Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Софокусные кривые

Предмет Высшая математика
👍 Проверено Автор24

кривые 2-го порядка, имеющие общие фокусы; к таким кривым относятся линии конического сечения — эллипсы, гиперболы

Научные статьи на тему «Софокусные кривые»

ИССЛЕДОВАНИЕ СЕМЕЙСТВ СОФОКУСНЫХ ЭЛЛИПСОВ И ГИПЕРБОЛ СРЕДСТВАМИ МАТЕМАТИЧЕСКОГО ПАКЕТА GEOGEBRA

В статье приведено задание семейств софокусных эллипсов и гипербол и исследование их свойств средствами математического пакета GeoGebra в курсе «Аналитической геометрии» при изучении темы «Кривые второго порядка» студентами технического вуза. Основной целью статьи является демонстрация интеграции современных информационных технологий в процесс преподавания высшей математики. С помощью встроенных инструментов и команд среды GeoGebra поэтапно показано задание и построение софокусных эллипсов и гипербол. С использованием динамических чертежей рассмотрен процесс «трансформации» одной коники в другую при различных значениях задаваемых параметров. Опираясь на свойства касательных к кривым второго порядка, установлено и исследовано, что софокусные эллипс и гипербола пересекаются под прямым углом. Последний результат рассмотрен для различных случаев взаимного расположения кривых и касательных к ним, проведённых в точке их пересечения. Все полученные результаты обоснованы строго математически.

Научный журнал

Периодические биллиардные траектории в овалах

Рассматриваются периодические биллиардные траектории в биллиардах-овалах, то есть выпуклых областях, ограниченных кривыми с непрерывно меняющейся касательной прямой, обладающих двумя взаимно перпендикулярными осями симметрии. Модельным случаем таких биллиардов является эллиптический биллиард. Основное внимание уделяется поиску конкретных биллиардных траекторий с небольшим числом прямоугольных звеньев-хорд. Показано, что в любом биллиарде-овале имеется две пары зеркальных периодических биллиардных траекторий, образованных тремя хордами овала. При этом одна из вершин такой траектории расположена в конце диаметра овала, а противолежащее ей звено-хорда перпендикулярно этому диаметру. Приведено геометрическое построение такой траектории и указано уравнение, решение которого позволяет найти значение параметра в параметрическом задании контура овала, соответствующее вершине биллиардной ломаной. Для случая биллиарда-эллипса указаны декартовы координаты вершин. С помощью теоремы Понселе пока...

Научный журнал

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot