Все окружающее нас вещи обладают различными свойствами и характеристиками. Это зависит от многих факторов, в том числе от физического состояния. Помимо жидкостей различают твердые тела.
Рисунок 1. Виды твердых тел. Автор24 — интернет-биржа студенческих работ
Все твердые тела можно раздели на две большие группы по различному состоянию:
- кристаллические;
- аморфные.
Кристаллические и аморфные твердые тела
Кристаллическими называют тела, которые обладают особой структурой молекулярных связей между собой. Все частицы в таком исполнении составляют кристалл и расположены в определенном порядке. Расстояние между частицами также определенное. Подобные связи еще называют кристаллической решеткой. Она представляет собой совокупность атомов и различных узлов и молекул, которые составляют твердое вещество в целом.
Подобные соединения славятся очень большой прочностью, а из металлических материалов с классической кристаллической решеткой сегодня строятся самые сложные инженерные сооружения, включая мосты, здания и иные строения. Прочность кристаллических тел отличается высокой степенью практического применения в различных сферах человеческой деятельности. Однако реальная прочность кристаллов оказалось гораздо меньше расчетной прочности, так как на их поверхности обнаружены многочисленные дефекты в основе кристаллической решетки.
Аморфными твердыми телами называют такие тела, которые обладают одинаковыми физическим свойствами по всем направлениям. Подобное свойство также называют изотропностью. Такие аморфные тела характеризуются беспорядочным расположением элементов молекулярной связи. Они состоят из бесконечного количества соединений атомов и молекул. В кристаллических телах внутренняя структура резко контрастирует с аморфными телами
Кристаллические тела делятся на:
- монокристаллы;
- поликристаллы.
Монокристаллы характеризуются периодичностью по своей структуре и многократному повторению связей во всем объеме.
Для поликристаллов основополагающим стало наличие кристаллитов. Они выглядят, как множество сросшихся между собой хаотически расположенных маленьких кристаллов.
Структура кристаллов
Рисунок 2. Структура кристаллов. Автор24 — интернет-биржа студенческих работ
С кристаллической структурой веществ человек сталкивается постоянно в ежедневном режиме. Мы ходим зимой по снегу или льду, имеющим в своей основе чистую структуру кристалла. Она формируется из кристаллической воды. Многая пища состоит из кристалликов соли или сахара.
Такая многогранная натура твердых телах характеризуется несколькими схожими и постоянно повторяющимися элементами внутренней конструкции. Атомы и иные молекулярные связи располагаются в отдельных кристаллических решетках, при этом все выглядит предельно упорядоченно. Складывается система похожих многогранников. Таким образом, можно искусственным образом воспроизвести подобные молекулярные связи.
Упорядоченное расположение всех частиц в узлах кристаллической решетки придает правильную и красивую форму с симметричным расположением сторон и углов. Впервые такую структуру смогли показать и объяснить только 200 лет назад.
Для роста кристаллов необходимо создать определенные условия. Центр кристаллизации становится своеобразной точкой отсчета будущего каркаса вещества. Его можно создать искусственным или естественным способом. Для этого в прозрачном растворе наблюдают за движением ионов или молекул. Они ведут себя достаточно непредсказуемым образом и постоянно сталкиваются, при этом идет формирование новых протосвязей – зародышей будущего кристаллического твердого тела. При повторных взаимодействиях можно увидеть, что приобретаются формы структуры мельчайшего кристаллика, который станет элементом ячейки тела. Под скоплением частиц происходит постепенный рост решетки, при этом появляется тот самый центр кристаллизации. Его основой могут быть самые разнообразные вещества, которые содержатся и плавают в сосуде. В процессе роста появляются дополнительные связи и происходит превращение в большое твердое тело с кристаллической основой.
Типы кристаллических твердых веществ
Твердое состояние вещества предполагает наличие у тел кристаллической решетки. Подобные тела делятся на несколько типов:
- в кристаллической решетке с атомами частицы твердого вещества связаны ковалентной связью;
- в молекулярной кристаллической решетке между частицами существует небольшая связь;
- в узлах ионной кристаллической решетки положительно заряженные частицы чередуются с отрицательно заряженными;
- в металлической кристаллической решетке в узлах присутствуют только ионы химических веществ, которые заряжены положительно.
Особенности твердых веществ
По характеру движения электронов на внешнем уровне атомов твердого тела можно установить его электрические специфические свойства и признаки. Сегодня выделяют несколько видов таких тел в зависимости от типа связи атомов.
При ионной связи атомов основной характерной чертой стала сила электростатического притяжения. Такие вещества способны отражать и поглощать свет в инфракрасной плоскости. При небольшой температуре ионная связь отличается малой электропроводностью.
Ковалентная связь осуществляется за счет электронной пары. Она принадлежит обоим атомам. Подобная связь также делится на простую, двойную и тройную по наличию числа пар электронов. Наиболее твердые кристаллы относятся к ковалентной связи.
Металлическая связь возникает при возникновении больших атомов. Она образуется при помощи процесса объединения валентных электронов атомов. Большие атомы способны отдавать свои электроны, что способствует формированию сложных соединений. Так образуются металлы и другие сложные твердые вещества. Вещества с металлической связью разнообразны по физическим свойствам. Среди них выделяют жидкие металлы, мягкие, очень твердые.
При молекулярной связи, которая образуется в кристаллах, образуется отдельными молекулами вещества. Силы, при которых происходят процессы, обладают значительной степенью стабильности. Молекулы притягиваются друг относительно друга только слабым межмолекулярным притяжением. При нагревании вещества подобные недолговечные связи утрачивают свою актуальность и разрушаются.
Водородная связь может возникнуть между поляризованными положительно заряженными атомами молекулы и той частью, которая является частью отрицательно поляризованной частицей или ее частью.