Настоящая заметка посвящена условию, аналогичному условию Делоне для построения триангуляции поверхностей в евклидовом пространстве, а также триангуляции в пространствах Финслера. Классическое условие Делоне гласит, что описанная сфера вокруг n-мерного симплекса не содержит вершин других симплексов из данного набора триангуляции [1]. В основе алгоритмов построения триангуляции с условием Делоне лежит теорема о пустой сфере. Это теорема утверждает, что локальное выполнение условия Делоне влечет выполнение глобального условия. Другими словами, если для двух симплексов триангуляции, имеющих общую (n 1)-мерную грань, описанные сферы не содержат вершин, противолежащих данной (n 1)-мерной грани, то это справедливо и для произвольных двух симплексов триангуляции. В данной работе представлено условие, налагаемое на семейство выпуклых множеств, для которого справедливо аналогичное утверждение, т.е. условие, при выполнении которого из локального свойства вытекает глобальное.
В статье проводится анализ существующих подходов к решению задачи Штейнера на основе физических аналогий. На основании анализа существующих решений предложен алгоритм поиска минимальных деревьев Штейнера, основанный на физических аналогиях и использующий триангуляцию Делоне для начального приближения. Приводится сравнение результатов работы предложенного алгоритма с результатами алгоритма с экспоненциальной сложностью, дающего оптимальные решения.