Разместить заказ
Вы будете перенаправлены на Автор24

Временные ряды эконометрики

8-800-775-03-30 support@author24.ru
Все предметы / Эконометрика / Временные ряды эконометрики

Элементы временного ряда

Определение 1

Временной ряд – это расположенные последовательно в хронологическом порядке показатели, которые характеризуют развитие того или иного явления во времени.

Основные задачи эконометрического исследования временных рядов:

  • Прогнозирование будущих уровней динамических рядов;
  • Исследование взаимосвязей между временными рядами.

Характеристиками временного ряда являются:

  • Момент времени (конкретная дата) или период (год, квартал, неделя и т.д.), к которому относится статистическая информация;
  • Непосредственно статистические данные – уровни временного ряда.

Значение уровня ряда зависит от влияния на него всей совокупности возможных факторов, которые можно подразделить на группы:

  1. Группа факторов, формирующих главную тенденцию ряда (компоненту тренда);
  2. Группа факторов, формирующих циклические колебания в рядах (циклическую компоненту). Компонента может быть конъюнктурной, т.е. связанной с большими циклами в экономике, и сезонной, связанной с внутригодовыми колебаниями.
  3. Группа случайных факторов, отражающих влияние большого числа факторов, не относящихся к циклическим или трендовым.

Тип связи между компонентами определяет вид модели, которая может быть аддитивной (сумма компонент) и мультипликативной (произведение компонент).

Определение структуры временного ряда

Эконометрические модели в большинстве своем являются динамическими. Это значит, что причинно-следственные связи между переменными моделируются во времени, а исходные значения – временные ряды. Временным рядом $x_t$ является ряд значений отдельного показателя за несколько последовательных временных промежутков.

Все временные ряды $x_t$ состоят из следующих составляющих:

  • Тенденции, которая характеризует общую динамику исследуемого явления или процесса. Аналитическая тенденция – это некоторая функция времени, называемая трендом (T).
  • Периодической или циклической составляющей, которая характеризует периодические или циклические колебания анализируемого явления. Колебания – это отклонения фактических значений от значений тренда. Например, продажи некоторых товаров подвержены сезонным колебаниям. Сезонными колебаниями являются периодические колебания, имеющие отдельный и постоянный период, который равен годовому промежутку. Колебания конъюнктуры происходят в условиях больших экономических циклов, период таких колебаний как правило равен нескольким годам.
  • Случайной составляющей, являющейся результатом воздействия многих случайных факторов.

Готовые работы на аналогичную тему

Чтобы определить состав компонентов в модели временного ряда, необходимо построить автокорреляционную функцию.

Автокорреляцией является корреляционная связь последовательных уровней одного и того же динамического ряда. Таким образом, автокорреляция представляет собой связь между рядами

$x_1, x_2, …, x_{n-1}, x_{1+l}, x_{2+l}, …, x_n$

где $l$ – это целое положительное число. Автокорреляция может изменяться коэффициентом автокорреляции (рисунок 1):

Формула расчета коэффициента автокорреляции. Автор24 - интернет-биржа студенческих работ

Рисунок 1. Формула расчета коэффициента автокорреляции. Автор24 - интернет-биржа студенческих работ

Лаг – это сдвиг во времени, которые позволяет определить порядок коэффициента. Если $l = 1$, то коэффициент автокорреляции будет первого порядка, при $l = 2$ коэффициент автокорреляции будет второго порядка. Необходимо учитывать, что при увеличении лага на одну единицу, количество пар значений, с помощью которых рассчитывается коэффициент автокорреляции, снижается на 1. Рекомендуемым максимальным порядком коэффициента является $n/4$.

После расчета коэффициентом автокорреляции, определяется величина лага, при котором наиболее высокая автокорреляция, тем самым выявляется структура временного ряда:

  • При наиболее высоком значении коэффициента первого порядка в исследуемом ряду содержится только тенденция;
  • При наиболее высоком значении коэффициента порядка $l$, в ряду содержатся колебания с соответствующим периодом.

Если ни один из коэффициентов не оказался значимым, то можно сделать один из двух выводов:

  1. Ряд не имеет циклических колебаний и тенденции, а его уровень определяется только лишь случайной компонентой;
  2. Ряд имеет существенную нелинейную тенденцию, чтобы выявить которую необходимо осуществить дополнительный анализ.
Замечание 1

Вся последовательность коэффициентов разных порядков называется автокорреляционной функцией временных рядов. График зависимостей значений коэффициентов от величины лага - это коррелограмма.

Одномерный временной ряд

В общем смысле временной ряд – это однопараметрическое семейство случайных значений $y_t = y(t_i)$, числовые характеристики и закон распределения которых могут зависеть от $t$.

Временные ряды, которые характеризуют динамику исследуемого явления, имеют большое различие с перекрестными данными, представляющими в статистике экономические явления. Основными отличиями являются:

  • Значение каждого следующего уровня ряда напрямую зависит от значения предыдущего, другими словами, элементы ряда находятся в статистической зависимости. Например, численность населения государства в текущем году зависит от численности населения в прошлом.
  • Местоположение каждого элемента временного ряда четко определено и не может произвольно изменяться: каждый из выборочных показателей строго соответствует моменту времени его анализа.
  • Чем больше временной промежуток между уровнями ряда, тем большими будут различия в методике определения изучаемого показателя: функционирование одних факторов может прекращаться, а взамен образуются новые.

Все перечисленные особенности временных рядов обуславливают характерные только для них способы статистической обработки. Основными составляющими временного ряда являются: трендовая компонента, сезонная, циклическая и случайная.

Элементы временных рядов могут не представлять действие одновременно четырех факторов: при разных условиях применяются разные комбинации, однако, случайная компонента является обязательной для любых ситуаций.

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис