Ультразвук - это звук, у которого частота выше верхнего предела слышимости для нормального человеческого уха. Ультразвуковые устройства работают с частотой от $20$ кГц до нескольких гигагерц.
Рисунок 1. Частотные диапазоны
Ультразвук в живой природе
Летучие мыши используют высокую частоту (малая длина волны) ультразвуковых волн для того, чтобы повысить их способность охотиться. Типичной жертвой летучей мыши является моль - объект не намного больше, чем сама летучая мышь. Летучие мыши используют ультразвуковые методы эхолокации, чтобы обнаружить своих сородичей в воздухе.
Рисунок 2. Летучие мыши используют ультразвук для навигации в темноте
Но почему ультразвук? Ответ на этот вопрос лежит в физике дифракции. Так как длина волны становится меньше, чем препятствие, с которым она сталкивается, волна уже не в состоянии рассеиваться вокруг него, и вследствие чего отражается. Летучие мыши используют ультразвуковые волны с длинами волн, меньшими, чем размеры их добычи. Эти звуковые волны будут сталкиваться с добычей, и вместо того, чтобы дифрагироваться вокруг добычи, они будут отражаться от добычи, что позволить мыши охотиться с помощью эхолокации.
Собаки с нормальным слухом могут слышать ультразвук.
Зубатые киты, включая дельфинов, могут слышать ультразвук и использовать такие звуки в их навигационной системе (биосонаре).
Способы получения ультразвука
- Механический способ - вибрационные системы (струны, эластичные пластины, трубы).
- Термический способ - от электрических разрядов в жидкостях и газах, путем постоянного повышения температуры или импульсного тока.
- Оптический способ - лазер может производить упругие волны в широком диапазоне ультразвуковых частот.
Инфразвук
Инфразвук - звуковые волны, которые человеческое ухо не способно услышать, потому что их частота слишком мала.
Рисунок 3. Ветряные электростанции производят инфразвук
Инфразвук характеризуется способностью преодолевать большие расстояния и способность обходить препятствия, а также имеет очень большую длину волны - свыше $17$ м.
Природными источниками инфразвука являются: бури, волны, лавины, землетрясения, вулканы, водопады, молнии.
Воздействие инфразвуком
Инфразвуковые частоты измеряются от $0,1$ до $20$ Гц. Инфразвук, или звуковые частоты ниже $20$ Гц, ухо не воспринимает.
Исследования о воздействии инфразвука в основном проводятся на животных, поэтому не в полной мере можно понимать влияние инфразвука на организм человека. Многие исследования показывают, что при воздействии высоких уровней инфразвука могут возникнуть: ощущение давления в ушах, дискомфорт, чрезмерная утомляемость, сонливость и даже апатия и депрессия. Исследования на животных показали, что инфразвук с очень высокой интенсивностью воздействия может привести к серьезному повреждению структуры уха. Тем не менее, нет никаких достоверных исследований указывающих на вред источников инфразвука в повседневной жизни. Только воздействие очень высоких частот этого типа звука может быть опасно для вашего здоровья. Результаты предыдущих исследований в этой области являются неоднозначными, а чувствительность индивидуальна для каждого человека.
Животные, как известно, воспринимают инфразвуковые волны, проходящие, через землю в результате стихийных бедствий и могут использовать их в качестве предупреждения. Недавним примером этого явления является землетрясение и цунами в Индийском океане $2004$. Животные начали бежать фактически перед цунами у берегов Азии. Не известно наверняка, было ли это точной причиной, но некоторые полагают, что это, возможно, было влияние электромагнитной волны, а не инфразвуковых волн, которые побудили этих животных бежать.
Летучая мышь летит перпендикулярно к стене со скоростью $6,0\ {м}/{с}$, издавая ультразвук частотой $v=45\ кГц$. Какие две частоты звука $v_1$ и $v_2$ слышит летучая мышь? Скорость распространения звука в воздухе $c=340\ {м}/{с}$.
Решение:
По принципу Доплера частота звука, воспринимаемая наблюдателем, определяется формулой
\[v^,=\frac{c+u_2}{c-u_1}v\ (1)\]По условию
\[u_1=u_2=u\ (2)\](2) -- скорость летучей мыши.
Летучая мышь будет слышать звук и отраженный от стены. Для прямого звука из формулы (1) имеем
\[v_1=\frac{c+u}{c+u}v=v=45\ кГц\]Аналогично для отраженного звука
\[{{\mathbf v}}_{{\mathbf 2}}{\mathbf =}\frac{{\mathbf c}{\mathbf +}{\mathbf u}}{{\mathbf c}{\mathbf +}{\mathbf u}}{\mathbf v}{\mathbf =}{\mathbf 46},{\mathbf 6}{\mathbf \ кГц}\]Ответ:$\ v_1=45\ кГц$, ${{\mathbf v}}_{{\mathbf 2}}{\mathbf =}{\mathbf 46},{\mathbf 6}{\mathbf \ кГц}$.