟɦɵ ɩɭɬɟɦ ɭɫɬɚɧɨɜɤɢ ɚɝɪɟɝɚɬɨɜ ɧɚ ɮɭɧɞɚɦɟɧɬ. 5) Ɇɟɬɨɞ ɜɢɛɪɨɢɡɨɥɹɰɢɢ ɩɭɬɟɦ ɜɜɨɞɚ ɜ ɫɢɫɬɟɦɭ ɞɨɩɨɥɧɢɬɟɥɶɧɨɣ ɭɩɪɭɝɨɣ ɫɜɹɡɢ (ɩɪɭɠɢɧɧɵɯ ɜɢɛɪɨɢɡɨɥɹɬɨɪɨɜ) ɞɥɹ ɨɫɥɚɛɥɟɧɢɹ ɩɟɪɟɞɚɱɢ ɜɢɛɪɚɰɢɢ ɨɛɴɟɤɬɭ ɡɚɳɢɬɵ (ɫɦɟɠɧɨɦɭ ɷɥɟɦɟɧɬɭ ɤɨɧɫɬɪɭɤɰɢɢ ɢɥɢ ɪɚɛɨɱɟɦɭ ɦɟɫɬɭ). Ʉ ɨɫɧɨɜɧɵɦ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦ ɜɢɛɪɨɡɚɳɢɬɧɵɯ ɫɢɫɬɟɦ ɨɬɧɨɫɹɬɫɹ ɫɨɛɫɬɜɟɧɧɚɹ ɱɚɫɬɨɬɚ ɫɢɫɬɟɦɵ, ɦɟɯɚɧɢɱɟɫɤɢɣ ɢɦɩɟɞɚɧɫ ɢ ɤɨɷɮɮɢɰɢɟɧɬɵ, ɨɩɪɟɞɟɥɹɸɳɢɟ ɩɪɨɰɟɫɫɵ ɡɚɬɭɯɚɧɢɹ ɜɢɛɪɚɰɢɣ ɢ ɪɚɫɫɟɹɧɢɹ ɷɧɟɪɝɢɢ. ɋɜɨɛɨɞɧɚɹ ɜɢɛɪɚɰɢɹ (Ft = 0) ɜ ɨɬɫɭɬɫɬɜɢɢ ɫɢɥ ɬɪɟɧɢɹ (FS = 0) ɫ ɬɟɱɟɧɢɟɦ ɜɪɟɦɟɧɢ ɧɟ ɡɚɬɭɯɚɟɬ. ɉɪɢ ɭɫɥɨɜɢɢ FM + FG = 0 ɨɩɪɟɞɟɥɹɟɬɫɹ cɨɛɫɬɜɟɧɧɚɹ ɱɚɫɬɨɬɚ ɤɨɥɟɛɚɧɢɣ ɜɢɛɪɨɫɢɫɬɟɦɵ: (7.8) Z0 = (G/M). ɉɪɢ ɧɚɥɢɱɢɢ ɫɢɥ ɬɪɟɧɢɹ (FS z 0) ɫɜɨɛɨɞɧɚɹ ɜɢɛɪɚɰɢɹ (Ft = 0) ɡɚɬɭɯɚɟɬ. Ⱥɦɩɥɢɬɭɞɚ ɜɢɛɪɨɫɤɨɪɨɫɬɢ ɩɪɢ ɷɬɨɦ ɫ ɬɟɱɟɧɢɟɦ ɜɪɟɦɟɧɢ ɭɛɵɜɚɟɬ. Ɉɬɧɨɲɟɧɢɟ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ɧɚ ɜɯɨɞɟ ɜ ɡɚɳɢɬɧɨɟ ɭɫɬɪɨɣɫɬɜɨ (Ɂɍ) ɢ ɧɚ ɜɵɯɨɞɟ ɢɡ ɧɟɝɨ W+/W- ɧɚɡɵɜɚɸɬ ɫɢɥɨɜɵɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɡɚɳɢɬɵ ɩɪɢ ɜɢɛɪɨɢɡɨɥɹɰɢɢ: (7.9) kF = W+/W-. ɋɬɟɩɟɧɶ ɡɚɳɢɬɵ ɬɚɤɠɟ ɞɢɧɚɦɢɱɟɫɤɢɦ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɡɚɳɢɬɵ k&, ɪɚɜɧɵɦ ɨɬɧɨɲɟɧɢɸ ɚɦɩɥɢɬɭɞɵ ɫɦɟɳɟɧɢɹ ɢɫɬɨɱɧɢɤɚ ɤ ɚɦɩɥɢɬɭɞɟ ɫɦɟɳɟɧɢɹ ɩɪɢɟɦɧɢɤɚ. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɷɧɟɪɝɟɬɢɱɟɫɤɢɣ ɤɨɷɮɮɢɰɢɟɧɬ ɡɚɳɢɬɵ ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɜ ɜɢɞɟ (7.10) kW = kF. k&. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɜɢɛɪɨɢɡɨɥɹɰɢɢ (7.11) e = 10.lg kW = 10.lg[K2 + (Z2/Z02 - 1)2] – 10.lg(1 + K2). ȿɫɥɢ ɩɨɬɟɪɢ ɜ ɡɚɳɢɬɧɨɦ ɭɫɬɪɨɣɫɬɜɟ ɨɬɫɭɬɫɬɜɭɸɬ (K = 0), ɬɨ ɷɮɮɟɤɬɢɜɧɨɫɬɶ e = 20.lg(Z2/Z02 - 1). (7.12) ɒɭɦ - ɷɬɨ ɛɟɫɩɨɪɹɞɨɱɧɨɟ ɫɨɱɟɬɚɧɢɟ ɡɜɭɤɨɜ ɪɚɡɥɢɱɧɨɣ ɱɚɫɬɨɬɵ ɢ ɢɧɬɟɧɫɢɜɧɨɫɬɢ (ɫɢɥɵ), ɜɨɡɧɢɤɚɸɳɢɯ ɩɪɢ ɦɟɯɚɧɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɹɯ ɜ ɬɜɟɪɞɵɯ, ɠɢɞɤɢɯ ɢ ɝɚɡɨɨɛɪɚɡɧɵɯ ɫɪɟɞɚɯ. ɉɨ ɩɪɢɪɨɞɟ ɜɨɡɧɢɤɧɨɜɟɧɢɹ ɲɭɦɵ ɞɟɥɹɬɫɹ ɧɚ ɦɟɯɚɧɢɱɟɫɤɢɟ, ɚɷɪɨɞɢɧɚɦɢɱɟɫɤɢɟ, ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɢɟ, ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɟ. ɋɥɭɯɨɜɵɟ ɨɳɭɳɟɧɢɹ ɜɵɡɵɜɚɸɬɫɹ ɤɨɥɟɛɚɧɢɹɦɢ ɭɩɪɭɝɨɣ ɫɪɟɞɵ, ɪɚɫɩɪɨɫɬɪɚɧɹɸɳɢɦɢɫɹ ɜ ɝɚɡɨɨɛɪɚɡɧɨɣ, ɠɢɞɤɨɣ ɢɥɢ ɬɜɟɪɞɨɣ ɫɪɟɞɟ ɢ ɜɨɡɞɟɣɫɬɜɭɸɳɢɦɢ ɧɚ ɨɪɝɚɧɵ ɫɥɭɯɚ ɱɟɥɨɜɟɤɚ. Ɂɜɭɤɨɜɵɟ ɤɨɥɟɛɚɧɢɹ ɜ ɜɨɡɞɭɯɟ ɩɪɢɜɨɞɹɬ ɤ ɟɝɨ ɫɠɚɬɢɸ ɢ ɪɚɡɪɟɠɟɧɢɸ. ȼ ɨɛɥɚɫɬɹɯ ɫɠɚɬɢɹ ɞɚɜɥɟɧɢɟ ɜɨɡɞɭɯɚ ɜɨɡɪɚɫɬɚɟɬ, ɚ ɜ ɨɛɥɚɫɬɹɯ ɪɚɡɪɟɠɟɧɢɹ ɩɨɧɢɠɚɟɬɫɹ. Ɋɚɡɧɨɫɬɶ ɦɟɠɞɭ ɞɚɜɥɟɧɢɟɦ, ɫɭɳɟɫɬɜɭɸɳɢɦ ɜ ɫɪɟɞɟ Ɋɫɪ ɜ ɞɚɧɧɵɣ ɦɨɦɟɧɬ, ɢ ɚɬɦɨɫɮɟɪɧɵɦ ɞɚɜɥɟɧɢɟɦ Ɋɚɬɦ, ɧɚɡɵɜɚɟɬɫɹ ɡɜɭɤɨɜɵɦ ɞɚɜɥɟɧɢɟɦ: Ɋɡɜ = Ɋɫɪ - Ɋɚɬɦ. (7.13) Ɂɜɭɤɨɜɚɹ ɜɨɥɧɚ ɹɜɥɹɟɬɫɹ ɧɨɫɢɬɟɥɟɦ ɷɧɟɪɝɢɢ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɫɜɨɟɝɨ ɞɜɢɠɟɧɢɹ. Ʉɨɥɢɱɟɫɬɜɨ ɷɧɟɪɝɢɢ, ɩɟɪɟɧɨɫɢɦɨɣ ɡɜɭɤɨɜɨɣ ɜɨɥɧɨɣ ɡɚ ɨɞɧɭ ɫɟɤɭɧɞɭ ɱɟɪɟɡ ɩɪɨɫɬɪɚɧɫɬɜɨ ɫ ɩɥɨɳɚɞɶɸ ɫɟɱɟɧɢɹ 1 ɦ2, ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɦɭ ɧɚɩɪɚɜɥɟɧɢɸ ɞɜɢɠɟɧɢɹ, ɧɚɡɵɜɚɟɬɫɹ ɢɧɬɟɧɫɢɜɧɨɫɬɶɸ ɡɜɭɤɚ (ȼɬ/ɦ2) I = Pɡɜ2/zA, (7.14) 2. ɝɞɟ zA - ɚɤɭɫɬɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɫɪɟɞɵ, ɤɝ/(ɦ ɫ). ɉɨɜɟɪɯɧɨɫɬɶ ɬɟɥɚ, ɫɨɜɟɪɲɚɸɳɚɹ ɤɨɥɟɛɚɧɢɹ, ɹɜɥɹɟɬɫɹ ɢɡɥɭɱɚɬɟɥɟɦ (ɢɫɬɨɱɧɢɤɨɦ) ɡɜɭɤɨɜɨɣ ɷɧɟɪɝɢɢ, ɤɨɬɨɪɵɣ ɫɨɡɞɚɟɬ ɚɤɭɫɬɢɱɟɫɤɨɟ ɩɨɥɟ. Ⱥɤɭɫɬɢɱɟɫɤɢɦ ɩɨɥɟɦ ɧɚɡɵɜɚɸɬ ɨɛɥɚɫɬɶ ɭɩɪɭɝɨɣ ɫɪɟɞɵ, ɤɨɬɨɪɚɹ ɹɜɥɹɟɬɫɹ ɫɪɟɞɫɬɜɨɦ ɩɟɪɟɞɚɱɢ ɚɤɭɫɬɢɱɟɫɤɢɯ ɜɨɥɧ. Ⱥɤɭɫɬɢɱɟɫɤɨɟ ɩɨɥɟ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɡɜɭɤɨɜɵɦ ɞɚɜɥɟɧɢɟɦ Ɋɡɜ ɢ ɚɤɭɫɬɢɱɟɫɤɢɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ zA. ɗɧɟɪɝɟɬɢɱɟɫɤɢɦɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦɢ ɚɤɭɫɬɢɱɟɫɤɨɝɨ ɩɨɥɹ ɹɜɥɹɸɬɫɹ: ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɷɧɟɪɝɢɢ I, ɦɨɳɧɨɫɬɶ ɢɡɥɭɱɟɧɢɹ W - ɤɨɥɢɱɟɫɬɜɨ ɷɧɟɪɝɢɢ, ɩɪɨɯɨɞɹɳɟɣ ɡɚ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ ɱɟɪɟɡ ɨɯɜɚɬɵɜɚɸɳɭɸ ɢɫɬɨɱɧɢɤ ɡɜɭɤɚ ɩɨɜɟɪɯɧɨɫɬɶ, ȼɬ. ȿɫɥɢ ɡɜɭɤɨɜɚɹ ɜɨɥɧɚ ɜɫɬɪɟɱɚɟɬ ɩɪɟɝɪɚɞɭ ɫ ɢɧɵɦ, ɱɟɦ ɚɤɭɫɬɢɱɟɫɤɚɹ ɫɪɟɞɚ, ɜɨɥɧɨɜɵɦ ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ, ɬɨ ɱɚɫɬɶ ɡɜɭɤɨɜɨɣ ɷɧɟɪɝɢɢ ɨɬɪɚɠɚɟɬɫɹ ɨɬ ɩɪɟɝɪɚɞɵ, ɱɚɫɬɶ ɩɪɨɧɢɤɚɟɬ ɜ ɧɟɟ ɢ ɩɨɝɥɨɳɚɟɬɫɹ ɩɪɟɝɪɚɞɨɣ, ɩɪɟɜɪɚɳɚɹɫɶ ɜ ɬɟɩɥɨ, ɚ ɨɫɬɚɜɲɚɹɫɹ ɱɚɫɬɶ ɩɪɨɧɢɤɚɟɬ ɫɤɜɨɡɶ ɩɪɟɝɪɚɞɭ. ɋɜɨɣɫɬɜɚ ɫɚɦɨɣ ɩɪɟɝɪɚɞɵ ɢ ɦɚɬɟɪɢɚɥɚ, ɩɨɤɪɵɜɚɸɳɟɝɨ ɷɬɭ ɩɪɟɝɪɚɞɭ, ɨɩɪɟɞɟɥɹɸɬɫɹ ɫɥɟɞɭɸɳɢɦɢ ɩɨɤɚɡɚɬɟɥɹɦɢ: 1) Ʉɨɷɮɮɢɰɢɟɧɬ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɹ D = Iɩɨɝɥ/Iɩɚɞ, (7.15) ɝɞɟ Iɩɨɝɥ - ɩɨɝɥɨɳɟɧɧɚɹ ɦɚɬɟɪɢɚɥɨɦ ɢɥɢ ɩɪɟɝɪɚɞɨɣ ɡɜɭɤɨɜɚɹ ɷɧɟɪɝɢɹ; Iɩɚɞ - ɩɚɞɚɸɳɚɹ ɧɚ ɩɪɟɝɪɚɞɭ ɡɜɭɤɨɜɚɹ ɷɧɟɪɝɢɹ. 2) Ʉɨɷɮɮɢɰɢɟɧɬ ɨɬɪɚɠɟɧɢɹ (7.16) E = Iɨɬɪ/Iɩɚɞ, ɝɞɟ Iɨɬɪ - ɨɬɪɚɠɟɧɧɚɹ ɨɬ ɩɪɟɝɪɚɞɵ ɡɜɭɤɨɜɚɹ ɷɧɟɪɝɢɹ. 3) Ʉɨɷɮɮɢɰɢɟɧɬ ɡɜɭɤɨɢɡɨɥɹɰɢɢ (7.17) J = Iɩɚɞ/Iɨɬɪ 4) Ʉɨɷɮɮɢɰɢɟɧɬ ɩɪɨɯɨɠɞɟɧɢɹ (ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɢɥɢ ɩɪɨɧɢɤɧɨɜɟɧɢɹ) (7.18) W = Iɩɪ/Iɩɚɞ, ɝɞɟ Iɩɪ - ɩɪɨɲɟɞɲɚɹ ɫɤɜɨɡɶ ɩɪɟɝɪɚɞɭ ɡɜɭɤɨɜɚɹ ɷɧɟɪɝɢɹ. 5) Ʉɨɷɮɮɢɰɢɟɧɬ ɪɚɫɫɟɹɧɢɹ ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ ɩɪɟɝɪɚɞɵ (7.19) G = (Iɩɚɞ - Iɩɨɝɥ - Iɩɪ)/Iɩɚɞ. ȼɟɥɢɱɢɧɵ ɤɨɷɮɮɢɰɢɟɧɬɨɜ D, E, G, W ɡɚɜɢɫɹɬ ɨɬ ɱɚɫɬɨɬɵ ɡɜɭɤɨɜɨɣ ɜɨɥɧɵ. ɂɫɩɨɥɶɡɭɹ ɷɬɢ ɮɨɪɦɭɥɵ, ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɫɥɟɞɭɸɳɢɟ ɫɨɨɬɧɨɲɟɧɢɹ: D = 1 - E; E + G + W = 1. (7.20) Ⱦɥɹ ɨɰɟɧɤɢ ɢ ɫɪɚɜɧɟɧɢɹ ɡɜɭɤɨɜɨɝɨ ɞɚɜɥɟɧɢɹ Ɋ (ɉɚ), ɢɧɬɟɧɫɢɜɧɨɫɬɢ I (ȼɬ/ɦ2) ɢ ɡɜɭɤɨɜɨɣ ɦɨɳɧɨɫɬɢ W (ȼɬ) ɪɚɡɥɢɱɧɵɯ ɢɫɬɨɱɧɢɤɨɜ ɩɪɢɧɹɬɵ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɢɯ ɭɪɨɜɧɟɣ Li, ɜɵɪɚɠɟɧɧɵɟ ɜ ɛɟɡɪɚɡɦɟɪɧɵɯ ɟɞɢɧɢɰɚɯ (ɞȻ) - ɞɟɰɢɛɟɥɚɯ: Lp = 10 lg (P/P0)2; (7.21) LI = 10 lg (I/I0); (7.22) (7.23) LW = 10 lg (W/W0), ɝɞɟ P0 = 2.10-5 ɉɚ - ɫɬɚɧɞɚɪɬɧɨɟ ɡɜɭɤɨɜɨɟ ɞɚɜɥɟɧɢɟ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɟ ɩɨɪɨɝɭ ɫɥɵɲɢɦɨɫɬɢ; I0 = 10-12 ȼɬ/ɦ2 - ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɡɜɭɤɚ ɩɪɢ ɩɨɪɨɝɟ ɫɥɵɲɢɦɨɫɬɢ; W0 = 10-12 ȼɬ - ɨɩɨɪɧɚɹ ɡɜɭɤɨɜɚɹ ɦɨɳɧɨɫɬɶ. ɍɜɟɥɢɱɟɧɢɟ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɡɜɭɤɚ ɜ 10 ɪɚɡ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɨɞɧɨɦɭ ɛɟɥɭ (Ȼ): 1Ȼ = 10ɞȻ. Ɇɟɬɨɞɵ ɛɨɪɶɛɵ ɫ ɲɭɦɨɦ ɩɨɞɪɚɡɞɟɥɹɸɬ ɧɚ ɦɟɬɨɞɵ ɩɨ ɫɧɢɠɟɧɢɸ ɲɭɦɚ ɜ ɢɫɬɨɱɧɢɤɟ ɟɝɨ ɨɛɪɚɡɨɜɚɧɢɹ ɢ ɦɟɬɨɞɵ ɩɨ ɫɧɢɠɟɧɢɸ ɲɭɦɚ ɧɚ ɩɭɬɢ ɟɝɨ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɨɬ ɢɫɬɨɱɧɢɤɚ. Ɂɜɭɤɨɢɡɨɥɹɰɢɹ – ɭɦɟɧɶɲɟɧɢɟ ɭɪɨɜɧɹ ɲɭɦɚ ɫ ɩɨɦɨɳɶɸ ɡɚɳɢɬɧɨɝɨ ɭɫɬɪɨɣɫɬɜɚ, ɤɨɬɨɪɨɟ ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɦɟɠɞɭ ɢɫɬɨɱɧɢɤɨɦ ɢ ɩɪɢɟɦɧɢɤɨɦ ɢ ɢɦɟɟɬ ɛɨɥɶɲɭɸ ɨɬɪɚɠɚɸɳɭɸ ɢ (ɢɥɢ) ɩɨɝɥɨɳɚɸɳɭɸ ɫɩɨɫɨɛɧɨɫɬɶ. Ɉɫɧɨɜɧɵɦɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦɢ ɡɜɭɤɨɢɡɨɥɹɰɢɢ ɩɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɩɥɨɬɧɵɯ ɩɪɟɝɪɚɞ ɹɜɥɹɸɬɫɹ ɦɚɫɫɚ ɩɪɟɝɪɚɞɵ ɢ ɱɚɫɬɨɬɚ ɡɜɭɤɚ. Ⱥɤɭɫɬɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɤɨɧɫɬɪɭɤɰɢɢ, ɧɟ ɢɦɟɸɳɟɣ ɨɬɜɟɪɫɬɢɣ ɢ ɳɟɥɟɣ, ɨɩɪɟɞɟɥɹɸɬɫɹ, ɜ ɨɫɧɨɜɧɨɦ, ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ D ɢ E, ɤɨɷɮɮɢɰɢɟɧɬ W ɢɦɟɟɬ ɡɧɚɱɟɧɢɟ ɜ ɞɟɫɹɬɤɢ ɪɚɡ ɦɟɧɶɲɟ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ D ɢ E. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɡɜɭɤɨɢɡɨɥɹɰɢɢ ɨɰɟɧɢɜɚɟɬɫɹ ɜ ɞɟɰɢɛɟɥɚɯ: (7.24) E = 10.lg(1/W) = 10.lg(W+/Wa) =10.lg(Iɩɚɞ/Iɩɪ). ɉɪɢ ɧɚɥɢɱɢɢ ɨɬɞɟɥɶɧɵɯ ɭɱɚɫɬɤɨɜ ɫ ɛɨɥɟɟ ɧɢɡɤɨɣ ɡɜɭɤɨɢɡɨɥɹɰɢɟɣ, ɱɟɦ ɭ ɨɫɧɨɜɧɨɣ ɤɨɧɫɬɪɭɤɰɢɢ, ɚɤɭɫɬɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɤɨɧɫɬɪɭɤɰɢɢ ɨɩɪɟɞɟɥɹɸɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɪɨɯɨɠɞɟɧɢɹ W. ɉɪɢ ɞɨɫɬɚɬɨɱɧɨ ɛɨɥɶɲɨɣ ɫɨɛɫɬɜɟɧɧɨɣ ɡɜɭɤɨɢɡɨɥɹɰɢɢ ɩɥɚɫɬɢɧɵ ɨɛɳɚɹ ɡɜɭɤɨɢɡɨɥɹɰɢɹ ɩɪɟɝɪɚɞɵ ɫɨ ɫɤɜɨɡɧɵɦ ɨɬɜɟɪɫɬɢɟɦ ɪɚɜɧɚ: E = 10 lg (S0/S), (7.25) ɝɞɟ S0, S - ɩɥɨɳɚɞɶ ɨɬɜɟɪɫɬɢɹ ɢ ɩɥɨɳɚɞɶ ɩɥɚɫɬɢɧɵ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɦ2. Ɉɞɧɢɦ ɢɡ ɷɮɮɟɤɬɢɜɧɵɯ ɫɪɟɞɫɬɜ ɫɧɢɠɟɧɢɹ ɲɭɦɚ ɹɜɥɹɟɬɫɹ ɩɪɢɦɟɧɟɧɢɟ ɜ ɤɨɧɫɬɪɭɤɰɢɹɯ ɡɜɭɤɨɩɨɝɥɨɳɚɸɳɢɯ ɦɚɬɟɪɢɚɥɨɜ. ɗɮɮɟɤɬɢɜɧɨɫɬɶ ɡɜɭɤɨɩɨɝɥɨɳɚɸɳɢɯ ɦɚɬɟɪɢɚɥɨɜ ɩɨ ɭɦɟɧɶɲɟɧɢɸ ɲɭɦɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɯ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɹ D. Ⱦɥɹ ɦɹɝɤɢɯ ɩɨɪɢɫɬɵɯ ɦɚɬɟɪɢɚɥɨɜ ɡɧɚɱɟɧɢɟ ɤɨɷɮɮɢɰɢɟɧɬɚ D ɧɚɯɨɞɢɬɫɹ ɜ ɩɪɟɞɟɥɚɯ 0,2..0,9. Ⱦɥɹ ɩɥɨɬɧɵɯ ɬɜɟɪɞɵɯ ɦɚɬɟɪɢɚɥɨɜ (ɤɢɪɩɢɱ, ɞɟɪɟɜɨ) D ɫɨɫɬɚɜɥɹɟɬ ɫɨɬɵɟ ɞɨɥɢ ɟɞɢɧɢɰɵ. ȿɞɢɧɢɰɟɣ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɹ ɹɜɥɹɟɬɫɹ ɫɷɛɢɧ (ɫɛ), ɚ ɩɨɥɧɨɟ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɟ ɦɚɬɟɪɢɚɥɚ: A = D˜S, ɫɛ, (7.26) 2 ɝɞɟ S - ɩɥɨɳɚɞɶ ɞɚɧɧɨɝɨ ɦɚɬɟɪɢɚɥɚ, ɦ . Ɉɫɥɚɛɥɟɧɢɟ ɲɭɦɚ ɜ ɩɨɦɟɳɟɧɢɢ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɹ ɫɬɟɧ: (7.27) 'L = 10 lg(A2/A1) = 10 lg(D2/D1) = 10 lg(Iɩɨɝɥ.2/Iɩɨɝɥ.1), ɝɞɟ A1 ɢ A2 - ɩɨɥɧɨɟ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɟ ɩɨɦɟɳɟɧɢɹ ɞɨ ɜɧɟɫɟɧɢɹ ɡɜɭɤɨɩɨɝɥɨɳɚɸɳɢɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɩɨɫɥɟ ɢɯ ɜɧɟɫɟɧɢɹ; D1 ɢ D2 - ɤɨɷɮɮɢɰɢɟɧɬɵ ɡɜɭɤɨɩɨɝɥɨɳɟɧɢɹ ɩɨɦɟɳɟɧɢɹ ɞɨ ɜɧɟɫɟɧɢɹ ɡɜɭɤɨɩɨɝɥɨɳɚɸɳɢɯ ɦɚɬɟɪɢɚɥɨɜ ɢ ɩɨɫɥɟ ɢɯ ɜɧɟɫɟɧɢɹ. ɍɪɨɜɧɢ ɡɜɭɤɨɜɨɝɨ ɞɚɜɥɟɧɢɹ ɜ ɪɚɫɱɟɬɧɵɯ ɬɨɱɤɚɯ ɧɟ ɞɨɥɠɧɵ ɩɪɟɜɨɫɯɨɞɢɬɶ ɭɪɨɜɧɟɣ, ɞɨɩɭɫɬɢɦɵɯ ɩɨ ɧɨɪɦɚɦ ɜɨ ɜɫɟɯ ɨɤɬɚɜɧɵɯ ɩɨɥɨɫɚɯ. Ɍɪɟɛɭɟɦɨɟ ɫɧɢɠɟɧɢɟ ɭɪɨɜɧɟɣ ɡɜɭɤɨɜɨɝɨ ɞɚɜɥɟɧɢɹ (ɞȻȺ) ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ: (7.28) 'Lp, ɬɪ = Lp - Lp.ɞɨɩ, ɝɞɟ Lp - ɢɡɦɟɪɟɧɧɵɣ ɭɪɨɜɟɧɶ ɡɜɭɤɨɜɨɝɨ ɞɚɜɥɟɧɢɹ ɜ ɪɚɛɨɱɟɣ ɬɨɱɤɟ; Lp.ɞɨɩ - ɞɨɩɭɫɬɢɦɵɟ ɭɪɨɜɧɢ ɡɜɭɤɨɜɨɝɨ ɞɚɜɥɟɧɢɹ ɫɨɝɥɚɫɧɨ ɞɟɣɫɬɜɭɸɳɢɦ ɧɨɪɦɚɬɢɜɚɦ. 7.3. Ɂɚɳɢɬɚ ɨɬ ɢɨɧɢɡɢɪɭɸɳɢɯ ɢɡɥɭɱɟɧɢɣ ȼ ɨɬɥɢɱɢɟ ɨɬ ɦɟɯɚɧɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɟ ɜɨɥɧɵ ɦɨɝɭɬ ɪɚɫɩɪɨɫɬɪɚɧɹɬɶɫɹ ɢ ɜ ɜɚɤɭɭɦɟ, ɬ.ɟ. ɜ ɩɪɨɫɬɪɚɧɫɬɜɟ, ɧɟ ɫɨɞɟɪɠɚɳɟɦ ɚɬɨɦɨɜ, ɧɨ ɨɧɢ ɜɟɞɭɬ ɫɟɛɹ ɩɨɞɨɛɧɨ ɦɟɯɚɧɢɱɟɫɤɢɦ ɜɨɥɧɚɦ, ɜ ɱɚɫɬɧɨɫɬɢ, ɢɦɟɸɬ ɤɨɧɟɱɧɭɸ ɫɤɨɪɨɫɬɶ ɢ ɩɟɪɟɧɨɫɹɬ ɷɧɟɪɝɢɸ. ɇɚɢɛɨɥɶɲɚɹ ɫɤɨɪɨɫɬɶ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɜɨɥɧ ɯɚɪɚɤɬɟɪɧɚ ɞɥɹ ɜɚɤɭɭɦɚ (ɫɤɨɪɨɫɬɶ ɫɜɟɬɚ 300 ɬɵɫ. ɤɦ/ɫ). ɗɧɟɪɝɢɹ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ (ɗɆɉ) ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɱɟɬɜɟɪɬɨɣ ɫɬɟɩɟɧɢ ɱɚɫɬɨɬɵ ɟɝɨ ɤɨɥɟɛɚɧɢɣ. Ⱦɥɢɧɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɜɨɥɧ ɨɬ 107 ɤɦ ɞɨ 10-11 ɫɦ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɢɯ ɞɥɢɧ ɢ ɱɚɫɬɨɬ ɩɪɢɧɹɬɨ ɜɵɞɟɥɹɬɶ ɢɨɧɢɡɢɪɭɸɳɢɟ ɢɡɥɭɱɟɧɢɹ (ɝɚɦɦɚ- ɢ ɪɟɧɬɝɟɧɨɜɫɤɢɟ), ɢɡɥɭɱɟɧɢɹ ɨɩɬɢɱɟɫɤɨɝɨ ɞɢɚɩɚɡɨɧɚ (ɭɥɶɬɪɚɮɢɨɥɟɬɨɜɨɟ, ɜɢɞɢɦɵɣ ɫɜɟɬ, ɢɧɮɪɚɤɪɚɫɧɨɟ), ɪɚɞɢɨ- ɢ ɧɢɡɤɨɱɚɫɬɨɬɧɵɣ ɞɢɚɩɚɡɨɧ. ɂɡɥɭɱɟɧɢɹ ɫ ɪɚɡɥɢɱɧɨɣ ɞɥɢɧɨɣ ɜɨɥɧɵ ɫɢɥɶɧɨ ɨɬɥɢɱɚɸɬɫɹ ɞɪɭɝ ɨɬ ɞɪɭɝɚ ɩɨ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɢ ɫɬɟɩɟɧɢ ɩɨɝɥɨɳɟɧɢɹ ɢɯ ɜɟɳɟɫɬɜɨɦ. ɇɚɢɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɨɟ ɢɨɧɢɡɢɪɭɸɳɟɟ ɢɡɥɭɱɟɧɢɟ, ɨɫɨɛɟɧɧɨ ɝɚɦɦɚ-ɢɡɥɭɱɟɧɢɟ, ɧɟ ɩɨɝɥɨɳɚɟɬɫɹ ɜɟɳɟɫɬɜɚɦɢ, ɧɟɩɪɨɡɪɚɱɧɵɦɢ ɞɥɹ ɜɨɥɧ ɨɩɬɢɱɟɫɤɨɝɨ ɞɢɚɩɚɡɨɧɚ. Ƚɚɦɦɚ-ɢɡɥɭɱɟɧɢɟ ɢɦɟɟɬ ɞɥɢɧɭ ɜɨɥɧɵ 10-13…10-10 ɦ, ɱɬɨ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɱɚɫɬɨɬɟ 3ǜ1021…3ǜ1018 Ƚɰ. ȼɵɫɨɤɚɹ ɩɪɨɧɢɤɚɸɳɚɹ ɢ ɢɨɧɢɡɢɪɭɸɳɚɹ ɫɩɨɫɨɛɧɨɫɬɶ ɝɚɦɦɚ-ɤɜɚɧɬɨɜ ɨɛɴɹɫɧɹɟɬɫɹ ɢɯ ɛɨɥɶɲɨɣ ɷɧɟɪɝɢɟɣ, ɤɨɬɨɪɚɹ ɢɡɦɟɧɹɟɬɫɹ ɨɬ 12,4 ɞɨ 0,012 Ɇɷȼ. Ⱦɨɡɚ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɨɛɥɭɱɟɧɢɹ, ɫɨɡɞɚɜɚɟɦɚɹ ɚɧɬɪɨɩɨɝɟɧɧɵɦɢ ɢɫɬɨɱɧɢɤɚɦɢ, ɧɟɜɟɥɢɤɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɟɫɬɟɫɬɜɟɧɧɵɦ ɮɨɧɨɦ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɨɛɥɭɱɟɧɢɹ, ɱɬɨ ɞɨɫɬɢɝɚɟɬɫɹ ɩɪɢɦɟɧɟɧɢɟɦ ɫɪɟɞɫɬɜ ɤɨɥɥɟɤɬɢɜɧɨɣ ɡɚɳɢɬɵ ɩɪɨɦɵɲɥɟɧɧɵɯ ɢɫɬɨɱɧɢɤɨɜ ɢɡɥɭɱɟɧɢɹ. ȼ ɬɟɯ ɫɥɭɱɚɹɯ, ɤɨɝɞɚ ɧɚ ɨɛɴɟɤɬɚɯ ɷɤɨɧɨɦɢɤɢ ɧɨɪɦɚɬɢɜɧɵɟ ɬɪɟɛɨɜɚɧɢɹ ɢ ɩɪɚɜɢɥɚ ɪɚɞɢɚɰɢɨɧɧɨɣ ɛɟɡɨɩɚɫɧɨɫɬɢ ɧɟ ɫɨɛɥɸɞɚɸɬɫɹ, ɭɪɨɜɧɢ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɪɟɡɤɨ ɜɨɡɪɚɫɬɚɸɬ. ɋɚɦɵɣ ɩɪɨɫɬɨɣ ɫɩɨɫɨɛ ɡɚɳɢɬɵ ɨɬ ɝɚɦɦɚ-ɢɡɥɭɱɟɧɢɹ – ɷɬɨ ɭɞɚɥɟɧɢɟ ɩɟɪɫɨɧɚɥɚ ɨɬ ɢɫɬɨɱɧɢɤɚ ɢɡɥɭɱɟɧɢɹ ɧɚ ɞɨɫɬɚɬɨɱɧɨ ɛɨɥɶɲɨɟ ɪɚɫɫɬɨɹɧɢɟ, ɬ.ɤ. ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɢɨɧɢɡɚɰɢɢ ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɤɜɚɞɪɚɬɭ ɪɚɫɫɬɨɹɧɢɹ. ɇɨɪɦɢɪɨɜɚɧɢɟ ɢɨɧɢɡɢɪɭɸɳɢɯ ɢɡɥɭɱɟɧɢɣ ɨɩɪɟɞɟɥɹɟɬɫɹ ɯɚɪɚɤɬɟɪɨɦ ɜɨɡɞɟɣɫɬɜɢɹ ɢɨɧɢɡɢɪɭɸɳɟɣ ɪɚɞɢɚɰɢɢ ɧɚ ɨɪɝɚɧɢɡɦ ɱɟɥɨɜɟɤɚ. Ɉɛɟɫɩɟɱɟɧɢɟ ɪɚɞɢɚɰɢɨɧɧɨɣ ɛɟɡɨɩɚɫɧɨɫɬɢ ɨɩɪɟɞɟɥɹɸɬɫɹ ɫɥɟɞɭɸɳɢɦɢ ɩɪɢɧɰɢɩɚɦɢ: 1) ɩɪɢɧɰɢɩɨɦ ɧɨɪɦɢɪɨɜɚɧɢɹ - ɧɟɩɪɟɜɵɲɟɧɢɟ ɞɨɩɭɫɬɢɦɵɯ ɩɪɟɞɟɥɨɜ ɢɧɞɢɜɢɞɭɚɥɶɧɵɯ ɞɨɡ ɨɛɥɭɱɟɧɢɹ ɝɪɚɠɞɚɧ ɨɬ ɜɫɟɯ ɢɫɬɨɱɧɢɤɨɜ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɢɡɥɭɱɟɧɢɹ; 2) ɩɪɢɧɰɢɩɨɦ ɨɛɨɫɧɨɜɚɧɢɹ – ɡɚɩɪɟɳɟɧɢɟ ɜɫɟɯ ɜɢɞɨɜ ɞɟɹɬɟɥɶɧɨɫɬɢ ɩɨ ɢɫɩɨɥɶɡɨɜɚɧɢɸ ɢɫɬɨɱɧɢɤɨɜ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɢɡɥɭɱɟɧɢɹ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɨɥɭɱɟɧɧɚɹ ɞɥɹ ɱɟɥɨɜɟɤɚ ɢ ɨɛɳɟɫɬɜɚ ɩɨɥɶɡɚ ɧɟ ɩɪɟɜɵɲɚɟɬ ɪɢɫɤ ɜɨɡɦɨɠɧɨɝɨ ɜɪɟɞɚ; 3) ɩɪɢɧɰɢɩɨɦ ɨɩɬɢɦɢɡɚɰɢɢ – ɩɨɞɞɟɪɠɚɧɢɟ ɧɚ ɜɨɡɦɨɠɧɨ ɧɢɡɤɨɦ ɢ ɞɨɫɬɢɠɢɦɨɦ ɭɪɨɜɧɟ ɢɧɞɢɜɢɞɭɚɥɶɧɵɯ ɞɨɡ ɨɛɥɭɱɟɧɢɹ ɢ ɱɢɫɥɚ ɨɛɥɭɱɟɧɧɵɯ ɥɢɰ ɩɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɥɸɛɨɝɨ ɢɫɬɨɱɧɢɤɚ ɢɨɧɢɡɢɪɭɸɳɟɝɨ ɢɡɥɭɱɟɧɢɹ. Ɉɫɧɨɜɧɵɟ ɩɪɢɧɰɢɩɵ ɪɚɞɢɚɰɢɨɧɧɨɣ ɛɟɡɨɩɚɫɧɨɫɬɢ ɪɟɚɥɢɡɭɸɬɫɹ ɩɭɬɟɦ ɭɦɟɧɶɲɟɧɢɹ ɦɨɳɧɨɫɬɢ ɢɫɬɨɱɧɢɤɨɜ ɢɡɥɭɱɟɧɢɹ ɞɨ ɦɢɧɢɦɚɥɶɧɵɯ ɜɟɥɢɱɢɧ (ɡɚɳɢɬɚ ɤɨɥɢɱɟɫɬɜɨɦ); ɫɨɤɪɚɳɟɧɢɟ ɜɪɟɦɟɧɢ ɪɚɛɨɬɵ ɫ ɢɫɬɨɱɧɢɤɚɦɢ (ɡɚɳɢɬɚ ɜɪɟɦɟɧɟɦ); ɭɜɟɥɢɱɟɧɢɟ ɪɚɫɫɬɨɹɧɢɹ ɨɬ ɢɫɬɨɱɧɢɤɚ ɞɨ ɪɚɛɨɬɚɸɳɟɝɨ ɩɟɪɫɨɧɚɥɚ (ɡɚɳɢɬɚ ɪɚɫɫɬɨɹɧɢɟɦ); ɷɤɪɚɧɢɪɨɜɚɧɢɟ ɢɫɬɨɱɧɢɤɨɜ ɢɡɥɭɱɟɧɢɹ ɦɚɬɟɪɢɚɥɚɦɢ, ɩɨɝɥɨɳɚɸɳɢɦɢ ɢɨɧɢɡɢɪɭɸɳɟɟ ɢɡɥɭɱɟɧɢɟ (ɡɚɳɢɬɚ ɷɤɪɚɧɚɦɢ). 7.4. Ɂɚɳɢɬɚ ɨɬ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɩɨɥɟɣ ɢ ɢɡɥɭɱɟɧɢɣ ȼ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɭɫɥɨɜɢɹɯ ɧɚ ɪɚɛɨɬɚɸɳɢɯ ɨɤɚɡɵɜɚɟɬ ɜɨɡɞɟɣɫɬɜɢɟ ɲɢɪɨɤɢɣ ɫɩɟɤɬɪ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɢɡɥɭɱɟɧɢɹ (ɗɆɂ). ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɞɢɚɩɚɡɨɧɚ ɞɥɢɧ ɜɨɥɧ ɪɚɡɥɢɱɚɸɬ: ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɟ ɢɡɥɭɱɟɧɢɹ ɪɚɞɢɨɱɚɫɬɨɬ (10-4…107 ɦ), ɢɧɮɪɚɤɪɚɫɧɨɟ ɢɡɥɭɱɟɧɢɟ (7,5ǜ10-7…<10-4 ɦ), ɜɢɞɢɦɭɸ ɨɛɥɚɫɬɶ (4ǜ10-7…7,5ǜ10-7 ɦ), ɭɥɶɬɪɚɮɢɨɥɟɬɨɜɨɟ ɢɡɥɭɱɟɧɢɟ (< 4ǜ10-7…10-9 ɦ), ɪɟɧɬɝɟɧɨɜɫɤɨɟ ɢɡɥɭɱɟɧɢɟ ɢ ɝɚɦɦɚ- ɢɡɥɭɱɟɧɢɟ (< 10-9 ɦ) ɢ ɞɪ. ɂɫɬɨɱɧɢɤɚɦɢ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɵɯ ɢɡɥɭɱɟɧɢɣ ɪɚɞɢɨɱɚɫɬɨɬ (ɗɆɂ Ɋɑ) ɹɜɥɹɸɬɫɹ ɭɫɬɪɨɣɫɬɜɚ ɢɧɞɭɤɰɢɨɧɧɨɝɨ ɧɚɝɪɟɜɚ ɦɟɬɚɥɥɨɜ ɢ ɩɨɥɭɩɪɨɜɨɞɧɢɤɨɜ, ɭɫɬɪɨɣɫɬɜɚ ɞɢɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɧɚɝɪɟɜɚ, ɬɟɥɟɜɢɡɢɨɧɧɵɟ ɢ ɪɚɞɢɨɥɨɤɚɰɢɨɧɧɵɟ ɫɬɚɧɰɢɢ, ɚɧɬɟɧɧɵ ɪɚɞɢɨɫɜɹɡɢ, ɩɪɢɛɨɪɵ ɞɟɮɟɤɬɨɫɤɨɩɢɢ. ȿɞɢɧɢɰɚɦɢ ɗɆɂ ɹɜɥɹɸɬɫɹ: ɱɚɫɬɨɬɚ f (Ƚɰ), ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ȿ (ȼ/ɦ), ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɇ (Ⱥ/ɦ), ɩɥɨɬɧɨɫɬɶ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ɉɉɗ (ȼɬ/ɦ2). ȼ ɗɆɂ ɫɭɳɟɫɬɜɭɸɬ ɬɪɢ ɡɨɧɵ, ɤɨɬɨɪɵɟ ɪɚɡɥɢɱɚɸɬɫɹ ɩɨ ɪɚɫɫɬɨɹɧɢɸ ɨɬ ɢɫɬɨɱɧɢɤɚ ɗɆɂ. Ɂɨɧɚ ɢɧɞɭɤɰɢɢ (ɛɥɢɠɧɹɹ ɡɨɧɚ) ɢɦɟɟɬ ɪɚɞɢɭɫ, ɪɚɜɧɵɣ R = Ȝ/2ʌ, (7.29) ɝɞɟ Ȝ - ɞɥɢɧɚ ɜɨɥɧɵ ɗɆɂ. ȼ ɷɬɨɣ ɡɨɧɟ ɧɚ ɱɟɥɨɜɟɤɚ ɞɟɣɫɬɜɭɸɬ ɧɟɡɚɜɢɫɢɦɨ ɞɪɭɝ ɨɬ ɞɪɭɝɚ ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɢ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɟɣ. Ɂɨɧɚ ɢɧɬɟɪɮɟɪɟɧɰɢɢ (ɩɪɨɦɟɠɭɬɨɱɧɚɹ ɡɨɧɚ) ɢɦɟɟɬ ɪɚɞɢɭɫ (7.30) Ȝ/2ʌ < R < 2ʌȜ. ȼ ɷɬɨɣ ɡɨɧɟ ɨɞɧɨɜɪɟɦɟɧɧɨ ɜɨɡɞɟɣɫɬɜɭɸɬ ɧɚ ɱɟɥɨɜɟɤɚ ɧɚɩɪɹɠɟɧɧɨɫɬɶ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɢ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ, ɚ ɬɚɤɠɟ ɩɥɨɬɧɨɫɬɶ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ. Ɂɨɧɚ ɫɨɛɫɬɜɟɧɧɨ ɢɡɥɭɱɟɧɢɹ (ɞɚɥɶɧɹɹ ɡɨɧɚ) ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɩɨɥɧɨɫɬɶɸ ɫɮɨɪɦɢɪɨɜɚɜɲɟɣɫɹ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɣ ɜɨɥɧɨɣ. ȼ ɷɬɨɣ ɡɨɧɟ ɧɚ ɱɟɥɨɜɟɤɚ ɜɨɡɞɟɣɫɬɜɭɟɬ ɬɨɥɶɤɨ ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɫɨɫɬɚɜɥɹɸɳɚɹ ɗɆɂ – ɩɥɨɬɧɨɫɬɶ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ (ɉɉɗ). Ɋɚɞɢɭɫ ɞɚɥɶɧɟɣ ɡɨɧɵ ɫɨɫɬɚɜɥɹɟɬ (7.31) R • 2ʌȜ. Ɉɰɟɧɤɚ ɜɨɡɞɟɣɫɬɜɢɹ ɗɆɂ Ɋɑ ɧɚ ɱɟɥɨɜɟɤɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɨ ɡɧɚɱɟɧɢɹɦ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɗɆɂ ɢ ɩɨ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɷɤɫɩɨɡɢɰɢɢ, ɤɨɬɨɪɚɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɢɧɬɟɧɫɢɜɧɨɫɬɶɸ ɗɆɂ ɢ ɜɪɟɦɟɧɟɦ ɟɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɱɟɥɨɜɟɤɚ. ȼ ɞɢɚɩɚɡɨɧɟ ɱɚɫɬɨɬ 30 ɤȽɰ…300 ɆȽɰ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɗɆɂ Ɋɑ ɨɰɟɧɢɜɚɟɬɫɹ ɡɧɚɱɟɧɢɹɦɢ ɧɚɩɪɹɠɟɧɧɨɫɬɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ȿ (ȼ/ɦ) ɢ ɧɚɩɪɹɠɟɧɧɨɫɬɢ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɇ (Ⱥ/ɦ). ȼ ɞɢɚɩɚɡɨɧɟ ɱɚɫɬɨɬ 300 ɆȽɰ…300 ȽȽɰ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɗɆɂ Ɋɑ ɨɰɟɧɢɜɚɟɬɫɹ ɡɧɚɱɟɧɢɹɦɢ ɩɥɨɬɧɨɫɬɢ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ɉɉɗ (ȼɬ/ɦ2, ɦɤȼɬ/ɫɦ2). ɗɧɟɪɝɟɬɢɱɟɫɤɚɹ ɷɤɫɩɨɡɢɰɢɹ ɗɗ ɜ ɞɢɚɩɚɡɨɧɟ ɱɚɫɬɨɬ 30 ɤȽɰ…300 ɆȽɰ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɚɤ ɩɪɨɢɡɜɟɞɟɧɢɟ ɤɜɚɞɪɚɬɚ ɧɚɩɪɹɠɟɧɧɨɫɬɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɢɥɢ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɧɚ ɜɪɟɦɹ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɱɟɥɨɜɟɤɚ: (7.32) ɗɗE = ȿ2ǜɌ [(ȼ/ɦ)2ǜɱ]; 2 2 (7.33) ɗɗH = ɇ ǜȉ [(A/ɦ) ǜɱ]. ȼ ɞɢɚɩɚɡɨɧɟ ɱɚɫɬɨɬ ɗɆɂ Ɋɑ 300 ɆȽɰ…300 ȽȽɰ ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɷɤɫɩɨɡɢɰɢɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɚɤ ɩɪɨɢɡɜɟɞɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ɧɚ ɜɪɟɦɹ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɱɟɥɨɜɟɤɚ ɗɗɩɩɷ = ɉɉɗǜɌ [(Ǻɬ/ɦ2)ǜɱ], [(ɦɤȼɬ/ɫɦ2)ǜɱ]. (7.34) ɉɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɟ ɡɧɚɱɟɧɢɹ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɗɆɂ Ɋɑ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɪɟɦɟɧɢ ɜɨɡɞɟɣɫɬɜɢɹ ɢ ɞɨɩɭɫɬɢɦɨɟ ɜɪɟɦɹ ɜɨɡɞɟɣɫɬɜɢɹ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɗɆɂ ɨɩɪɟɞɟɥɹɸɬɫɹ ɩɨ ɮɨɪɦɭɥɚɦ: ȿɩɞɭ = (ɗɗE/Ɍ)1/2; (7.35) ɌE = ɗɗE/ȿ2; (7.36) 1/2 2 (7.37) ɌH = ɗɗH/ɇ ; (7.38) ɇɩɞɭ = (ɗɗH/Ɍ) ; ɉɉɗɩɞɭ = ɗɗɩɩɷ/Ɍ; (7.39) Ɍɩɩɷ = ɗɗɩɩɷ/ɉɉɗ. (7.40) ɇɨɪɦɢɪɨɜɚɧɢɟ ɜɨɡɞɟɣɫɬɜɢɹ ɗɆɂ Ɋɑ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɫɨɝɥɚɫɧɨ ɧɨɪɦɚɦ ɋɚɧɉɢɇ 2.2.4/2.1.8.055-96 ɢ ȽɈɋɌ 12.1.006-84 ɋɋȻɌ. ɇɟɡɚɜɢɫɢɦɨ ɨɬ ɩɪɨɞɨɥɠɢɬɟɥɶɧɨɫɬɢ ɜɨɡɞɟɣɫɬɜɢɹ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɗɆɂ ɧɟ ɞɨɥɠɧɚ ɩɪɟɜɵɲɚɬɶ ɧɨɪɦɢɪɨɜɚɧɧɵɯ ɦɚɤɫɢɦɚɥɶɧɵɯ ɡɧɚɱɟɧɢɣ (ɧɚɩɪɢɦɟɪ, 1000 ɦɤȼɬ/ɫɦ2 ɞɥɹ ɞɢɚɩɚɡɨɧɚ ɱɚɫɬɨɬ 300 ɆȽɰ…300 ȽȽɰ) ɉɪɢ ɨɞɧɨɜɪɟɦɟɧɧɨɦ ɨɛɥɭɱɟɧɢɢ ɨɬ ɧɟɫɤɨɥɶɤɢɯ ɢɫɬɨɱɧɢɤɨɜ ɗɆɂ, ɞɥɹ ɤɨɬɨɪɵɯ ɭɫɬɚɧɨɜɥɟɧɵ ɨɞɧɢ ɢ ɬɟ ɠɟ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɟ ɭɪɨɜɧɢ (ɉȾɍ), ɞɨɥɠɧɵ ɫɨɛɥɸɞɚɬɶɫɹ ɫɥɟɞɭɸɳɢɟ ɭɫɥɨɜɢɹ: n n 6(Ei Ti) d ɗɗE ɩɞɭ; (6Ei2)1/2 d E . 2. i=1 (7.41) i=1 n n 6(Hi Ti) d ɗɗH ɩɞɭ; (6Hi2)1/2 d H. 2. i=1 (7.42) i=1 n n 6(ɉɉɗi Ti) d ɗɗɩɩɷ.ɩɞɭ; 6ɉɉɗi d ɉɉɗɩɞɭ. . i=1 (7.43) i=1 ɉɪɢ ɨɞɧɨɜɪɟɦɟɧɧɨɦ ɨɛɥɭɱɟɧɢɢ ɨɬ ɧɟɫɤɨɥɶɤɢɯ ɢɫɬɨɱɧɢɤɨɜ ɗɆɂ, ɞɥɹ ɤɨɬɨɪɵɯ ɭɫɬɚɧɨɜɥɟɧɵ ɪɚɡɧɵɟ ɉȾɍ, ɞɨɥɠɧɵ ɫɨɛɥɸɞɚɬɶɫɹ ɫɥɟɞɭɸɳɢɟ ɭɫɥɨɜɢɹ: n n n 2 6(Ei/Ei ɩɞɭ) + 6(Hi /Hi ɩɞɭ) + 6(ɉɉɗi/ɉɉɗi ɩɞɭ) d 1; 2 i=1 i=1 (7.44) i=1 n 6(ɗɗi/ɗɗi ɩɞɭ) d 1. (7.45) i=1 Ɂɚɳɢɬɚ ɪɚɛɨɬɚɸɳɢɯ ɢ ɧɚɫɟɥɟɧɢɹ ɨɬ ɗɆɂ Ɋɑ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɭɬɟɦ ɩɪɨɜɟɞɟɧɢɹ ɨɪɝɚɧɢɡɚɰɢɨɧɧɵɯ ɢ ɢɧɠɟɧɟɪɧɨ-ɬɟɯɧɢɱɟɫɤɢɯ, ɥɟɱɟɛɧɨɩɪɨɮɢɥɚɤɬɢɱɟɫɤɢɯ ɦɟɪɨɩɪɢɹɬɢɣ, ɚ ɬɚɤɠɟ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɫɪɟɞɫɬɜ ɢɧɞɢɜɢɞɭɚɥɶɧɨɣ ɡɚɳɢɬɵ. Ʉ ɨɪɝɚɧɢɡɚɰɢɨɧɧɵɦ ɦɟɪɨɩɪɢɹɬɢɹɦ ɨɬɧɨɫɹɬɫɹ: ɜɵɛɨɪ ɪɚɰɢɨɧɚɥɶɧɵɯ ɪɟɠɢɦɨɜ ɪɚɛɨɬɵ ɨɛɨɪɭɞɨɜɚɧɢɹ; ɨɝɪɚɧɢɱɟɧɢɟ ɦɟɫɬɚ ɢ ɜɪɟɦɟɧɢ ɧɚɯɨɠɞɟɧɢɹ ɩɟɪɫɨɧɚɥɚ ɜ ɡɨɧɟ ɜɨɡɞɟɣɫɬɜɢɹ ɗɆɂ (ɡɚɳɢɬɚ ɪɚɫɫɬɨɹɧɢɟɦ ɢ ɜɪɟɦɟɧɟɦ). ɂɧɠɟɧɟɪɧɨ-ɬɟɯɧɢɱɟɫɤɢɟ ɦɟɪɨɩɪɢɹɬɢɹ ɜɤɥɸɱɚɸɬ: ɪɚɰɢɨɧɚɥɶɧɨɟ ɪɚɡɦɟɳɟɧɢɟ ɨɛɨɪɭɞɨɜɚɧɢɹ; ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɫɪɟɞɫɬɜ, ɨɝɪɚɧɢɱɢɜɚɸɳɢɯ ɩɨɫɬɭɩɥɟɧɢɟ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɣ ɷɧɟɪɝɢɢ ɧɚ ɪɚɛɨɱɟɟ ɦɟɫɬɨ ɩɟɪɫɨɧɚɥɚ (ɩɨɝɥɨɳɟɧɢɟ ɦɨɳɧɨ- ɫɬɢ, ɷɤɪɚɧɢɪɨɜɚɧɢɟ, ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɦɢɧɢɦɚɥɶɧɨ ɧɟɨɛɯɨɞɢɦɨɣ ɦɨɳɧɨɫɬɢ ɝɟɧɟɪɚɬɨɪɚ); ɨɛɨɡɧɚɱɟɧɢɟ ɢ ɨɝɪɚɠɞɟɧɢɟ ɡɨɧ ɫ ɩɨɜɵɲɟɧɧɵɦ ɭɪɨɜɧɟɦ ɗɆɂ Ɋɑ. Ʌɟɱɟɛɧɨ-ɩɪɨɮɢɥɚɤɬɢɱɟɫɤɢɟ ɦɟɪɨɩɪɢɹɬɢɹ ɨɫɭɳɟɫɬɜɥɹɸɬɫɹ ɜ ɰɟɥɹɯ ɩɪɟɞɭɩɪɟɠɞɟɧɢɹ, ɪɚɧɧɟɣ ɞɢɚɝɧɨɫɬɢɤɢ ɢ ɥɟɱɟɧɢɹ ɧɚɪɭɲɟɧɢɣ ɜ ɫɨɫɬɨɹɧɢɢ ɡɞɨɪɨɜɶɹ, ɫɜɹɡɚɧɧɨɝɨ ɫ ɜɨɡɞɟɣɫɬɜɢɟɦ ɗɆɂ Ɋɑ, ɢ ɜɤɥɸɱɚɸɬ ɩɪɟɞɜɚɪɢɬɟɥɶɧɵɟ, ɩɪɢ ɩɨɫɬɭɩɥɟɧɢɢ ɧɚ ɪɚɛɨɬɭ, ɢ ɩɟɪɢɨɞɢɱɟɫɤɢɟ ɦɟɞɢɰɢɧɫɤɢɟ ɨɫɦɨɬɪɵ. Ʉ ɫɪɟɞɫɬɜɚɦ ɢɧɞɢɜɢɞɭɚɥɶɧɨɣ ɡɚɳɢɬɵ ɨɬɧɨɫɹɬɫɹ ɪɚɞɢɨɡɚɳɢɬɧɵɟ ɤɨɦɛɢɧɟɡɨɧɵ, ɯɚɥɚɬɵ, ɜɵɩɨɥɧɟɧɧɵɟ ɢɡ ɦɟɬɚɥɥɢɡɢɪɨɜɚɧɧɨɣ ɬɤɚɧɢ, ɳɢɬɤɢ, ɲɥɟɦɵ ɢ ɡɚɳɢɬɧɵɟ ɨɱɤɢ. Ɉɫɧɨɜɧɨɣ ɫɩɨɫɨɛ ɡɚɳɢɬɵ ɨɬ ɗɆɂ ɜ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɟ – ɡɚɳɢɬɚ ɪɚɫɫɬɨɹɧɢɟɦ. ɉɪɢ ɪɚɡɦɟɳɟɧɢɢ ɪɚɞɢɨɬɟɯɧɢɱɟɫɤɢɯ ɨɛɴɟɤɬɨɜ ɪɹɞɨɦ ɫ ɫɟɥɢɬɟɛɧɨɣ (ɠɢɥɨɣ) ɬɟɪɪɢɬɨɪɢɟɣ ɩɥɚɧɢɪɨɜɨɱɧɵɟ ɪɟɲɟɧɢɹ ɞɨɥɠɧɵ ɭɱɢɬɵɜɚɬɶ ɦɨɳɧɨɫɬɢ ɩɟɪɟɞɚɬɱɢɤɨɜ, ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɧɚɩɪɚɜɥɟɧɧɨɫɬɢ ɢɡɥɭɱɟɧɢɹ, ɪɟɥɶɟɮ ɦɟɫɬɧɨɫɬɢ, ɷɬɚɠɧɨɫɬɶ ɡɚɫɬɪɨɣɤɢ. Ⱦɥɹ ɡɚɳɢɬɵ ɧɚɫɟɥɟɧɢɹ ɨɬ ɜɨɡɞɟɣɫɬɜɢɹ ɗɆɂ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɫɚɧɢɬɚɪɧɨ – ɡɚɳɢɬɧɵɟ ɡɨɧɵ ɢ ɡɨɧɵ ɨɝɪɚɧɢɱɟɧɢɹ ɡɚɫɬɪɨɣɤɢ ɫɨɝɥɚɫɧɨ ɧɨɪɦ ɋɇ 245-71 ɢ ɋɚɧɉɢɇ 2.2.1/2.1.1.1031-01. ɉɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɠɢɥɵɯ ɢ ɚɞɦɢɧɢɫɬɪɚɬɢɜɧɵɯ ɡɞɚɧɢɣ, ɪɚɫɩɨɥɨɠɟɧɧɵɯ ɜ ɡɨɧɚɯ ɞɟɣɫɬɜɢɹ ɗɆɂ, ɫɥɟɞɭɟɬ ɩɪɢɧɢɦɚɬɶ ɜɨ ɜɧɢɦɚɧɢɟ ɷɤɪɚɧɢɪɭɸɳɭɸ ɫɩɨɫɨɛɧɨɫɬɶ ɗ (ɞȻ) ɫɬɪɨɢɬɟɥɶɧɵɯ ɤɨɧɫɬɪɭɤɰɢɣ: (7.46) ɗ = 20 lg (ɉɉɗɩɚɞ/ɉɉɗɜɧɬɪ), ɝɞɟ ɉɉɗɩɚɞ ɢ ɉɉɗɜɧɬɪ – ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɩɥɨɬɧɨɫɬɶ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ɧɚ ɜɧɟɲɧɟɣ ɢ ɜɧɭɬɪɟɧɧɟɣ ɩɨɜɟɪɯɧɨɫɬɹɯ ɤɨɧɫɬɪɭɤɰɢɢ. ɋɩɢɫɨɤ ɥɢɬɟɪɚɬɭɪɵ 1. Ɋɨɞɢɨɧɨɜ Ⱥ.ɂ., Ʉɥɭɲɢɧ ȼ.ɇ., Ɍɨɪɨɱɟɲɧɢɤɨɜ ɇ.ɋ. Ɍɟɯɧɢɤɚ ɡɚɳɢɬɵ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. – Ɇ.: ɏɢɦɢɹ, 1989. 2. Ɋɨɞɢɨɧɨɜ Ⱥ.ɂ., Ʉɥɭɲɢɧ ȼ.ɇ., ɋɢɫɬɟɪ ȼ.Ƚ. Ɍɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɷɤɨɥɨɝɢɱɟɫɤɨɣ ɛɟɡɨɩɚɫɧɨɫɬɢ (Ɉɫɧɨɜɵ ɷɧɜɚɣɪɨɧɦɟɧɬɚɥɢɫɬɢɤɢ). - Ʉɚɥɭɝɚ: ɂɡɞɜɨ ɇ. Ȼɨɱɤɚɪɟɜɨɣ, 2000. 3. Ȼɟɡɨɩɚɫɧɨɫɬɶ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ. /ɉɨɞ ɪɟɞ. ɋ.ȼ.Ȼɟɥɨɜɚ. - Ɇ.: ȼɵɫɲɚɹ ɲɤɨɥɚ, 1999. 4. Ȼɟɡɨɩɚɫɧɨɫɬɶ ɠɢɡɧɟɞɟɹɬɟɥɶɧɨɫɬɢ. Ȼɟɡɨɩɚɫɧɨɫɬɶ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɪɨɰɟɫɫɨɜ ɢ ɩɪɨɢɡɜɨɞɫɬɜ (Ɉɯɪɚɧɚ ɬɪɭɞɚ). ɉ.ɉ.Ʉɭɤɢɧ, ɢ ɞɪ. – Ɇ.: ȼɵɫɲɚɹ ɲɤɨɥɚ, 1999. 5. ɒɬɨɤɦɚɧ ȿ.Ⱥ. Ɉɱɢɫɬɤɚ ɜɨɡɞɭɯɚ. - Ɇ.: ɂɡɞ-ɜɨ Ⱥɋȼ, 1999. 6. Ɉɯɪɚɧɚ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ. /ɉɨɞ ɪɟɞ. ɋ.ȼ.Ȼɟɥɨɜɚ. - Ɇ.: ȼɵɫɲɚɹ ɲɤɨɥɚ, 1991. 7. ɋɢɫɬɟɪ ȼ.Ƚ., Ɇɭɲɬɚɟɜ ȼ.ɂ., Ɍɢɦɨɧɢɧ Ⱥ.ɋ. ɗɤɨɥɨɝɢɹ ɢ ɬɟɯɧɢɤɚ ɫɭɲɤɢ ɞɢɫɩɟɪɫɧɵɯ ɦɚɬɟɪɢɚɥɨɜ. – Ʉɚɥɭɝɚ: ɂɡɞ-ɜɨ ɇ. Ȼɨɱɤɚɪɟɜɨɣ, 1999. 8. Ʌɨɬɨɲ ȼ.ȿ. Ɍɟɯɧɨɥɨɝɢɢ ɨɫɧɨɜɧɵɯ ɩɪɨɢɡɜɨɞɫɬɜ ɜ ɩɪɢɪɨɞɨɩɨɥɶɡɨɜɚɧɢɢ. ȿɤɚɬɟɪɢɧɛɭɪɝ, ɂɡɞ-ɜɨ ɍȽɗɍ, 1999. 9. Ʌɨɬɨɲ ȼ.ȿ. ɗɤɨɥɨɝɢɹ ɩɪɢɪɨɞɨɩɨɥɶɡɨɜɚɧɢɹ. - ȿɤɚɬɟɪɢɧɛɭɪɝ, ɂɡɞ-ɜɨ ɍȽɗɍ, 2000. 10.Ɂɢɝɚɧɲɢɧ Ɇ.Ƚ., Ʉɨɥɟɫɧɢɤ Ⱥ.Ⱥ., ɉɨɫɨɯɢɧ ȼ.ɇ. ɉɪɨɟɤɬɢɪɨɜɚɧɢɟ ɚɩɩɚɪɚɬɨɜ ɩɵɥɟɝɚɡɨɨɱɢɫɬɤɢ. – Ɇ.: «ɗɤɨɩɪɟɫɫ – 3Ɇ», 1998. 11.Ʉɚɫɚɬɤɢɧ Ⱥ.Ƚ. Ɉɫɧɨɜɧɵɟ ɩɪɨɰɟɫɫɵ ɢ ɚɩɩɚɪɚɬɵ ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ. Ɇ.: ɏɢɦɢɹ, 1973. 12.ɋɬɚɛɧɢɤɨɜ ȼ.ɇ., Ȼɚɪɚɧɰɟɜ ȼ.ɂ. ɉɪɨɰɟɫɫɵ ɢ ɚɩɩɚɪɚɬɵ ɩɢɳɟɜɵɯ ɩɪɨɢɡɜɨɞɫɬɜ. – Ɇ.: Ʌɟɝɤɚɹ ɢ ɩɢɳɟɜɚɹ ɩɪɨɦ-ɫɬɶ, 1983. 13. Ɏɪɢɞɪɢɯɫɛɟɪɝ Ⱦ.Ⱥ. Ʉɭɪɫ ɤɨɥɥɨɢɞɧɨɣ ɯɢɦɢɢ. - Ʌ.: ɏɢɦɢɹ, 1974. 14. Ɂɚɳɢɬɚ ɚɬɦɨɫɮɟɪɵ ɨɬ ɩɪɨɦɵɲɥɟɧɧɵɯ ɡɚɝɪɹɡɧɟɧɢɣ. ȼ 2-ɯ ɱ. ɑ.1: /ɉɨɞ ɪɟɞ. Ʉɚɥɜɟɪɬɚ ɋ., ɂɧɝɥɭɧɞɚ Ƚ.Ɇ. - Ɇ.: Ɇɟɬɚɥɥɭɪɝɢɹ, 1988. 15. Ɉɱɢɫɬɤɚ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ. /ɉɨɞ ɪɟɞ. ɋ.ȼ.əɤɨɜɥɟɜɚ. – Ɇ.: ɋɬɪɨɣɢɡɞɚɬ, 1985. 16.ɉɚɥɶɝɭɧɨɜ ɉ.ɉ., ɋɭɦɚɪɨɤɨɜ Ɇ.ȼ. ɍɬɢɥɢɡɚɰɢɹ ɩɪɨɦɵɲɥɟɧɧɵɯ ɨɬɯɨɞɨɜ. – Ɇ.: ɋɬɪɨɣɢɡɞɚɬ, 1990. 17. Ʉɟɥɶɰɟɜ ɇ.ȼ. Ɉɫɧɨɜɵ ɚɞɫɨɪɛɰɢɨɧɧɨɣ ɬɟɯɧɢɤɢ. 2-ɟ ɢɡɞ. – Ɇ.: ɏɢɦɢɹ, 1984. 18 Ⱦɵɬɧɟɪɫɤɢɣ ɘ.ɂ. Ȼɚɪɨɦɟɦɛɪɚɧɧɵɟ ɩɪɨɰɟɫɫɵ. Ɍɟɨɪɢɹ ɢ ɪɚɫɱɟɬ. - Ɇ.: ɏɢɦɢɹ, 1986. 19 ɀɭɤɨɜ Ⱥ.ɂ. ɢ ɞɪ. Ɇɟɬɨɞɵ ɨɱɢɫɬɤɢ ɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ ɫɬɨɱɧɵɯ ɜɨɞ. Ɇ. -: ɋɬɪɨɣɢɡɞɚɬ, 1977. 20 ɉɚɜɥɨɜ Ʉ.Ɏ., Ɋɨɦɚɧɤɨɜ ɉ.Ƚ., ɇɨɫɤɨɜ Ⱥ.Ⱥ. ɉɪɢɦɟɪɵ ɢ ɡɚɞɚɱɢ ɩɨ ɤɭɪɫɭ ɩɪɨɰɟɫɫɨɜ ɢ ɚɩɩɚɪɚɬɨɜ ɯɢɦɢɱɟɫɤɨɣ ɬɟɯɧɨɥɨɝɢɢ. Ʌ.: ɏɢɦɢɹ, 1987. 21 Ⱥɜɟɪɤɢɧ Ⱥ.Ƚ. Ⱥɩɩɚɪɚɬɵ ɞɥɹ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ. ɍɱɟɛ. ɩɨɫɨɛɢɟ. ȼ 2-ɯ ɱ. ɑ.1. Ⱥɛɫɨɪɛɟɪɵ. ɉɟɧɡɚ: ɉȽȺɋȺ, 2000. 22 Ⱥɜɟɪɤɢɧ Ⱥ.Ƚ. Ⱥɩɩɚɪɚɬɵ ɞɥɹ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɜɨɡɞɭɯɚ. ɍɱɟɛ. ɩɨɫɨɛɢɟ. ȼ 2-ɯ ɱ. ɑ.2 Ⱥɞɫɨɪɛɟɪɵ. ɉɟɧɡɚ: ɉȽȺɋȺ, 1999. 23 Ɋɚɦɦ ȼ.Ɇ. Ⱥɛɫɨɪɛɰɢɹ ɝɚɡɨɜ. – Ɇ.: ɏɢɦɢɹ, 1976. ɋɨɞɟɪɠɚɧɢɟ ȼȼȿȾȿɇɂȿ.................................................................................................................................................................3 ɊȺɁȾȿɅ 1. ɏȺɊȺɄɌȿɊɂɋɌɂɄɂ ɁȺȽɊəɁɇȿɇɂɃ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɂ ɈɋɇɈȼɇɕȿ ɆȿɌɈȾɕ ȿȿ ɁȺɓɂɌɕ..........................................................................................................................................8 1.1. ɉɈɄȺɁȺɌȿɅɂ ɄȺɑȿɋɌȼȺ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ................................................................................................8 1.2. ɂɋɌɈɑɇɂɄɂ ɁȺȽɊəɁɇȿɇɂə ȺɌɆɈɋɎȿɊɕ..........................................................................................................12 1.3. ɏȺɊȺɄɌȿɊɂɋɌɂɄɂ ɉɕɅȿȽȺɁɈȼɕɏ ɁȺȽɊəɁɇɂɌȿɅȿɃ ȼɈɁȾɍɏȺ ........................................................................15 1.4. ɈɋɇɈȼɇɕȿ ɋȼɈɃɋɌȼȺ ȺɗɊɈɁɈɅȿɃ ..................................................................................................................19 1.5. ȼɊȿȾɇɕȿ ȽȺɁɕ ɂ ɉȺɊɕ ....................................................................................................................................36 1.6. ɄɅȺɋɋɂɎɂɄȺɐɂə ȼɈȾ ɂ ɋȼɈɃɋɌȼȺ ȼɈȾɇɕɏ ȾɂɋɉȿɊɋɇɕɏ ɋɂɋɌȿɆ ............................................................38 1.7. ɄɅȺɋɋɂɎɂɄȺɐɂə ɉɊɈɆɕɒɅȿɇɇɕɏ ɈɌɏɈȾɈȼ ...............................................................................................42 1.8. ɗɇȿɊȽȿɌɂɑȿɋɄɈȿ ɁȺȽɊəɁɇȿɇɂȿ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ..................................................................................43 1.9. ɆȿɌɈȾɕ ɁȺɓɂɌɕ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɈɌ ɉɊɈɆɕɒɅȿɇɇɕɏ ɁȺȽɊəɁɇȿɇɂɃ ..............................................44 1.10. ɆȿɌɈȾɕ ɈɑɂɋɌɄɂ ɉɕɅȿȼɈɁȾɍɒɇɕɏ ȼɕȻɊɈɋɈȼ.........................................................................................47 1.11. ɋɉɈɋɈȻɕ ɈɑɂɋɌɄɂ ȽȺɁɈȼɕɏ ȼɕȻɊɈɋɈȼ ......................................................................................................49 1.12. ɄɅȺɋɋɂɎɂɄȺɐɂə ɋɉɈɋɈȻɈȼ ɈɑɂɋɌɄɂ ɋɌɈɑɇɕɏ ȼɈȾ.................................................................................52 1.13. ɆȿɌɈȾɕ ɁȺɓɂɌɕ ɅɂɌɈɋɎȿɊɕ ......................................................................................................................53 1.14. ɆȿɌɈȾɕ ɁȺɓɂɌɕ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɈɌ ɗɇȿɊȽȿɌɂɑȿɋɄɂɏ ȼɈɁȾȿɃɋɌȼɂɃ ...........................................54 1.15. ɈȻɓɂȿ ɉɊɂɇɐɂɉɕ ɂɇɌȿɇɋɂɎɂɄȺɐɂɂ ɌȿɏɇɈɅɈȽɂɑȿɋɄɂɏ ɉɊɈɐȿɋɋɈȼ ɁȺɓɂɌɕ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ 55 ɊȺɁȾȿɅ 2. ɈɑɂɋɌɄȺ ȼɈɁȾɍɏȺ ɈɌ ȺɗɊɈɁɈɅɖɇɕɏ ɉɊɂɆȿɋȿɃ........................................................57 2.1. ȽɊȺȼɂɌȺɐɂɈɇɇɈȿ ɈɋȺɀȾȿɇɂȿ ɑȺɋɌɂɐ.........................................................................................................58 2.2. ɐȿɇɌɊɈȻȿɀɇɈȿ ɈɋȺɀȾȿɇɂȿ ɑȺɋɌɂɐ .............................................................................................................63 2.3. ɂɇȿɊɐɂɈɇɇɈȿ ɈɋȺɀȾȿɇɂȿ ɑȺɋɌɂɐ ...............................................................................................................66 2.4. ɎɂɅɖɌɊɈȼȺɇɂȿ ȺɗɊɈɁɈɅȿɃ ............................................................................................................................69 2.5. ɆɈɄɊȺə ȽȺɁɈɈɑɂɋɌɄȺ ....................................................................................................................................75 2.6. ɈɋȺɀȾȿɇɂȿ ɑȺɋɌɂɐ ȼ ɗɅȿɄɌɊɂɑȿɋɄɈɆ ɉɈɅȿ ...............................................................................................78 2.7. ɌȿɊɆɈɎɈɊȿɁ ɑȺɋɌɂɐ ȺɗɊɈɁɈɅȿɃ ...................................................................................................................83 ɊȺɁȾȿɅ 3. ɈɑɂɋɌɄȺ ȽȺɁɈȼɕɏ ȼɕȻɊɈɋɈȼ ..............................................................................................85 3.1. ȺȻɋɈɊȻɐɂə ȽȺɁɈȼɕɏ ɉɊɂɆȿɋȿɃ ....................................................................................................................86 3.1.1. Ɋɚɫɬɜɨɪɵ ɝɚɡɨɜ ɜ ɠɢɞɤɨɫɬɹɯ ................................................................................................................88 3.1.2. Ɋɚɜɧɨɜɟɫɢɟ ɜ ɩɪɨɰɟɫɫɚɯ ɚɛɫɨɪɛɰɢɢ.........................................................................................................91 3.1.3. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɚɛɫɨɪɛɰɢɢ..........................................................................................................95 3.1.4. Ɇɚɫɫɨɩɟɪɟɧɨɫ ɜ ɩɪɨɰɟɫɫɟ ɚɛɫɨɪɛɰɢɢ......................................................................................................98 3.1.5. Ʉɢɧɟɬɢɱɟɫɤɢɟ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɚɛɫɨɪɛɰɢɢ.........................................................................................100 3.1.6. ɋɯɟɦɵ ɚɛɫɨɪɛɰɢɨɧɧɵɯ ɩɪɨɰɟɫɫɨɜ.........................................................................................................103 3.2. ȺȾɋɈɊȻɐɂə ȽȺɁɈȼɕɏ ɉɊɂɆȿɋȿɃ ..................................................................................................................106 3.2.1. Ɍɟɨɪɢɹ ɚɞɫɨɪɛɰɢɢ ..................................................................................................................................108 3.2.2. Ⱥɞɫɨɪɛɟɧɬɵ ...........................................................................................................................................110 3.2.3. Ɇɟɯɚɧɢɡɦ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ .............................................................................................................113 3.2.4. Ɋɚɜɧɨɜɟɫɢɟ ɩɪɢ ɚɞɫɨɪɛɰɢɢ ....................................................................................................................115 3.2.5. Ɇɚɬɟɪɢɚɥɶɧɵɣ ɛɚɥɚɧɫ ɩɪɨɰɟɫɫɚ ɚɞɫɨɪɛɰɢɢ........................................................................................117 3.2.6. Ʉɢɧɟɬɢɤɚ ɚɞɫɨɪɛɰɢɢ .............................................................................................................................119 3.2.7. Ⱦɟɫɨɪɛɰɢɹ ɩɨɝɥɨɳɟɧɧɵɯ ɩɪɢɦɟɫɟɣ .......................................................................................................123 3.3. ɌȿɊɆɈɏɂɆɂɑȿɋɄɈȿ ɈȻȿɁȼɊȿɀɂȼȺɇɂȿ ȽȺɁɈɈȻɊȺɁɇɕɏ ȼɕȻɊɈɋɈȼ ............................................................124 3.3.1. Ʉɚɬɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ.......................................................................126 3.3.2. Ɍɟɨɪɢɹ ɩɪɨɰɟɫɫɚ ɤɚɬɚɥɢɡɚ ....................................................................................................................129 3.3.3. Ʉɢɧɟɬɢɤɚ ɪɟɚɤɰɢɣ ɝɟɬɟɪɨɝɟɧɧɨɝɨ ɤɚɬɚɥɢɡɚ.......................................................................................131 3.3.4. ȼɵɫɨɤɨɬɟɦɩɟɪɚɬɭɪɧɨɟ ɨɛɟɡɜɪɟɠɢɜɚɧɢɟ ɝɚɡɨɜɵɯ ɜɵɛɪɨɫɨɜ .............................................................132 3.4. ɄɈɇȾȿɇɋȺɐɂə ȽȺɁɈɈȻɊȺɁɇɕɏ ɉɊɂɆȿɋȿɃ ...................................................................................................134 ɊȺɁȾȿɅ 4. ɊȺɋɋȿɂȼȺɇɂȿ ȼɕȻɊɈɋɈȼ ȼ ȺɌɆɈɋɎȿɊȿ........................................................................137 4.1. ȾɂɎɎɍɁɂɈɇɇɕȿ ɉɊɈɐȿɋɋɕ ȼ ȺɌɆɈɋɎȿɊȿ ...................................................................................................139 4.2. ɊȺɋɉɊɈɋɌɊȺɇȿɇɂȿ ɁȺȽɊəɁɇȿɇɂɃ ȼ ȺɌɆɈɋɎȿɊȿ ..........................................................................................142 4.3. ɂɁɆȿɇȿɇɂȿ ɄɈɇɐȿɇɌɊȺɐɂɂ ɉɊɂɆȿɋȿɃ ȼ ȺɌɆɈɋɎȿɊȿ ................................................................................143 ɊȺɁȾȿɅ 5. ɁȺɓɂɌȺ ȽɂȾɊɈɋɎȿɊɕ ..............................................................................................................149 5.1. ȽɂȾɊɈɆȿɏȺɇɂɑȿɋɄɂȿ ɋɉɈɋɈȻɕ ɈɑɂɋɌɄɂ ɋɌɈɑɇɕɏ ȼɈȾ ..........................................................................149 5.1.1. Ɉɬɫɬɚɢɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ...................................................................................................................150 5.1.2. ɐɟɧɬɪɨɛɟɠɧɨɟ ɨɫɚɠɞɟɧɢɟ ɩɪɢɦɟɫɟɣ ɢɡ ɫɬɨɱɧɵɯ ɜɨɞ.......................................................................154 5.1.3. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ .................................................................................................................158 5.2. ɎɂɁɂɄɈ-ɏɂɆɂɑȿɋɄɂȿ ɆȿɌɈȾɕ ɈɑɂɋɌɄɂ ɋɌɈɑɇɕɏ ȼɈȾ ............................................................................161 5.2.1. Ʉɨɚɝɭɥɹɰɢɹ ɢ ɮɥɨɤɭɥɹɰɢɹ ɡɚɝɪɹɡɧɟɧɢɣ ɫɬɨɱɧɵɯ ɜɨɞ ..........................................................................162 5.2.2. Ɏɥɨɬɚɰɢɨɧɧɚɹ ɨɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ .................................................................................................166 5.2.3. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɚɞɫɨɪɛɰɢɟɣ.......................................................................................................172 5.2.4. ɂɨɧɧɵɣ ɨɛɦɟɧ ɜ ɪɚɫɬɜɨɪɚɯ ɫɬɨɱɧɵɯ ɜɨɞ............................................................................................176 5.2.5. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɷɤɫɬɪɚɤɰɢɟɣ ɡɚɝɪɹɡɧɟɧɢɣ ...............................................................................181 5.2.6. Ɉɛɪɚɬɧɵɣ ɨɫɦɨɫ ɢ ɭɥɶɬɪɚɮɢɥɶɬɪɚɰɢɹ ɜ ɪɚɫɬɜɨɪɚɯ ɫɬɨɱɧɵɯ ɜɨɞ ..................................................185 5.2.7. Ⱦɟɫɨɪɛɰɢɹ, ɞɟɡɨɞɨɪɚɰɢɹ ɢ ɞɟɝɚɡɚɰɢɹ ɪɚɫɬɜɨɪɟɧɧɵɯ ɩɪɢɦɟɫɟɣ .........................................................189 5.2.8. ɗɥɟɤɬɪɨɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ..........................................................................191 5.3. ɏɂɆɂɑȿɋɄɂȿ ɆȿɌɈȾɕ ɈɑɂɋɌɄɂ ɋɌɈɑɇɕɏ ȼɈȾ ...........................................................................................194 5.3.1. ɇɟɣɬɪɚɥɢɡɚɰɢɹ ɫɬɨɱɧɵɯ ɜɨɞ................................................................................................................194 5.3.2. Ɉɤɢɫɥɟɧɢɟ ɡɚɝɪɹɡɧɢɬɟɥɟɣ ɫɬɨɱɧɵɯ ɜɨɞ ...............................................................................................195 5.3.3. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɜɨɫɫɬɚɧɨɜɥɟɧɢɟɦ.............................................................................................197 5.3.4. Ɉɱɢɫɬɤɚ ɫɬɨɱɧɵɯ ɜɨɞ ɨɬ ɢɨɧɨɜ ɬɹɠɟɥɵɯ ɦɟɬɚɥɥɨɜ ........................................................................198 5.4. ɉɊɈɐȿɋɋɕ ȻɂɈɏɂɆɂɑȿɋɄɈɃ ɈɑɂɋɌɄɂ ɋɌɈɑɇɕɏ ȼɈȾ ................................................................................200 5.4.1. Ɉɫɧɨɜɧɵɟ ɩɨɤɚɡɚɬɟɥɢ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ ɫɬɨɱɧɵɯ ɜɨɞ ...........................................................200 5.4.2. Ɇɟɬɨɞ ɚɷɪɨɛɧɨɣ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ..........................................................................................201 5.4.3. Ɇɟɯɚɧɢɡɦ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɪɚɫɩɚɞɚ ɨɪɝɚɧɢɱɟɫɤɢɯ ɜɟɳɟɫɬɜ ..............................................................202 5.4.4. Ʉɢɧɟɬɢɤɚ ɛɢɨɯɢɦɢɱɟɫɤɨɝɨ ɨɤɢɫɥɟɧɢɹ ..................................................................................................202 5.4.5. Ⱥɧɚɷɪɨɛɧɵɟ ɦɟɬɨɞɵ ɛɢɨɯɢɦɢɱɟɫɤɨɣ ɨɱɢɫɬɤɢ....................................................................................204 5.4.6. Ɉɛɪɚɛɨɬɤɚ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ........................................................................................................204 5.5. ɌȿɊɆɂɑȿɋɄɂȿ ɆȿɌɈȾɕ ɈɑɂɋɌɄɂ ɋɌɈɑɇɕɏ ȼɈȾ ..........................................................................................205 5.5.1. Ʉɨɧɰɟɧɬɪɢɪɨɜɚɧɢɟ ɫɬɨɱɧɵɯ ɜɨɞ..........................................................................................................206 5.5.2. Ʉɪɢɫɬɚɥɥɢɡɚɰɢɹ ɜɟɳɟɫɬɜ ɢɡ ɪɚɫɬɜɨɪɨɜ..............................................................................................207 5.5.3. Ɍɟɪɦɨɨɤɢɫɥɢɬɟɥɶɧɵɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɫɬɨɱɧɵɯ ɜɨɞ ..........................................................208 ɊȺɁȾȿɅ 6. ɁȺɓɂɌȺ ɅɂɌɈɋɎȿɊɕ ................................................................................................................210 6.1. ȽɂȾɊɈɆȿɏȺɇɂɑȿɋɄɂȿ ɆȿɌɈȾɕ ɈȻɊȺȻɈɌɄɂ ɀɂȾɄɂɏ ɈɌɏɈȾɈȼ ..................................................................210 6.1.1. Ƚɢɞɪɨɦɟɯɚɧɢɱɟɫɤɨɟ ɨɛɟɡɜɨɠɢɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ................................................................210 6.1.2. Ɏɢɥɶɬɪɨɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ...................................................................................................213 6.1.3. ɐɟɧɬɪɨɛɟɠɧɨɟ ɮɢɥɶɬɪɨɜɚɧɢɟ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ........................................................................217 6.2. ɆȿɏȺɇɂɑȿɋɄȺə ɉȿɊȿɊȺȻɈɌɄȺ ɌȼȿɊȾɕɏ ɈɌɏɈȾɈȼ......................................................................................220 6.3. ɎɂɁɂɄɈ-ɏɂɆɂɑȿɋɄɂȿ ɈɋɇɈȼɕ ɈȻɊȺȻɈɌɄɂ ɂ ɍɌɂɅɂɁȺɐɂɂ ɈɌɏɈȾɈȼ .......................................................224 6.3.1. Ɋɟɚɝɟɧɬɧɚɹ ɨɛɪɚɛɨɬɤɚ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ ....................................................................................224 6.3.2. Ɏɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɢɡɜɥɟɱɟɧɢɹ ɤɨɦɩɨɧɟɧɬɨɜ ɢɡ ɨɬɯɨɞɨɜ ..................................................226 6.3.3. Ɉɛɨɝɚɳɟɧɢɟ ɩɪɢ ɪɟɤɭɩɟɪɚɰɢɢ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ................................................................................227 6.4. ɌȿɊɆɂɑȿɋɄɂȿ ɆȿɌɈȾɕ ɈȻɊȺȻɈɌɄɂ ɈɌɏɈȾɈȼ. .............................................................................................228 6.4.1. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɛɟɡɜɪɟɠɢɜɚɧɢɹ ɦɢɧɟɪɚɥɢɡɨɜɚɧɧɵɯ ɫɬɨɤɨɜ ..................................................228 6.4.2. Ɍɟɪɦɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɤɨɧɞɢɰɢɨɧɢɪɨɜɚɧɢɹ ɨɫɚɞɤɨɜ ɫɬɨɱɧɵɯ ɜɨɞ......................................................230 6.4.3. ɋɭɲɤɚ ɜɥɚɠɧɵɯ ɦɚɬɟɪɢɚɥɨɜ................................................................................................................230 6.4.4. Ɍɟɪɦɨɯɢɦɢɱɟɫɤɚɹ ɨɛɪɚɛɨɬɤɚ ɬɜɟɪɞɵɯ ɨɬɯɨɞɨɜ ................................................................................232 ɊȺɁȾȿɅ 7. ɁȺɓɂɌȺ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɈɌ ɗɇȿɊȽȿɌɂɑȿɋɄɂɏ ȼɈɁȾȿɃɋɌȼɂɃ.............234 7.1. ɌȿɈɊȿɌɂɑȿɋɄɂȿ ɈɋɇɈȼɕ ɁȺɓɂɌɕ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɈɌ ɗɇȿɊȽȿɌɂɑȿɋɄɂɏ ȼɈɁȾȿɃɋɌȼɂɃ. ...............234 7.2. ɁȺɓɂɌȺ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɈɌ ɆȿɏȺɇɂɑȿɋɄɂɏ ɂ ȺɄɍɋɌɂɑȿɋɄɂɏ ɄɈɅȿȻȺɇɂɃ ...................................236 7.3. ɁȺɓɂɌȺ ɈɌ ɂɈɇɂɁɂɊɍɘɓɂɏ ɂɁɅɍɑȿɇɂɃ ....................................................................................................241 7.4. ɁȺɓɂɌȺ ɈɌ ɗɅȿɄɌɊɈɆȺȽɇɂɌɇɕɏ ɉɈɅȿɃ ɂ ɂɁɅɍɑȿɇɂɃ ..............................................................................242 ɅɂɌȿɊȺɌɍɊȺ .......................................................................................................................................................246
«Характеристики загрязнений окружающей среды и основные методы ее защиты» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Тебе могут подойти лекции

Смотреть все 91 лекция
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot