Гиперболоид
незамкнутая центральная поверхность 2-го порядка
векторная функция a = ax(x,y,z)i + ay (x,y,z)j + az(x,y,z)k, где P (x,y,z) ⎯ точка трёхмерного пространства, r = xi+ yj + zk ⎯ её радиус-вектор
потенциалом магнитного поля....
).\]
Многозначность векторного потенциала
Поле, в котором известен вектор индукции ($\overrightarrow...
потенциала магнитного поля эквивалентна неоднозначности скалярного потенциала электростатического поля...
магнитного поля....
Введение векторного потенциала существенно облегчает изучение магнитного поля постоянных токов.
В области G R3 изучается геометрия гладкого векторного поля без особых точек, имеющего поверхности, вдоль которых векторы поля параллельны. Исследуются также кривые неголономного пфаффова многообразия, ортогонального векторному полю [1]. Доказаны теоремы существования некоторых векторных полей с заданными наперёд геометрическими свойствами. Найдено векторное поле (в целом) с постоянным не равным нулю скаляром неголономности.
Ученые ввели векторное поле, которое в дальнейшем было названо полем Янга-Миллса....
В этой модели электромагнитное поле и поле промежуточного векторного мезона объединены в мультиплет полей...
Так была открыта возможность построения последовательной квантовой теории векторных полей, имеющих массу...
Это поле является векторным полем, принимающем значения в алгебре Ли этой группы....
Квантом поля Янга-Миллса является векторная частица (бозон со спином, равным единице).
У процесі викладання вищої математики значну увагу потрібно приділити вивченню понять і теорем математичного аналізу, які використовуються у математичному моделюванні. До таких понять належать диференціальні операції векторного поля. Розглянуто основні диференціальні операції векторного поля (градієнт, дивергенція, ротор). Показано їх суть з математичної, фізичної та механічної точок зору. Обґрунтовано необхідність їх детального вивчення у курсі вищої математики.
незамкнутая центральная поверхность 2-го порядка
максимальный связный подграф данного графа
функция ex, часто обозначаемая как exp x
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве