квадратичного уравнения, некоторые случаи рассматривались отдельно и для каждого выводился специальный метод... Кроме этого он показал методы приближенного нахождения корней любых уравнений по алгебре.... алгебраические вопросы были созданы работами Гаусса, Абеля, Фурье, Галуа, Коши, Кейли, Сильвестера, Кронекера
Рассматриваются методы Кронекера-Чебышева и Кронекера-Чебышева-Ахиезера структурно-параметрической идентификации в частотной области при наличии шума. Эти методы основаны на итерационном алгоритме Кронекера построения по исходным данным рациональной интерполяционной функции и применения базисов из многочленов Чебышева и Чебышева-Ахиезера комплексного переменного. Методы по точным данным определяют точную интерполяционную функцию, а при задаваемом допуске позволяют также провести идентификацию при наличии шума. Проводится сравнение различных методов идентификации в частотной области.
Рассмотрены некоторые методы интерполяции и экстраполяции, применяемые при обработке результатов измерений. С помощью тестовых задач проведено сравнение методов на базе многочленов, сплайнов и рациональных функций. Результаты сравнения показывают, что в ряде случаев для экстраполяции наиболее выгодно использовать алгоритм Кронекера–Чебышева.
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)
1. если функция непрерывна в ограниченной замкнутой области, то она равномерно непрерывна в этой области; 2. множество, состоящее из всех подмножеств данного непустого множества M (булеан), не эквивалентно ни самому M, ни его подмножеству
Оставляя свои контактные данные и нажимая «Попробовать в Telegram», я соглашаюсь пройти процедуру
регистрации на Платформе, принимаю условия
Пользовательского соглашения
и
Политики конфиденциальности
в целях заключения соглашения.
Пишешь реферат?
Попробуй нейросеть, напиши уникальный реферат с реальными источниками за 5 минут