Аликвотная дробь
дробь вида 1 n, где n > 1 — натуральное число
семейство, состоящее из попарно ненепересекающихся множеств
Исследуется пространство ультрафильтров произвольного топологического пространства в естественном оснащении, подобном используемому при построении компакта Стоуна. Показано, что упомянутое пространство ультрафильтров является экстремально несвязным компактом. Рассматриваются семейства множеств в пространстве ультрафильтров, мажорирующих (всякий раз) фильтр открытых окрестностей фиксированной точки исходного пространства. Исследуются условия, обеспечивающие попарную дизъюнктность и различимость множеств данного семейства; в частности, введена специальная аксиома отделимости, связанная с обеспечением упомянутой различимости.
Рассматривается метрическое пространство семейства всех разбиений конечного множества на непустые дизъюнктные подмножества в кластерном расстоянии, предложенном автором в одной из предыдущих работ. Исследуется связь между структурой этого пространства и частичным порядком по включению на семействе разбиений. Оказывается, что при определении отрезка в этом пространстве в границах A и B как множества тех C, что сумма расстояний от него до A и до B равна расстоянию от A до B, он оказывается согласованным с частичным порядком. Это выражается в том, что расстояние между разбиениями соответствует наименьшей длине пути между ними по цепочкам в решетке соответствующего частичного порядка. Тем не менее определенный описанным образом отрезок обладает значительными отличиями от обычных отрезков в векторных пространствах, поэтому полной аналогии с теоремами обычной геометрии, к сожалению, не получается. Полученные результаты могут быть использованы при построении новых алгоритмов кластерного ан...
дробь вида 1 n, где n > 1 — натуральное число
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
дифференциал функции нескольких переменных
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве