Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Система одновременных эконометрических уравнений

Общие сведения о системе одновременных эконометрических уравнений

Определение 1

Система одновременных экономических уравнений – это совокупность уравнений, которые позволяют исследователям установить наличие и степень связи (взаимозависимости) между эконометрическими переменными.

Выделяют две группы экономических переменных, из которых образуют эконометрические уравнения:

  • эндогенные переменные, чьи значения определяют в результате функционирования изучаемой экономической системы (эндогенные переменные зависят как от экзогенных, так и от других эндогенных переменных);
  • экзогенные переменные, чьи значения задаются извне (т.е. определяются вне эконометрической модели) и являются основой для определения значений эндогенных переменных (экзогенные переменные являются независимыми).

Функционирование сложных экономических систем может быть объяснено благодаря построению изолированных уравнений регрессии и измерению на их основе тесноты связи между переменными. Однако истинное влияние отдельных признаков на вариацию результирующей переменной не может быть описано одним отдельно взятым уравнением регрессии. В связи с этим в изучении экономических процессов важное значение приобрело структурирование связей между системой переменных.

В качестве примера системы одновременных эконометрических уравнений можно привести простейшую макроэкономическую (кейнсианскую) модель, которая состоит из двух уравнений:

  1. C = a + bY + e;
  2. Y = C + I.

В данной модели эндогенными переменными являются C (расходы на потребление) и Y (доход), а экзогенной переменной – I (инвестиции). b представляет собой коэффициент, который выражает предельную склонность к потреблению.

Характеристика структурной и приведенной форм системы уравнений

Данная система от всех других систем уравнения отличается наличием определенной структурной формы эконометрической модели. Это форма предполагает, что в правых и левых частях разных уравнений системы находятся одни и те же экономические переменные. Структурная форма системы одновременных эконометрических уравнений в случае переноса всех эндогенных переменных в левую часть может быть представлено в следующем матричном виде: YA = XB + E.

«Система одновременных эконометрических уравнений» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Кроме структурной также выделяют приведенную (прогнозную) форму системы. По сути она есть представление системы, в котором эндогенные переменные выражены через экзогенные, то есть в каждом уравнении имеется только одна эндогенная переменная. Тогда она выглядит так: Y = XП + U.

Приведенную форму системы всегда можно получить, если задана структурная форма. Однако обратное действие не всегда возможно, а если оно и возможно, то не всегда получается однозначный результат.

Если через коэффициенты приведенной формы можно выразить коэффициенты структурного уравнения, то оно называется идентифицируемым (в противном случае оно – неидентифицируемое). Точная индентифицируемость свойственна ситуации, когда способ подобного выражения является единственным. Если же их несколько, то говорят о сверхидентифицируемости.

Чтобы имела место идентифицируемость, требуется выполнение такого необходимого условия, как непревышение количества переменных правой части уравнения над количеством всех экзогенных переменных системы. Формулировка этого условия может отличаться. Так, часто говорят: количество экзогенных переменных, которые исключены из данного уравнения, должно быть не меньше количества эндогенных переменных, которые включены в уравнение, за вычетом единицы.

Также выделяют условие, достаточное для признания идентифицируемости системы. Оно заключается в том, чтобы общее число эндогенных переменных системы за вычетом единицы не превышало ранг матрицы, который составлен из коэффициентов (в других уравнениях) при переменных, отсутствующих в данном уравнении.

Методы оценки систем одновременных эконометрических уравнений

Для того, чтобы оценить представленные в структурной форме уравнения системы, нецелесообразно непосредственно применять обычный метод наименьших квадратов. Это связано с тем, что подобное применение нарушит важнейшее условие регрессионного анализа — экзогенность (предопределенность, независимость) факторов. Тогда будут получены смещённые и несостоятельные оценки параметров.

Поэтому системы одновременных эконометрических уравнений оценивают посредством применения следующих методов:

  • косвенный метод наименьших квадратов – подстановка в аналитическое выражение зависимости структурных коэффициентов от их приведённых оценок, которые получают в результате применения обычного метода наименьших квадратов;
  • двухшаговый метод наименьших квадратов – оценивание сначала зависимости эндогенных переменных от всех экзогенных (первый шаг), а затем – структурной формы модели, в которой эндогенные переменные заменены на их оценки, полученные на первом шаге (второй шаг);
  • трехшаговый метод наименьших квадратов – предыдущий метод дополняется третьим шагом, с помощью которого оценивают ковариационную матрицу вектора случайных ошибок системы уравнений;
  • методы максимального правдоподобия – использование всей информации об ограничениях на приведённую форму эконометрической модели.
Дата последнего обновления статьи: 07.12.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot