Processing math: 100%
Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Метод узловых и контурных уравнений

Алгоритм расчета электрической цепи методом контурных и узловых уравнений

Определение 1

Метод узловых и контурных уравнений — самый простой метод расчета электрической цепи, который основан на составлении уравнений по первому и второму законам Кирхгофа.

Первый закон Кирхгофа звучит следующим образом: алгебраическая сумма токов в ветвях цепи, которые сходятся в каждом узле, равна нулю. При этом ток, направленный к узлу считается положительным, а направленный от него отрицательным. Сумма токов, которые направлены к узлу цепи равняется сумме токов, направленных от него. Таким образом получается, что в узел втекает столько же тока, сколько и вытекает из него (правило фундаментального закона сохранения заряда.

Второй закон Кирхгофа гласит — алгебраическая сумма напряжений на резистивных составляющих замкнутого контура цепи равняется сумме электродвижущих сил в составе данного контура. В том случае, когда источник электродвижущей силы отсутствует в контуре, суммарное падение напряжений равно нулю.

Порядок расчета электрической цепи методом узловых и контурных уравнений выглядит следующим образом:

  1. Определяют количество неизвестных токов (количество ветвей цепи равняется число токов в ней).
  2. Произвольно выбираются направление определенных токов и обозначаются на рассматриваемой схеме.
  3. Составляется система уравнений согласно первому закону Кирхгофа, количество которых на единицу меньше количества узлов в рассматриваемой схеме.
  4. Составляются недостающие, до общего количества, уравнения по второму закону Кирхгофа. Направления обхода тока, как правило, выбираются одинаковыми.
  5. Определяются неизвестные токи, после чего решается получившаяся система уравнений. В том случае, когда рассчитанный (определенный) ток имеет отрицательную величину, это значит, что его направление противоположно направлению, которое было выбрано в пункте 2.
  6. Осуществляется проверка посредством составления баланса мощностей или расчет рассматриваемой цепи производится другим методом.
«Метод узловых и контурных уравнений» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ
Определение 2

Баланс мощностей электрической цепи — это суммарная генерируемая источниками электроэнергии мощность, равная сумме мощностей, которые потребляются в цепи.

Примеры расчета методом узловых и контурных уравнений

Рассмотрим схему, которая представлена на рисунке ниже

Схема. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Схема. Автор24 — интернет-биржа студенческих работ

Допустим, что E1 = 50 В; Е2 = 30 В; Е3=3 В; R1 = 100 Ом; R2 = 50 Ом; R3 = 8 Ом; r03 = 0,5 Ом; r01 = r02 = 0 Ом. Нам необходимо рассчитать все токи цепи.

Решение задачи следует начинать с определения количества неизвестных токов и выбора их направления. В каждом неразветвленном участке цепи (ветвь) электрический ток одно и тоже значение от его начала и до конца. К узловым точкам (А и Б) присоединены три ветви:

  1. БВГА с током I1
  2. БА с током I2
  3. БДЖА с током I3

Таким образом количество разных токов равняется количеству ветвей рассматриваемой цепи. Направление токов выбирается произвольно и при них составляются уравнения. После чего они решаются и определяются их истинные направления (по алгебраическим знакам). В рассматриваемой задаче три неизвестны — I1, I2, I3, для них и составляется система уравнения по законам Кирхгофа. Уравнения на основе первого закона более простые, поэтому следует начинать с них. Известно, что для электрической цепи с n узлами можно составить n-1 независимых уравнений. Уравнение по первому закону Кирхгофа для узла А будет выглядеть следующим образом:

I1+I2+I3=0

Уравнения, которых не хватает составляются по второму закону Кирхгофа. Для этого выбираем контуры БАЖДБ и ВГЖДВ. Принимаем, что обход контуров цепи осуществляется по часовой стрелке и учитывая правила знаков получаем следующие уравнения:

I2(R2+r02)I3(R3+r03)=E2E3

I1(R1+r01)I3(R3+r03)=E1E2

Отсюда

I2(50+0)I3(8+0,5)=303

50I28,5I3=27

Подставив численные значения в третьем уравнение получаем:

I1(100+0)I3(8+0,5)=5030

100I18,5I3=20

Таким образом вычисление токов сводится к решению системы из трех уравнений с тремя неизвестными. Рассчитаем I2 из уравнения и подставим значение в уравнение:

50(I1+I3)8,5I3=27

Приводя подобные числа получим:

50I158,5I3=27

В результате у нас получилось два уравнения с двумя неизвестными (I1, I3). Уравнение (-50I1-58,5I3 = 27) умножается на два, в результате чего получается:

100I1117I3=54 Получившееся уравнение складывается с уравнение (100I1-8,5I3 = 20):

8,5I3117I3=64

125,5I3=64

Отсюда

I3=(64/125,5)=0,5A

Теперь подставляем получившееся значение I3 в уравнение, где неизвестно I1:

100I1117(0,5)=64

100I1+88,5=64

100I1=24,5

I1=24,5/100=0,245A

Теперь получившиеся значения подставляются в первое уравнение, составленное по первому закону Кирхгофа:

0,245I20,5=0

I2=0,245+0,5=0,745A

Проверка результата осуществляет при помощи составления баланса мощностей или решения задачи другим способом.

Дата последнего обновления статьи: 29.08.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot

Изучаешь тему "Метод узловых и контурных уравнений"? Могу объяснить сложные моменты или помочь составить план для домашнего задания!

AI Assistant