Аликвотная дробь
дробь вида 1 n, где n > 1 — натуральное число
кривые 2-го порядка, имеющие общие фокусы; к таким кривым относятся линии конического сечения — эллипсы, гиперболы
В статье приведено задание семейств софокусных эллипсов и гипербол и исследование их свойств средствами математического пакета GeoGebra в курсе «Аналитической геометрии» при изучении темы «Кривые второго порядка» студентами технического вуза. Основной целью статьи является демонстрация интеграции современных информационных технологий в процесс преподавания высшей математики. С помощью встроенных инструментов и команд среды GeoGebra поэтапно показано задание и построение софокусных эллипсов и гипербол. С использованием динамических чертежей рассмотрен процесс «трансформации» одной коники в другую при различных значениях задаваемых параметров. Опираясь на свойства касательных к кривым второго порядка, установлено и исследовано, что софокусные эллипс и гипербола пересекаются под прямым углом. Последний результат рассмотрен для различных случаев взаимного расположения кривых и касательных к ним, проведённых в точке их пересечения. Все полученные результаты обоснованы строго математически.
Рассматриваются периодические биллиардные траектории в биллиардах-овалах, то есть выпуклых областях, ограниченных кривыми с непрерывно меняющейся касательной прямой, обладающих двумя взаимно перпендикулярными осями симметрии. Модельным случаем таких биллиардов является эллиптический биллиард. Основное внимание уделяется поиску конкретных биллиардных траекторий с небольшим числом прямоугольных звеньев-хорд. Показано, что в любом биллиарде-овале имеется две пары зеркальных периодических биллиардных траекторий, образованных тремя хордами овала. При этом одна из вершин такой траектории расположена в конце диаметра овала, а противолежащее ей звено-хорда перпендикулярно этому диаметру. Приведено геометрическое построение такой траектории и указано уравнение, решение которого позволяет найти значение параметра в параметрическом задании контура овала, соответствующее вершине биллиардной ломаной. Для случая биллиарда-эллипса указаны декартовы координаты вершин. С помощью теоремы Понселе пока...
дробь вида 1 n, где n > 1 — натуральное число
замкнутая ломаная линия
цепь, не содержащая цикла (т. е. все ее вершины различны)
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне