Аликвотная дробь
дробь вида 1 n, где n > 1 — натуральное число
топологическое пространство, содержащее всюду плотное счетное множество
В работе в предположении СН строится пример топологического пространства с первой аксиомой счетности со свойствами, сформулированными в заглавии.Assuming CH we construct a separable first countable countably compact non-compact space.
дробь вида 1 n, где n > 1 — натуральное число
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве