Платежная матрица – это метод статистической теории принятия решений, способствующий выбору руководителем правильного варианта.
Сущность игровых моделей
Математическая модель какой-либо конфликтной ситуации – это игра, стороны, принимающие участие в конфликте, - это игроки, а исход конфликта – это выигрыш.
Каждая формализованная игра имеет свои правила, т.е. систему условий, определяющих:
- Варианты решений игроков;
- Количество информации у каждого игрока о партнерах;
- Выигрыш, который является следствием совокупности действий.
Обычно выигрыш (проигрыш) задается количественно, к примеру, проигрыш оценивается нулем, а выигрыш – единицей, ничья – это 1/2. Количественная оценка исхода игры – это платеж.
Игра будет парной, когда в ней принимают участие два игрока, а множественной, когда число игроков превышает два.
Игра будет называться игрой с нулевой суммой в случае, если выигрыш одного игрока равняется проигрышу второго, т.е. сумма выигрышей двух сторон равна 0. Чтобы полностью задать игру, достаточно определить величину одного. Если обозначить за $a$ выигрыш одного игрока, за $b$ выигрыш другого, то игра с нулевой суммой будет равняться $b = – a$. В данном случае достаточно рассмотреть $а$.
Определение и осуществление какого-либо действия, предусмотренного правилами игры, называется ходом игроков. Ход может быть личным или случайным. При личном ходе игрок сознательно выбирает одно из возможных действий. Состав возможных вариантов регламентируется правилами игры, а зависит от совокупности предыдущих ходов обеих сторон.
Случайным ходом является случайно совершенное действие, к примеру, выбор карты из колоды.
Некоторые игры состоят только лишь из случайных ходов, например, азартные, а некоторые – только из личных, примером которых являются шашки, шахматы. Многие карточные игры относятся к играм смешанного типа, содержащим и случайные, и личные ходы.
Игры могут классифицироваться не только по видам ходов, но и по объему информации, которая доступна каждому игроку. В особый класс игр выделяются игры с полной информацией, в которых каждый игрок при личном ходе имеет информацию о результатах предыдущих ходов. Примером игры с полной информацией являются шашки, шахматы, «крестики и нолики». Многие игры, обладающие практическим значением, не относятся к категории игр с полной информацией, поскольку неизвестность в отношении действий противника – это существенный элемент конфликтных ситуаций.
Основное понятие теории игр – это понятие стратегии. Под стратегией игрока следует понимать совокупность правил, которые определяют выбор его действий при личном ходе в зависимости от ситуации. Игра будет конечной, если каждый игрок имеет определенное число стратегий, при обратной ситуации – бесконечной.
Чтобы отыскать решение игры, необходимо для каждого игрока определить стратегию, удовлетворяющую условиям оптимальности, другими словами, один игрок должен получить максимальный выигрыш, тогда как второй придерживается заданной стратегии. Проигрыш второго игрока должен быть минимальным, если первый следует своей стратегии. Данные стратегии являются оптимальными и должны удовлетворять условиям устойчивости, т.е. для любого игрока будет невыгодно отказываться от своей стратегии в данной игре.
Платежная матрица игры
Парная игра с нулевой суммой удобнее исследуется, если она представлена в матричном виде. Допустим, что игрок $A$ располагает m стратегиями $A_1, A_2, …, A_m$, а игрок $B$, т.е. противник, - $n$ стратегиями $B_1, B_2, …, B_n$. Данная игра будет называться игрой с размерностью $m * n$.
Предположим, что игрок $A$ выбрал одну стратегию $A_j$. Игрок $B$, не обладая информацией о результатах выбора игрока $A$, выбрал себе стратегию $B_j$. Каждой паре стратегий ($A_j, B_j$) присущ платеж $a(ij)$ первому игроку от второго, т.е. выигрыш игрока $A$. Выигрыш игрока $B$ будет равен $–a(ij)$. Подобная игра называется матрицей, а матрица, которая составлена из значений $a(ij)$, называется платежной. Строки такой матрицы соответствуют выбранной стратегии игрока $A$, а столбцы – стратегии игрока $B$. В общем виде платежная матрица игры имеет вид (рисунок 1):
Рисунок 1. Платежная матрица. Автор24 - интернет-биржа студенческих работ