Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Решение систем линейных уравнений матричным методом

Матричный способ решения систем линейных уравнений

Рассмотрим систему линейных уравнений следующего вида:

$\left\{\begin{array}{c} {a_{11} x_{1} +a_{12} x_{2} +...+a_{1n} x_{n} =b_{1} } \\ {a_{21} x_{1} +a_{22} x_{2} +...+a_{2n} x_{n} =b_{2} } \\ {...} \\ {a_{n1} x_{1} +a_{n2} x_{2} +...+a_{nn} x_{n} =b_{n} } \end{array}\right. .$

Числа $a_{ij} (i=1..n,j=1..n)$ - коэффициенты системы, числа $b_{i} (i=1..n)$ - свободные члены.

Определение 1

В случае, когда все свободные члены равны нулю, система называется однородной, в противном случае - неоднородной.

Каждой СЛАУ можно поставить в соответствие несколько матриц и записать систему в так называемом матричном виде.

Определение 2

Матрица коэффициентов системы называется матрицей системы и обозначается, как правило, буквой $A$.

Столбец свободных членов образует вектор-столбец, который, как правило, обозначается буквой $B$ и называется матрицей свободных членов.

Неизвестные переменные образуют вектор-столбец, который, как правило, обозначается буквой $X$ и называется матрицей неизвестных.

Описанные выше матрицы имеют вид:

$A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {...} & {a_{1n} } \\ {a_{21} } & {a_{22} } & {...} & {a_{2n} } \\ {...} & {...} & {...} & {...} \\ {a_{n1} } & {a_{n2} } & {...} & {a_{nn} } \end{array}\right),B=\left(\begin{array}{c} {b_{1} } \\ {b_{2} } \\ {...} \\ {b_{n} } \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {...} \\ {x_{n} } \end{array}\right).$

Используя матрицы, СЛАУ можно переписать в виде $A\cdot X=B$. Такую запись часто называют матричным уравнением.

Вообще говоря, в матричном виде записать можно любую СЛАУ.

Примеры решения системы с помощью обратной матрицы

Пример 1

Дана СЛАУ: $\left\{\begin{array}{c} {3x_{1} -2x_{2} +x_{3} -x_{4} =3} \\ {x_{1} -12x_{2} -x_{3} -x_{4} =7} \\ {2x_{1} -3x_{2} +x_{3} -3x_{4} =5} \end{array}\right. $. Записать систему в матричном виде.

Решение:

$A=\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right),B=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right).$

$\left(\begin{array}{cccc} {3} & {-2} & {1} & {-1} \\ {1} & {-12} & {-1} & {-1} \\ {2} & {-3} & {1} & {-3} \end{array}\right)\cdot \left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right)=\left(\begin{array}{c} {3} \\ {7} \\ {5} \end{array}\right)$

В случае, когда матрица системы является квадратной, СЛАУ можно решить уравнения матричным способом.

Имея матричное уравнение $A\cdot X=B$, можно выразить из него $X$ следующим способом:

$A^{-1} \cdot A\cdot X=A^{-1} \cdot B$

$A^{-1} \cdot A=E$ (свойство произведения матриц)

$E\cdot X=A^{-1} \cdot B$

$E\cdot X=X$ (свойство произведения матриц)

$X=A^{-1} \cdot B$

Алгоритм решения системы алгебраических уравнений с помощью обратной матрицы:

  • записать систему в матричном виде;
  • вычислить определитель матрицы системы;
  • если определитель матрицы системы отличен от нуля, то находим обратную матрицу;
  • решение системы вычисляем по формуле $X=A^{-1} \cdot B$.
«Решение систем линейных уравнений матричным методом» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Если матрица системы имеет определитель, не равный нулю, то данная система имеет единственное решение, которое можно найти матричным способом.

Если матрица системы имеет определитель, равный нулю, то данную систему нельзя решить матричным способом.

Пример 2

Дана СЛАУ: $\left\{\begin{array}{c} {x_{1} +3x_{3} =26} \\ {-x_{1} +2x_{2} +x_{3} =52} \\ {3x_{1} +2x_{2} =52} \end{array}\right. $. Решить СЛАУ методом обратной матрицы, если это возможно.

Решение:

$A=\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right),B=\left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right),X=\left(\begin{array}{c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \end{array}\right). $

Нахождение определителя матрицы системы:

$\begin{array}{l} {\det A=\left|\begin{array}{ccc} {1} & {0} & {3} \\ {-1} & {2} & {1} \\ {3} & {2} & {0} \end{array}\right|=1\cdot 2\cdot 0+0\cdot 1\cdot 3+2\cdot (-1)\cdot 3-3\cdot 2\cdot 3-2\cdot 1\cdot 1-0\cdot (-1)\cdot 0=0+0-6-18-2-0=-26\ne 0} \end{array}$ Так как определитель не равен нулю, то матрица системы имеет обратную матрицу и, следовательно, система уравнений может быть решена методом обратной матрицы. Полученное решение будет единственным.

Решим систему уравнений с помощью обратной матрицы:

$A_{11} =(-1)^{1+1} \cdot \left|\begin{array}{cc} {2} & {1} \\ {2} & {0} \end{array}\right|=0-2=-2; A_{12} =(-1)^{1+2} \cdot \left|\begin{array}{cc} {-1} & {1} \\ {3} & {0} \end{array}\right|=-(0-3)=3;$

$A_{13} =(-1)^{1+3} \cdot \left|\begin{array}{cc} {-1} & {2} \\ {3} & {2} \end{array}\right|=-2-6=-8; A_{21} =(-1)^{2+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {0} \end{array}\right|=-(0-6)=6; $

$A_{22} =(-1)^{2+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {3} & {0} \end{array}\right|=0-9=-9; A_{23} =(-1)^{2+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {3} & {2} \end{array}\right|=-(2-0)=-2;$

$A_{31} =(-1)^{3+1} \cdot \left|\begin{array}{cc} {0} & {3} \\ {2} & {1} \end{array}\right|=0-6=-6; A_{32} =(-1)^{3+2} \cdot \left|\begin{array}{cc} {1} & {3} \\ {-1} & {1} \end{array}\right|=-(1+3)=-4;$

$A_{33} =(-1)^{3+3} \cdot \left|\begin{array}{cc} {1} & {0} \\ {-1} & {2} \end{array}\right|=2-0=2$

Искомая обратная матрица:

$A^{-1} =\frac{1}{-26} \cdot \left(\begin{array}{ccc} {-2} & {6} & {-6} \\ {3} & {-9} & {-4} \\ {-8} & {-2} & {2} \end{array}\right)=\frac{1}{26} \cdot \left(\begin{array}{ccc} {2} & {-6} & {6} \\ {-3} & {9} & {4} \\ {8} & {2} & {-2} \end{array}\right)=\left(\begin{array}{ccc} {\frac{2}{26} } & {\frac{-6}{26} } & {\frac{6}{26} } \\ {\frac{-3}{26} } & {\frac{9}{26} } & {\frac{4}{26} } \\ {\frac{8}{26} } & {\frac{2}{26} } & {\frac{-2}{26} } \end{array}\right)=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right).$

Найдем решение системы:

$X=\left(\begin{array}{ccc} {\frac{1}{13} } & {-\frac{3}{13} } & {\frac{3}{13} } \\ {-\frac{3}{26} } & {\frac{9}{26} } & {\frac{2}{13} } \\ {\frac{4}{13} } & {\frac{1}{13} } & {-\frac{1}{13} } \end{array}\right)\cdot \left(\begin{array}{c} {26} \\ {52} \\ {52} \end{array}\right)=\left(\begin{array}{c} {\frac{1}{13} \cdot 26-\frac{3}{13} \cdot 52+\frac{3}{13} \cdot 52} \\ {-\frac{3}{26} \cdot 26+\frac{9}{26} \cdot 52+\frac{2}{13} \cdot 52} \\ {\frac{4}{13} \cdot 26+\frac{1}{13} \cdot 52-\frac{1}{13} \cdot 52} \end{array}\right)=\left(\begin{array}{c} {2-12+12} \\ {-3+18+8} \\ {8+4-4} \end{array}\right)=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$

$X=\left(\begin{array}{c} {2} \\ {23} \\ {8} \end{array}\right)$ - искомое решение системы уравнений.

Дата последнего обновления статьи: 18.11.2023
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot