Каноническое отображение
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
кривая, пересекающая кривые заданного однопараметрического семейства под одним и тем же углом
Для определения предельных деформаций плоских конструкций с криволинейными траекториями армирования в рамках плоской задачи получены разрешающие уравнения для линейной ортотропной неоднородной задачи упругости. Многообразие структур армирования на базе ортогональных систем координат достигается построением изогональных траекторий к данным координатным линиям.
Построена разрешающая система дифференциальных уравнений в перемещениях осесимметричной задачи армированных кольцевых пластин в полярной системе координат. Многообразие структур армирования достигается путем построения изогональных траекторий к данным семействам кривых. В рамках единой схемы решения системы дифференциальных уравнений получаем композитную конструкцию с заранее заданными свойствами.
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
дробная часть десятичного логарифма положительного числа
множество, в котором не существует связного подмножества, содержащего более одной точки
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне