Справочник от Автор24
Поделись лекцией за скидку на Автор24

Архитектура операционной системы. Концепция процессов и потоков. Задание, процессы, потоки (нити), волокна. Мультипрограммирование. Формы многопрограммной работы. Управление процессами и потоками.

  • 👀 753 просмотра
  • 📌 701 загрузка
Выбери формат для чтения
Статья: Архитектура операционной системы. Концепция процессов и потоков. Задание, процессы, потоки (нити), волокна. Мультипрограммирование. Формы многопрограммной работы. Управление процессами и потоками.
Найди решение своей задачи среди 1 000 000 ответов
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Архитектура операционной системы. Концепция процессов и потоков. Задание, процессы, потоки (нити), волокна. Мультипрограммирование. Формы многопрограммной работы. Управление процессами и потоками.» pdf
Лекция 4 4.1. Архитектура операционной системы Под архитектурой операционной системы понимают структурную и функциональную организацию ОС на основе некоторой совокупности программных модулей. В состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, программные модули специального формата (например, загрузчик ОС, драйверы вводавывода), конфигурационные файлы, файлы документации, модули справочной системы и т.д. На архитектуру ранних операционных систем обращалось мало внимания: во-первых, ни у кого не было опыта в разработке больших программных систем, а во-вторых, проблема взаимозависимости и взаимодействия модулей недооценивалась. В подобных монолитных ОС почти все процедуры могли вызывать одна другую. Такое отсутствие структуры было несовместимо с расширением операционных систем. Первая версия ОС OS/360 была создана коллективом из 5000 человек за 5 лет и содержала более 1 млн строк кода.. Стало ясно, что разработка таких систем должна вестись на основе модульного программирования. Большинство современных ОС представляют собой хорошо структурированные модульные системы, способные к развитию, расширению и переносу на новые платформы. Какой-либо единой унифицированной архитектуры ОС не существует, но известны универсальные подходы к структурированию ОС. Принципиально важными универсальными подходами к разработке архитектуры ОС являются [5, 10, 13, 17]: • • • • • • • • • модульная организация; функциональная избыточность; функциональная избирательность; параметрическая универсальность; концепция многоуровневой иерархической вычислительной системы, по которой ОС представляется многослойной структурой; разделение модулей на две группы по функциям: ядро – модули, выполняющие основные функции ОС, и модули, выполняющие вспомогательные функции ОС; разделение модулей ОС на две группы по размещению в памяти вычислительной системы: резидентные, постоянно находящиеся в оперативной памяти, и транзитные, загружаемые в оперативную память только на время выполнения своих функций; реализация двух режимов работы вычислительной системы: привилегированного режима (режима ядра – Kernel mode), или режима супервизора (supervisor mode), и пользовательского режима (user mode), или режима задачи (task mode); ограничение функций ядра (а следовательно, и количества модулей ядра) до минимального количества необходимых самых важных функций. Первые ОС разрабатывались как монолитные системы без четко выраженной структуры (рис. 4.1). Для построения монолитной системы необходимо скомпилировать все отдельные процедуры, а затем связать их вместе в единый объектный файл с помощью компоновщика (примерами могут служить ранние версии ядра UNIX или Novell NetWare). Каждая процедура видит любую другую процедуру (в отличие от структуры, содержащей модули, в которой большая часть информации является локальной для модуля, и процедуры модуля можно вызвать только через специально определенные точки входа). Однако даже такие монолитные системы могут быть немного структурированными. При обращении к системным вызовам, поддерживаемым ОС, параметры помещаются в строго определенные места, такие как регистры или стек, а затем выполняется специальная команда прерывания, известная как вызов ядра или вызов супервизора. Эта команда переключает машину из режима пользователя в режим ядра, называемый также режимом супервизора, и передает управление ОС. Затем ОС проверяет параметры вызова, для того чтобы определить, какой системный вызов должен быть выполнен. После этого ОС индексирует таблицу, содержащую ссылки на процедуры, и вызывает соответствующую процедуру. Рис. 4.1. Монолитная архитектура Такая организация ОС предполагает следующую структуру [13]: • • • главная программа, которая вызывает требуемые сервисные процедуры; набор сервисных процедур, реализующих системные вызовы; набор утилит, обслуживающих сервисные процедуры. В этой модели для каждого системного вызова имеется одна сервисная процедура. Утилиты выполняют функции, которые нужны нескольким сервисным процедурам. Это деление процедур на три слоя показано на рис. 4.2. Классической считается архитектура ОС, основанная на концепции иерархической многоуровневой машины, привилегированном ядре и пользовательском режиме работы транзитных модулей. Модули ядра выполняют базовые функции ОС: управление процессами, памятью, устройствами ввода-вывода и т.п. Ядро составляет сердцевину ОС, без которой она является полностью неработоспособной и не может выполнить ни одну из своих функций. В ядре решаются внутрисистемные задачи организации вычислительного процесса, недоступные для приложения. Рис. 4.2. Структурированная архитектура Особый класс функций ядра служит для поддержки приложений, создавая для них так называемую прикладную программную среду. Приложения могут обращаться к ядру с запросами – системными вызовами – для выполнения тех или иных действий, например, открытие и чтение файла, получение системного времени, вывода информации на дисплей и т.д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования – API (Application Programming Interface). Для обеспечения высокой скорости работы ОС модули ядра (по крайней мере, большая их часть) являются резидентными и работают в привилегированном режиме (Kernel mode). Этот режим, во-первых, должен обезопасить работу самой ОС от вмешательства приложений, и, во-вторых, должен обеспечить возможность работы модулей ядра с полным набором машинных инструкций, позволяющих собственно ядру выполнять управление ресурсами компьютера, в частности, переключение процессора с задачи на задачу, управлением устройствами ввода-вывода, распределением и защитой памяти и др. Остальные модули ОС выполняют не столь важные функции, как ядро, и являются транзитными. Например, это могут быть программы архивирования данных, дефрагментации диска, сжатия дисков, очистки дисков и т.п. Вспомогательные модули обычно подразделяются на группы: • • • • утилиты – программы, выполняющие отдельные задачи управления и сопровождения вычислительной системы; системные обрабатывающие программы – текстовые и графические редакторы (Paint, Imaging в Windows), компиляторы и др.; программы предоставления пользователю дополнительных услуг (специальный вариант пользовательского интерфейса, калькулятор, игры, средства мультимедиа Windows); библиотеки процедур различного назначения, упрощения разработки приложений, например, библиотека функций ввода-вывода, библиотека математических функций и т.п. Эти модули ОС оформляются как обычные приложения, обращаются к функциям ядра посредством системных вызовов и выполняются в пользовательском режиме (user mode). В этом режиме запрещается выполнение некоторых команд, которые связаны с функциями ядра ОС (управление ресурсами, распределение и защита памяти и т.п.). В концепции многоуровневой (многослойной) иерархической машины структура ОС также представляется рядом слоев. При такой организации каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс. На основе этих функций следующий верхний по иерархии слой строит свои функции – более сложные и более мощные и т.д. Такая организация системы существенно упрощает ее разработку, т.к. позволяет сначала "сверху вниз" определить функции слоев и межслойные интерфейсы, а при детальной реализации, двигаясь "снизу вверх", – наращивать мощность функции слоев. Кроме того, модули каждого слоя можно изменять без необходимости изменений в других слоях (но не меняя межслойных интерфейсов!). Многослойная структура ядра ОС может быть представлена, например, вариантом, показанным на рис. 4.3. Рис. 4.3. Многослойная структура ОС В данной схеме выделены следующие слои. 1. Средства аппаратной поддержки ОС. Значительная часть функций ОС может выполняться аппаратными средствами [10]. Чисто программные ОС сейчас не существуют. Как правило, в современных системах всегда есть средства аппаратной поддержки ОС, которые прямо участвуют в организации вычислительных процессов. К ним относятся: система прерываний, средства поддержки привилегированного режима, средства поддержки виртуальной памяти, системный таймер, средства переключения контекстов процессов (информация о состоянии процесса в момент его приостановки), средства защиты памяти и др. 2. Машинно-зависимые модули ОС. Этот слой образует модули, в которых отражается специфика аппаратной платформы компьютера. Назначение этого слоя – "экранирование" вышележащих слоев ОС от особенностей аппаратуры (например, Windows – это слой HAL (Hardware Abstraction Layer), уровень аппаратных абстракций). 3. Базовые механизмы ядра. Этот слой модулей выполняет наиболее примитивные операции ядра: программное переключение контекстов процессов, диспетчерскую прерываний, перемещение страниц между основной памятью и диском и т.п. Модули этого слоя не принимают решений о распределении ресурсов, а только обрабатывают решения, принятые модулями вышележащих уровней. Поэтому их часто называют исполнительными механизмами для модулей верхних слоев ОС. 4. Менеджеры ресурсов. Модули этого слоя выполняют стратегические задачи по управлению ресурсами вычислительной системы. Это менеджеры (диспетчеры) процессов ввода-вывода, оперативной памяти и файловой системы. Каждый менеджер ведет учет свободных и используемых ресурсов и планирует их распределение в соответствии запросами приложений. 5. Интерфейс системных вызовов. Это верхний слой ядра ОС, взаимодействующий с приложениями и системными утилитами, он образует прикладной программный интерфейс ОС. Функции API, обслуживающие системные вызовы, предоставляют доступ к ресурсам системы в удобной компактной форме, без указания деталей их физического расположения. Повышение устойчивости ОС обеспечивается переходом ядра в привилегированный режим. При этом происходит некоторое замедление выполнения системных вызовов. Системный вызов привилегированного ядра инициирует переключение процессора из пользовательского режима в привилегированный, а при возврате к приложению – обратное переключение. За счет этого возникает дополнительная задержка в обработке системного вызова (рис. 4.4). Однако такое решение стало классическим и используется во многих ОС (UNIX, VAX, VMS, IBM OS/390, OS/2 и др.). Рис. 4.4. Обработка системного вызова Многослойная классическая многоуровневая архитектура ОС не лишена своих проблем. Дело в том, что значительные изменения одного из уровней могут иметь трудно предвидимое влияние на смежные уровни. Кроме того, многочисленные взаимодействия между соседними уровнями усложняют обеспечение безопасности. Поэтому, как альтернатива классическому варианту архитектуры ОС, часто используется микроядерная архитектура ОС. Суть этой архитектуры состоит в следующем. В привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Микроядро защищено от остальных частей ОС и приложений. В его состав входят машиннозависимые модули, а также модули, выполняющие базовые механизмы обычного ядра. Все остальные более высокоуровневые функции ядра оформляются как модули, работающие в пользовательском режиме. Так, менеджеры ресурсов, являющиеся неотъемлемой частью обычного ядра, становятся "периферийными" модулями, работающими в пользовательском режиме. Таким образом, в архитектуре с микроядром традиционное расположение уровней по вертикали заменяется горизонтальным. Это можно представить, как показано на рис. 4.5. Внешние по отношению к микроядру компоненты ОС реализуются как обслуживающие процессы. Между собой они взаимодействуют как равноправные партнеры с помощью обмена сообщениями, которые передаются через микроядро. Поскольку назначением этих компонентов ОС является обслуживание запросов приложений пользователей, утилит и системных обрабатывающих программ, менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, т.е. модулями, основным назначением которых является обслуживание запросов локальных приложений и других модулей ОС. Рис. 4.5. Переход к микроядерной архитектуре Схематично механизм обращений к функциям ОС, оформленным в виде серверов, выглядит, как показано на рис. 4.6. Рис. 4.6. Клиент-серверная архитектура Схема смены режимов при выполнении системного вызова в ОС с микроядерной архитектурой выглядит, как показано на рис. 4.7. Из рисунка ясно, что выполнение системного вызова сопровождается четырьмя переключениями режимов (4 t), в то время как в классической архитектуре – двумя. Следовательно, производительность ОС с микроядерной архитектурой при прочих равных условиях будет ниже, чем у ОС с классическим ядром. Рис. 4.7. Обработка системного вызова в микроядерной архитектуре В то же время признаны следующие достоинства микроядерной архитектуры [17]: • • • • • • • единообразные интерфейсы; простота расширяемости; высокая гибкость; возможность переносимости; высокая надежность; поддержка распределенных систем; поддержка объектно-ориентированных ОС. По многим источникам вопрос масштабов потери производительности в микроядерных ОС является спорным. Многое зависит от размеров и функциональных возможностей микроядра. Избирательное увеличение функциональности микроядра приводит к снижению количества переключений между режимами системы, а также переключений адресных пространств процессов. Может быть, это покажется парадоксальным, но есть и такой подход к микроядерной ОС, как уменьшение микроядра. Для возможности представления о размерах микроядер операционных систем в ряде источников [17] приводятся такие данные: • • типичное микроядро первого поколения – 300 Кбайт кода и 140 интерфейсов системных вызовов; микроядро ОС L4 (второе поколение) – 12 Кбайт кода и 7 интерфейсов системных вызовов. В современных операционных системах различают следующие виды ядер. 1. Наноядро (НЯ). Крайне упрощённое и минимальное ядро, выполняет лишь одну задачу – обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки посылает информацию о результатах обработки вышележащему программному обеспечению. НЯ используются для виртуализации аппаратного обеспечения реальных компьютеров или для реализации механизма гипервизора. 2. Микроядро (МЯ) предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Большая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Микроядерными являются ядра ОС 3. 4. 5. 6. 7. Minix и GNU Hurd и ядро систем семейства BSD. Классическим примером микроядерной системы является Symbian OS. Это пример распространенной и отработанной микроядерной (a начиная c версии Symbian OS v8.1, и наноядерной) операционной системы. Экзоядро (ЭЯ) предоставляет лишь набор сервисов для взаимодействия между приложениями, а также необходимый минимум функций, связанных с защитой: выделение и высвобождение ресурсов, контроль прав доступа и т. д. ЭЯ не занимается предоставлением абстракций для физических ресурсов – эти функции выносятся в библиотеку пользовательского уровня (так называемую libOS). В отличие от микроядра ОС, базирующиеся на ЭЯ, обеспечивают большую эффективность за счет отсутствия необходимости в переключении между процессами при каждом обращении к оборудованию. Монолитное ядро (МнЯ) предоставляет широкий набор абстракций оборудования. Все части ядра работают в одном адресном пространстве. МнЯ требуют перекомпиляции при изменении состава оборудования. Компоненты операционной системы являются не самостоятельными модулями, а составными частями одной программы. МнЯ более производительно, чем микроядро, поскольку работает как один большой процесс. МнЯ является большинство Unixсистем и Linux. Монолитность ядер усложняет отладку, понимание кода ядра, добавление новых функций и возможностей, удаление ненужного, унаследованного от предыдущих версий кода. "Разбухание" кода монолитных ядер также повышает требования к объёму оперативной памяти. Модульное ядро (Мод. Я) – современная, усовершенствованная модификация архитектуры МЯ. В отличие от "классических" МнЯ, модульные ядра не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого они предоставляют тот или иной механизм подгрузки модулей, поддерживающих то или иное аппаратное обеспечение (например, драйверов). Подгрузка модулей может быть как динамической, так и статической (при перезагрузке ОС после переконфигурирования системы). Мод. Я удобнее для разработки, чем традиционные монолитные ядра. Они предоставляют программный интерфейс (API) для связывания модулей с ядром, для обеспечения динамической подгрузки и выгрузки модулей. Не все части ядра могут быть сделаны модулями. Некоторые части ядра всегда обязаны присутствовать в оперативной памяти и должны быть жёстко "вшиты" в ядро. Гибридное ядро (ГЯ) – модифицированные микроядра, позволяющие для ускорения работы запускать "несущественные" части в пространстве ядра. Имеют "гибридные" достоинства и недостатки. Примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра. Наиболее тесно элементы микроядерной архитектуры и элементы монолитного ядра переплетены в ядре Windows. Хотя Windows часто называют микроядерной операционной системой, это не совсем так. Микроядро слишком велико (более 1 Мбайт), чтобы носить приставку "микро". Компоненты ядра Windows располагаются в вытесняемой памяти и взаимодействуют друг с другом путем передачи сообщений, как и положено в микроядерных операционных системах. В то же время все компоненты ядра работают в одном адресном пространстве и активно используют общие структуры данных, что свойственно операционным системам с монолитным ядром. 4.2. Концепция процессов и потоков. Задание, процессы, потоки (нити), волокна Одним из основных понятий, связанных с операционными системами, является процесс – абстрактное понятие, описывающее работу программы [10]. Все функционирующее на компьютере программное обеспечение, включая и операционную систему, можно представить набором процессов. Задачей ОС является управление процессами и ресурсами компьютера или, точнее, организация рационального использования ресурсов в интересах наиболее эффективного выполнения процессов. Для решения этой задачи операционная система должна располагать информацией о текущем состоянии каждого процесса и ресурса. Универсальный подход к предоставлению такой информации заключается в создании и поддержке таблиц с информацией по каждому объекту управления. Общее представление об этом можно получить из рис. 4.8, на котором показаны таблицы, поддерживаемые операционной системой: для памяти, устройств вводавывода, файлов (программ и данных) и процессов. Хотя детали таких таблиц в разных ОС могут отличаться, по сути, все они поддерживают информацию по этим четырем категориям. Располагающий одними и теми же аппаратными ресурсами, но управляемый различными ОС, компьютер может работать с разной степенью эффективности. Наибольшие сложности в управлении ресурсами компьютера возникают в мультипрограммных ОС. Рис. 4.8. Таблицы ОС Мультипрограммирование (многозадачность, multitasking) – это такой способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Чтобы поддерживать мультипрограммирование, ОС должна определить для себя внутренние единицы работы, между которыми будут разделяться процессор и другие ресурсы компьютера. В ОС пакетной обработки, распространенных в компьютерах второго и сначала и третьего поколения, такой единицей работы было задание. В настоящее время в большинстве операционных систем определены два типа единиц работы: более крупная единица – процесс, или задача, и менее крупная – поток, или нить. Причем процесс выполняется в форме одного или нескольких потоков. Вместе с тем, в некоторых современных ОС вновь вернулись к такой единице работы, как задание (Job), например, в Windows. Задание в Windows представляет собой набор из одного или нескольких процессов, управляемых как единое целое. В частности, с каждым заданием ассоциированы квоты и лимиты ресурсов, хранящиеся в соответствующем объекте задания. Квоты включают такие пункты, как максимальное количество процессов (это не позволяет процессам задания создавать бесконтрольное количество дочерних процессов), суммарное время центрального процессора, доступное для каждого процесса в отдельности и для всех процессов вместе, а также максимальное количество используемой памяти для процесса и всего задания. Задания также могут ограничивать свои процессы в вопросах безопасности, например, получать или запрещать права администратора (даже при наличии правильного пароля). Процессы рассматриваются операционной системой как заявки или контейнеры для всех видов ресурсов, кроме одного – процессорного времени. Это важнейший ресурс распределяется операционной системой между другими единицами работы – потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд. Каждый процесс начинается с одного потока, но новые потоки могут создаваться (порождаться) процессом динамически. В простейшем случае процесс состоит из одного потока, и именно таким образом трактовалось понятие "процесс" до середины 80-х годов (например, в ранних версиях UNIX). В некоторых современных ОС такое положение сохранилось, т.е. понятие "поток" полностью поглощается понятием "процесс". Как правило, поток работает в пользовательском режиме, но когда он обращается к системному вызову, то переключается в режим ядра. После завершения системного вызова поток продолжает выполняться в режиме пользователя. У каждого потока есть два стека, один используется в режиме ядра, другой – в режиме пользователя. Помимо состояния (текущие значения всех объектов потока) идентификатора и двух стеков, у каждого потока есть контекст (в котором сохраняются его регистры, когда он не работает), приватная область для его локальных переменных, а также может быть собственный маркер доступа (информация о защите). Когда поток завершает работу, он может прекратить свое существование. Процесс завершается, когда прекратит существование последний активный поток. Взаимосвязь между заданиями, процессами и потоками показана на рис. 4.9. Рис. 4.9. Задания, процессы, потоки Переключение потоков в ОС занимает довольно много времени, так как для этого необходимы переключение в режим ядра, а затем возврат в режим пользователя. Достаточно велики затраты процессорного времени на планирование и диспетчеризацию потоков. Для предоставления сильно облегченного псевдопараллелизма в Windows используются волокна (Fiber), подобные потокам, но планируемые в пространстве пользователя создавшей их программой. У каждого потока может быть несколько волокон, с той разницей, что когда волокно логически блокируется, оно помещается в очередь блокированных волокон, после чего для работы выбирается другое волокно в контексте того же потока. При этом ОС "не знает" о смене волокон, так как все тот же поток продолжает работу. Таким образом, существует иерархия рабочих единиц операционной системы, которая применительно к Windows выглядит следующим образом (рис. 4.10). Возникает вопрос: зачем нужна такая сложная организация работ, выполняемых операционной системой? Ответ нужно искать в развитии теории и практики мультипрограммирования, цель которой – в обеспечении максимально эффективного использования главного ресурса вычислительной системы – центрального процессора (нескольких центральных процессоров). Поэтому прежде чем переходить к рассмотрению современных принципов управления процессором, процессами и потоками, следует остановиться на основных принципах мультипрограммирования. Рис. 4.10. Иерархия рабочих единиц ОС 4.3. Мультипрограммирование. Формы многопрограммной работы Мультипрограммирование призвано повысить эффективность использования вычислительной системы [10, 17]. Однако эффективность может пониматься поразному. Наиболее характерными показателями эффективности вычислительных систем являются: • • пропускная способность – количество задач, выполняемых системой в единицу времени; удобство работы пользователей, заключающихся, в частности, в том, что они могут одновременно работать в интерактивном режиме с несколькими приложениями на одной машине; • реактивность системы – способность выдерживать заранее заданные (возможно, очень короткие) интервалы времени между запуском программы и получением конечного результата. В зависимости от выбора одного из этих показателей эффективности ОС делятся на системы пакетной обработки, системы разделения времени и системы реального времени (некоторые ОС могут поддерживать одновременно несколько режимов). Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов [11]. Максимальная пропускная способность компьютера достигается в этом случае минимизацией простоев его устройств и прежде всего процессора. Для достижения этой цели пакет заданий формируется так, чтобы получающаяся мультипрограммная смесь сбалансированно загружала все устройства машины. Например, в такой смеси желательно присутствие задач вычислительного характера и с интенсивным вводомвыводом. Однако в этом случае трудно гарантировать сроки выполнения того или иного задания. В благоприятных случаях общее время выполнения смеси задач меньше, чем суммарное время их последовательного выполнения. При этом времени выполнения отдельной задачи может быть затрачено больше, чем при монопольном ее выполнении (рис. 4.11). В системах разделения времени пользователям (в частном случае – одному) предоставляется возможность интерактивной работы сразу с несколькими приложениями. Для этого каждое приложение должно регулярно получать возможность "общения" с пользователем. Эта проблема решается за счет того, что ОС принудительно периодически приостанавливает приложения, не дожидаясь, когда они "добровольно" освободят процессор. Рис. 4.11. Иллюстрация эффекта мультипрограммирования Всем приложениям попеременно выделяются кванты времени процессора, таким образом, пользователи, запустившие программы на выполнение, получают возможность поддерживать с ними диалог (рис. 4.12) со своего терминала. Если время кванта выбрано достаточно небольшим, то у всех пользователей складывается впечатление единоличной работы на машине. Рис. 4.12. Система разделения времени Системы реального времени предназначены для управления техническими объектами (спутник, ракета, атомные электростанции, станок, научная установка и др.), технологическими процессами (гальваническая линия, доменный процесс и т.п.), системами обслуживания разного рода (резервирование авиабилетов, оплата покупок и счетов и др.). Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа управления объектом. В противном случае возможны нежелательные последствия вплоть до аварии. Критерием эффективности ОС в этом случае является способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата. Это время называется временем реакции системы, а соответствующее свойство – реактивностью. Требования ко времени реакции зависят от специфики управляемого объекта или процесса. В системах реального времени мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ решения функциональных задач управления объектом или процессом. Выбор программы на выполнение осуществляется по прерываниям (исходя из текущего состояния объекта) или в соответствии с расписанием плановых работ. В системе реального времени обычно закладывается запас вычислительной мощности на случай пиковой нагрузки, а также принимаются меры обеспечения высокой надежности работы системы (резервирование, дублирование, троирование с мажоритарным элементом и др.). Интересная форма мультипрограммной работы связана с мультипроцессорной обработкой. Мультипроцессорная обработка – это способ организации вычислительного процесса в системе с несколькими процессорами, при котором несколько задач (процессов, потоков) могут одновременно выполняться на разных процессорах системы. Концепция мультипроцессирования не нова, она известна с 70-х годов, однако стала доступной в широком масштабе лишь в последнее десятилетие, особенно с появлением многопроцессорных ПК (часто в качестве серверов ЛВС). В отличие от мультипрограммной обработки, в мультипроцессорных системах несколько задач выполняется одновременно, т.к. имеется несколько процессоров. Однако это не исключает мультипрограммной обработки на каждом процессоре. При этом резко усложняются все алгоритмы управления ресурсами, т.е. операционная система. Современные ОС, как правило, поддерживают мультипроцессирование. Мультипроцессорные системы часто характеризуют как симметричные и как несимметричные. Эти термины относятся, с одной стороны, к архитектуре вычислительной системы, а с другой – к способу организации вычислительного процесса. Симметричная архитектура мультипроцессорной системы предполагает однотипность и единообразие включения процессоров и большую разделяемую между этими процессорами память. Масштабируемость, т.е. возможность наращивания числа процессоров, в данном случае ограничена, т.к. все они используют одну и ту же оперативную память и, следовательно, должны располагаться в одном корпусе. В симметричных архитектурах вычислительных систем легко реализуетсясимметричное мультипроцессирование общей для всех процессоров операционной системой. При этом все процессоры равноправно участвуют и в управлении вычислительным процессом, и в выполнении прикладных задач. Разные процессоры могут в какой-то момент времени одновременно обслуживать как разные, так и одинаковые модули общей ОС. Для этого программы ОС должны быть реентерабельными (повторновходимыми). Операционная система полностью децентрализована. Ее модули выполняются на любом доступном процессоре. Как только процессор завершает выполнение очередной задачи, он передает управление планировщику задач. Последний выбирает из общей для всех процессоров системной очереди задачу, которая будет выполняться на данном процессоре следующей. В вычислительных системах с асимметричной архитектурой процессоры могут быть различными как по характеристикам (производительность, система команд), так и по функциональной роли в работе системы. Например, могут быть выделены процессоры для вычислений, ввода-вывода и др. Эта неоднородность ведет к структурным отличиям во фрагментах системы, содержащих разные процессоры (разные схемы подключения, наборы периферийных устройств, способы взаимодействия процессоров с устройствами и др.). Масштабирование в таких системах реализуется иначе, поскольку отсутствует требование единого корпуса. Система может состоять из нескольких устройств, каждое из которых содержит один или несколько процессоров. Масштабирование в данном случае называют горизонтальным, а мультипроцессорную систему – кластерной. В кластерной системе может быть реализовано только асимметричное мультипроцессирование с организацией вычислительного процесса по принципу "ведущий – ведомый". Этот наиболее простой способ может быть использован и в вычислительных системах с симметричной архитектурой. В таких системах ОС работает на одном процессоре, который называется ведущим и организует централизованное управление вычислительным процессом и распределением всех ресурсов системы. 4.4. Управление процессами и потоками Одной из основных подсистем любой современной мультипрограммной ОС, непосредственно влияющей на функционирование компьютера, является подсистема управления процессами и потоками. Основные функции этой подсистемы [10, 12, 17]: • • • • • • • • создание процессов и потоков; обеспечение процессов и потоков необходимыми ресурсами; изоляция процессов; планирование выполнения процессов и потоков (вообще, следует говорить и о планировании заданий); диспетчеризация потоков; организация межпроцессного взаимодействия; синхронизация процессов и потоков; завершение и уничтожение процессов и потоков. К созданию процесса приводят пять основных событий: 1. инициализация ОС (загрузка); 2. выполнение запроса работающего процесса на создание процесса; 3. запрос пользователя на создание процесса, например, при входе в систему в интерактивном режиме; 4. инициирование пакетного задания; 5. создание операционной системой процесса, необходимого для работы какихлибо служб. Обычно при загрузке ОС создаются несколько процессов. Некоторые из них являются высокоприоритетными процессами, обеспечивающими взаимодействие с пользователями и выполняющими заданную работу. Остальные процессы являются фоновыми, они не связаны с конкретными пользователями, но выполняют особые функции – например, связанные с электронной почтой, Web-страницами, выводом на печать, передачей файлов по сети, периодическим запуском программ (например, дефрагментации дисков) и т.д. Фоновые процессы называют демонами. Новый процесс может быть создан по запросу текущего процесса. Создание новых процессов полезно в тех случаях, когда выполняемую задачу проще всего сформировать как набор связанных, но, тем не менее, независимых взаимодействующих процессов. В интерактивных системах пользователь может запустить программу, набрав на клавиатуре команду или дважды щелкнув на значке программы. В обоих случаях создается новый процесс и запуск в нем программы. В системах пакетной обработки на мэйнфреймах пользователи посылают задание (возможно, с использованием удаленного доступа), а ОС создает новый процесс и запускает следующее задание из очереди, когда освобождаются необходимые ресурсы. С технической точки зрения во всех перечисленных случаях новый процесс формируется одинаково: текущий процесс выполняет системный запрос на создание нового процесса. Подсистема управления процессами и потоками отвечает за обеспечение процессов необходимыми ресурсами. ОС поддерживает в памяти специальные информационные структуры, в которые записывает, какие ресурсы выделены каждому процессу. Она может назначить процессу ресурсы в единоличное пользование или совместное пользование с другими процессами. Некоторые из ресурсов выделяются процессу при его создании, а некоторые – динамически по запросам во время выполнения. Ресурсы могут быть выделены процессу на все время его жизни или только на определенный период. При выполнении этих функций подсистема управления процессами взаимодействует с другими подсистемами ОС, ответственными за управление ресурсами, такими как подсистема управления памятью, подсистема ввода-вывода, файловая система. Для того чтобы процессы не могли вмешаться в распределение ресурсов, а также не могли повредить коды и данные друг друга, важнейшей задачей ОС является изоляция одного процесса от другого. Для этого операционная система обеспечивает каждый процесс отдельным виртуальным адресным пространством, так что ни один процесс не может получить прямого доступа к командам и данным другого процесса. В ОС, где существуют процессы и потоки, процесс рассматривается как заявка на потребление всех видов ресурсов, кроме одного – процессорного времени. Этот важнейший ресурс распределяется операционной системой между другими единицами работы – потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд. Переход от выполнения одного потока к другому осуществляется в результатепланирования и диспетчеризации. Работа по определению момента, в который необходимо прервать выполнение текущего потока, и потока, которому следует предоставить возможность выполняться, называется планированием. Планирование потоков осуществляется на основе информации, хранящейся в описателях процессов и потоков. При планировании принимается во внимание приоритет потоков, время их ожидания в очереди, накопленное время выполнения, интенсивность обращения к вводу-выводу и другие факторы. Диспетчеризация заключается в реализации найденного в результате планирования решения, т.е. в переключении процессора с одного потока на другой. Диспетчеризация проходит в три этапа: • • • сохранение контекста текущего потока; загрузка контекста потока, выбранного в результате планирования; запуск нового потока на выполнение. Когда в системе одновременно выполняется несколько независимых задач, возникают дополнительные проблемы. Хотя потоки возникают и выполняются синхронно, у них может возникнуть необходимость во взаимодействии, например, при обмене данными. Для общения друг с другом процессы и потоки могут использовать широкий спектр возможностей: каналы (в UNIX), почтовые ящики (Windows), вызов удаленной процедуры, сокеты (в Windows соединяют процессы на разных машинах). Согласование скоростей потоков также очень важно для предотвращения эффекта "гонок" (когда несколько потоков пытаются изменить один и тот же файл), взаимных блокировок и других коллизий, которые возникают при совместном использовании ресурсов. Синхронизация потоков является одной из важнейших функций подсистемы управления процессами и потоками. Современные операционные системы предоставляют множество механизмов синхронизации, включая семафоры, мьютексы, критические области и события. Все эти механизмы работают с потоками, а не с процессами. Поэтому когда поток блокируется на семафоре, другие потоки этого процесса могут продолжать работу. Каждый раз, когда процесс завершается, – а это происходит благодаря одному из следующих событий: обычный выход, выход по ошибке, выход по неисправимой ошибке, уничтожение другим процессом – ОС предпринимает шаги, чтобы "зачистить следы" его пребывания в системе. Подсистема управления процессами закрывает все файлы, с которыми работал процесс, освобождает области оперативной памяти, отведенные под коды, данные и системные информационные структуры процесса. Выполняется коррекция всевозможных очередей ОС и список ресурсов, в которых имелись ссылки на завершаемый процесс. Как уже отмечалось, чтобы поддержать мультипрограммирование, ОС должна оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. Возникает вопрос: в чем принципиальное отличие этих единиц работы, какой эффект мультипрограммирования можно получить от их применения и в каких случаях эти единицы работ операционной системы следует создавать? Очевидно, что любая работа вычислительной системы заключается в выполнении некоторой программы. Поэтому и с процессом, и с потоком связывается определенный программный код, который оформляется в виде исполняемого модуля. В простейшем случае процесс состоит из одного потока, и в некоторых современных ОС сохранилось такое положение. Мультипрограммирование в таких ОС осуществляется на уровне процессов. При необходимости взаимодействия процессы обращаются к операционной системе, которая, выполняя функции посредника, предоставляет им средства межпроцессной связи – каналы, почтовые акции, разделяемые секции памяти и др. Однако в системах, в которых отсутствует понятие потока, возникают проблемы при организации параллельных вычислений в рамках процесса. А такая необходимость может возникать. Дело в том, что отдельный процесс никогда не может быть выполнен быстрее, чем в однопрограммном режиме. Однако приложение, выполняемое в рамках одного процесса, может обладать внутренним параллелизмом, который, в принципе, мог бы ускорить его решение. Если, например, в программе предусмотрено обращение к внешнему устройству, то на время этой операции можно не блокировать выполнение всего процесса, а продолжить вычисления по другой ветви программы. Параллельное выполнение нескольких работ в рамках одного интерактивного приложения повышает эффективность работы пользователя. Так, при работе с текстовым редактором желательно иметь возможность совмещения набора нового текста с такими продолжительными операциями, как переформатирование значительной части текста, сохранение его на локальном или удаленном диске. Нетрудно представить будущую версию компилятора, способную автоматически компилировать файлы исходного кода в паузах, возникающих при наборе текста программы. Тогда предупреждения и сообщения об ошибках появлялись бы в режиме реального времени, и пользователь тут же видел бы, в чем он ошибся. Современные электронные таблицы пересчитывают данные в фоновом режиме, как только пользователь что-либо изменил. Текстовые процессоры разбивают текст на страницы, проверяют его на орфографические и грамматические ошибки, печатают в фоновом режиме, сохраняют текст каждые несколько минут и т.д. Во всех этих случаях потоки используются как средство распараллеливания вычислений. Эти задачи можно было бы возложить на программиста, который должен был бы написать программу-диспетчер, реализующую параллелизм в рамках одного процесса. Однако это весьма сложно, да и сама программа получилась бы весьма запутанной и сложной в отладке. Другим решением является создание для одного приложения нескольких процессов для каждой из параллельных работ. Однако использование для создания процессов стандартных средств ОС не позволяет учесть тот факт, что процессы решают единую задачу и имеют много общего: работают с одними и теми же данными, используют один и тот же кодовый сегмент, имеют одни и те же права доступа к ресурсам вычислительной системы. А операционная система при таком подходе будет рассматривать эти процессы наравне со всеми остальными процессами и обеспечивать их изоляцию друг от друга. В данном случае это будет не только бесполезная, но и вредная работа, затрудняющая обмен данными между различными частями приложения. Кроме того, на создание каждого процесса ОС тратит определенные системные ресурсы, которые в данном случае неоправданно дублируются – каждому процессу выделяется собственное виртуальное адресное пространство, физическая память, закрепляются устройства ввода-вывода и т.п. Из изложенного следует вывод, что операционной системе наряду с процессами нужен другой механизм распараллеливания вычислений, который учитывал бы тесные связи между отдельными ветвями вычислений одного и того же приложения. Для этих целей современные ОС предлагают механизм многопоточной обработки (multithreading). Понятию "поток" соответствует последовательный переход процессора от одной команды к другой. Процессору ОС назначают адресное пространство и набор ресурсов, которые совместно используются всеми его потоками. В отличие от процессов, которые принадлежат, вообще говоря, конкурирующим приложениям, все потоки одного процесса всегда принадлежат одному приложению, поэтому ОС изолирует потоки в гораздо меньшей степени, чем процессы в традиционной мультипрограммной системе. Все потоки одного процесса используют общие файлы, таймеры, устройства, одну и ту же область оперативной памяти, одно и то же адресное пространство. Это означает, что они разделяют одни и те же глобальные переменные. Поскольку каждый поток может иметь доступ к любому виртуальному адресу, один поток может задействовать стек другого потока. Между потоками одного процесса нет полной защиты, во-первых, потому что это невозможно, а во-вторых, потому что не нужно. Чтобы организовать взаимодействие и обмен данными, потокам не требуется обращаться к ОС, им достаточно использовать общую память – один поток записывает данные, а другой читает их. С другой стороны, потоки разных процессов по-прежнему хорошо защищены друг от друга. Таким образом, мультипрограммирование более эффективно на уровне потоков, а не процессов. Еще больший эффект многопоточной обработки достигается в мультипроцессорных системах, в которых потоки могут выполняться на разных процессорах действительно параллельно.
«Архитектура операционной системы. Концепция процессов и потоков. Задание, процессы, потоки (нити), волокна. Мультипрограммирование. Формы многопрограммной работы. Управление процессами и потоками.» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач

Тебе могут подойти лекции

Смотреть все 493 лекции
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot