Справочник от Автор24
Поделись лекцией за скидку на Автор24

Физико-химические методы исследования углеводородных систем

  • 👀 517 просмотров
  • 📌 484 загрузки
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Физико-химические методы исследования углеводородных систем» doc
Лекция 4 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ И ГАЗА Физико-химические методы исследования углеводородных систем В основе разработки и переработки нефти и товарных нефтепродуктов лежат физико-химические процессы и управление этими процессами требует знания физических и физико-химических свойств нефти, ее фракций. В большинстве случае из-за сложности состава используются средние значения физико-химических характеристик нефтяного сырья. 5. Оптические свойства нефти и н/п К оптическим свойствам нефти и н/п относятся цвет, коэффициент лучепреломления, оптическая плотность и активность. Все эти показатели существенно зависят от химической природы вещества, состава фракций, поэтому оптические свойства н/п косвенно характеризуют их химический состав. 5.1. Цвет Цвет нефти или н/п изменяется от светло-желтого до темно-коричневого и черного. Легкие нефти с плотностью 780,0-790,0 кг/м3 имеют желтую окраску, нефти средней плотности (790,0-820,0 кг/м3) –янтарного цвета и тяжелые нефти – темно-коричневые и черные. Цвет нефти н/п придают асфальтосмолистые вещества, продукты окисления углеводородов и некоторые непредельные и ароматические углеводороды, поэтому по цвету сырых нефтей об относительном содержании в них асфальтосмолистых соединений. Обычно, чем тяжелее н/п, тем он темнее. Цвет н/п – надежный показатель степени его очистки от смолистых примесей, который и является одним из показателей качества нефтяных масел. Для определения цвета пользуются различными приборами, называемыми колориметрами. Цвет определяется в соответствии с двумя стандартами: ГОСТ 2667-82 (для светлых н/п на колориметрах ЦНТ и КНС-1) и ГОСТ 25337-82 (для нефтяных парафинов на колориметре КНС-2). Метод определения цвета на колориметре КНС-1 сводится к следующему. В специальную прозрачную кювету заливают испытуемый н/п, например, дизельное топливо, включают источник света и через систему призм наблюдают в окуляр цвет прошедшего через слой н/п луч (слева в окуляре). Вращением диска, в котором имеется по кругу 21 светофильтр, устанавливают на пути луча тот из них, который близок или совпадает с цветом н/п (справа в окуляре). Измеренный цвет н/п указывают соответствующим номером светофильтра КНС-1. 5.2. Коэффициент преломления (рефракции) При переходе световых лучей из одной среды в другую их скорость и направление меняются. Эти явления известны в физике под названием лучепреломления или рефракции. Если луч попадает из оптически менее плотной среды в оптически более плотную, то он приближается к перпендикуляру, восстановленному в точке перехода. Если же, наоборот, луч попадает из оптически более плотной среды в оптически менее плотную, то он удаляется от этого перпендикуляра. С изменением угла падения меняется угол преломления, но отношение величин этих углов для одной и той же среды остается постоянным: sin r / sin i = n = const (1) Это отношение называется коэффициентом или показателем, преломления (nD20). Для н/п показатель преломления определяют при прохождении светового луча из воздуха в нефтепродукт, поэтому он всегда больше единицы. Между коэффициентом преломления и плотностью для различных гомологов одного и того же ряда существует линейная зависимость. Показатель преломления (так же, как и плотность) углеводородных молекул тем меньше, чем больше в них относительное содержание водорода. При одинаковом содержании углеродных и водородных атомов в молекуле показатель преломления и плотность циклических углеводородов будут выше, чем алифатических углеводородов. Например, nD20 бензола больше, чем nD20 гексена, а nD20 гексена больше, чем nD20 гексана. В общем случае, наибольшими плотностью и коэффициентом преломления обладают ароматические углеводороды, а наименьшим – алифатические метановые углеводороды. Нафтены занимают промежуточное положение. Закономерности, изложенные выше для индивидуальных углеводородов, наблюдаются также и для нефтяных фракций, т. е. чем выше температура кипения фракции, тем выше ее плотность и коэффициент преломления. Зависимость показателя преломления углеводородов от молекулярной массы На рис. показана зависимость показателя преломления углеводородов разного строения от молекулярной массы. Для разных углеводородов наблюдается разная степень зависимости nD20 от молекулярной массы. В большей степени изменение nD20 от молекулярной массы проявляется для парафиновых углеводородов. По показателю преломления приближенно можно судить о групповом углеводородном составе н/п, а в сочетании с плотностью, молекулярной массой рассчитать структурно-групповой состав нефтяных фракций. Кроме того, показатель преломления зависит от температуры, nD20 с повышением температуры уменьшается, причем для масел, парафинов и церезина это снижение составляет 0,0004 на каждый градус разности температур. Пересчет nD20 с одной температуры на другую осуществляется по формуле: nDto = nDt + (t-to), (2) где  - поправочный коэффициент (0,0004 на 1 0С), nDto – показатель преломления для D – линии натрия (λ = 589,3 нм) при температуре t0, nDt – то же при температуре опыта. Показатель преломления смеси углеводородов nсм является аддитивной функцией ее состава, выраженного в объемных процентах: nсм = [Va/(Va + Vb)] ∙ na + = [Vb/(Va + Vb)] ∙ nb, (3) где Va и Vb – соответственно объемное содержание компонента А и В, na и nb – соответственно показатели преломления компонентов А и В. Аддитивность свойств широко используется при анализе н/п, примером может служить метод определения относительного содержания ароматических углеводородов в узких фракциях бензина. Экспериментально показатель преломления определяют с помощью рефрактометров; при обычном дневном освещении – на рефрактометре ИРФ-22 или со специальным монохроматическим светом – на ИРФ-23. Точность этих рефрактометров соответственно 2 ∙ 10-4 и 1,5 ∙ 10-5. 5.3. Оптическая активность Оптическая активность – это свойство н/п поворачивать вокруг своей оси (вращать) плоскость луча поляризованного света (главным образом вправо). Измерение угла вращения проводят с помощью поляриметров. Природа этого явления ясна не до конца, однако считается, что оно связано с присутствием в нефтях полициклических нафтенов и аренов. По убыванию оптической активности углеводороды располагаются в ряд: полициклические циклоалканы, циклоалканоарены, полициклические арены, моноциклические арены, алканы. 6. Температура вспышки, воспламенения и самовоспламенения Температурой вспышки – называется температура, при которой н/п, нагретый в стандартных условиях, выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхивающую при поднесении к ней пламени. Для индивидуальных углеводородов существует определенная количественная связь температуры вспышки и температуры кипения, выражаемая соотношением: Твсп = 0,736 Ткип, (3) где Твсп и Ткип выражены в К. Для н/п, выкипающих в широком интервале температур, такую зависимость установить нельзя. В этом случае температура вспышки н/п связана с их средней температурой кипения, т.е. с испаряемостью. Чем легче фракция н/п, тем ниже ее температура вспышки. Так, например, бензиновые фракции имеют отрицательные (до минус 40 0С) температуру вспышки, керосиновые фракции 28 – 60 0С, масляные фракции 130-325 0С. Присутствие влаги, продуктов распада в нефтепродуктах заметно влияет на величину его температуры вспышки. Стандартизованы два метода определения температуры вспышки н/п в открытом (ГОСТ 4333-87) и закрытом (ГОСТ 6356-75) тиглях. Разность температур вспышки одних и тех же н/п при определении в открытом и закрытом тиглях весьма велика. В последнем случае требуемое количество нефтяных паров накапливается раньше, чем в приборах открытого типа. Кроме того, в открытом тигле образовавшиеся пары свободно диффундируют в воздух. Указанная разность тем больше, чем выше температура вспышки н/п. При определении температуры вспышки в открытом тигле н/п сначала обезвоживают с помощью хлорида кальция, сульфата кальция, затем заливают в тигель до определенного уровня в зависимости от вида н/п. Нагрев тигля ведут с определенной скоростью, и при температуре на 10 0С ниже ожидаемой температуры вспышки медленно проводят по краю тигля над поверхностью н/п пламенем горелки, горящей деревянной палочки или другого зажигательного устройства. Эту операцию повторяют через каждые 2 0С. За температуру вспышки принимают ту температуру, при которой появляется синее пламя над поверхностью н/п. При определении температуры вспышки в закрытом тигле н/п заливают до определенной метки и в отличие от описанного выше метода нагревание его проводят при непрерывном перемешивании. При открывании крышки тигля в этом приборе автоматически подносится пламя к поверхности н/п. Определение температуры вспышки начинают за 10 0С до предполагаемой температуры вспышки – если она ниже 50 0С, и за 17 0С – если она выше 50 0С. Определение проводят через каждый градус, причем в момент определения перемешивание прекращают. Все вещества, имеющую температуру вспышки в закрытом тигле ниже 61 0С, относятся к легковоспламеняющимся жидкостям (ЛВЖ), которые , в свою очередь, подразделяются на особо опасные (tвсп ниже минус 18 0С), постоянно опасные (tвсп от минус 18 0С до 23 0С) и опасные при повышенной температуре (tвсп от 23 0С до 61 0С). Температура вспышки н/п характеризует возможность этого н/п образовывать с воздухом взрывчатую смесь. Смесь паров н/п с воздухом становится взрывчатой, когда концентрация паров горючего в ней достигает определенных значений и в соответствии с этим различают нижний и верхний пределы взрываемости смеси паров н/п с воздухом. Если концентрация паров н/п меньше нижнего предела взрываемости, взрыва не происходит, т.к. имеющийся избыток воздуха поглощает выделяющееся в исходной точке взрыва тепло и таким образом препятствует возгоранию остальных частей горючего. При концентрации паров н/п в воздухе выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси. 6.1. Температура воспламенения и самовоспламения При определении температуры вспышки в открытом тигле н/п вспыхивает и сейчас же гаснет. Если же продолжать нагревание н/п, можно вновь наблюдать вспышку паров, при этом вспыхнувший н/п будет спокойно гореть в течение некоторого времени, соответствующая этому наинизшая температура называется температурой воспламенения. Если н/п нагреть до высокой температуры, а затем привести его в соприкосновение с воздухом, то он самопроизвольно воспламениться. Температуру, при которой соприкосновение н/п с воздухом вызывает его воспламенение и устойчивое горение без поднесения источника огня, называют температурой самовоспламенения. Температура самовоспламенения н/п зависит не от испаряемости, а от их химического состава, наибольшей температурой самовоспламенения обладают ароматические углеводороды, а также богатые ими н/п, наименьшей - парафиновые углеводороды. Чем выше молекулярная масса углеводородов, тем ниже температура самовоспламенения, т.к. она зависит от окислительной способности. С повышением молекулярной массы углеводородов их окислительная способность возрастает, и они вступают в реакцию окисления при более низкой температуре. Температуру самовоспламенения н/п определяют по ГОСТ 13920-68 в открытой колбе нагреванием до появления пламени в колбе. Температура самовоспламенения на сотни градусов выше температур вспышки и воспламенения. Самовоспламенение н/п часто является причиной пожаров при нарушении герметичности фланцевых соединений в трубчатых печах и т.д. 7. Низкотемпературные свойства н/п Низкотемпературные свойства нефтей и н/п (топлив и и масел) позволяют оценивать их подвижность, а также косвенно наличие в них некоторых групп углеводородов. Так, парафинистые н/п застывают при более высоких температурах, присутствие смолистых веществ понижает температуру застывания. К низкотемпературным характеристикам нефтей и н/п относят температуры помутнения, начала кристаллизации, застывания. 7.1 Температура помутнения Температурой помутнения считается та максимальная температура, при которой в проходящем свете топливо меняет прозрачность (мутнеет) при сравнении с эталонным (параллельным) образцом. Температура помутнения для авиабензинов, авиакеросинов и дизельных топлив определяют стандартным методом (ГОСТ 5066-91). Для этого в две стандартные пробирки с двойными стенками заливают образец испытуемого топлива (до метки) и закрывают корковой пробкой, в которую вставлены термометр и проволочная мешалка. Первую пробирку устанавливают в бане с охладительной смесью, а вторую (контрольную) – на штативе для пробирок. Первую пробирку охлаждают при постоянном перемешивании и за 5 0С до ожидаемой температуры помутнения быстро вынимают из бани, опускают в стакан со спиртом и вставляют в штатив рядом со второй контрольной пробиркой. Если в проходящем свете прозрачность топлива в первой пробирке не изменилась, то ее вновь устанавливают в баню и продолжают охлаждение. Дальнейшие контрольные наблюдения проводят через каждый градус, и та температура, при которой появится мутность в первой пробирке по сравнению с контрольной, принимается за температуру помутнения. Температурой помутнения чаще всего характеризуют низкотемпературные свойства дизельных топлив, для них она составляет от 0 0С до минус 35 0С. Помутнение дизельных топлив очень часто обусловлено присутствием в них какого-то количества н-алканов и примеси воды, которые при охлаждении первыми образуют по всему объему топлива мелкие кристаллы. 7.2. Температура начала кристаллизации Температура начала кристаллизации характеризует низкотемпературные свойства авиационных топлив (бензинов и керосинов), в составе которых практически отсутствуют н-алканы. Температура начала кристаллизации определяется, так же как и температура помутнения, по ГОСТ 5066-91. По достижении температуры помутнения топливо продолжают охлаждать до появления первых кристаллов. За температуру начала кристаллизации принимают максимальную температуру, при которой в топливе невооруженным глазом обнаруживаются кристаллы ароматических углеводородов, прежде всего бензола, который затвердевает при 5,5 0С. Эти кристаллы, хотя и не приводят к потере текучести топлив, тем не менее опасны для эксплуатации двигателей, поскольку забивают их топливные фильтры и нарушают подачу топлива. Поэтому по техническим условиям температура начала кристаллизации авиационных и реактивных топлив не должна превышать минус 60 0С. 7.3. Температура застывания Большое значение при транспортировке и применении н/п в зимних условиях имеет их подвижность при низких температурах. Температура, при которой н/п в стандартных условиях теряет подвижность, называется температурой застывания. Потеря подвижности н/п связана с фазовым переходом вещества из области обычной вязкости к структурной. Фазовый переход при понижении температуры в парафинистых н/п сопровождается появлением множества кристаллов парафина и церезина, которые образуют сетку – кристаллический каркас. Незастывшая часть н/п находится внутри сетки и таким образом становится неподвижной. Форма выделяюшихся кристаллов зависит от химического состава углеводородной среды, скорость их роста – от вязкости среды, содержания и растворимости парафиновых углеводородов при данной температуре и скорости охлаждения системы. Скорость роста кристаллов прямо пропорциональна концентрации парафиновых углеводородов и обратно пропорциональна вязкости среды. Смолистые и некоторые другие поверхностно-активные вещества, адсорбируясь на поверхности кристаллов, способны задерживать процесс кристаллизации парафинов, поэтому температура застывания масляных дистиллятов после очистки от смол повышается. Существуют такие вещества, которые при добавлении к минеральным маслам понижают их температуру застывания, такие вещества называются депрессорными присадками, или депрессаторами. Температуру застывания н/п определяют по ГОСТ 20287-91. Предварительно нагретый и профильтрованный н/п заливают в стандартную пробирку до метки и закрывают пробкой с термометром. Пробирку с н/п нагревают для того, чтобы твердые смолистые вещества и кристаллы парафинов расплавились или растворились в жидкой части н/п. Для н/п, богатых смолами и бедных парафинами, предварительный подогрев приводит к понижению температуры застывания, т.к. смолы, адсорбируясь на кристаллах парафина, препятствуют образованию парафиновой кристаллической решетки, напротив, температура застывания н/п, богатых парафинами, после подогрева повышается. Пробирку с нагретым н/п вставляют в специальную муфту охладительной бани и охлаждают до предполагаемой температуры застывания. При этой температуре пробирку с н/п наклоняют под углом 45о и наблюдают за его уровнем. Независимо от того, смещается уровень или остается неподвижным, опыт повторяют с самого начала, включая термическую обработку, и охлаждают продукт до более низкой или более высокой температуры. Таким образом, находят ту наивысшую температуру, при которой уровень н/п пробирке, наклоненной под углом 45о, остается неподвижным в течение определенного времени и эта температура принимается за температуру застывания н/п. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Перечень рекомендуемой литературы • Основная литература: • Технология переработки нефти. В 2-х частях. Часть первая. Первичная переработка нефти /Под ред. О.Ф. Глаголевой и В.М. Капустина. – М.: КолосС, 2006. – 400 с. • Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с. • Мановян А.К. Технология переработки природных энергоносителей.- М.: Химия, КолосС, 2004. – 456 с. • Вержичинская С.В., Дигуров Н.Г., Синицин С.А. Химия и технология нефти и газа: Учебное пособие для среднего профессионального образования. – М.: ФОРУМ: ИНФРА-М, 2007.-400 с. • Эрих В.Н., Расина М.Г., Рудин М.Г. Химия и технология нефти и газа: Учебное пособие для техникумов. – 3-е изд., перераб. – Л.: Химия, 1985. – 408 с. • Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокоокта-новых бензинов.- М.: Химия, 1981. -224 с. • Проблемы теории и практики исследований в области катализа. Под ред. академика АН УССР В.А. Ройтера. – Киев: Наукова думка, 1973. -362 с. • Гольберт К.А., Вигдергауз М.С. Курс газовой хроматографии. Изд. 2-е испр. и доп. М., Химия,1974. 376 с.
«Физико-химические методы исследования углеводородных систем» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Тебе могут подойти лекции

Смотреть все 210 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot