Справочник от Автор24
Поделись лекцией за скидку на Автор24

Физико-химические свойства нефти и нефтепродуктов

  • 👀 2200 просмотров
  • 📌 2129 загрузок
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Физико-химические свойства нефти и нефтепродуктов» doc
Лекция 3 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ И ГАЗА Физико-химические свойства нефти и нефтепродуктов В основе разработки и переработки нефти и товарных нефтепродуктов лежат физико-химические процессы и управление этими процессами требует знания физических и физико-химических свойств нефти, ее фракций. В большинстве случае из-за сложности состава используются средние значения физико-хими-ческих характеристик нефтяного сырья. 1. Плотности (нефть, конденсат, н/п). Плотность является важнейшей характеристикой, позволяющей в совокупности с другими константами оценивать химический и фракционный состав нефти и нефтепродуктов (н/п). Плотность принято выражать абсолютной и относительной величиной. Абсолютной плотностью считается масса вещества, заключенная в единице объема, плотность имеет размерность кг/м3 или г/см3. В практике нефтепереработки принято использовать безразмерную величину относительной плотности нефти или н/п, которая равна отношению плотности н/п при 20 0С к плотности воды при 4 0С и относительная плотность обозначается ρ420, поскольку плотность выоды при 4 0С равна единице, числовые значения относительной и абсолютной плотности совпадают. В некоторых зарубежных странах за стандартную принята одинаковая температура н/п и воды, равная 60 0F, что соответствует 15,5 0 и относительная плотность обозначается ρ1515. Взаимный пересчет ρ420 и ρ1515 производится по формулам: ρ1515 = ρ420 + 0,0035/ ρ420 (1) или ρ1515 = ρ420 + 5, (2) где  - поправка на изменение плотности при изменении температуры на один градус и значения средней температурной поправки  для н/п приводятся в специальных таблицах. В США и других странах широко используется величина плотности, измеряемая в градусах API, связанную с ρ1515 соотношением: 0API = 141,5/ ρ1515 - 131,5 (3) Для углеводородных и других газов за стандартные условия принимают давление 0,1 МПа (760 мм рт. ст.) и температуру 0 0С, обычно определяют относительную плотность, т. е. отношение плотности газа к плотности воздуха (1,293 кг/м3). Плотность любого газа при стандартных условиях может быть найдена как частное от деления его молекулярной массы на объем 1 кмоля, т. е. 22,4 м3. Плотность газа (ρг, кг/м3) при условиях (давление Р, МПа, температуре Т, К), отличных от стандартных, можно определить по формуле: ρг = 1,18 МР/Т, (4) где М – молекулярная масса газа. или ρг = М/22,4; (4’) где М –молекулярная масса газа , кг/кмоль, 22,4 – объем 1 кмоля газа при стандартных условиях (0,101 МПа (760 мм рт. ст.) и 273 К (0 0С). Плотность нефтей и н/п уменьшается с повышением температуры и эта зависимость имеет линейный характер и хорошо описывается формулой Д.И. Менделеева: ρ4 t = ρ420 - (t-20), (5) где ρ4 t - относительная плотность н/п при заданной температуре t, ρ420 - относительная плотность н/п при стандартной температуре (20 0С). Необходимо отметить, что уравнение Д.И. Менделеева справедливо для интервала температур от 0 0С до 150 0С и погрешность составляет 5-8 %. В более широком интервале температур, т.е. до 300 0С и с меньшей погрешностью (до 3 %) зависимость плотности (кг/м3) от температуры рассчитывается по уравнению А.К. Мановяна: ρ4 t = 1000 ρ420 – 0,58/ ρ420 ∙ (t-20) –[t-1200(ρ420 -0,68]/1000 ∙ (t-20). (6) Существует несколько методов определения плотности н/п, выбор того или иного метода зависит от имеющегося количества н/п, его вязкости, требуемой точности определения и времени анализа. Простейшим прибором для определения плотности жидких н/п является ареометр, градуировка ареометра отнесена к плотности воды при 4 0С и его показания соответствуют ρ420. Точность определения плотности с помощью ареометра составляет 0,001 для маловязких и 0,005 – для вязких н/п. Для определения плотности высоковязкого (более 200 мм2/с при 50 0С) н/п (ρн) ареометром поступают следующим образом. Н/п разбавляют равным объемом керосина известной плотности (ρк) и измеряют плотность смеси (ρсм) и рассчитывают плотность н/п по формуле: ρн = 2 ρсм - ρк . (7) Более точно (с точностью до 0,0005) плотность н/п определяют с помощью гидростатических весов, которые градуируются по плотности воды при 20 0С и дают показания ρt20. Наиболее точный результат достигается при определении плотности пикнометром (до 0,00005), в зависимости от агрегатного состояния н/п (газ, жидкость, твердое вещество) и его количества применяются пикнометры разной формы и емкости. Пикнометрический метод основан на сравнении массы нефтепродукта, взятого в определенном объеме, с массой дистиллированной воды, взятой в том же объеме и при той же температуре. Единственным недостатком пикнометрического способа является продолжительность определения. Плотность большинства нефтей и н/п меньше единицы и в среднем колеблется от 0,80 до 0,90 г/см3, высоковязкие смолистые нефти имеют плотность, близкую к единице, наоборот, нефти из газоконденсатных месторождений и конденсаты очень легкие (ρ420 = 0,75 – 0,77 г/см3). На величину плотности нефти влияет много факторов: содержание растворенных газов и смол, фракционный, а для дистиллятов также и химический состав. 2. Молекулярная масса Молекулярная масса нефтей и н/п один из важных показателей, широко используемый при расчете теплоты парообразования, объема пара, парциального давления и других параметров. Нефть и н/п представляют собой смеси индивидуальных углеводородов и некоторых других соединений, поэтому они характеризуются средней молекулярной массой. Молекулярная масса н/п тем больше, чем выше их температура кипения. Для определения молекулярной массы н/п широкое применение получил криоскопический метод, основанный на изменении температуры замерзания растворителя (бензола или нафталина) при добавлении к нему навески н/п. В редких случаях для определения молекулярной массы применяется эбулиоскопический метод, основанный на изменении приращения температуры кипения растворителя после ввода в него навески испытуемого н/п. В расчетной практике молекулярную массу часто определяют по эмпирическим формулам, наибольше применение нашла формула Б.П. Воинова: М = а + bt + ct2, (7) где a, b и c постоянные, значения которых различны для каждой группы углеводородов, t – средняя молекулярная температура кипения н/п, 0С. Для парафиновых углеводородов: М = 60 + 0,3t + 0,001t2. (8) Для нефтяных фракций: М = (7К-21,5) + (0,76 – 0,04К)t + (0,0003K – 0,00245)t2, (9) где К- характеризующий фактор и изменяется от 10 для 12 в зависимости от значений a, b, с. В приведенных выше формулах в качестве параметра, характеризующего химический состав, выступает характеризующий фактор, зависящий от плотности. В формуле, предложенной Р. Хершем, в качестве такого параметра использован коэффициент лучепреломления: Lg(M) = 1,939436 + 0,0019764t + lg(2,1500-nD20), (10) где nD20 – коэффициент рефракции. Связь между молекулярной массой и относительной плотностью н/п устанавливается формулой Крэга: М = 44,29 ρ1515/(1,03- ρ1515). (11) В практических расчетах при определении размеров реакторов, испарительных и ректификационных колонн необходимо знать мольный объем жидких н/п или их паров. Мольный объем жидкости V’ (м3) вычисляют по формуле: V’ = V/N = m/ρ / m/M = M/ ρ, (12) где N – число молей, m – масса жидкости, кг, М – молекулярная масса, ρ – плотности жидкости, кг/м3. Объем паров можно определить из уравнения Клайперона: V = m/M ∙ 22,4Ратм/Р ∙ (t + 273)/273, (13) где m – масса паров, кг, М – молекулярная масса н/п, Р – давление в системе, МПа, Ратм – атмосферное давление, МПа, t – температура, 0С. 3. Давление насыщенных паров Нефть и н/п характеризуются определенным давлением насыщенных паров, или упругостью нефтяных паров. Давление насыщенных паров является нормируемым показателем для авиационных и автомобильных бензинов, косвенно характеризующим испаряемость топлива, его пусковые качества, склонность к образованию пробок в системе питания двигателя. Аппарат для определе­ния давления насыщенных паров нефтепродуктов 1 - топливная камера; 2 - воздуш­ная камера; 3 — манометр Рис. Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров необходимо проводить при стандартной температуре и постоянном соотношении паровой и жидкой фаз. Температура, при которой давление насыщенных паров становится равным давлению в системе, называется температурой кипения вещества. Давление насыщенных паров резко увеличивается с повышением температуры. В нефтепереработке широкое применение получил стандартный метод с использованием бомбы Рейда (ГОСТ 1756-2000). Бомба состоит из двух камер: топливной и воздушной с соотношением объемов 1:4, соединенных с помощью резьбы. Давление, создаваемое парами испытуемого топлива, фиксируется манометром, прикрепленным в верхней части воздушной камеры. Испытание проводят при температуре 38,8 0С, обеспечиваемой термостатированной баней. Давление насыщенных паров испытуемого н/п определяют формуле: Рож = Рм - Ратм ∙ (t-to)/(to+273), (14) где Рож - давление насыщенных паров испытуемой жидкости при температуре t, Рм – показания манометра, Ратм – атмосферное давление, to - температура окружающего воздуха, 0С. Определение давления паров в бомбе Рейда дает приближенные результаты, служащие только для сравнительной оценки качества моторных топлив. Более точные абсолютные значения давления насыщенных паров получаются при использовании аппарата НАТИ, с помощью которого давление насыщенных паров топлива можно определить в широком интервале температур и при различных соотношениях между объемами паровой и жидкой фаз. Давление насыщенных паров смесей и растворов в отличие от индивидуальных углеводородов зависит не только от температуры, но и от состава жидкой и паровой фаз. Для растворов и смесей, подчиняющихся законам Рауля и Дальтона, обще давление насыщенных паров смеси (Росм) может быть вычислено по формулам: Росм = рi, (15) рi = Pio ∙ x’i, (16) где рi – парциальное давление компонента смеси при заданной температуре, Pio – давление насыщенных паров компонентов смеси, x’i - мольная дольная компонентов смеси. Однако в области высоких давлений реальные газы не подчиняются законам Рауля и Дальтона. В таких случаях найденное давление насыщенных паров уточняется с помощью критических параметров, фактора сжимаемости и фугитивности. Критические параметры Температура, давление и объем при критическом состоянии очень важны для физики нефти, особенно для высокотемпературных процессов при высоких давлениях. Критическим состоянием вещества называется такое, при котором исчезает различие (граница) между его жидкой и паровой фазами, т.е. они имеют одни и те же основные свойства. Для каждого вещества существует такая температура, выше которой оно никаким повышением давления не может быть переведено в жидкость. Эта температура называется критической температурой Ткр. Давление насыщенных паров, соответствующее критической температуре, называется критическим давлением Ркр. Объем паров при критической температуре и давлении называется критическим объемом. Критические параметры веществ Вещество Ткр, К Ркр, МПа Метан 190,5 4,71 Этан 305,4 4,95 Пропан 370,0 4,32 Бутан 425 3,85 Изобутан 408,2 3,70 Н-пентан 469,7 3,42 4. Вязкость Вязкость является важнейшим физическим свойством, характеризующим эксплуатационные свойства дизельных и котельных топлив, нефтяных масел и другихъ н/п. По значению вязкости судят о возможности распыления и прокачиваемости нефти и н/п. Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость. Динамической (абсолютной) вязкостью (), или внутренним трением, называют свойства реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Очевидно, это свойство проявляется при движении жидкости, динамическая вязкость в системе СИ измеряется в Н∙с/м2. Это сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев поверхностью 1 м2, находящихся на расстоянии 1 м друг от друга и перемещающихся под действием внешней силы в 1 Н со скоростью 1 м/с. Учитывая, что Н/м2 = Па, динамическую вязкость часто выражают в Па ∙ с или мПа ∙ с. В системе CGS размерность динамической вязкости – дин ∙ с/м2. Эта единица называется пуазом (1 П = 0,1 Па ∙с). Кинематической вязкостью (ν) называется величина, равная отношению динамической вязкости жидкости () к ее плотности (ρ) при той же температуре: ν = /ρ. Единицей кинематической вязкости является м2/с – кинематическая вязкость такой жидкости, динамическая вязкость которой равна 1 Н ∙ с/м2 и плотность 1 кг/м3 (Н = кг ∙ м/с2). В системе CGS кинематическая вязкость выражается в см2/с. Эта единица называется стоксом (1 Ст = 10-4 м2/с, 1 сСт = 1 мм2/с). Нефти и н/п часто характеризуются условной вязкостью, за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл н/п при определенной температуре (t) ко времени истечения 200 мл дистиллированной воды при температуре 20 0С. Условная вязкость при температуре t обозначается знаком ВУt и выражается числом условных градусов. Для углеводородов вязкость существенно зависит от их химического состава: она повышается с увеличением молекулярной массы и температуры кипения, наличие боковых разветвлений в молекулах алканов и нафтенов и увеличение числа циклов также повышает вязкость. Для различных групп углеводородов вязкость растет в ряду алканы – арены – цикланы. Для определения вязкости используют специальные стандартные приборы – вискозиметры, различающиеся по принципу действия. Кинематическая вязкость определяется для относительно маловязких светлых н/п и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.). Для вязких н/п измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85. Между величинами условной оВУ и кинематической вязкостью существует эмпирическая зависимость: Для ν от 1 до 120 мм2/с νt = 7,31 оВУt – 6,31/оВУt, (17) Для ν > 120 мм2/с νt = 7,4 оВУt (18) Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре (при 50, 90 0С и др.), поскольку с ее изменением вязкость существенно меняется. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Перечень рекомендуемой литературы Основная литература: 1. Технология переработки нефти. В 2-х частях. Часть первая. Первичная переработка нефти /Под ред. О.Ф. Глаголевой и В.М. Капустина. – М.: КолосС, 2006. – 400 с. 2. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с. 3. Мановян А.К. Технология переработки природных энергоносителей.- М.: Химия, КолосС, 2004. – 456 с. 4. Вержичинская С.В., Дигуров Н.Г., Синицин С.А. Химия и технология нефти и газа: Учебное пособие для среднего профессионального образования. – М.: ФОРУМ: ИНФРА-М, 2007.-400 с. 5. Эрих В.Н., Расина М.Г., Рудин М.Г. Химия и технология нефти и газа: Учебное пособие для техникумов. – 3-е изд., перераб.–Л.: Химия, 1985. – 408 с. 6. Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокоокта-новых бензинов.- М.: Химия, 1981. -224 с. 7. Проблемы теории и практики исследований в области катализа. Под ред. академика АН УССР В.А. Ройтера. – Киев: Наукова думка, 1973. -362 с. 8. Гольберт К.А., Вигдергауз М.С. Курс газовой хроматографии. Изд. 2-е испр. и доп. М., Химия,1974. 376 с.
«Физико-химические свойства нефти и нефтепродуктов» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты

Тебе могут подойти лекции

Смотреть все 210 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot