Изоклина
кривая, в каждой точке которой наклон поля направлений один и тот же
если X и Y — непересекающиеся замкнутые множества нормального топологического пространства, то существует непрерывный функционал f со значениями из отрезка [0, 1], такой, что f (x) = 0 при x ∈ X и f(x) = 1 при x ∈ Y
В настоящей заметке обобщается известная лемма Урысона (1) на случай любого конечного числа и счетного множества замкнутых множеств нормального пространства и тем самым выясняется структура непрерывных функций (функций Урысона), заданных и постоянных на замкнутых множествах нормального пространства.
кривая, в каждой точке которой наклон поля направлений один и тот же
такое отображение множества в его фактормножество, что образом любого элемента является класс эквивалентности, содержащий этот элемент
1. если функция непрерывна в ограниченной замкнутой области, то она равномерно непрерывна в этой области; 2. множество, состоящее из всех подмножеств данного непустого множества M (булеан), не эквивалентно ни самому M, ни его подмножеству
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне