Справочник от Автор24
Нужна помощь?
Найдем эксперта за 5 минут
Подобрать эксперта
+2

Закон распределения молекул по скоростям

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта

Закон распределения молекул по скоростям

Закон распределения молекул по скоростям описывает распределение частиц макроскопической системы при условии, что эта система находится в состоянии термодинамического равновесия, распределение является стационарным и внешние силы на систему не действуют. Данное распределение выполняется как для газов, так и жидкостей, если в них можно использовать законы классической механики.

Определить, каким образом распределены молекулы по скоростям, -- это значит ответить на вопрос: «сколько молекул имеет ту или иную скорость при заданной температуре в состоянии равновесия?» Для разъяснения вопроса введем понятие: «пространство скоростей» (рис.1). В таком пространстве на декартовых осях отложены не координаты, а проекции скоростей.

Рис. 1

Рис. 1

В таком случае поставленный вопрос изменится на вопрос о том, как распределены молекулы в пространстве скоростей. Понятно, что молекулы распределены неравномерно.

Если в пространстве скоростей выделить параллелепипед объема $dw=dv_xdv_ydv_z$, тогда количество молекул, которые попадут в него $dN_v.$ Предположим, что N- количество молекул газа, $f(v)$- некоторая функция скорости. Тогда

Распределение Максвелла

Как было отмечено, газ находится в состоянии равновесия, все направления движения частиц равноправны, следовательно, распределение молекул в пространстве скоростей можно считать сферически симметричным (рис.2).

Рис. 2

Рис. 2

Найдем число молекул в шаровом слое $dv$:

Разделим (2) на число частиц (N) и найдем вероятность$\ (dW_v)$ того, что модуль скорости молекулы находится в пределах от $v\ до\ v+dv$:

где $F\left(v\right)$- функция распределения вероятности значения $v.\ $Эту функцию теоретически получил Д. Максвелл.

Таким образом, распределение молекул по скоростям (вернее их модулям) запишем как:

\[dN_v=N4\pi {\left(\frac{m_0}{2\pi kT}\right)}^{\frac{3}{2}}exp\left(-\frac{m_0v^2}{2kT}\right)v^2dv\ \left(5\right),\]

при этом $v=\sqrt{{v_x}^2+{v_y}^2+{v_z}^2}$, $m_0$- масса молекулы, k -- постоянная Больцмана.

Можно записать распределение Максвелла по проекциям скоростей:

\[dN=Nf\left(v_x\right)f\left(v_y\right)f\left(v_z\right)dv_xdv_ydv_{z\ }\left(6\right),\]

при этом

\[f\left(v_i\right)={\left(\frac{m_0}{2\pi kT}\right)}^{\frac{1}{2}}exp\left(-\frac{m_0{v_i}^2}{2kT}\right)\ \left(i=x,y,z\right)\left(7\right),\]

где $v_x,v_y,v_{z\ }$ - проекции скорости молекулы на оси координат.

Еще один из вариантов написания распределения Максвелла по модулям скоростей представлен в виде:

\[dN=N\frac{4}{\sqrt{\pi }{v_{ver}}^3}{exp \left(-{\left[\frac{v}{v_{ver}}\right]}^2v^2\right)\ }dv\left(8\right),\]

где $v_{ver}$ -- вероятнейшая скорость молекулы.

Рис. 3

Рис. 3

На рисунке 3 изображена кривая закона распределения молекул по скоростям. Доля молекул газа, скорости которых лежат в интервале от $v\ до\ v+dv,$ пропорциональна заштрихованной площади dS под кривой.

Поскольку скорости всех молекул лежат в интервале от $0\ до+\infty $, то выполняется равенство:

\[\int\nolimits^{\infty }_0{f\left(v\right)dv}=1\ \left(9\right).\]

Это так называемое условие нормировки функции распределения.

Таким образом, распределение Максвелла зависит от массы молекулы газа и его температуры. Давление и объем в распределение не входят.

Пример 1

Задание: Используя распределение Максвелла, найдите наиболее вероятную скорость молекул газа в равновесном состоянии газа при температуре T.

Решение:

За основу возьмем распределение молекул по модулям скоростей:

\[dN_v=N4\pi {\left(\frac{m_0}{2\pi kT}\right)}^{\frac{3}{2}}exp\left(-\frac{m_0v^2}{2kT}\right)v^2dv\ \left(1.1\right).\]

Наиболее вероятной скорости соответствует максимум функции, то продифференцируем выражение (1.1) по скорости и приравняем к нулю, получим:

\[\frac{dN_v}{dv}=N4\pi {\left(\frac{m_0}{2\pi kT}\right)}^{\frac{3}{2}}\left[2v_{ver}exp\left(-\frac{m_0{v_{ver}}^2}{2kT}\right)-{v_{ver}}^2\frac{m_02v_{ver}}{2kT}exp\left(-\frac{m_0{v_{ver}}^2}{2kT}\right)\right]=0\to \] \[2v_{ver}-{v_{ver}}^2\frac{m_02v_{ver}}{2kT}=0\to 1-{v_{ver}}^2\frac{m_0}{2kT}=0\to {v_{ver}}^2=\frac{2kT}{m_0}\] \[v_{ver}=\sqrt{\frac{2kT}{m_0}}\ (1.2)\]

Ответ: Наиболее вероятная скорость молекул газа $v_{ver}=\sqrt{\frac{2kT}{m_0}}.$

Пример 2

Задание: Пусть $Т_1

Решение:

Из формулы для наиболее вероятной скорости молекул газа, полученной в предыдущем примере:

\[v_{ver}=\sqrt{\frac{2kT}{m_0}}\ (2.1)\]

очевидно, что с увеличением температуры скорость растет, то есть максимум кривой смещается в сторону больших скоростей. Площадь под кривой распределения величина постоянная, следовательно, кривые изобразим следующим образом (рис.4).

Рис. 4

Рис. 4

Пример 3

Задание: На рис. 5 представлен график функции распределения молекул по проекциям скорости $v_x$. Сравнить числа молекул, имеющих проекции скорости в интервалах: от 0 до $v_{x1}$и от $v_{x1}$ до $v_{x2}$.

Рис. 5

Рис. 5

Решение:

Как уже отмечалось в теоретической части, доля молекул газа, скорости которых лежат в интервале от $0\ до\ v_{x1},$ пропорциональна площади $S_1$ фигуры, которая ограничена кривой распределения, вертикальной осью (0$\ \frac{1}{N}\frac{dN}{dv_x})$ и пунктирной вертикальной линией перпендикулярной оси проекций скоростей проходящей через точку $v_{x1}$. Во втором случае доля молекул газа, скорости которых лежат в интервале от $v_{x1}\ до\ v_{x2},$ пропорциональна площади $S_2$ фигуры, которая ограничена кривой распределения, вертикальной прямой параллельной оси (0$\ \frac{1}{N}\frac{dN}{dv_x}),\ проходящей\ через\ точку\ v_{x1}$ и пунктирной вертикальной линией перпендикулярной оси проекций скоростей, проходящей через точку $v_{x2}$. Очевидно, что $S_1>S_2.\ $ Следовательно, молекул, имеющих проекции скорости в интервалах: от 0 до $v_{x1}$ больше, чем молекул, имеющих проекции скорости в интервалах: от $v_{x1}$ до $v_{x2}$.

Ответ: Молекул, имеющих проекции скорости в интервалах: от 0 до $v_{x1}$ больше, чем молекул, имеющих проекции скорости в интервалах: от $v_{x1}$ до $v_{x2}$.

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта
Дата последнего обновления статьи: 17.12.2025