Физика является математически точной наукой. Именно в физике зародились многие математические понятия и методы. Кроме математики физическая наука неразрывно связана с химией и материальными телами, поэтому в данной статье мы подробно ознакомимся с механикой и молекулярной физикой.
Основные понятия и формулы классической механики
Механика – это раздел физики и отдельная наука, которая рассматривает движение материальных тел и все возможные взаимодействия между ними. При этом движением в механике называется изменением положения тел во времени, а также их элементов в пространстве.
На сегодняшний день можно выделить классическую механику материальной точки, классической жидкости, абсолютно твердого тела и системы материальных точек. Для начала рассмотрим механику материальной точки.
Материальная точка – это объект небольших размеров, форма которого не воздействует на характер движения. В качестве примера можно привести дробинку, которая брошена в аудитории. Она является материальной точкой, а плоский лист бумаги того же размера – нет.
Немаловажным понятием в данном случае является «малость» скорости движения объекта. Оно означает, что скорость движения намного меньше скорости света. Переход к скорости, которая сравнима со скоростью света, требует замены классической на релятивистскую механику. В классической механике кроме радиус-вектора применяют понятия ускорения и скорости.
Это понятие стоит рассмотреть более детально. Пусть определенная материальная точка движется вдоль оси Х. Если в момент времени $t$ точка имела координату $x(t_1)$, а в другой момент – координату $x(t_2)$, то средней скоростью $\delta t = t_2 – t_1$ прямолинейного движения будет следующее выражение:
$V_ND = \frac {x(t_2) – x(t_1)}{t_2 – t_1} = \delta x - \delta t$
Необходимо помнить, что скорость имеет определенное направление, иными словами, является векторной величиной. Поэтому правильно будет записать формулу в следующем виде:
$\vec{V_ND} = \vec{i}V = \vec{i} = \frac {\delta x }{\delta t} $
Средняя скорость является грубой характеристикой движения. Если уменьшать $\delta t$, она становится точнее. Если изучать предел отношения (заменить отношение производной), то есть возможность ввести мгновенную скорость в момент времени:
$\vec{V}(t) = \vec{i} \frac {dx(t)}{dt} $
Если движение осуществляется в трехмерном пространстве, то для того чтобы получить мгновенную скорость, необходимо продифференцировать радиус-вектор:
$\vec{V}(t) = \frac {\vec{w}(t)}{dt}\vec{i}\frac {dx}{dt} + \vec{j} \frac {dy}{dt} + \vec{k} \frac {dz}{dt}$
Аналогичным образом можно ввести среднее и мгновенное ускорение. Ускорением является быстрота изменения скорости. Мгновенное ускорение можно определить при помощи первой производной скорости или второго производного радиуса вектора.
Немаловажными понятиями в классической механике являются импульс и кинетическая энергия.
Импульс материальной точки – это векторная величина, которая получена при умножении массы точки на ее мгновенную скорость: $\vec{p}(t) = m\vec{V}(t) $
Энергией в физике является величина, которая характеризует способность механической системы совершать какую-либо работу.
Выделяют:
- потенциальную энергию, которая зависит от положения системы в пространстве;
- кинетическую энергию, которая зависит от скорости и массы.
Кинетическая энергия материальной точки приравнивается:
$E_k = \frac {mv^2}{2} = \frac {\vec{m}v^2}{2} = \frac {\vec{p^2}}{2m}$
Эту формулу можно использовать в классической механике. Масса при больших скоростях начинает зависеть от скорости, поэтому формула в релятивистском приближении нуждается в обобщении.
Потенциальная энергия в общем виде выглядит следующим образом:
$E_{по} = U = U \vec{r}$
Молекулярная физика: основные сведения и главные формулы
Молекулярная физика – это раздел физики, который изучает свойства вещества на основе его молекулярного строения.
Молекулярно-кинетическая теория – это учение о свойствах и строении вещества, которое основывается на преставлении о существовании молекул и атомов как самых мелких частиц химического вещества. В основе данной теории лежат три главных положения:
- Все вещества – твердые, жидкие и газообразные образованы из мелких частиц – молекул, которые, в свою очередь, состоят из атомов. Молекулы в химическом веществе могут быть сложными и простыми, а также могут состоять из одного атома или соединения нескольких атомов. Атомы и молекулы – это электрически нейтральные частицы. Они при определенных условиях приобретают дополнительный электрический заряд, и трансформируется в отрицательные или положительные ионы.
- Молекулы и атомы постоянно находятся в непрерывном взаимодействии и хаотическом движении. Скорость такого движения зависит от температуры, а характер – от агрегатного состояния определенного вещества.
- Частицы постоянно взаимодействуют друг с другом при помощи сил, которые имеют электрическую природу. Между частицами гравитационное воздействие пренебрежимо мало.
Атом – это самая малая неделимая частица элемента. Молекулой является наименьшая частица вещества, которая сохраняет его химические свойства. Молекула может состоять из одного или нескольких атомов.
Ион – это молекула или атом, которые имеют несколько лишних электронов, либо же несколько электронов у них не хватает.
Молекулы характеризуются очень малыми размерами. Тепловым движением называется беспорядочное хаотическое передвижение молекул. С увеличением температуры возрастает кинетическая энергия теплового движения. Когда температура понижается, то молекулы конденсируются в твердое или жидкое вещество. Как только температура повышается, то кинетическая энергия молекулы увеличивается. Молекулы разлетаются и образуют газообразное вещество.
Молекулы в твердых телах образуют хаотические колебания около фиксированных центров, что являются положениями равновесия. Эти центры могут располагаться в пространстве нерегулярным образом, тогда они становятся аморфными телами, или же формируют упорядоченные объемные структуры (кристаллические тела).
Молекулы жидкостей имеют большую свободу для теплового движения. Они не привязываются к определенным центрам и с легкостью перемещаются по всему объему жидкости. Именно поэтому жидкости текучи.
Расстояние между молекулами в газах больше их размеров. Между молекулами силы взаимодействия малы, поэтому каждая из них движется по прямой линии до очередного столкновения со стенкой сосуда или с другой молекулой. Из-за слабого взаимодействия между молекулами газы имеют способность расширяться и заполнять собой весь объем сосуда.
Идеальный газ – это газ, в котором молекулы не взаимодействуют друг с другом. Исключением могут быть процессы упругого столкновения.
Количество вещества в молекулярно-кинетической теории принято считать пропорциональным количеству частиц. В качестве единицы вещества выступает моль.
Моль – это количество вещества, который содержит столько же молекул, сколько содержится их в 0,012 кг углерода. В молекуле углерода находится только один атом. Поэтому в одном моле любого вещества содержится одинаковое количество молекул (постоянная Авогадро).
Постоянная Авогадро является оной из важнейших постоянных молекулярно-кинетической теории. Количество вещества можно определить из соотношения числа молекул вещества $N$ к постоянной Авогадро $N_A$, или же, как отношение массы к молярной массе:
$ \nu = \frac {m}{M} = \frac {N}{N_A}$
Масса одного моля называется молярной массой. Молярная масса – это произведение массы одной молекулы конкретного вещества на постоянную Авогадро. Для тех веществ, молекулы которых состоят только из одного атома, используют атомную массу:
$m_0 = \frac {m}{N} = \frac {M}{N_A}$, где:
- $m_0$ - масса одной частицы вещества;
- $M$ - молярная масса;
- $N_A$ - число Авогадро;
- $N$ - число частиц вещества.
Кроме этого используется концентрация вещества: $n = \frac {N}{V}$
Стоит отметить, что плотность, масса и объем тела связываются следующей формулой: $m = \rho V$
Если речь идет о смеси веществ, то используют молярную массу и среднюю плотность вещества. Так же, как и при вычислении средней скорости неравномерного движения, данные величины определяются полными массами смеси:
$\rho = \frac {M_{полн}}{V_{полн}}$
$M = \frac {m_{полн}}{v_{полн}}$
Полное количество вещества всегда приравнивается сумме количеств веществ, что входят в смесь, а с объемом нужно быть аккуратнее. Объем смеси не приравнивается сумме объемов газов, которые входят в смесь.