Китайская теорема об остатках
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
если X и Y — непересекающиеся замкнутые множества нормального топологического пространства, то существует непрерывный функционал f со значениями из отрезка [0, 1], такой, что f (x) = 0 при x ∈ X и f(x) = 1 при x ∈ Y
В настоящей заметке обобщается известная лемма Урысона (1) на случай любого конечного числа и счетного множества замкнутых множеств нормального пространства и тем самым выясняется структура непрерывных функций (функций Урысона), заданных и постоянных на замкнутых множествах нормального пространства.
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
максимальный связный подграф данного графа
порождающая грамматика
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне