Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Законы квантовой механики

Квантовая механика представляет собой описание главных свойств и поведения конденсированных сред, молекул, ионов, атомов, а также иных систем с электронно-ядерным строением.

Замечание 1

Законы квантовой механики созданы с целью описания волновой функции, корпускулярно-волнового дуализма, соотношения неопределенностей, движения частицы.

Закон де Бройля

Свое количественное выражение принцип корпускулярно-волнового дуализма получает в законе де Бройля (о волновой функции).

Квантово-волновой дуализм характеризует свойства материальных микроскопических объектов. Так, они способны в одном случае проявлять свойства классических волн, а в другом - классических частиц.

Типичным примером объектов, демонстрирующих двойственное корпускулярно-волновое поведение, выступают свет и электроны. Такой принцип будет справедливым и в отношении более крупных объектов, однако, чем массивнее окажется объект, тем в гораздо меньшей степени наблюдаются его волновые свойства (здесь не идет речь про коллективное волновое поведение многих из частиц).

Идея о волновой функции и корпускулярно-волновом дуализме была задействована, когда разрабатывалась механика квантов с целью интерпретации наблюдаемых в микромире явлений (с позиции классических концепций).

Квантовые объекты в действительности не представляют собой классические волны или частицы. Свойства как первых, так и вторых, они проявляют исключительно в зависимости от условий, проводимых над ними экспериментов. Корпускулярно-волновой дуализм не может объясняться в формате классической физики, его толкование возможно только в рамках квантовой механики.

Для любого объекта, одновременно демонстрирующего корпускулярные и волновые свойства, наблюдается определенная связь между импульсом $p$ и энергией $E$ (они свойственны этому объекту как частице) и его волновыми параметрами:

  • волновым вектором $k$;
  • длиной волны $\lambda$;
  • частотой $v$;
  • циклической частотой $\omega$.

Такую связь устанавливают определенные соотношения:

$p =\bar{h}k$

$E=\bar{h}\omega=hv$

Где $\bar{h}$ и $h=2\pi\bar{h}$ представляет редуцированную и обычную постоянную Планка соответственно.

«Законы квантовой механики» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Закон соотношения неопределенностей Гейзенберга

Из результатов и анализа многочисленных опытов с использованием микрочастиц вытекает принцип неопределенности Гейзенберга, представляя, в сущности, один из фундаментальных законов микромира.

Такой закон, с одной стороны, имеет большой философский смысл, а с другой – может практически применяться при осуществлении определенных расчетов. Физическая причина существования данного закона обусловлена двойственной природой материи.

Открытие закона о соотношении неопределенностей связано с именем В. Гейзенберга. В 1925 г. по приглашению Н. Бора он прибывает в Копенгаген, где сразу задается целью объяснить поведение электрона в атоме. В частности, Гейзенберга интересовал вопрос, почему электрон в атоме не подчиняется законам электродинамики.

Также физик искал ответы и на другие вопросы, например: почему электрон в момент своего движения не падает на ядро, если атом при этом не возбужден? В конечном итоге, он приходит к выводу, что такое понятие, как «траектория электрона в атоме» не обладает физическим смыслом. Другими словами, оно не может быть применимо к электрону в атоме.

Неопределенность значения импульса и координаты фотона определяются соотношением равенства:

$\delta p=\frac{\delta E}{c}$, где:

  • $\delta p$ - это величина проекции импульса
  • $E$ - энергия фотона.

Закон Шредингера

Закон Шредингера характеризует движение частицы в квантовой механике. Он направлен на определение значения волновой функции в каждой точке пространства в конкретный момент времени.

Закон Шредингера также важен в квантовой механике, как и второй закон Ньютона - в классической. Знание операторов физических величин и волновой функции для квантовой системы позволяет получать значения всех физических величин, которые характеризуют эту квантовую систему.

В силу недетерминированности квантовых механических предположений, этим вычисляемым физическим величинам присущ характер вероятности (они считаются статистическими средними). В нерелятивистском случае эволюцию квантовой системы описывает волновая функция, удовлетворяющая уравнению Шредингера:

$i\bar{h}\frac{\partial \psi}{\partial t}=H\psi$,

где $\psi(х,y,z,t)$ будет волновой функцией, а $H$ - оператором Гамильтона (для полной энергии системы).

Закон Шредингера сформулирован в 1925 г., а опубликован в 1926 году. Уравнение Шредингера постулирует метод аналогии с классической оптикой, на основании обобщения экспериментальных данных.

Уравнение Шредингера справедливо в отношении частиц без спина, перемещающихся со скоростям, значительно меньшими, чем скорость света. Если мы имеем дело с быстрыми частицами и теми, которые со спином, то будем использовать его обобщения (на основании уравнений Клейна-Гордона, Паули, Дирака и других.

Дата последнего обновления статьи: 13.12.2023
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot